Users' manual for the Sollya tool

Release 2.0
$\frac{\text { Sylvain Chevillard }}{\text { sylvain.chevillard@ens-lyon.org }}$

Christoph Lauter
christoph.lauter@ens-lyon.org

Mioara Joldes
mioara.joldes@ens-lyon.fr

April 20, 2010

License

The Sollya tool is Copyright © 2006-2010 by
Laboratoire de l'Informatique du Parallélisme - UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668, Lyon, France, and by

LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2) Nancy, France.
All rights reserved.

The Sollya tool is open software. It is distributed and can be used, modified and redistributed under the terms of the CeCILL-C licence available at http://www.cecill.info/ and reproduced in the COPYING file of the distribution. The distribution contains parts of other libraries as a support for but not integral part of Sollya. These libraries are reigned by the GNU Lesser General Public License that is available at http://www.gnu.org/licenses/ and reproduced in the COPYING file of the distribution.

Contents

1 Compilation and installation of the Sollya tool 5
1.1 Compilation dependencies 5
1.2 Sollya command line options 5
2 Introduction 6
3 General principles 8
4 Variables 10
5 Data types 11
5.1 Booleans 11
5.2 Numbers 12
5.3 Rational numbers and rational arithmetic 15
5.4 Intervals and interval arithmetic 16
5.5 Functions 20
5.6 Strings 21
5.7 Particular values 21
5.8 Lists 21
6 Iterative language elements: assignments, conditional statements and loops 23
6.1 Blocks 23
6.2 Assignments 23
6.3 Conditional statements 24
6.4 Loops 25
7 Functional language elements: procedures 26
8 Commands and functions 28
8.1 abs 28
8.2 absolute 28
8.3 accurateinfnorm 29
8.4 acos 30
8.5 acosh 30
8.6 \&\& 30
$8.7 \quad$:. 30
$8.8 \sim$ 31
8.9 asciiplot 32
8.10 asin 34
8.11 asinh 34
8.12 atan 35
8.13 atanh 35
8.14 autodiff 35
8.15 autosimplify 36
8.16 bashexecute 37
8.17 binary 38
8.18 boolean 38
8.19 canonical 38
8.20 ceil 39
8.21 checkinfnorm 40
8.22 coeff 41
8.23 @ 41
8.24 constant 42
8.25 cos 43
8.26 cosh 43
8.27 decimal 43
8.28 default 43
8.29 degree 44
8.30 denominator 44
8.31 diam 45
8.32 dieonerrormode 45
8.33 diff 47
8.34 dirtyfindzeros 48
8.35 dirtyinfnorm 48
8.36 dirtyintegral 49
8.37 display 50
8.38 /a 51
8.39 double 52
8.40 doubledouble 53
8.41 doubleextended 53
8.42 dyadic 54
$8.43==$ 55
8.44 erf 56
8.45 erfc. 56
8.46 error 56
8.47 evaluate 57
8.48 execute 58
8.49 exp 59
8.50 expand 59
8.51 expm1 60
8.52 exponent 60
8.53 externalplot 61
8.54 externalproc 62
8.55 false 63
8.56 file 64
8.57 findzeros 64
8.58 fixed 65
8.59 floating 65
8.60 floor 65
8.61 fpminimax 66
8.62 fullparentheses 69
8.63 function 70
$8.64>=$ 70
$8.65>$. 71
8.66 guessdegree 71
8.67 head 72
8.68 hexadecimal 72
8.69 honorcoeffprec 73
8.70 hopitalrecursions 73
8.71 horner 74
8.72 implementpoly 75
8.73 in 77
8.74 inf 78
8.75 infnorm 79
8.76 integer 81
8.77 integral 81
8.78 isbound 82
8.79 isevaluable 83
$8.80<=$ 84
8.81 length 84
8.82 library 85
8.83 list of 86
$8.84 \log$ 86
$8.85 \log 10$ 86
$8.86 \log 1 \mathrm{p}$ 87
$8.87 \log 2$ 87
$8.88<$ 87
8.89 mantissa 88
8.90 mid 88
8.91 midpointmode 89
8.92 - 89
8.93 * 90
8.94 nearestint 91
8.95 != 92
8.96 nop 93
8.97 ! 93
8.98 numberroots 94
8.99 numerator 95
8.100off 96
8.1010 n 96
8.102|| 97
8.103parse 97
8.104perturb 98
8.105pi 99
8.106plot 99
$8.107+$ 101
8.108points 102
8.109postscript 102
8.110postscriptfile 103
8.111 103
8.112powers 104
8.113prec 104
8.114precision 105
8.115.: 105
8.116print 106
8.117printdouble 109
8.118printexpansion 109
8.119printsingle 110
8.120printxml 111
8.121 proc 112
8.122procedure 117
8.123quit 118
8.124range 118
8.125rationalapprox 119
8.126rationalmode 120
8.127RD 121
8.128readfile 121
8.129readxml 122
8.130relative 122
8.131remez 123
8.132rename 124
8.133restart 125
8.134return 126
8.135revert 127
8.136RN 128
8.137round 128
8.138roundcoefficients 129
8.139roundcorrectly 130
8.140roundingwarnings 131
8.141RU 132
8.142RZ 132
8.143searchgal 132
8.144simplify 134
8.145simplifysafe 134
8.146 sin 135
8.147single 135
8.148sinh 136
8.149sort 136
8.150 sqrt 136
8.151string 136
8.152subpoly 137
8.153substitute 137
8.154sup 138
8.155 tail 139
8.156tan 139
$8.157 \tanh$ 140
8.158taylor 140
8.159taylorform 141
8.160taylorrecursions 143
8.161time 144
8.162timing 145
8.163tripledouble 146
8.164true 146
8.165 var 147
8.166verbosity 147
8.167 void 148
8.168worstcase 150
8.169 write 150

1 Compilation and installation of the Sollya tool

1.1 Compilation dependencies

The Sollya distribution can be compiled and installed using the usual ./configure, make, make install procedure. Besides a C compiler, Sollya needs the following software libraries and tools to be installed. The ./configure script checks for the installation of the libraries. However Sollya will build without error if some of its external tools are not installed. In this case an error will be displayed at runtime.

- GMP
- MPFR
- MPFI
- fplll
- libxml2
- gnuplot (external tool)

The use of the external tool rlwrap is highly recommended but not required. Use the -A option of rlwrap for correctly displayed ANSI X3.64/ ISO/IEC 6429 colored prompts (see below).

1.2 Sollya command line options

Sollya can read input on standard input or in a file whose name is given as an argument when Sollya is invoked. The tool will always produce its output on standard output, unless specificly instructed by a particular Sollya command that writes to a file. The following lines are valid invocations of Sollya, assuming that bash is used as a shell:

```
~/% sollya
~/% sollya myfile.sollya
...
~/% sollya < myfile.sollya
```

If a file given as an input does not exist, an error message is displayed.
All configurations of the internal state of the tool are done by commands given on the Sollya prompt or in Sollya scripts. Nevertheless, some command line options are supported; they work at a very basic I/O-level and can therefore not be implemented as commands.

The following options are supported when calling Sollya:

- --donotmodifystacksize: When invoked, Sollya trys to increase the stack size that is available to a user process to the maximum size supported by the kernel. On some systems, the correspondent ioctl does not work properly. Use the option to prevent Sollya from changing the stack size.
- --flush: When this option is given, Sollya will flush all its input and output buffers after parsing and executing each command resp. sequence of commands. This option is needed when pipes are used to communicate with Sollya from another program.
- --help: Prints help on the usage of the tool and quits.
- --nocolor: Sollya supports coloring of the output using ANSI X3.64/ ISO/IEC 6429 escape sequences. Coloring is deactivated when Sollya is connected on standard input to a file that is not a terminal. This option forces the deactivation of ANSI coloring. This might be necessary on very old grey-scale terminals or when encountering problems with old versions of rlwrap.
- --noprompt: Sollya prints a prompt symbol when connected on standard input to a pseudo-file that is a terminal. The option deactivates the prompt.
- --oldautoprint: The behaviour of an undocumented feature for displaying values has changed in Sollya from version 1.1 to version 2.0. The old feature is deprecated. If you wish to use it nevertheless, use this deprecated option.
- --oldrlwrapcompatible: This option is deprecated. It makes Sollya emit a non ANSI X3.64 compliant coloring escape sequence for making it compatible with versions of rlwrap that do not support the -A option. The option is considered a hack since it is known to garble the output of the tool under some particular circumstances.

2 Introduction

Sollya is an interactive tool for handling numerical functions and working with arbitrary precision. It can evaluate functions accurately, compute polynomial approximations of functions, automatically implement polynomials for use in math libraries, plot functions, compute infinity norms, etc. Sollya is also a full-featured script programming language with support for procedures etc.

Let us begin this manual with an example. Sollya does not allow command line edition; since this may quickly become uncomfortable, we highly suggest to use the rlwrap tool with Sollya:
~/\% rlwrap -A sollya
$>$
Sollya manipulates only functions in one variable. The first time that an unbound variable is used, this name is fixed. It will be used to refer to the free variable. For instance, try

```
> f = sin(x)/x;
>g=cos(y)-1;
Warning: the identifier "y" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "y" as "x".
> g;
cos(x) - 1
```

Now, the name x can only be used to refer to the free variable:

```
> x = 3;
Warning: the identifier "x" is already bound to the free variable, to a library
function or to an external procedure.
The command will have no effect.
Warning: the last assignment will have no effect.
```

If you really want to unbind x, you can use the rename command and change the name of the free variable:

```
> rename(x,y);
Information: the free variable has been renamed from "x" to "y".
> g;
cos(y) - 1
> x=3;
> x;
3
```

As you have seen, you can name functions and easily work with them. The basic thing to do with a function is to evaluate it at some point:

```
> f(-2);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
0.45464871341284084769800993295587242135112748572394
> evaluate(f,-2);
0.45464871341284084769800993295587242135112748572394
```

The printed value is generally a faithful rounding of the exact value at the working precision (i.e. one of the two floating-point numbers enclosing the exact value). Internally Sollya represents numbers as floating-point numbers in arbitrary precision with radix 2 : the fact that a faithful rounding is performed in binary does not imply much on the exactness of the digits displayed in decimal. The working precision is controlled by the global variable prec:

```
> prec;
165
> prec=200;
The precision has been set to 200 bits.
> prec;
200
> f(-2);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
0.4546487134128408476980099329558724213511274857239451341894865
```

Sometimes a faithful rounding cannot easily be computed. In such a case, a value is printed that was obtained using floating-point approximations without control on the final accuracy:

```
> log2(5)/log2(17) - log(5)/log(17);
Warning: rounding may have happened.
If there is rounding, the displayed value is *NOT* guaranteed to be a faithful r
ounding of the true result.
0
```

The philosophy of Sollya is: Whenever something is not exact, print a warning. This explains the warnings in the previous examples. If the result can be shown to be exact, there is no warning:

```
sin(0);
0
```

Let us finish this Section with a small complete example that shows a bit of what can be done with Sollya:

```
> restart;
The tool has been restarted.
> prec=50;
The precision has been set to 50 bits.
> f=cos(2*exp(x));
> d=[-1/8;1/8];
> p=remez(f,2,d);
> derivativeZeros = dirtyfindzeros(diff(p-f),d);
> derivativeZeros = inf(d).:derivativeZeros:.sup(d);
> max=0;
> for t in derivativeZeros do {
    r = evaluate(abs(p-f), t);
    if r > max then { max=r; argmax=t; };
    };
> print("The infinity norm of", p-f, "is", max, "and is reached at", argmax);
The infinity norm of -0.416265572875373 + x * (-1.798067209218835 + x * (-3.8971
0727747639e-2)) - cos(2 * exp(x)) is 8.630659443624325e-4 and is reached at -5.8
01672331417684e-2
```

In this example, we define a function f, an interval d and we compute the best degree- 4 polynomial approximation of f on d with respect to the infinity norm. In other words, $\max _{x \in d}\{|p(x)-f(x)|\}$ is minimal amongst polynomials with degree not greater than 4 . Then, we compute the list of the zeros of the derivative of $p-f$ and add the bounds of d to this list. Finally, we evaluate $|p-f|$ for each point in the list and store the maximum and the point where it is reached. We conclude by printing the result in a formatted way.

Note that you do not really need to use such a script for computing an infinity norm; as we will see, the command dirtyinfnorm does this for you.

3 General principles

The first purpose of Sollya is to help people using numerical functions and numerical algorithms in a safe way. It is first designed to be used interactively but it can also be used in scripts 1 .

One of the particularities of Sollya is to work with multi-precision arithmetic (it uses the MPFR library). For safety purposes, Sollya knows how to use interval arithmetic. It uses interval arithmetic to produce tight and safe results with the precision required by the user.

The general philosophy of Sollya is: When you can make a computation exactly and sufficiently quickly, do it; when you cannot, do not, unless you have been explicitly asked for.

The precision of the tool is set by the global variable prec. In general, the variable prec determines the precision of the outputs of commands: more precisely, the command will internally determine how much precision should be used during the computations in order to ensure that the output is a faithfully rounded result with prec bits.

For decidability and efficiency reasons, this general principle cannot be applied every time, so be careful. Moreover certain commands are known to be unsafe: they give in general excellent results and give almost prec correct bits in output for everyday examples. However they are merely based on heuristics and should not be used when the result must be safe. See the documentation of each command to know precisely how confident you can be with their result.

