Notation. Let 1 be a smooth non-negative radial bump function which equals
1 when |t| < 1, equals 0 when [¢{| > 2, and smoothly interpolates between the
two in the region 1 < |t| < 2. We use L to denote the Lebesgue space with the

norm 1
1z = (| topac)’

(when p = 2, ||fllzz = [ fIl = \/(f, f)), and use LyL? to denote the Lebesgue
space with norm
Ifllpre == (/ / |f(t,:v)|pd:vdt) .

Theorem 3.1. For any a € L2,we have
[nS()allzazs < Cllallrz,

where C' is a constant dependent on 7.
Proof. We use |nS(-)a|* = [nS()a|?|nS(-)a|? and reduce to showing

IS (-)a)(nS()a)|l 212 < Cllal|7s- (0.1)
By the Perseval identity (in variables with x and t), we have
I(nS()a)nSC)allzrs = [(FanS()a) *¢ (FanS()a)ll ez
[(FeFanS(-)a) #7.¢ (FiFanS(-)a)| 2 rz-

A computation shows that the Fourier transform (in z) of n(t)S(t)a at & is
n(t)e&rsiﬁstd(f), and its Fourier transform (in t) at 7 is simply 7(7 — 472£3)a(€).
Then the right-hand side can be written
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Integrating in 7, we have
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L2L2

<C H/_ I (7 — 4% (€ — €1)3 — 4n?€d)||a(€ — &)]]a(&r)] déy

where 7; is a smooth exponential decay function. Applying Cauchy-Schwarz
inequality to the function inside the integral
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On the other hand, we have
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so by Perseval’s identity, (0.2) is
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From the crude calculation, we conclude that the last term is bounded by some
constant, hence (0.1) follows.



