 |
| C. Simpson (Université de Nice) |
| Higher stacks and moduli problems |
| I: Basic notions |
II: Moduli of perfect complexes |
|
|
|
|
|
|
|
|
 |
| K. Yoshioka (Kobe Univ.) |
| Fourier-Mukai duality for K3 surfaces |
| I: |
|
|
|
|
|
|
|
 |
| D. Yamakawa (RIMS, Kyoto Univ.) |
| Middle convolution and reflection functor for quiver varieties |
|
|
|
|
| |
|
|
 |
| S. Szabó (Budapest Univ. of Technology and Economics) |
| The geometry of the basic instanton moduli space over the multi-Taub-NUT space |
|
|
|
|
| |
|
|
 |
| A. Takahashi (Osaka Univ.) |
| Mirror Symmetry of Cusp singularities |
|
|
|
|
| |
|
|
 |
| C. Sabbah (École Polytechnique) |
| Universal unfoldings of Laurent polynomials and tt* geometry |
|
|
|
|
| |
|
|
 |
| S. Yanagida (Kobe Univ.) |
| Semi-homogeneous sheaves, Fourier-Mukai transforms and Moduli of stable sheaves on Abelian surfaces |
|
|
|
|
| |
|
|
 |
| N. Mestrano (Université de Nice) |
| A survey on moduli of vector bundles |
|
|
|
|
| |
|
|
 |
| M.-H. Saito (Kobe Univ.) |
| Moduli spaces of meromorphic connections and Riemann-Hilbert correspondences |
|
|
|
|
| |
|
|