A second principle (that comes together with the first one) is the following one: When a computation leads to inexact results, inform the user with a warning. This can be quite irritating in some circumstances: in particular if you are using Sollya within other scripts. The global variable verbosity lets you change the level of verbosity of Sollya. When the variable is set to 0 , Sollya becomes completely silent on standard output and prints only very important messages on standard error. Increase verbosity if you want more information about what Sollya is doing. Note that when you affect a value to a global variable, a message is always printed even if verbosity is set to 0 . In order to silently affect a global variable, use !:

[^0]```
> prec=30;
The precision has been set to 30 bits.
> prec=30!;
>
```

For conviviality reasons, values are displayed in decimal by default. This lets a normal human being understand the numbers they manipulate. But since constants are internally represented in binary, this causes permanent conversions that are sources of roundings. Thus you are loosing in accuracy and Sollya is always complaining about inexact results. If you just want to store or communicate your results (to another tools for instance) you can use bit-exact representations available in Sollya. The global variable display defines the way constants are displayed. Here is an example of the five available modes:

```
prec=30!;
a = 17.25;
display=decimal;
Display mode is decimal numbers.
> a;
1.725e1
> display=binary;
Display mode is binary numbers.
> a;
1.000101_2 * 2^(4)
> display=powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> a;
69 * 2^(-2)
> display=dyadic;
Display mode is dyadic numbers.
> a;
69b-2
> display=hexadecimal;
Display mode is hexadecimal numbers.
> a;
0x1.14p4
```

Please note that it is possible to maintain the general verbosity level at some higher setting while deactivating all warnings on roundings. This feature is controlled using the roundingwarnings global variable. It may be set to on or off. By default, the warnings are activated (roundingwarnings = on) when Sollya is connected on standard input to a pseudo-file that represents a terminal. They are deactivated when Sollya is connected on standard input to a real file. See 8.140 for further details; the behavior is illustrated with examples there.

As always, the symbol e means $\times 10^{\square}$. The same way the symbol b means $\times 2^{\square}$. The symbol $p$ means $\times 16^{\square}$ and is used only with the $0 x$ prefix. The prefix 0 x indicates that the digits of the following number until a symbol p or white-space are hexadecimal. The suffix _2 indicates to Sollya that the previous number has been written in binary. Sollya can parse these notations even if you are not in the corresponding display mode, so you can always use them.

You can also use memory-dump hexadecimal notation frequently used to represent IEEE 754 double and single precision numbers. Since this notation does not allow for exactly representing numbers with arbitrary precision, there is no corresponding display mode. However, the commands printdouble respectively printsingle round the value to the nearest double respectively single. The number is then printed in hexadecimal as the integer number corresponding to the memory representation of the IEEE 754 double or single number:

```
> printdouble(a);
0x40314000000000000
> printsingle(a);
0x418a0000
```

Sollya can parse these memory-dump hexadecimal notation back in any display mode. The difference of this memory-dump notation with the hexadecimal notation (as defined above) is made by the presence or absence of a p indicator.

## 4 Variables

As already explained, Sollya can manipulate variate functional expressions in one variable. These expressions contain a unique free variable the name of which is fixed by its first usage in an expression that is not a left-hand-side of an assignment. This global and unique free variable is a variable in the mathematical sense of the term.

Sollya also provides variables in the sense programming languages give to the term. These variables, which must be different in their name from the global free variable, may be global or declared and attached to a block of statements, i.e. a begin-end-block. These programming language variables may hold any object of the Sollya language, as for example functional expressions, strings, intervals, constant values, procedures, external functions and procedures, etc.

Global variables need not to be declared. They start existing, i.e. can be correctly used in expressions that are not left-hand-sides of assignments, when they are assigned a value in an assignment. Since they are global, this kind of variables is recommended only for small Sollya scripts. Larger scripts with code reuse should use declared variables in order to avoid name clashes for example in loop variables.

Declared variables are attached to a begin-end-block. The block structure builds scopes for declared variables. Declared variables in inner scopes shadow (global and declared) variables of outer scopes. The global free variable, i.e. the mathematical variable for variate functional expressions in one variable, cannot be shadowed. Variables are declared using var keyword. See section 8.165 for details on its usage and semantic.

The following code examples illustrate the usage of variables.

```
f = exp(x);
> f;
exp(x)
> a = "Hello world";
> a;
Hello world
> b = 5;
> f(b);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
1.48413159102576603421115580040552279623487667593878e2
> {var b; b = 4; f(b); };
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
5.45981500331442390781102612028608784027907370386137e1
> {var x; x = 3; };
Warning: the identifier "x" is already bound to the current free variable.
It cannot be declared as a local variable. The declaration of "x" will have no e
ffect.
Warning: the identifier "x" is already bound to the free variable, to a library
function or to an external procedure.
The command will have no effect.
Warning: the last assignment will have no effect.
> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };
1
true
5
3
> a;
Hello world
```

Let us state that a variable identifier, just as every identifier in Sollya, contains at least one character, starts with a ASCII letter and continuing with ASCII letters or numerical digits.

## 5 Data types

Sollya has a (very) basic system of types. If you try to perform an illicit operation (such as adding a number and a string, for instance), you will get a typing error. Let us see the available data types.

### 5.1 Booleans

There are two special values true and false. Boolean expressions can be constructed using the boolean connectors \&\& (and), I। (or), ! (not), and comparisons.

The comparison operators $\langle,<=,>$ and $>=$ can only be used between two numbers or constant expressions.

The comparison operators $==$ and $!=$ are polymorphic. You can use them to compare any two objects, like two strings, two intervals, etc. As a matter of fact, polymorphism is allowed on both sides: it is possible to compare objects of different type. Such objects of different type, as they can never be syntactically equal, will always compare unequal (see exception for error, section 8.46 ) and never equal. Note that testing the equality between two functions will return true if and only if the expression trees representing the two functions are exactly the same. See 8.46 for an exception concerning the special object error. Example:

```
> 1+x==1+x;
true
```


### 5.2 Numbers

Sollya represents numbers as binary multi-precision floating-point values. For integer values and values in dyadic, binary, hexadecimal or memory dump notation, it automatically uses a precision needed for representing the value exactly (unless this behaviour is overridden using the syntax given below). Additionally, automatic precision adaption takes place for all integer values (even in decimal notation) written without the exponent sign e or with the exponent sign e and an exponent sufficiently small that they are less than $10^{999}$. Otherwise the values are represented with the current precision prec. When a number must be rounded, it is rounded to the precision prec before the expression get evaluated:

```
> prec=12!;
> 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with }12\mathrm{ bits.
If safe computation is needed, try to increase the precision.
4098
> 4098.1;
Warning: Rounding occurred when converting the constant "4098.1" to floating-poi
nt with }12\mathrm{ bits.
If safe computation is needed, try to increase the precision.
4098
> 4097.1+1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with }12\mathrm{ bits.
If safe computation is needed, try to increase the precision.
4099
```

Note that each variable has its own precision that corresponds to its intrinsic precision or, if it cannot be represented, to the value of prec when the variable was set. Thus you can work with variables having a precision higher than the current precision.

The same way, if you define a function that refers to some constant, this constant is stored in the function with the current precision and will keep this value in the future, even if prec becomes smaller.

If you define a function that refers to some variable, the precision of the variable is kept, independently of the current precision:

```
> prec = 50!;
>a = 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 50 bits.
If safe computation is needed, try to increase the precision.
> prec = 12!;
f = x + a;
g = x + 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
> prec = 120;
The precision has been set to 120 bits.
> f;
4.097099999999998544808477163314819335e3 + x
> g;
4098 + x
```

In some rare cases, it is necessary to read in decimal constants with a particular precision being used in the conversion to the binary floating-point format, which Sollya uses. Setting prec to that precision may prove to be an insufficient means for doing so, for example when several different precisions have to
be used in one expression. For these rare cases, Sollya provides the following syntax: decimal constants may be written \%precision\%constant, where precision is a constant integer, written in decimal, and constant is the decimal constant. Sollya will convert the constant constant with precision precision, regardless of the global variable prec and regardless if constant is an integer or would otherwise be representable.

```
> prec = 24;
The precision has been set to 24 bits.
> a = 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 24 bits.
If safe computation is needed, try to increase the precision.
> b = 33554433;
> prec = 64;
The precision has been set to }64\mathrm{ bits.
> display = binary;
Display mode is binary numbers.
> a;
1.10011001100110011001101_2 * 2~ (-4)
> 0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 64 bits.
If safe computation is needed, try to increase the precision.
1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)
> %24%0.1;
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 24 bits.
If safe computation is needed, try to increase the precision.
1.10011001100110011001101_2 * 2~(-4)
> c = 33554433;
> b;
1.0000000000000000000000001_2 * 2~(25)
> c;
1.0000000000000000000000001_2 * 2~(25)
> %24%33554433;
Warning: Rounding occurred when converting the constant "33554433" to floating-p
oint with 24 bits.
If safe computation is needed, try to increase the precision.
1_2 * 2^(25)
>
>
```

Sollya is an environment that uses floating-point arithmetic. The IEEE 754-2008 standard on floating-point arithmetic does not only define floating-point numbers that represent real numbers but also floating-point data representing infinities and Not-a-Numbers (NaNs). Sollya also supports infinities and NaNs in the spirit of the IEEE 754-2008 standard without taking the standard's choices literally.

- Signed infinities are available through the Sollya objects infty, -infty, @Inf@ and -@Inf@.
- Not-a-Numbers are supported through the Sollya objects NaN and @NaN@. Sollya does not have support for NaN payloads, signaling or quiet NaNs or signs of NaNs. Signaling NaNs are supported on input for single and double precision memory notation (see section 3). However, they immediately get converted to plain Sollya NaNs.

The evaluation of an expression involving a NaN or the evaluation of a function at a point being NaN always results in a NaN .

Infinities are considered to be the limits of expressions tending to infinity. They are supported as bounds of intervals in some cases. However, particular commands might prohibit their use even though there might be a mathematical meaning attached to such expressions. For example, while Sollya will evaluate expressions such as $\lim _{x \rightarrow-\infty} e^{x}$, expressed e.g. through evaluate ( $\exp (x),[-i n f t y ; 0]$ ), it will not accept to compute the (finite) value of

$$
\int_{-\infty}^{0} e^{x} \mathrm{~d} x
$$

The following examples give an idea of what can be done with Sollya infinities and NaNs. Here is what can be done with infinities:

```
> f = exp(x) + 5;
f(-infty);
5
> evaluate(f,[-infty;infty]);
[5;@Inf@]
> f(infty);
Warning: the given expression is undefined or numerically unstable.
@NaN@
> [-infty;5] * [3;4];
[-@Inf@;20]
> -infty < 5;
true
> log(0);
Warning: the given expression is undefined or numerically unstable.
@NaN@
> [log(0);17];
Warning: the given expression is not a constant but an expression to evaluate
and a faithful evaluation is not possible.
Will use a plain floating-point evaluation, which might yield a completely wrong
value.
Warning: inclusion property is satisfied but the diameter may be greater than th
e least possible.
[-@Inf@;17]
>
```

And the following example illustrates NaN behavior.

```
> 3/0;
Warning: the given expression is undefined or numerically unstable.
@NaN@
> (-3)/0;
Warning: the given expression is undefined or numerically unstable.
@NaN@
> infty/infty;
Warning: the given expression is undefined or numerically unstable.
@NaN@
> infty + infty;
Warning: the given expression is undefined or numerically unstable.
@Inf@
> infty - infty;
Warning: the given expression is undefined or numerically unstable.
@NaN@
> f = exp(x) + 5;
> f(NaN);
@NaN@
> NaN == 5;
false
> NaN == NaN;
false
> NaN != NaN;
false
> X = "Vive la Republique!";
> !(X == X);
false
> X = 5;
> !(X == X);
false
> X = NaN;
> !(X == X);
true
>
```


### 5.3 Rational numbers and rational arithmetic

The Sollya tool is mainly based on floating-point arithmetic: wherever possible, floating-point algorithms, including algorithms using interval arithmetic, are used to produce approximate but safe results. For some particular cases, floating-point arithmetic is not sufficient: some algorithms just require natural and rational numbers to be handled exactly. More importantly, for these applications, it is required that rational numbers be displayed as such.

Sollya implements a particular mode that offers a lightweight support for rational arithmetic. When needed, it can be enabled by assigning on to the global variable rationalmode. It is disabled by assigning off; the default is off.

When the mode for rational arithmetic is enabled, Sollya's behavior will change as follows:

- When a constant expression is given at the Sollya prompt, Sollya will first try to simplify the expression to a rational number. If such an evaluation to a rational number is possible, Sollya will display that number as an integer or a fraction of two integers. Only if Sollya is not able to simplify the constant expression to a rational number, it will launch the default behavior of evaluating constant expressions to floating-point numbers that are generally faithful roundings of the expressions.
- When the global mode autosimplify is on, which is the default, Sollya will additionally use rational arithmetic while trying to simplify expressions given in argument of commands.

Even when rationalmode is on, Sollya will not be able to exhibit integer ratios between transcendental quantities. For example, Sollya will not display $\frac{1}{6}$ for $\arcsin \left(\frac{1}{2}\right) / \pi$ but $0.16666 \ldots$. Sollya's evaluator for rational arithmetic is only able to simplify rational expressions based on addition, subtraction, multiplication, division, negation, perfect squares (for square root) and integer powers.

The following example illustrates what can and what cannot be done with Sollya's mode for rational arithmetic:

```
> 1/3 - 1/7;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
0.19047619047619047619047619047619047619047619047619
> rationalmode = on;
Rational mode has been activated.
> 1/3 - 1/7;
4 / 21
> (2 + 1/7)^2 + (6/7)^2 + 2 * (2 + 1/7) * 6/7;
9
> rationalmode = off;
Rational mode has been deactivated.
> (2 + 1/7)^2 + (6/7)^2 + 2 * (2 + 1/7) * 6/7;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
9
> rationalmode = on;
Rational mode has been activated.
> asin(1)/pi;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
0.5
> sin(1/6 * pi);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
0.5
> exp(1/7 - 3/21) / 7;
1 / 7
> rationalmode = off;
Rational mode has been deactivated.
> exp(1/7 - 3/21) / 7;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
0.142857142857142857142857142857142857142857142857145
> print(1/7 - 3/21);
1 / 7-3 / 21
> rationalmode = on;
Rational mode has been activated.
> print(1/7 - 3/21);
0
```


### 5.4 Intervals and interval arithmetic

Sollya can manipulate intervals that are closed subsets of the real numbers. Several ways of defining intervals exist in Sollya. There is the most common way where intervals are composed of two numbers or constant expressions representing the lower and the upper bound. These values are separated either by commas or semi-colons. Interval bound evaluation is performed in a way that ensures the inclusion property: all points in the original, unevaluated interval will be contained in the interval with its bounds evaluated to floating-point numbers.

```
>d=[1;2];
>d2=[1,1+1];
>d==d2;
true
> prec=12!;
> 8095.1;
Warning: Rounding occurred when converting the constant "8095.1" to floating-poi
nt with }12\mathrm{ bits.
If safe computation is needed, try to increase the precision.
8096
> [8095.1; 8096.1];
Warning: Rounding occurred when converting the constant "8095.1" to floating-poi
nt with }12\mathrm{ bits.
If safe computation is needed, try to increase the precision.
Warning: Rounding occurred when converting the constant "8096.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
[8094;8098]
```

Sollya has a mode for printing intervals that are that thin that their bounds have a number of decimal digits in common when printed. That mode is called midpointmode; see below for an introduction and section 8.91 for details. As Sollya must be able to parse back its own output, a syntax is provided to input intervals in midpoint mode. However, please note that the notation used in midpoint mode generally increases the width of intervals: hence when an interval is displayed in midpoint mode and read again, the resulting interval may be wider than the original interval.

