|
C. Simpson (Université de Nice) |
Higher stacks and moduli problems |
I: Basic notions |
II: Moduli of perfect complexes |
|
|
|
|
|
|
|
|
K. Yoshioka (Kobe Univ.) |
Fourier-Mukai duality for K3 surfaces |
I: |
|
|
|
|
|
|
|
D. Yamakawa (RIMS, Kyoto Univ.) |
Middle convolution and reflection functor for quiver varieties |
|
|
|
|
|
|
|
|
S. Szabó (Budapest Univ. of Technology and Economics) |
The geometry of the basic instanton moduli space over the multi-Taub-NUT space |
|
|
|
|
|
|
|
|
A. Takahashi (Osaka Univ.) |
Mirror Symmetry of Cusp singularities |
|
|
|
|
|
|
|
|
C. Sabbah (École Polytechnique) |
Universal unfoldings of Laurent polynomials and tt* geometry |
|
|
|
|
|
|
|
|
S. Yanagida (Kobe Univ.) |
Semi-homogeneous sheaves, Fourier-Mukai transforms and Moduli of stable sheaves on Abelian surfaces |
|
|
|
|
|
|
|
|
N. Mestrano (Université de Nice) |
A survey on moduli of vector bundles |
|
|
|
|
|
|
|
|
M.-H. Saito (Kobe Univ.) |
Moduli spaces of meromorphic connections and Riemann-Hilbert correspondences |
|
|
|
|
|
|
|