```
> midpointmode = on!;
> [1.725e4;1.75e4];
0.17~2/5~
> 0.17~2/5~ e5;
0.17~2/5~
> midpointmode = off!;
> 0.17~2/5~ e5;
[17200;17500]
```

In some cases, intervals become infinitely thin in theory, in which case one tends to think of point intervals even if their floating-point representation is not infinitely thin. Sollya provides a very covenient way for input of such point intervals. Instead of writing [a;a], it is possible to just write [a]. Sollya will expand the notation while making sure that the inclusion property is satisfied:

```
> [3];
[3;3]
> [1/7];
Warning: the given expression is not a constant but an expression to evaluate. A
faithful evaluation will be used.
[0.14285713;0.14285716]
> [exp(8)];
Warning: the given expression is not a constant but an expression to evaluate. A
faithful evaluation will be used.
[2.980957e3;2.9809589e3]
```

When the mode midpointmode is set to on (see 8.91), Sollya will display intervals that are provably reduced to one point in this extended interval syntax. It will use midpointmode syntax for intervals that are sufficiently thin but not reduced to one point (see section 8.91 for details):

```
> midpointmode = off;
Midpoint mode has been deactivated.
> [17;17];
[17;17]
> [exp(pi);exp(pi)];
Warning: the given expression is not a constant but an expression to evaluate. A
 faithful evaluation will be used.
[2.31406926327792690057290863679485473802661062425987e1;2.3140692632779269005729
0863679485473802661062426015e1]
> midpointmode = on;
Midpoint mode has been activated.
> [17;17];
[17]
> [exp(pi);exp(pi)];
Warning: the given expression is not a constant but an expression to evaluate. A
 faithful evaluation will be used.
0.23140692632779269005729086367948547380266106242~5/7~e2
>
```

Sollya intervals are internally represented with floating-point numbers as bounds; rational numbers are not supported here. If bounds are defined by constant expressions, these are evaluated to floatingpoint numbers using the current precision. Numbers or variables containing numbers keep their precision for the interval bounds.

Constant expressions get evaluated to floating-point values immediately; this includes $\pi$ and rational numbers, even in when rationalmode is on (see section 5.3 for this mode).

```
> prec = 300!;
> a = 4097.1;
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 300 bits.
If safe computation is needed, try to increase the precision.
> prec = 12!;
> d = [4097.1; a];
Warning: Rounding occurred when converting the constant "4097.1" to floating-poi
nt with 12 bits.
If safe computation is needed, try to increase the precision.
> prec = 300!;
> d;
[4096;4.0971e3]
> prec = 30!;
> [-pi;pi];
Warning: the given expression is not a constant but an expression to evaluate. A
faithful evaluation will be used.
Warning: the given expression is not a constant but an expression to evaluate. A
faithful evaluation will be used.
[-3.141592659;3.141592659]
```

You can get the upper-bound (respectively the lower-bound) of an interval with the command sup (respectively inf). The middle of the interval can be computed with the command mid. Note that these commands can also be used on numbers (in that case, the number is interpreted as an interval containing only one single point. In that case the commands inf, mid and sup are just the identity):

```
d=[1;3];
inf(d);
1
mid(d);
sup(4);
4
```

Let us mention that the mid operator never provokes a rounding. It is rewritten as an unevaluated expression in terms of inf and sup.

Sollya permits intervals to also have non-real bounds, such as infinities or NaNs. When evaluating certain expressions, in particular given as interval bounds, Sollya will itself generate intervals containing infinities or NaNs. When evaluation yields an interval with a NaN bound, the given expression is most likely undefined or numerically unstable. Such results should not be trusted; a warning is displayed.

While computations on intervals with bounds being NaN will always fail, Sollya will try to interpret infinities in the common way as limits. However, this is not guaranteed to work, even if it is guaranteed that no unsafe results will be produced. See also section 5.2 for more detail on infinities in Sollya.

```
> evaluate(exp(x),[-infty;0]);
[0;1]
> dirtyinfnorm(exp(x),[-infty;0]);
Warning: a bound of the interval is infinite or NaN.
This command cannot handle such intervals.
@NaN@
>
> f = log(x);
> [f(0); f(1)];
Warning: the given expression is not a constant but an expression to evaluate
and a faithful evaluation is not possible.
Will use a plain floating-point evaluation, which might yield a completely wrong
 value.
Warning: inclusion property is satisfied but the diameter may be greater than th
e least possible.
[-@Inf@;0]
>
```

Sollya internally uses interval arithmetic extensively to provide safe answers. In order to provide for algorithms written in the Sollya language being able to use interval arithmetic, Sollya offers native support of interval arithmetic. Intervals can be added, subtracted, multiplied, divided, raised to powers, for short, given in argument to any Sollya function. The tool will apply the rules of interval arithmetic in order to compute output intervals that safely encompass the hull of the image of the function on the given interval:

```
> [1;2] + [3;4];
[4;6]
> [1;2] * [3;4];
[3;8]
> sqrt([9;25]);
[3;5]
> exp(sin([10;100]));
[0.36787942;2.7182819]
```

When such expressions involving intervals are given, Sollya will follow the rules of interval arithmetic in precision prec for immediately evaluating them to interval enclosures. While Sollya's evaluator always guarantees the inclusion property, it also applies some optimisations in some cases in order to make the image interval as thin as possible. For example, Sollya will use a Taylor expansion based evaluation
if a composed function, call it $f$, is applied to an interval. In other words, in this case Sollya will behave as if the evaluate command (see section 8.47) were implicitly used. In most cases, the result will be different from the one obtained by replacing all occurences of the free variable of a function by the interval the function is to be evaluated on:

```
> f = x - sin(x);
> [-1b-10;1b-10] - sin([-1b-10;1b-10]);
[-1.95312484477957829894e-3;1.95312484477957829894e-3]
> f([-1b-10;1b-10]);
[-4.656612503003139269e-10;4.656612503003139269e-10]
> evaluate(f,[-1b-10;1b-10]);
[-4.656612503003139269e-10;4.656612503003139269e-10]
```


### 5.5 Functions

Sollya knows only about functions with one single variable. The first time in a session that an unbound name is used (without being assigned) it determines the name used to refer to the free variable.

The basic functions available in Sollya are the following:

- +, -, *, /, ~
- sqrt
- abs
- sin, cos, tan, sinh, cosh, tanh
- asin, acos, atan, asinh, acosh, atanh
- $\exp$, expm1 (defined as $\operatorname{expm1}(x)=\exp (x)-1)$
- $\log ($ natural $\operatorname{logarithm}), \log 2($ binary $\operatorname{logarithm}), \log 10($ decimal $\operatorname{logarithm}), \log 1 \mathrm{p}$ (defined as $\log 1 \mathrm{p}(x)=\log (1+x))$
- erf, erfc
- single, double, doubleextended, doubledouble, tripledouble (see sections 8.147, 8.39, 8.41, 8.40 and 8.163
- SG, D, DE, DD, TD (see sections 8.147, 8.39, 8.41, 8.40 and 8.163 )
- floor, ceil, nearestint.

The constant $\pi$ is available through the keyword pi as a 0 -ary function:

```
> display=binary!;
> prec=12!;
> a=pi;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
1.10010010001_2 * 2^(1)
> prec=30!;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
1.10010010000111111011010101001_2 * 2^(1)
```


### 5.6 Strings

Anything written between quotes is interpreted as a string. The infix operator @ concatenates two strings. To get the length of a string, use the length function. You can access the $i$-th character of a string using brackets (see the example below). There is no character type in Sollya: the $i$-th character of a string is returned as a string itself.

```
> s1 = "Hello "; s2 = "World!";
s = s1@s2;
> length(s);
12
> s[0];
H
> s[11];
!
```

Strings may contain the following escape sequences: $\backslash \backslash, \backslash^{\prime}, \backslash ?, \backslash ', \backslash \mathrm{n}, \backslash \mathrm{t}, \backslash \mathrm{a}, \backslash \mathrm{b}, \backslash \mathrm{f}, \backslash \mathrm{r}, \backslash \mathrm{v}$, $\backslash \mathrm{x}$ [hexadecimal number] and $\backslash$ [octal number]. Refer to the C99 standard for their meaning.

### 5.7 Particular values

Sollya knows about some particular values. These values do not really have a type. They can be stored in variables and in lists. A (possibly not exhaustive) list of such values is the following one:

- on, off (see sections 8.101 and 8.100 )
- dyadic, powers, binary, decimal, hexadecimal (see sections 8.42, 8.112, 8.17, 8.27 and 8.68
- file, postscript, postscriptfile (see sections 8.56, 8.109 and 8.110)
- RU, RD, RN, RZ (see sections 8.141, 8.127, 8.136 and 8.142 )
- absolute, relative (see sections 8.2 and 8.130 )
- floating, fixed (see sections 8.59 and 8.58
- single, double, doubleextended, doubledouble, tripledouble (see sections 8.147, 8.39, 8.41, 8.40 and 8.163
- SG, D, DE, DD, TD (see sections 8.147, 8.39, 8.41, 8.40 and 8.163)
- perturb (see section 8.104)
- honorcoeffprec (see section 8.69 )
- default (see section 8.28
- error (see section 8.46)
- void (see section 8.167)


### 5.8 Lists

Objects can be grouped into lists. A list can contain elements with different types. As for strings, you can concatenate two lists with @. The function length also gives the length of a list.

You can prepend an element to a list using . : and you can append an element to a list using : . The following example illustrates some features:

```
L = [| "foo" |];
L = L:.1;
L = "bar".:L;
> L;
[l"bar", "foo", 1|]
> L[1];
foo
> L@L;
[|"bar", "foo", 1, "bar", "foo", 1|]
```

Lists can be considered arrays and elements of lists can be referenced using brackets. Possible indices start at 0 . The following example illustrates this point:

```
> L = [|1,2,3,4,5|];
> L;
[|1, 2, 3, 4, 5|]
> L[3];
4
```

Please be aware of the fact that the complexity for accessing an element of the list using indices is $\mathcal{O}(n)$, where $n$ is the length of the whole list.

Lists may contain ellipses indicated by ,..., between elements that are constant and evaluate to integers that are incrementally ordered. Sollya translates such ellipses to the full list upon evaluation. The use of ellipses between elements that are not constants is not allowed. This feature is provided for ease of programming; remark that the complexity for expanding such lists is high. For illustration, see the following example:

```
> [|1,...,5|];
[l1, 2, 3, 4, 5|]
> [|-5,...,5|];
[|-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5|]
> [|3,...,1|];
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> [ltrue,...,falsel];
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
```

Lists may be continued to infinity by means of the . . . indicator after the last element given. At least one element must explicitly be given. If the last element given is a constant expression that evaluates to an integer, the list is considered as continued to infinity by all integers greater than that last element. If the last element is another object, the list is considered as continued to infinity by re-duplicating this last element. Let us remark that bracket notation is supported for such end-elliptic lists even for implicitly given elements. However, evaluation complexity is high. Combinations of ellipses inside a list and in its end are possible. The usage of lists described here is best illustrated by the following examples:

```
> L = [|1,2,true,3...|];
> L;
[l1, 2, true, 3...|]
> L[2];
true
> L[3];
3
> L [4];
4
> L[1200];
1200
> L = [|1,...,5,true...|];
> L;
[|1, 2, 3, 4, 5, true...|]
> L[1200];
true
```


## 6 Iterative language elements: assignments, conditional statements and loops

### 6.1 Blocks

Statements in Sollya can be grouped in blocks, so-called begin-end-blocks. This can be done using the key tokens \{ and \}. Blocks declared this way are considered to be one single statement. As already explained in section 4, using begin-end-blocks also opens the possibility of declaring variables through the keyword var.

### 6.2 Assignments

Sollya has two different assignment operators, $=$ and $:=$. The assignment operator $=$ assigns its right-hand-object "as is", i.e. without evaluating functional expressions. For instance, i = i + 1; will dereferentiate the identifier i with some content, notate it $y$, build up the expression (function) $y+1$ and assign this expression back to $i$. In the example, if $i$ stood for the value 1000 , the statement $i=i$ +1 ; would assign " $1000+1$ " - and not " 1001 " - to i. The assignment operator := evaluates constant functional expressions before assigning them. On other expressions it behaves like $=$. Still in the example, the statement i := i + 1; really assigns 1001 to i.

Both Sollya assignment operators support indexing of lists or strings elements using brackets on the left-hand-side of the assignment operator. The indexed element of the list or string gets replaced by the right-hand-side of the assignment operator. When indexing strings this way, that right-hand side must evaluate to a string of length 1. End-elliptic lists are supported with their usual semantic for this kind of assignment. When referencing and assigning a value in the implicit part of the end-elliptic list, the list gets expanded to the corresponding length.

The following examples well illustrate the behavior of assignment statements:

```
> autosimplify = off;
Automatic pure tree simplification has been deactivated.
> i = 1000;
> i = i + 1;
> print(i);
1000 + 1
> i := i + 1;
> print(i);
1002
> L = [|1,...,5|];
> print(L);
[l1, 2, 3, 4, 5|]
> L[3] = L[3] + 1;
> L[4] := L[4] + 1;
> print(L);
[|1, 2, 3, 4 + 1, 6|]
> L[5] = true;
L
[l1, 2, 3, 5, 6, truel]
> s = "Hello world";
> s;
Hello world
> s[1] = "a";
> s;
Hallo world
> s[2] = "foo";
Warning: the string to be assigned is not of length 1.
This command will have no effect.
> L = [ltrue,1,\ldots..,5,9...l];
> L;
[ltrue, 1, 2, 3, 4, 5, 9...|]
> L[13] = "Hello";
> L;
[Itrue, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, "Hello"...|]
```

The indexing of lists on left-hand sides of assignments is reduced to the first order. Multiple indexing of lists of lists on assignment is not supported for complexity reasons. Multiple indexing is possible in right-hand sides.

```
L = [| 1, 2, [|"a", "b", [ltrue, false|] |] |];
L[2] [2] [1];
false
> L[2][2][1] = true;
Warning: the first element is not an identifier.
This command will have no effect.
> L[2][2] = "c";
Warning: the first element is not an identifier.
This command will have no effect.
> L[2] = 3;
> L;
[|1, 2, 3|]
```


### 6.3 Conditional statements

Sollya supports conditional statements expressed with the keywords if, then and optionally else. Let us mention that only conditional statements are supported and not conditional expressions.

The following examples illustrate both syntax and semantic of conditional statements in Sollya. Concerning syntax, be aware that there must not be any semicolon before the else keyword.

```
a = 3;
b = 4;
if (a == b) then print("Hello world");
b = 3;
if (a == b) then print("Hello world");
Hello world
> if (a == b) then print("You are telling the truth") else print("Liar!");
You are telling the truth
```


### 6.4 Loops

Sollya supports three kinds of loops. General while-condition loops can be expressed using the keywords while and do. One has to be aware of the fact that the condition test is executed always before the loop, there is no do-until-condition loop. Consider the following examples for both syntax and semantic:

```
> verbosity = 0!;
prec = 30!;
i = 5;
> while (expm1(i) > 0) do { expm1(i); i := i - 1; };
1.474131591e2
5.359815e1
1.908553692e1
6.3890561
1.718281827
> print(i);
0
```

The second kind of loops are loops on a variable ranging from a numerical start value and a end value. These kind of loops can be expressed using the keywords for, from, to, do and optionally by. The by statement indicates the width of the steps on the variable from the start value to the end value. Once again, syntax and semantic are best explained with an example:

```
> for i from 1 to 5 do print ("Hello world",i);
Hello world 1
Hello world 2
Hello world 3
Hello world 4
Hello world 5
> for i from 2 to 1 by -0.5 do print("Hello world",i);
Hello world 2
Hello world 1.5
Hello world 1
```

The third kind of loops are loops on a variable ranging on values contained in a list. In order to ensure the termination of the loop, that list must not be end-elliptic. The loop is expressed using the keywords for, in and do as in the following examples:

```
> L = [|true, false, 1,...,4, "Hello", exp(x)|];
> for i in L do i;
true
false
1
2
3
4
Hello
exp(x)
```

For both types of for loops, assigning the loop variable is allowed and possible. When the loop terminates, the loop variable will contain the value that made the loop condition fail. Consider the following examples:

```
for i from 1 to 5 do { if (i == 3) then i = 4 else i; };
i;
```

1
2
5
6

## 7 Functional language elements: procedures

Sollya has some elements of functional languages. In order to avoid confusion with mathematical functions, the associated programming objects are called procedures in Sollya.

Sollya procedures are common objects that can be, for example, assigned to variables or stored in lists. Procedures are declared by the proc keyword; see section 8.121 for details. The returned procedure object must then be assigned to a variable. It can hence be applied to arguments with common application syntax. The procedure keyword provides an abbreviation for declaring and assigning a procedure; see section 8.122 for details.

Sollya procedures can return objects using the return keyword at the end of the begin-end-block of the procedure. Section 8.134 gives details on the usage of return. Procedures further can take any type of object in argument, in particular also other procedures that are then applied to arguments. Procedures can be declared inside other procedures.

Common Sollya procedures are declared with a certain number of formal parameters. When the procedure is applied to actual parameters, a check is performed if the right number of actual parameters is given. Then the actual parameters are applied to the formal parameters. In some cases, it is required that the number of parameters of a procedure be variable. Sollya provides support for the case with procedures with an arbitrary number of actual arguments. When the procedure is called, those actual arguments are gathered in a list which is applied to the only formal list parameter of a procedure with an arbitrary number of arguments. See section 8.122 for the exact syntax and details; an example is given just below.

Let us remark that declaring a procedure does not involve any evaluation or other interpretation of the procedure body. In particular, this means that constants are evaluated to floating-point values inside Sollya when the procedure is applied to actual parameters and the global precision valid at this moment.

Sollya procedures are well illustrated with the following examples:

```
> succ = proc(n) { return n + 1; };
>succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
{
nop;
return (n) + (1);
}
```

```
> add = proc(m,n) { var res; res := m + n; return res; };
> add(5,6);
11
> hey = proc() { print("Hello world."); };
> hey();
Hello world.
> print(hey());
Hello world.
void
> hey;
proc()
{
print("Hello world.");
return void;
}
```

```
> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);
return res; };
> fac(5);
120
> fac(11);
39916800
> fac;
proc(n)
{
var res;
if (n) == (0) then
res := 1
else
res := (n) * (fac((n) - (1)));
return res;
}
```

```
> sumall = proc(args = ...) { var i, acc; acc = 0; for i in args do acc = acc +
i; return acc; };
> sumall;
proc(args = ...)
{
var i, acc;
acc = 0;
for i in args do
acc = (acc) + (i);
return acc;
}
> sumall();
0
> sumall(1);
1
> sumall(1,5);
6
> sumall (1,5,9);
15
> sumall @ [|1,5,9,4,8|];
27
>
```

Sollya also supports external procedures, i.e. procedures written in C (or some other language) and dynamically bound to Sollya identifiers. See 8.54 for details.

## 8 Commands and functions

## 8.1 abs

Name: abs
the absolute value.
Description:

- abs is the absolute value function. $\operatorname{abs}(\mathrm{x})=\left\{\begin{array}{rl}x & x>0 \\ -x & x \leq 0\end{array}\right.$.


## 8.2 absolute

Name: absolute
indicates an absolute error for externalplot or fpminimax
Usage:

> absolute : absolute|relative

Description:

- The use of absolute in the command externalplot indicates that during plotting in externalplot an absolute error is to be considered.

See externalplot for details.

- Used with fpminimax, absolute indicates that fpminimax must try to minimize the absolute error.
See fpminimax for details.
Example 1:

```
> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",absolute, exp(x),[-1/2;1/2],12,perturb);
```

See also: externalplot 8.53), fpminimax (8.61), relative 8.130, bashexecute 8.16)

## 8.3 accurateinfnorm

## Name: accurateinfnorm

computes a faithful rounding of the infinity norm of a function Usage:
accurateinfnorm(function, range, constant) : (function, range, constant) $\rightarrow$ constant accurateinfnorm(function, range,constant,exclusion range $1, \ldots$, exclusion range $n$ ) : (function, range, constant, range, ..., range) $\rightarrow$ constant

## Parameters:

- function represents the function whose infinity norm is to be computed
- range represents the infinity norm is to be considered on
- constant represents the number of bits in the significant of the result
- exclusion range 1 through exclusion range $n$ represent ranges to be excluded

Description:

- The command accurateinfnorm computes an upper bound to the infinity norm of function function in range. This upper bound is the least floating-point number greater than the value of the infinity norm that lies in the set of dyadic floating point numbers having constant significant mantissa bits. This means the value accurateinfnorm evaluates to is at the time an upper bound and a faithful rounding to constant bits of the infinity norm of function function on range range.

If given, the fourth and further arguments of the command accurateinfnorm, exclusion range 1 through exclusion range $n$ the infinity norm of the function function is not to be considered on.

Example 1:

```
> p = remez(exp(x), 5, [-1;1]);
> accurateinfnorm(p - exp(x), [-1;1], 20);
4.52055246569216251373291015625e-5
> accurateinfnorm(p - exp(x), [-1;1], 30);
4.520552107578623690642416477203369140625e-5
> accurateinfnorm(p - exp(x), [-1;1], 40);
4.5205521043867324948450914234854280948638916015625e-5
```

Example 2:

```
> p = remez(exp(x), 5, [-1;1]);
> midpointmode = on!;
> infnorm(p - exp(x), [-1;1]);
0.45205~5/7~}\mp@subsup{}{}{~}-
> accurateinfnorm(p - exp(x), [-1;1], 40);
4.5205521043867324948450914234854280948638916015625e-5
```

See also: infnorm 8.75, dirtyinfnorm 8.35, checkinfnorm 8.21, remez 8.131), diam 8.31)

## 8.4 acos

Name: acos
the arccosine function.
Description:

- $\boldsymbol{a} \cos$ is the inverse of the function $\cos : \operatorname{acos}(y)$ is the unique number $x \in[0 ; \pi]$ such that $\cos (x)=y$.
- It is defined only for $y \in[-1 ; 1]$.

See also: cos 8.25

## 8.5 acosh

Name: acosh
the arg-hyperbolic cosine function.
Description:

- $\boldsymbol{a} \cosh$ is the inverse of the function $\cosh : \operatorname{acosh}(\mathrm{y})$ is the unique number $x \in[0 ;+\infty]$ such that $\boldsymbol{\operatorname { c o s h }}(\mathrm{x})=\mathrm{y}$.
- It is defined only for $y \in[0 ;+\infty]$.

See also: $\boldsymbol{\operatorname { c o s h }} 8.26$

## 8.6 \&\&

Name: \&\&
boolean AND operator
Usage:

$$
\text { expr1 \&\& expr2 : (boolean, boolean) } \rightarrow \text { boolean }
$$

Parameters:

- expr1 and expr2 represent boolean expressions

Description:

- \&\& evaluates to the boolean AND of the two boolean expressions expr1 and expr2. \&\& evaluates to true iff both expr1 and expr2 evaluate to true.

Example 1:

```
> true && false;
false
```

Example 2:

```
> (1 == exp(0)) && (0 == log(1));
true
```

See also: || 8.102, ! 8.97

## 8.7 :.

Name: :.
add an element at the end of a list.
Usage:

$$
L: . x:(\text { list, any type }) \rightarrow \text { list }
$$

## Parameters:

- $L$ is a list (possibly empty).
- $x$ is an object of any type.

Description:

- :. adds the element $x$ at the end of the list $L$.
- Note that since $x$ may be of any type, it can in particular be a list.

Example 1:

```
> [|2,3,4|]:.5;
[l2, 3, 4, 5|]
```

Example 2:

```
> [|1,2,3|]:.[|4,5,6|];
[|1, 2, 3, [|4, 5, 6|]|]
```

Example 3:

```
> [||]:.1;
[|1|]
```

See also: .: 8.115, @ 8.23

## $8.8 \sim$

Name: ~
floating-point evaluation of a constant expression
Usage:

$$
\begin{aligned}
& \sim \text { expression : function } \rightarrow \text { constant } \\
& \sim \text { something }: \text { any type } \rightarrow \text { any type }
\end{aligned}
$$

## Parameters:

- expression stands for an expression that is a constant
- something stands for some language element that is not a constant expression


## Description

- ~expression evaluates the expression that is a constant term to a floating-point constant. The evaluation may involve a rounding. If expression is not a constant, the evaluated constant is a faithful rounding of expression with precision bits, unless the expression is exactly 0 as a result of cancellation. In the latter case, a floating-point approximation of some (unknown) accuracy is returned.
- $\sim$ does not do anything on all language elements that are not a constant expression. In other words, it behaves like the identity function on any type that is not a constant expression. It can hence be used in any place where one wants to be sure that expressions are simplified using floating-point computations to constants of a known precision, regardless of the type of actual language elements.
- ~ error evaluates to error and provokes a warning.
- $\sim$ is a prefix operator not requiring parentheses. Its precedence is the same as for the unary + and - operators. It cannot be repeatedly used without brackets.

Example 1:

```
> print(exp(5));
exp(5)
> print(~ exp(5));
1.48413159102576603421115580040552279623487667593878e2
```

Example 2:

```
autosimplify = off!;
```

Example 3:

```
print(~}\operatorname{sin}(5 * pi))
0
```

Example 4:

```
> print(~}\operatorname{exp(x));
exp(x)
> print(~ "Hello");
Hello
```

Example 5:

```
> print(~}\operatorname{exp(x*5*Pi));
exp((pi) * 5 * x)
> print(exp(x* ~ (5*Pi)));
exp(x * 1.57079632679489661923132169163975144209858469968757e1)
```

Example 6:

```
> print(~}\operatorname{exp(5)*x);
1.48413159102576603421115580040552279623487667593878e2 * x
> print((~ }\operatorname{exp(5))*x);
1.48413159102576603421115580040552279623487667593878e2 * x
> print(~}(\operatorname{exp}(5)*x))
exp(5) * x
```

See also: evaluate 8.47, prec 8.113), error 8.46

## 8.9 asciiplot

Name: asciiplot
plots a function in a range using ASCII characters
Usage:

$$
\text { asciiplot }(\text { function, range }):(\text { function, range }) \rightarrow \text { void }
$$

Parameters:

- function represents a function to be plotted
- range represents a range the function is to be plotted in

Description:

- asciiplot plots the function function in range range using ASCII characters. On systems that provide the necessary TIOCGWINSZ ioctl, Sollya determines the size of the terminal for the plot size if connected to a terminal. If it is not connected to a terminal or if the test is not possible, the plot is of fixed size $77 \times 25$ characters. The function is evaluated on a number of points equal
to the number of columns available. Its value is rounded to the next integer in the range of lines available. A letter x is written at this place. If zero is in the hull of the image domain of the function, an x-axis is displayed. If zero is in range, a y-axis is displayed. If the function is constant or if the range is reduced to one point, the function is evaluated to a constant and the constant is displayed instead of a plot.

Example 1:

```
asciiplot(exp(x),[1;2]);
 XXX
 XX
 XX
 XXX
 XX
 XXX
 XX
 XXX
 XXX
 xxx
 XXX
 XXX
 XXX
 xxxx
 XXXX
 XXX
 xxxx
 XXXXX
 XXXXX
 XXXX
 XXXXX
XXXX
```

Example 2:


Example 3:

```
asciiplot(5,[-1;1]);
5
```

Example 4:

```
asciiplot(exp(x),[1;1]);
2.71828182845904523536028747135266249775724709369998
```

See also: plot 8.106, externalplot 8.53

### 8.10 asin

Name: asin
the arcsine function.
Description:

- $\operatorname{asin}$ is the inverse of the function $\sin : \operatorname{asin}(y)$ is the unique number $x \in[-\pi / 2 ; \pi / 2]$ such that $\sin (x)=y$.
- It is defined only for $y \in[-1 ; 1]$.

See also: $\sin 8.146$

### 8.11 asinh

Name: asinh
the arg-hyperbolic sine function.
Description:

- $\boldsymbol{a s i n h}$ is the inverse of the function $\sinh : \operatorname{asinh}(y)$ is the unique number $x \in[-\infty ;+\infty]$ such that $\sinh (x)=y$.
- It is defined for every real number y.

See also: $\sinh 8.148$

### 8.12 atan

## Name: atan

the arctangent function.
Description:

- atan is the inverse of the function $\tan : \operatorname{atan}(y)$ is the unique number $x \in[-\pi / 2 ;+\pi / 2]$ such that $\boldsymbol{\operatorname { t a n }}(x)=y$.
- It is defined for every real number y.

See also: $\tan 8.156$

### 8.13 atanh

## Name: atanh

the hyperbolic arctangent function.
Description:

- atanh is the inverse of the function $\tanh : \operatorname{atanh}(y)$ is the unique number $x \in[-\infty ;+\infty]$ such that $\boldsymbol{\operatorname { t a n h }}(x)=y$.
- It is defined only for $y \in[-1 ; 1]$.

See also: $\boldsymbol{t}$ anh 8.157

### 8.14 autodiff

## Name: autodiff

Computes the first $n$ derivatives of a function at a point or over an interval.
Usage:

$$
\begin{aligned}
& \text { autodiff }\left(f, n, x_{0}\right):(\text { function, integer, constant }) \rightarrow \text { list } \\
& \text { autodiff }(f, n, I):(\text { function, integer, range }) \rightarrow \text { list }
\end{aligned}
$$

## Parameters:

- $f$ is the function to be differentiated.
- $n$ is the order of differentiation.
- $x_{0}$ is the point at which the function is differentiated.
- $I$ is the interval over which the function is differentiated.

Description:

- autodiff computes the first $n$ derivatives of $f$ at point $x_{0}$. The computation is performed numerically, without symbolically differentiating the expression of $f$. Yet, the computation is safe since small interval enclosures are produced. More precisely, autodiff returns a list $\left[f_{0}, \ldots, f_{n}\right]$ such that, for each $i, f_{i}$ is a small interval enclosing the exact value of $f^{(i)}\left(x_{0}\right)$.
- Since it does not perform any symbolic differentiation, autodiff is much more efficient than diff and should be prefered when only numerical values are necessary.
- If an interval $I$ is provided instead of a point $x_{0}$, the list returned by autodiff satisfies: $\forall i, f^{(i)}(I) \subseteq$ $f_{i}$. A particular use is when one wants to know the successive derivatives of a function at a non representable point such as $\pi$. In this case, it suffices to call autodiff with the (almost) point interval $I=[\mathbf{p i}]$.
- When $I$ is almost a point interval, the returned enclosures $f_{i}$ are also almost point intervals. However, when the interval $I$ begins to be fairly large, the enclosures can be deeply overestimated due to the dependecy phenomenon present with interval arithmetic.
- As a particular case, $f_{0}$ is an enclosure of the image of $f$ over $I$. However, since the algorithm is not specially designed for this purpose it is not very efficient for this particular task. In particular, it is not able to return a finite enclosure for functions with removable singularities (e.g. $\sin (x) / x$ at 0 ). The command evaluate is much more efficient for computing an accurate enclosure of the image of a function over an interval.

Example 1:

```
> L = autodiff(exp(cos(x))+\operatorname{sin}(\operatorname{exp}(x)), 5, 0);
> midpointmode = on!;
> for f_i in L do f_i;
0.3559752813266941742012789792982961497379810154498~2/4~}\textrm{e}
0.5403023058681397174009366074429766037323104206179~0/3~
-0.3019450507398802024611853185539984893647499733880~6/2~ e1
-0.252441295442368951995750696489089699886768918239~6/4~ e1
0.31227898756481033145214529184139729746320579069~1/3~}\textrm{e}
-0.16634307959006696033484053579339956883955954978~3/1~
```

Example 2:

```
> f = log(cos(x)+x);
> L = autodiff(log(cos(x)+x), 5, [2,4]);
> L[0];
[0;1.27643852425465597132446653114905059102580436018893]
> evaluate(f, [2,4]);
[0.45986058925497069206106494332976097408234056912429;1.207872105899641695959010
37621103012113048821362855]
> fprime = diff(f);
> L[1];
[2.53086745013099407167484456656211083053393118778677e-2;1.756802495307928251372
63909451182909413591288733649]
> evaluate(fprime,[2,4]);
[2.71048755415961996452136364304380881763456815673085e-2;1.109195306639432908373
97225788623531405558431279949]
```

Example 3:

```
L = autodiff(sin(x)/x, 0, [-1,1]);
> L[0];
[-@Inf@;@Inf@]
> evaluate(\operatorname{sin}(x)/x, [-1,1]);
[0.5403023058681397174009366074429766037323104206179;1]
```

See also: diff 8.33), evaluate 8.47)

### 8.15 autosimplify

Name: autosimplify
activates, deactivates or inspects the value of the automatic simplification state variable Usage:
autosimplify $=$ activation value $:$ on $\mid$ off $\rightarrow$ void
autosimplify $=$ activation value $!:$ on $\mid$ off $\rightarrow$ void
autosimplify : on|off

## Parameters:

- activation value represents on or off, i.e. activation or deactivation

Description:

- An assignment autosimplify $=$ activation value, where activation value is one of on off, activates respectively deactivates the automatic safe simplification of expressions of functions generated by the evaluation of commands or in argument of other commands.
Sollya commands like remez, taylor or rationalapprox sometimes produce expressions that can be simplified. Constant subexpressions can be evaluated to dyadic floating-point numbers, monomials with coefficients 0 can be eliminated. Further, expressions indicated by the user perform better in many commands when simplified before being passed in argument to a command. When the automatic simplification of expressions is activated, Sollya automatically performs a safe (not value changing) simplification process on such expressions.

The automatic generation of subexpressions can be annoying, in particular if it takes too much time for not enough benefit. Further the user might want to inspect the structure of the expression tree returned by a command. In this case, the automatic simplification should be deactivated.

If the assignment autosimplify $=$ activation value is followed by an exclamation mark, no message indicating the new state is displayed. Otherwise the user is informed of the new state of the global mode by an indication.

Example 1:

```
autosimplify = on !;
> print(x - x);
O
> autosimplify = off ;
Automatic pure tree simplification has been deactivated.
> print(x - x);
x - x
```

Example 2:

```
autosimplify = on !;
print(rationalapprox(sin(pi/5.9),7));
0.5
autosimplify = off !;
print(rationalapprox(sin(pi/5.9),7));
/ 2
```

See also: print 8.116), prec 8.113), points 8.108), diam (8.31), display 8.37), verbosity 8.166), canonical 8.19, taylorrecursions 8.160), timing 8.162), fullparentheses 8.62 , midpointmode (8.91), hopitalrecursions (8.70), remez (8.131), rationalapprox 8.125), taylor 8.158)

### 8.16 bashexecute

## Name: bashexecute

executes a shell command.
Usage:

$$
\text { bashexecute(command) : string } \rightarrow \text { void }
$$

## Parameters:

- command is a command to be interpreted by the shell.

Description:

- bashexecute(command) lets the shell interpret command. It is useful to execute some external code within Sollya.
- bashexecute does not return anything. It just executes its argument. However, if command produces an output in a file, this result can be imported in Sollya with help of commands like execute, readfile and parse.


## Example 1:

```
> bashexecute("LANG=C date");
Tue Apr 20 15:57:17 CEST 2010
```

See also: execute 8.48, readfile 8.128, parse 8.103)

### 8.17 binary

Name: binary
special value for global state display
Description:

- binary is a special value used for the global state display. If the global state display is equal to binary, all data will be output in binary notation.
As any value it can be affected to a variable and stored in lists.
See also: decimal 8.27, dyadic 8.42, powers 8.112, hexadecimal 8.68, display (8.37)


### 8.18 boolean

## Name: boolean

keyword representing a boolean type Usage:

boolean : type type

## Description:

- boolean represents the boolean type for declarations of external procedures by means of externalproc.
Remark that in contrast to other indicators, type indicators like boolean cannot be handled outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc (8.54), constant (8.24), function (8.63), integer (8.76), list of 8.83), range 8.124), string 8.151

### 8.19 canonical

## Name: canonical

brings all polynomial subexpressions of an expression to canonical form or activates, deactivates or checks canonical form printing
Usage:

> canonical $($ function $):$ function $\rightarrow$ function
> canonical $=$ activation value $:$ on $\mid$ off $\rightarrow$ void
> canonical $=$ activation value $!:$ on $\mid$ off $\rightarrow$ void

Parameters:

- function represents the expression to be rewritten in canonical form
- activation value represents on or off, i.e. activation or deactivation


## Description:

- The command canonical rewrites the expression representing the function function in a way such that all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written in canonical form, i.e. as a sum of monomials in the canonical base. The canonical base is the base of the integer powers of the global free variable. The command canonical does not endanger the safety of computations even in Sollya's floating-point environment: the function returned is mathematically equal to the function function.
- An assignment canonical $=$ activation value, where activation value is one of on or off, activates respectively deactivates the automatic printing of polynomial expressions in canonical form, i.e. as a sum of monomials in the canonical base. If automatic printing in canonical form is deactivated, automatic printing yields to displaying polynomial subexpressions in Horner form.
If the assignment canonical $=$ activation value is followed by an exclamation mark, no message indicating the new state is displayed. Otherwise the user is informed of the new state of the global mode by an indication.
Example 1:

```
> print(canonical(1 + x * (x + 3 * x^2)));
1 + x^2 + 3 * x^3
> print(canonical((x + 1)^7));
1+7* x + 21* x^2 + 35* x^3 + 35* x^4 + 21 * x^5 + 7 * x^6 + x^7
```

Example 2:

```
> print(canonical(exp((x + 1)^5) - log(asin(((x + 2) + x)^4 * (x + 1)) + x)));
exp(1 + 5 * x + 10 * x^2 + 10 * x^3 + 5 * x^4 + x^5) - log(asin(16 + 80 * x + 16
0 * x^2 + 160 * x^3 + 80 * x^4 + 16 * x^5) + x)
```

Example 3:

```
> canonical;
off
> (x + 2) ^9;
512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *
 (144 + x * (18 + x))))))))
> canonical = on;
Canonical automatic printing output has been activated.
> (x + 2)^9;
512 + 2304* x + 4608* x^2 + 5376* x^3 + 4032* x^4 + 2016* x^5 + 672 * x^6 +
 144 * x^7 + 18 * x^8 + x^9
> canonical;
on
> canonical = off!;
> (x + 2) ^9;
512 + x * (2304 + x * (4608 + x * (5376 + x * (4032 + x * (2016 + x * (672 + x *
 (144 + x * (18 + x))))))))
```

See also: horner 8.71, print 8.116, autosimplify 8.15

### 8.20 ceil

Name: ceil
the usual function ceil.
Description:

- ceil is defined as usual: $\operatorname{ceil}(x)$ is the smallest integer $y$ such that $y \geq x$.
- It is defined for every real number $x$.

See also: floor 8.60, nearestint (8.94), round 8.137), RU 8.141)

### 8.21 checkinfnorm

## Name: checkinfnorm

checks whether the infinity norm of a function is bounded by a value Usage:
checkinfnorm(function, range, constant) : (function, range, constant) $\rightarrow$ boolean

## Parameters:

- function represents the function whose infinity norm is to be checked
- range represents the infinity norm is to be considered on
- constant represents the upper bound the infinity norm is to be checked to


## Description:

- The command checkinfnorm checks whether the infinity norm of the given function function in the range range can be proven (by Sollya) to be less than the given bound bound. This means, if checkinfnorm evaluates to true, the infinity norm has been proven (by Sollya's interval arithmetic) to be less than the bound. If checkinfnorm evaluates to false, there are two possibilities: either the bound is less than or equal to the infinity norm of the function or the bound is greater than the infinity norm but Sollya could not conclude using its internal interval arithmetic.
checkinfnorm is sensitive to the global variable diam. The smaller diam, the more time Sollya will spend on the evaluation of checkinfnorm in order to prove the bound before returning false although the infinity norm is bounded by the bound. If diam is equal to 0 , Sollya will eventually spend infinite time on instances where the given bound bound is less or equal to the infinity norm of the function function in range range. In contrast, with diam being zero, checkinfnorm evaluates to true iff the infinity norm of the function in the range is bounded by the given bound.

Example 1:

```
> checkinfnorm(sin(x),[0;1.75], 1);
true
> checkinfnorm(sin(x),[0;1.75], 1/2); checkinfnorm(sin(x),[0;20/39],1/2);
false
true
```

Example 2:

```
> p = remez(exp(x), 5, [-1;1]);
b = dirtyinfnorm(p - exp(x), [-1;1]);
> checkinfnorm(p - exp(x), [-1;1], b);
false
> b1 = round(b, 15, RU);
> checkinfnorm(p - exp(x), [-1;1], b1);
true
> b2 = round(b, 25, RU);
> checkinfnorm(p - exp(x), [-1;1], b2);
false
> diam = 1b-20!;
> checkinfnorm(p - exp(x), [-1;1], b2);
true
```

See also: infnorm 8.75), dirtyinfnorm 8.35), accurateinfnorm 8.3), remez 8.131, diam 8.31)

### 8.22 coeff

## Name: coeff

gives the coefficient of degree $n$ of a polynomial
Usage:

$$
\operatorname{coeff}(f, n):(\text { function, integer }) \rightarrow \text { constant }
$$

## Parameters:

- $f$ is a function (usually a polynomial).
- $n$ is an integer


## Description:

- If $f$ is a polynomial, coeff $(f, n)$ returns the coefficient of degree $n$ in $f$.
- If $f$ is a function that is not a polynomial, coeff $(f, n)$ returns 0 .

Example 1:

```
> coeff((1+x)^5,3);
10
```

Example 2:

```
> coeff(sin(x),0);
0
```

See also: degree 8.29, roundcoefficients 8.138, subpoly 8.152

## $8.23 @$

Name: @
concatenates two lists or strings or applies a list as arguments to a procedure Usage:
$L 1 @ L 2:($ list, list $) \rightarrow$ list
string1@string2 : (string, string) $\rightarrow$ string
proc@L1 : (procedure, list) $\rightarrow$ any type

## Parameters:

- L1 and L2 are two lists.
- string1 and string2 are two strings.
- proc is a procedure.

Description:

- In its first usage form, @ concatenates two lists or strings.
- In its second usage form, @ applies the elements of a list as arguments to a procedure. In the case when proc is a procedure with a fixed number of arguments, a check is done if the number of elements in the list corresponds to the number of formal parameters of the procedure. An empty list can therefore applied only to a procedure that does not take any argument. In the case of a procedure with an arbitrary number of arguments, no such check is performed.

Example 1:

```
> [|1,...,3|]@[|7,8,9|];
[|1, 2, 3, 7, 8, 9|]
```

Example 2:

```
> "Hello "@"World!";
Hello World!
```

Example 3:

```
procedure cool(a,b,c) {
write(a,", ", b," and ",c," are cool guys.\n");
};
> cool @ [l "Christoph", "Mioara", "Sylvain" |];
Christoph, Mioara and Sylvain are cool guys.
```

Example 4:

```
> procedure sayhello() {
> "Hello! how are you?";
> };
> sayhello();
Hello! how are you?
> sayhello @ [||];
Hello! how are you?
```

Example 5:

```
procedure add(L = ...) {
var acc, i;
acc = 0;
for i in L do acc = i + acc;
return acc;
};
add(1,2);
3
> add(1,2,3);
6
add @ [|1, 2|];
3
add @ [l1, 2, 3|];
6
> add @ [l|];
0
```

See also: .: 8.115, :. 8.7, procedure 8.122, proc 8.121)

### 8.24 constant

Name: constant
keyword representing a constant type
Usage:
constant : type type

Description:

- constant represents the constant type for declarations of external procedures externalproc.

Remark that in contrast to other indicators, type indicators like constant cannot be handled outside the externalproc context. In particular, they cannot be assigned to variables.
See also: externalproc (8.54), boolean (8.18), function 8.63), integer (8.76), list of (8.83), range 8.124), string 8.151)

### 8.25 cos

Name: cos
the cosine function.
Description:

- $\boldsymbol{c o s}$ is the usual cosine function.
- It is defined for every real number $x$.

See also: $\operatorname{acos}$ (8.4), $\sin$ 8.146, $\tan 8.156$

### 8.26 cosh

## Name: cosh

the hyperbolic cosine function.
Description:

- $\cosh$ is the usual hyperbolic function: $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$.
- It is defined for every real number $x$.

See also: acosh 8.5, $\sinh 8.148$, $\tanh 8.157$, $\exp 8.49$

### 8.27 decimal

## Name: decimal

special value for global state display
Description:

- decimal is a special value used for the global state display. If the global state display is equal to decimal, all data will be output in decimal notation.
As any value it can be affected to a variable and stored in lists.
See also: dyadic 8.42, powers 8.112, hexadecimal 8.68, binary 8.17), display 8.37)


### 8.28 default

## Name: default

default value for some commands.
Description:

- default is a special value and is replaced by something depending on the context where it is used. It can often be used as a joker, when you want to specify one of the optional parameters of a command and not the others: set the value of uninteresting parameters to default.
- Global variables can be reset by affecting them the special value default.

Example 1:

```
> p = remez(exp(x),5,[0;1],default,1e-5);
>q = remez(exp(x),5,[0;1],1,1e-5);
> p==q;
true
```

Example 2:

```
> prec;
165
> prec=200;
The precision has been set to 200 bits.
> prec=default;
The precision has been set to 165 bits.
```


### 8.29 degree

Name: degree
gives the degree of a polynomial.
Usage:

$$
\text { degree }(f): \text { function } \rightarrow \text { integer }
$$

## Parameters:

- $f$ is a function (usually a polynomial).

Description:

- If $f$ is a polynomial, degree $(f)$ returns the degree of $f$.
- Contrary to the usage, Sollya considers that the degree of the null polynomial is 0 .
- If $f$ is a function that is not a polynomial, $\operatorname{degree}(f)$ returns -1 .

Example 1:

```
degree((1+x)*(2+5*x^2));
3
> degree(0);
0
```

Example 2:

```
degree(sin(x));
-1
```

See also: coeff 8.22, subpoly 8.152, roundcoefficients 8.138)

### 8.30 denominator

Name: denominator
gives the denominator of an expression
Usage:

$$
\text { denominator }(\operatorname{expr}): \text { function } \rightarrow \text { function }
$$

Parameters:

- expr represents an expression

Description:

- If expr represents a fraction expr1/expr2, denominator (expr) returns the denominator of this fraction, i.e. expr2.
If expr represents something else, denominator (expr) returns 1.
Note that for all expressions expr, numerator (expr) / denominator (expr) is equal to expr.
Example 1:

```
denominator(5/3);
```

3

## Example 2:

```
denominator(exp(x));
```

1

Example 3:

```
> a = 5/3;
> b = numerator(a)/denominator(a);
> print(a);
5 / 3
> print(b);
5 / 3
```

Example 4:

```
> a = exp(x/3);
> b = numerator(a)/denominator(a);
> print(a);
exp(x / 3)
> print(b);
exp(x / 3)
```

See also: numerator 8.99, rationalmode 8.126)

### 8.31 diam

Name: diam
parameter used in safe algorithms of Sollya and controlling the maximal length of the involved intervals. Usage:

$$
\begin{aligned}
\operatorname{diam}= & \text { width }: \text { constant } \rightarrow \text { void } \\
\operatorname{diam}= & \text { width }!: \text { constant } \rightarrow \text { void } \\
& \operatorname{diam}: \text { constant }
\end{aligned}
$$

## Parameters:

- width represents the maximal relative width of the intervals used

Description:

- diam is a global variable. Its value represents the maximal width allowed for intervals involved in safe algorithms of Sollya (namely infnorm, checkinfnorm, accurateinfnorm, integral, findzeros).
- More precisely, diam is relative to the width of the input interval of the command. For instance, suppose that diam $=1 \mathrm{e}-5$ : if infnorm is called on interval $[0,1]$, the maximal width of an interval will be $1 \mathrm{e}-5$. But if it is called on interval $[0,1 \mathrm{e}-3]$, the maximal width will be $1 \mathrm{e}-8$.

See also: infnorm 8.75), checkinfnorm (8.21), accurateinfnorm 8.3), integral 8.77), findzeros 8.57)

### 8.32 dieonerrormode

Name: dieonerrormode
global variable controlling if Sollya is exited on an error or not.
Usage:

$$
\begin{aligned}
& \text { dieonerrormode }=\text { activation value }: \text { on } \mid \text { off } \rightarrow \text { void } \\
& \text { dieonerrormode }=\text { activation value }!: \text { on } \mid \text { off } \rightarrow \text { void } \\
& \text { dieonerrormode }: \text { on } \mid \text { off }
\end{aligned}
$$

Parameters:

- activation value controls if Sollya is exited on an error or not.

Description:

- dieonerrormode is a global variable. When its value is off, which is the default, Sollya will not exit on any syntax, typing, side-effect errors. These errors will be caught by the tool, even if a memory might be leaked at that point. On evaluation, the error special will be produced.
- When the value of the dieonerrormode variable is on, Sollya will exit on any syntax, typing, side-effect errors. A warning message will be printed in these cases at appropriate verbosity levels.

Example 1:

```
> verbosity = 1!;
> dieonerrormode = off;
Die-on-error mode has been deactivated.
> for i from true to false do i + "Salut";
Warning: one of the arguments of the for loop does not evaluate to a constant.
The for loop will not be executed.
> exp(17);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
2.41549527535752982147754351803858238798675673527224e7
```

Example 2:

```
> verbosity = 1!;
> dieonerrormode = off!;
> 5 */ 4;
Warning: syntax error, unexpected DIVTOKEN.
The last symbol read has been "/".
Will skip input until next semicolon after the unexpected token. May leak memory
> exp(17);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
2.41549527535752982147754351803858238798675673527224e7
```

Example 3:

```
> verbosity = 1!;
> dieonerrormode;
off
dieonerrormode = on!;
dieonerrormode;
on
> for i from true to false do i + "Salut";
Warning: one of the arguments of the for loop does not evaluate to a constant.
The for loop will not be executed.
Warning: some syntax, typing or side-effect error has occurred.
As the die-on-error mode is activated, the tool will be exited.
```


## Example 4:

```
> verbosity = 1!;
> dieonerrormode = on!;
> 5 */ 4;
Warning: syntax error, unexpected DIVTOKEN.
The last symbol read has been "/".
Will skip input until next semicolon after the unexpected token. May leak memory
Warning: some syntax, typing or side-effect error has occurred.
As the die-on-error mode is activated, the tool will be exited.
```


## Example 5:

```
verbosity = 0!;
dieonerrormode = on!;
5 */ 4;
```

See also: on 8.101, off 8.100, verbosity 8.166, error 8.46

### 8.33 diff

Name: diff
differentiation operator
Usage:

$$
\operatorname{diff}(f u n c t i o n): \text { function } \rightarrow \text { function }
$$

## Parameters:

- function represents a function

Description:

- diff(function) returns the symbolic derivative of the function function by the global free variable.

If function represents a function symbol that is externally bound to some code by library, the derivative is performed as a symbolic annotation to the returned expression tree.

## Example 1:

```
> diff(sin(x));
cos(x)
```

Example 2:

```
> diff(x);
1
```

Example 3:

```
> diff(x^x);
x^x * (1 + log(x))
```

See also: library 8.82, autodiff 8.14 , taylor 8.158, taylorform 8.159)

### 8.34 dirtyfindzeros

## Name: dirtyfindzeros

gives a list of numerical values listing the zeros of a function on an interval.
Usage:

$$
\text { dirtyfindzeros }(f, I):(\text { function, range }) \rightarrow \text { list }
$$

## Parameters:

- $f$ is a function.
- $I$ is an interval.


## Description:

- dirtyfindzeros $(f, I)$ returns a list containing some zeros of $f$ in the interval $I$. The values in the list are numerical approximation of the exact zeros. The precision of these approximations is approximately the precision stored in prec. If $f$ does not have two zeros very close to each other, it can be expected that all zeros are listed. However, some zeros may be forgotten. This command should be considered as a numerical algorithm and should not be used if safety is critical.
- More precisely, the algorithm relies on global variables prec and points and it performs the following steps: let $n$ be the value of variable points and $t$ be the value of variable prec.
- Evaluate $|f|$ at $n$ evenly distributed points in the interval $I$. The working precision to be used is automatically chosen in order to ensure that the sign is correct.
- Whenever $f$ changes its sign for two consecutive points, find an approximation $x$ of its zero with precision $t$ using Newton's algorithm. The number of steps in Newton's iteration depends on $t$ : the precision of the approximation is supposed to be doubled at each step.
- Add this value to the list.

Example 1:

```
> dirtyfindzeros(sin(x),[-5;5]);
[l-3.14159265358979323846264338327950288419716939937508, 0, 3.141592653589793238
46264338327950288419716939937508|]
```

Example 2:

```
L1=dirtyfindzeros(x^2*sin(1/x),[0;1]);
points=1000!;
L2=dirtyfindzeros(x^2*sin(1/x),[0;1]);
length(L1); length(L2);
18
```

25

See also: prec 8.113, points 8.108, findzeros 8.57, dirtyinfnorm (8.35), numberroots 8.98)

### 8.35 dirtyinfnorm

Name: dirtyinfnorm
computes a numerical approximation of the infinity norm of a function on an interval. Usage:

$$
\text { dirtyinfnorm }(f, I): \text { (function, range) } \rightarrow \text { constant }
$$

## Parameters:

- $f$ is a function.
- $I$ is an interval.


## Description:

- dirtyinfnorm $(f, I)$ computes an approximation of the infinity norm of the given function $f$ on the interval $I$, e.g. $\max _{x \in I}\{|f(x)|\}$.
- The interval must be bound. If the interval contains one of -Inf or + Inf, the result of dirtyinfnorm is NaN .
- The result of this command depends on the global variables prec and points. Therefore, the returned result is generally a good approximation of the exact infinity norm, with precision prec. However, the result is generally underestimated and should not be used when safety is critical. Use infnorm instead.
- The following algorithm is used: let $n$ be the value of variable points and $t$ be the value of variable prec.
- Evaluate $|f|$ at $n$ evenly distributed points in the interval $I$. The evaluation are faithful roundings of the exact results at precision $t$.
- Whenever the derivative of $f$ changes its sign for two consecutive points, find an approximation $x$ of its zero with precision $t$. Then compute a faithful rounding of $|f(x)|$ at precision $t$.
- Return the maximum of all computed values.

Example 1:

```
dirtyinfnorm(sin(x),[-10;10]);
```

1

Example 2:

```
prec=15!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.45856
> prec=40!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537135
> prec=100!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537136237644438147455024
> prec=200!;
> dirtyinfnorm(exp(cos(x))*sin(x),[0;5]);
1.458528537136237644438147455023841718299214087993682374094153
```

Example 3:

```
> dirtyinfnorm(x^2, [log(0);log(1)]);
@NaN@
```

See also: prec 8.113, points 8.108), infnorm 8.75), checkinfnorm 8.21

### 8.36 dirtyintegral

Name: dirtyintegral
computes a numerical approximation of the integral of a function on an interval. Usage:

```
dirtyintegral}(f,I):(\mathrm{ function, range) }->\mathrm{ constant
```

- $f$ is a function.
- $I$ is an interval.


## Description:

- dirtyintegral $(f, I)$ computes an approximation of the integral of $f$ on $I$.
- The interval must be bound. If the interval contains one of -Inf or + Inf, the result of dirtyintegral is NaN , even if the integral has a meaning.
- The result of this command depends on the global variables prec and points. The method used is the trapezium rule applied at $n$ evenly distributed points in the interval, where $n$ is the value of global variable points.
- This command computes a numerical approximation of the exact value of the integral. It should not be used if safety is critical. In this case, use command integral instead.
- Warning: this command is currently known to be unsatisfactory. If you really need to compute integrals, think of using an other tool or report a feature request to sylvain.chevillard@ens-lyon.org.

Example 1:

```
> sin(10);
-0.54402111088936981340474766185137728168364301291621
> dirtyintegral(cos(x),[0;10]);
-0.54400304905152629822448058882475382036536298356281
> points=2000!;
> dirtyintegral(cos(x),[0;10]);
-0.54401997751158321972222697312583199035995837926892
```

See also: prec 8.113 , points (8.108), integral 8.77)

### 8.37 display

## Name: display

sets or inspects the global variable specifying number notation Usage:

> display $=$ notation value $:$ decimal|binary $\mid$ dyadic $\mid$ powers $\mid$ hexadecimal $\rightarrow$ void display $=$ notation value $!:$ decimal||binary $\mid$ dyadic $\mid$ powers $\mid$ hexadecimal $\rightarrow$ void display $:$ decimal $\mid$ binary $\mid$ dyadic $\mid$ powers $\mid$ hexadecimal

## Parameters:

- notation value represents a variable of type decimal|binary|dyadic|powers|hexadecimal


## Description:

- An assignment display $=$ notation value, where notation value is one of decimal, dyadic, powers, binary or hexadecimal, activates the corresponding notation for output of values in print, write or at the Sollya prompt.
If the global notation variable display is decimal, all numbers will be output in scientific decimal notation. If the global notation variable display is dyadic, all numbers will be output as dyadic numbers with Gappa notation. If the global notation variable display is powers, all numbers will be output as dyadic numbers with a notation compatible with Maple and PARI/GP. If the global notation variable display is binary, all numbers will be output in binary notation. If the global notation variable display is hexadecimal, all numbers will be output in C99/ IEEE754-2008
notation. All output notations can be parsed back by Sollya, inducing no error if the input and output precisions are the same (see prec).
If the assignment display $=$ notation value is followed by an exclamation mark, no message indicating the new state is displayed. Otherwise the user is informed of the new state of the global mode by an indication.

Example 1:

```
> display = decimal;
Display mode is decimal numbers.
> a = evaluate(sin(pi * x), 0.25);
> a;
0.70710678118654752440084436210484903928483593768847
> display = binary;
Display mode is binary numbers.
> a;
1.0110101000001001111001100110011111111001110111100110010010000100010110010111110
11000100110110011011101010100101010111110100111110001110101101111011000001011101
010001_2 * 2^(-1)
> display = hexadecimal;
Display mode is hexadecimal numbers.
> a;
0xb.504f333f9de6484597d89b3754abe9f1d6f60ba88p-4
> display = dyadic;
Display mode is dyadic numbers.
> a;
33070006991101558613323983488220944360067107133265b-165
> display = powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> a;
33070006991101558613323983488220944360067107133265 * 2^(-165)
```

See also: print 8.116), write 8.169, decimal 8.27), dyadic 8.42, powers 8.112), binary 8.17), hexadecimal 8.68, prec 8.113)

### 8.38

Name: /
division function
Usage:

> function1 / function2 : (function, function) $\rightarrow$ function interval1 / interval2 $:($ range, range $) \rightarrow$ range
> interval1 / constant $:($ range, constant $) \rightarrow$ range
> interval1 / constant $:($ constant, range $) \rightarrow$ range

## Parameters:

- function1 and function2 represent functions
- interval1 and interval2 represent intervals (ranges)
- constant represents a constant or constant expression

Description:

- / represents the division (function) on reals. The expression function1 / function2 stands for the function composed of the division function and the two functions function1 and function2, where function1 is the numerator and function2 the denominator.
- / can be used for interval arithmetic on intervals (ranges). / will evaluate to an interval that safely encompasses all images of the division function with arguments varying in the given intervals. If the intervals given contain points where the division function is not defined, infinities and NaNs will be produced in the output interval. Any combination of intervals with intervals or constants (resp. constant expressions) is supported. However, it is not possible to represent families of functions using an interval as one argument and a function (varying in the free variable) as the other one.

Example 1:

```
> 5 / 2;
2.5
```

Example 2:

```
> x / 2;
x * 0.5
```

Example 3:

```
> x / x;
1
```

Example 4:

```
> 3 / 0;
@NaN@
```

Example 5:

```
> diff(sin(x) / exp(x));
(exp(x) * cos(x) - sin(x) * exp(x)) / exp(x)^2
```

Example 6:

```
> [1;2] / [3;4];
[0.25;0.6668]
> [1;2] / 17;
[5.8823529411764705882352941176470588235294117647058e-2;0.1176470588235294117647
0588235294117647058823529412]
> -13 / [4;17];
[-3.25;-0.76470588235294117647058823529411764705882352941175]
```

See also: +8.107 ) $,-8.92, *(8.93, \wedge 8.111$

### 8.39 double

Names: double, D
rounding to the nearest IEEE 754 double (binary64).
Description:

- double is both a function and a constant.
- As a function, it rounds its argument to the nearest IEEE 754 double precision (i.e. IEEE754-2008 binary64) number. Subnormal numbers are supported as well as standard numbers: it is the real rounding described in the standard.
- As a constant, it symbolizes the double precision format. It is used in contexts when a precision format is necessary, e.g. in the commands round, roundcoefficients and implementpoly. See the corresponding help pages for examples.

Example 1:

```
> display=binary!;
> D(0.1);
1.100110011001100110011001100110011001100110011001101_2 * 2^(-4)
> D(4.17);
1.000010101110000101000111101011100001010001111010111_2 * 2^(2)
> D(1.011_2 * 2^(-1073));
1.1_2 * 2^(-1073)
```

See also: single (8.147), printdouble (8.117), doubleextended (8.41), doubledouble (8.40), tripledouble 8.163), roundcoefficients 8.138), implementpoly 8.72), round 8.137)

### 8.40 doubledouble

Names: doubledouble, DD
represents a number as the sum of two IEEE doubles.
Description:

- doubledouble is both a function and a constant.
- As a function, it rounds its argument to the nearest number that can be written as the sum of two double precision numbers.
- The algorithm used to compute doubledouble $(x)$ is the following: let $x_{h}=\operatorname{double}(x)$ and let $x_{l}$ $=$ double $\left(x-x_{h}\right)$. Return the number $x_{h}+x_{l}$. Note that if the current precision is not sufficient to exactly represent $x_{h}+x_{l}$, a rounding will occur and the result of doubledouble $(x)$ will be useless.
- As a constant, it symbolizes the double-double precision format. It is used in contexts when a precision format is necessary, e.g. in the commands round, roundcoefficients and implementpoly. See the corresponding help pages for examples.

Example 1:

```
> verbosity=1!;
> a = 1+ 2^(-100);
> DD(a);
1.0000000000000000000000000000007888609052210118054
> prec=50!;
> DD(a);
Warning: double rounding occurred on invoking the double-double rounding operato
r.
Try to increase the working precision.
1
```

See also: single 8.147), double 8.39, doubleextended 8.41, tripledouble 8.163), roundcoefficients 8.138), implementpoly 8.72), round 8.137)

### 8.41 doubleextended

Names: doubleextended, DE
computes the nearest number with 64 bits of mantissa.
Description:

- doubleextended is a function that computes the nearest floating-point number with 64 bits of mantissa to a given number. Since it is a function, it can be composed with other Sollya functions such as $\exp , \sin$, etc.
- It does not handle subnormal numbers. The range of possible exponents is the range used for all numbers represented in Sollya (e.g. basically the range used in the library MPFR).
- Since it is a function and not a command, its behavior is a bit different from the behavior of round $(x, 64, R N)$ even if the result is exactly the same. round $(x, 64, R N)$ is immediately evaluated whereas doubleextended( x ) can be composed with other functions (and thus be plotted and so on).
- Be aware that doubleextended cannot be used as a constant to represent a format in the commands roundcoefficients and implementpoly (contrary to D, DD, and TD). However, it can be used in round.

Example 1:

```
> display=binary!;
> DE(0.1);
1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)
> round(0.1,64,RN);
1.100110011001100110011001100110011001100110011001100110011001101_2 * 2^(-4)
```

Example 2:

```
D(2^(-2000));
0
> DE(2^(-2000));
8.7098098162172166755761954947788722958591037427053e-603
```

Example 3:

```
> verbosity=1!;
f = sin(DE(x));
> f(pi);
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
-5.0165576126683320235573270803307570138315616702549e-20
> g = sin(round(x,64,RN));
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
```

See also: roundcoefficients 8.138, single 8.147), double 8.39), doubledouble 8.40), tripledouble 8.163), round 8.137)

### 8.42 dyadic

Name: dyadic
special value for global state display
Description:

- dyadic is a special value used for the global state display. If the global state display is equal to dyadic, all data will be output in dyadic notation with numbers displayed in Gappa format.

As any value it can be affected to a variable and stored in lists.
See also: decimal 8.27), powers 8.112, hexadecimal 8.68), binary 8.17, display 8.37)

## $8.43==$

Name: ==
equality test operator
Usage:

$$
\operatorname{expr} 1==\operatorname{expr2}:(\text { any type, any type }) \rightarrow \text { boolean }
$$

## Parameters:

- expr1 and expr2 represent expressions

Description:

- The operator $==$ evaluates to true iff its operands expr1 and expr2 are syntactically equal and different from error or constant expressions that are not constants and that evaluate to the same floating-point number with the global precision prec. The user should be aware of the fact that because of floating-point evaluation, the operator $==$ is not exactly the same as the mathematical equality. Further remark that according to IEEE 754-2008 floating-point rules, which Sollya emulates, floating-point data which are NaN do not compare equal to any other floating-point datum, including NaN.

Example 1:

```
> "Hello" == "Hello";
true
> "Hello" == "Salut";
false
> "Hello" == 5;
false
> 5 + x == 5 + x;
true
```

Example 2:

```
> 1 == exp(0);
true
> asin(1) * 2 == pi;
true
> exp(5) == log(4);
false
```

Example 3:

```
> sin(pi/6) == 1/2 * sqrt(3);
false
```

Example 4:

```
> prec = 12;
The precision has been set to 12 bits.
> 16384.1 == 16385.1;
true
```

Example 5:

```
error == error;
false
```

Example 6:

```
> a = "Biba";
> b = NaN;
> a == a;
true
> b == b;
false
```

See also: $!=8.95,>8.65,>=8.64,<=8.80,<8.88$, in 8.73, ! 8.97, \&\& 8.6, || 8.102,, error 8.46, prec 8.113)

### 8.44 erf

Name: erf
the error function.
Description:

- erf is the error function defined by:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t
$$

- It is defined for every real number x .

See also: erfc 8.45, $\exp 8.49$

### 8.45 erfc

Name: erfc
the complementary error function.
Description:

- $\operatorname{erfc}$ is the complementary error function defined by $\operatorname{erfc}(x)=1-\operatorname{erf}(x)$.
- It is defined for every real number $x$.

See also: erf 8.44

### 8.46 error

Name: error
expression representing an input that is wrongly typed or that cannot be executed Usage:
error : error

Description:

- The variable error represents an input during the evaluation of which a type or execution error has been detected or is to be detected. Inputs that are syntactically correct but wrongly typed evaluate to error at some stage. Inputs that are correctly typed but containing commands that depend on side-effects that cannot be performed or inputs that are wrongly typed at meta-level (cf. parse), evaluate to error.
Remark that in contrast to all other elements of the Sollya language, error compares neither equal nor unequal to itself. This provides a means of detecting syntax errors inside the Sollya language itself without introducing issues of two different wrongly typed inputs being equal.

Example 1:

```
> print(5 + "foo");
error
```

Example 2:

```
> error;
error
```

Example 3:

```
> error == error;
false
> error != error;
false
```

Example 4:

```
> correct = 5 + 6;
> incorrect = 5 + "foo";
> correct == correct;
true
> incorrect == incorrect;
false
> errorhappened = !(incorrect == incorrect);
> errorhappened;
true
```

See also: void 8.167, parse 8.103, $==88.43,!=8.95$

### 8.47 evaluate

## Name: evaluate

evaluates a function at a constant point or in a range
Usage:

$$
\begin{gathered}
\text { evaluate }(\text { function, constant }):(\text { function, constant }) \rightarrow \text { constant } \mid \text { range } \\
\text { evaluate }(\text { function, range }):(\text { function, range }) \rightarrow \text { range } \\
\text { evaluate }(\text { function, function }):(\text { function, function }) \rightarrow \text { function }
\end{gathered}
$$

Parameters:

- function represents a function
- constant represents a constant point
- range represents a range
- function2 represents a function that is not constant

Description:

- If its second argument is a constant constant, evaluate evaluates its first argument function at the point indicated by constant. This evaluation is performed in a way that the result is a faithful rounding of the real value of the function at constant to the current global precision. If such a faithful rounding is not possible, evaluate returns a range surely encompassing the real value of the function function at constant. If even interval evaluation is not possible because the expression is undefined or numerically unstable, NaN will be produced.
- If its second argument is a range range, evaluate evaluates its first argument function by interval evaluation on this range range. This ensures that the image domain of the function function on the preimage domain range is surely enclosed in the returned range.
- In the case when the second argument is a range that is reduced to a single point (such that $[1 ; 1]$ for instance), the evaluation is performed in the same way as when the second argument is a constant but it produces a range as a result: evaluate automatically adjusts the precision of the intern computations and returns a range that contains at most three floating-point consecutive numbers in precision prec. This correponds to the same accuracy as a faithful rounding of the actual result. If such a faithful rounding is not possible, evaluate has the same behavior as in the case when the second argument is a constant.
- If its second argument is a function function2 that is not a constant, evaluate replaces all occurrences of the free variable in function function by function function2.

Example 1:

```
> midpointmode=on!;
> print(evaluate(sin(pi * x), 2.25));
0.70710678118654752440084436210484903928483593768847
> print(evaluate(sin(pi * x), [2.25; 2.25]));
0.707106781186547524400844362104849039284835937688~4/5~
```

Example 2:

```
> print(evaluate(sin(pi * x), 2));
[-1.72986452514381269516508615031098129542836767991679e-12715;7.5941198201187963
145069564314525661706039084390067e-12716]
```

Example 3:

```
> print(evaluate(sin(pi * x), [2, 2.25]));
[-5.143390272677254630046998919961912407349224165421e-50;0.707106781186547524400
84436210484903928483593768866]
```


## Example 4:

```
> print(evaluate(sin(pi * x), 2 + 0.25 * x));
sin((pi) * (2 + 0.25 * x))
```

Example 5:

```
> print(evaluate(sin(pi * 1/x), 0));
[@NaN@;@NaN@]
```

See also: isevaluable 8.79

### 8.48 execute

## Name: execute

executes the content of a file Usage:

$$
\text { execute(filename) : string } \rightarrow \text { void }
$$

## Parameters:

- filename is a string representing a file name


## Description:

- execute opens the file indicated by filename, and executes the sequence of commands it contains. This command is evaluated at execution time: this way you can modify the file filename (for instance using bashexecute) and execute it just after.
- If filename contains a command execute, it will be executed recursively.
- If filename contains a call to restart, it will be neglected.
- If filename contains a call to quit, the commands following quit in filename will be neglected.

Example 1:

```
> a=2;
> a;
2
print("a=1;") > "example.sollya";
execute("example.sollya");
>a;
1
```

Example 2:

```
> verbosity=1!;
> print("a=1; restart; a=2;") > "example.sollya";
> execute("example.sollya");
Warning: a restart command has been used in a file read into another.
This restart command will be neglected.
> a;
2
```

Example 3:

```
> verbosity=1!;
> print("a=1; quit; a=2;") > "example.sollya";
> execute("example.sollya");
Warning: the execution of a file read by execute demanded stopping the interpret
ation but it is not stopped.
> a;
1
```

See also: parse 8.103, readfile 8.128, write 8.169, print 8.116, bashexecute 8.16), quit 8.123), restart 8.133)

### 8.49 exp

Name: exp
the exponential function.
Description:

- $\exp$ is the usual exponential function defined as the solution of the ordinary differential equation $y^{\prime}=y$ with $y(0)=1$.
- $\exp (x)$ is defined for every real number $x$.

See also: $\exp 8.49, \log 8.84$

### 8.50 expand

Name: expand
expands polynomial subexpressions
Usage:

$$
\operatorname{expand}(\text { function }): \text { function } \rightarrow \text { function }
$$

## Parameters:

- function represents a function


## Description:

- expand (function) expands all polynomial subexpressions in function function as far as possible. Factors of sums are multiplied out, power operators with constant positive integer exponents are replaced by multiplications and divisions are multiplied out, i.e. denomiators are brought at the most interior point of expressions.


## Example 1:

```
> print(expand(x^3));
x * x * x
```

Example 2:

```
> print(expand((x + 2)^3 + 2* x));
8 + 12 * x + 6 * x * x + x * x * x + 2 * x
```

Example 3:

```
> print(expand(exp((x + (x + 3)) ^5)));
exp(243 + 405* x + 270 * x * x + 90 * x * x * x + 15 * x * x * x * x + x * x *
x * x * x + x * 405 + 108* x * 5 * x + 54 * x * x * 5 * x + 12* x * x * x * 5
* x + x * x * x * x * 5 * x + x * x * 270 + 27 * x * x * x * 10 + 9 * x * x * x
* x * 10 + x * x * x * x * x * 10 + x * x * x * 90 + 6 * x * x * x * x * 10 + x
* \textrm{x}*\textrm{x}*\textrm{x}*\textrm{x}*10+\textrm{x}*\textrm{x}*\textrm{x}*\textrm{x}*5* (\textrm{x}+15* | * x * x * x + x * x * x *
x * x)
```

See also: simplify 8.144, simplifysafe 8.145, horner 8.71, coeff 8.22), degree 8.29

### 8.51 expm1

## Name: expm1

shifted exponential function.
Description:

- $\operatorname{expm1}$ is defined by $\operatorname{expm} 1(x)=\exp (x)-1$.
- It is defined for every real number $x$.

See also: $\exp 8.49$

### 8.52 exponent

Name: exponent
returns the scaled binary exponent of a number.
Usage:

$$
\text { exponent }(x): \text { constant } \rightarrow \text { integer }
$$

Parameters:

- $x$ is a dyadic number.

Description:

- exponent(x) is by definition 0 if $x$ is one of $0, \mathrm{NaN}$, or Inf.
- If $x$ is not zero, it can be uniquely written as $x=m \cdot 2^{e}$ where $m$ is an odd integer and $e$ is an integer. exponent $(x)$ returns $e$.

Example 1:

```
a=round(Pi,20,RN);
e=exponent(a);
> e;
-17
> m=mantissa(a);
a-m*2^e;
0
```

See also: mantissa 8.89, precision 8.114

### 8.53 externalplot

## Name: externalplot

plots the error of an external code with regard to a function
Usage:
externalplot(filename, mode, function, range, precision) : (string, absolute|relative, function, range, integer) $\rightarrow$ void
externalplot(filename, mode, function, range, precision, perturb) : (string, absolute|relative, function, range, integer, perturb) $\rightarrow$ void
externalplot(filename, mode, function, range, precision, plot mode, result filename) : (string, absolute|relative, function, range, integer, file|postscript|postscriptfile, string) $\rightarrow$ void
externalplot(filename, mode, function, range, precision, perturb, plot mode, result filename) : (string, absolute|relative, function, range, integer, perturb, file|postscript|postscriptfile, string) $\rightarrow$ void

Description:

- The command externalplot plots the error of an external function evaluation code sequence implemented in the object file named filename with regard to the function function. If mode evaluates to absolute, the difference of both functions is considered as an error function; if mode evaluates to relative, the difference is divided by the function function. The resulting error function is plotted on all floating-point numbers with precision significant mantissa bits in the range range.
If the sixth argument of the command externalplot is given and evaluates to perturb, each of the floating-point numbers the function is evaluated at gets perturbed by a random value that is uniformly distributed in $\pm 1$ ulp around the original precision bit floating-point variable.
If a sixth and seventh argument, respectively a seventh and eighth argument in the presence of perturb as a sixth argument, are given that evaluate to a variable of type file|postscript|postscriptfile respectively to a character sequence of type string, externalplot will plot (additionally) to a file in the same way as the command plot does. See plot for details.
The external function evaluation code given in the object file name filename is supposed to define a function name $f$ as follows (here in C syntax): void $f\left(m p f r_{-} t r o p, m p f r_{-} o p\right.$ ). This function is supposed to evaluate op with an accuracy corresponding to the precision of rop and assign this value to rop.

Example 1:

```
> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",relative, exp(x),[-1/2;1/2],12,perturb);
```

See also: plot (8.106), asciiplot (8.9), perturb (8.104), absolute (8.2), relative (8.130), file (8.56), postscript 8.109), postscriptfile (8.110), bashexecute 8.16, externalproc 8.54, library (8.82)

### 8.54 externalproc

Name: externalproc
binds an external code to a Sollya procedure
Usage:
externalproc(identifier, filename, argumenttype $->$ resulttype) : (identifier type, string, type type,
type type) $\rightarrow$ void
Parameters:

- identifier represents the identifier the code is to be bound to
- filename of type string represents the name of the object file where the code of procedure can be found
- argumenttype represents a definition of the types of the arguments of the Sollya procedure and the external code
- resulttype represents a definition of the result type of the external code

Description:

- externalproc allows for binding the Sollya identifier identifier to an external code. After this binding, when Sollya encounters identifier applied to a list of actual parameters, it will evaluate these parameters and call the external code with these parameters. If the external code indicated success, it will receive the result produced by the external code, transform it to Sollya's internal representation and return it.
In order to allow correct evaluation and typing of the data in parameter and in result to be passed to and received from the external code, externalproc has a third parameter argumenttype $->$ resulttype. Both argumenttype and resulttype are one of void, constant, function, range, integer, string, boolean, list of constant, list of function, list of range, list of integer, list of string, list of boolean.
If upon a usage of a procedure bound to an external procedure the type of the actual parameters given or its number is not correct, Sollya produces a type error. An external function not applied to arguments represents itself and prints out with its argument and result types.
The external function is supposed to return an integer indicating success. It returns its result depending on its Sollya result type as follows. Here, the external procedure is assumed to be implemented as a C function.
If the Sollya result type is void, the C function has no pointer argument for the result. If the Sollya result type is constant, the first argument of the C function is of C type mpfr_t *, the result is returned by affecting the MPFR variable. If the Sollya result type is function, the first argument of the C function is of C type node ${ }^{* *}$, the result is returned by the node $*$ pointed with a new node $*$. If the Sollya result type is range, the first argument of the C function is of C type mpfi_t *, the result is returned by affecting the MPFI variable. If the Sollya result type is integer, the first argument of the C function is of C type int $*$, the result is returned by affecting the int variable. If the Sollya result type is string, the first argument of the C function is of C type char $* *$, the result is returned by the char $*$ pointed with a new char $*$. If the Sollya result type is boolean, the first argument of the C function is of C type int *, the result is returned by affecting the int variable with a boolean value. If the Sollya result type is list of type, the first argument of the C function is of C type chain $* *$, the result is returned by the chain $*$ pointed with a new chain $*$. This chain contains for Sollya type constant pointers mpfr_t * to new MPFR variables, for Sollya type function pointers node $*$ to new nodes, for Sollya type range pointers mpfi_t * to new MPFI variables, for Sollya type integer pointers int $*$ to new int variables for Sollya type string pointers char $*$ to new char $*$ variables and for Sollya type boolean pointers int $*$ to new int variables representing boolean values.
The external procedure affects its possible pointer argument if and only if it succeeds. This means, if the function returns an integer indicating failure, it does not leak any memory to the encompassing environment.

The external procedure receives its arguments as follows: If the Sollya argument type is void, no argument array is given. Otherwise the C function receives a C void ** argument representing an array of size equal to the arity of the function where each entry (of C type void *) represents a value with a C type depending on the corresponding Sollya type. If the Sollya type is constant, the C type the void * is to be casted to is mpfr_t *. If the Sollya type is function, the C type the void $*$ is to be casted to is node $*$. If the Sollya type is range, the C type the void $*$ is to be casted to is mpfi_t *. If the Sollya type is integer, the C type the void $*$ is to be casted to is int $*$. If the Sollya type is string, the C type the void $*$ is to be casted to is char $*$. If the Sollya type is boolean, the C type the void $*$ is to be casted to is int $*$. If the Sollya type is list of type, the C type the void $*$ is to be casted to is chain *. Here depending on type, the values in the chain are to be casted to mpfr_t $*$ for Sollya type constant, node $*$ for Sollya type function, mpfi_t $*$ for Sollya type range, int $*$ for Sollya type integer, char $*$ for Sollya type string and int $*$ for Sollya type boolean.
The external procedure is not supposed to alter the memory pointed by its array argument void **.
In both directions (argument and result values), empty lists are represented by chain $*$ NULL pointers.
In contrast to internal procedures, externally bounded procedures can be considered to be objects inside Sollya that can be assigned to other variables, stored in list etc.
Example 1:

```
> bashexecute("gcc -fPIC -Wall -c externalprocexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocexample externalprocexample.o");
> externalproc(foo, "./externalprocexample", (integer, integer) -> integer);
> foo;
foo(integer, integer) -> integer
>foo(5, 6);
11
> verbosity = 1!;
> foo();
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> a = foo;
> a(5,6);
11
```

See also: library 8.82, externalplot 8.53), bashexecute 8.16, void 8.167), constant 8.24), function 8.63), range 8.124, integer 8.76, string 8.151, boolean 8.18), list of 8.83)

### 8.55 false

## Name: false

the boolean value representing the false.
Description:

- false is the usual boolean value.

Example 1:

```
> true && false;
false
> 2<1;
false
```

See also: true 8.164, \&\& 8.6), || 88.102 )

### 8.56 file

Name: file
special value for commands plot and externalplot
Description:

- file is a special value used in commands plot and externalplot to save the result of the command in a data file.
- As any value it can be affected to a variable and stored in lists.

Example 1:

```
savemode=file;
name="plotSinCos";
plot(sin(x),0,cos(x),[-Pi,Pi],savemode, name);
```

See also: externalplot 8.53, plot 8.106, postscript 8.109, postscriptfile 8.110

### 8.57 findzeros

Name: findzeros
gives a list of intervals containing all zeros of a function on an interval. Usage:

$$
\text { findzeros }(f, I):(\text { function, range }) \rightarrow \text { list }
$$

Parameters:

- $f$ is a function.
- $I$ is an interval.

Description:

- findzeros $(f, I)$ returns a list of intervals $I_{1}, \ldots, I_{n}$ such that, for every zero $z$ of $f$, there exists some $k$ such that $z \in I_{k}$.
- The list may contain intervals $I_{k}$ that do not contain any zero of $f$. An interval $I k$ may contain many zeros of $f$.
- This command is meant for cases when safety is critical. If you want to be sure not to forget any zero, use findzeros. However, if you just want to know numerical values for the zeros of $f$, dirtyfindzeros should be quite satisfactory and a lot faster.
- If $\delta$ denotes the value of global variable diam, the algorithm ensures that for each $k,\left|I_{k}\right| \leq \delta \cdot|I|$.
- The algorithm used is basically a bisection algorithm. It is the same algorithm that the one used for infnorm. See the help page of this command for more details. In short, the behavior of the algorithm depends on global variables prec, diam, taylorrecursions and hopitalrecursions.

Example 1:

```
> findzeros(sin(x),[-5;5]);
[| [-3.14208984375;-3.140869140625], [-1.220703125e-3;1.220703125e-3], [3.1408691
40625;3.14208984375]|]
> diam=1e-10!;
> findzeros(sin(x),[-5;5]);
[| [-3.14159265370108187198638916015625;-3.141592652536928653717041015625] , [-1.1
6415321826934814453125e-9;1.16415321826934814453125e-9], [3.14159265253692865371
7041015625;3.14159265370108187198638916015625]I]
```

See also: dirtyfindzeros 8.34), infnorm (8.75), prec 8.113), diam 8.31), taylorrecursions 8.160), hopitalrecursions 8.70, numberroots (8.98)

### 8.58 fixed

Name: fixed
indicates that fixed-point formats should be used for fpminimax
Usage:
fixed : fixed|floating

Description:

- The use of fixed in the command fpminimax indicates that the list of formats given as argument is to be considered to be a list of fixed-point formats. See fpminimax for details.

Example 1:

```
> fpminimax(cos(x),6,[|32,32,32,32,32,32,32|],[-1;1],fixed);
0.9999997480772435665130615234375 + x^2 * (-0.4999928693287074565887451171875 +
x^2 * (4.163351492024958133697509765625e-2 + x^2 * (-1.3382239267230033874511718
75e-3)))
```

See also: fpminimax 8.61, floating 8.59)

### 8.59 floating

Name: floating
indicates that floating-point formats should be used for fpminimax
Usage:
floating : fixed|floating
Description:

- The use of floating in the command fpminimax indicates that the list of formats given as argument is to be considered to be a list of floating-point formats. See fpminimax for details.


## Example 1:

```
> fpminimax(cos(x),6,[|D...|],[-1;1],floating);
0.99999974816012948686250183527590706944465637207031 + x * (5.521004406122249513
1782035802443168321913900126185e-14 + x * (-0.4999928698019768802396356477402150
630950927734375 + x * (-3.95371609372064761555136192612768146546591008227978e-13
+ x * (4.16335155285858099505347240665287245064973831176758e-2 + x * (5.2492670
395835122748014980938834327670386437070249e-13 + x * (-1.33822408807599468535953
768366653093835338950157166e-3))))))
```

See also: fpminimax 8.61, fixed 8.58

### 8.60 floor

Name: floor
the usual function floor.
Description:

- floor is defined as usual: floor $(x)$ is the greatest integer y such that $y \leq x$.
- It is defined for every real number $x$.

See also: ceil 8.20), nearestint 8.94, round 8.137), RD 8.127)

### 8.61 fpminimax

Name: fpminimax
computes a good polynomial approximation with fixed-point or floating-point coefficients Usage:
fpminimax $(f, n$, formats, range, indic1, indic2, indic3, $P)$ : (function, integer, list, range, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, function) $\rightarrow$ function
fpminimax $(f$, monomials, formats, range, indic1, indic2, indic3, $P$ ) : (function, list, list, range, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, function) $\rightarrow$ function
fpminimax $(f, n$, formats, $L$, indic1, indic2, indic3, $P)$ : (function, integer, list, list, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, function) $\rightarrow$ function
fpminimax $(f$, monomials, formats, L, indic1, indic2, indic3, $P)$ : (function, list, list, list, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, absolute|relative | fixed|floating | function, function) $\rightarrow$ function

## Parameters:

- $f$ is the function to be approximated
- $n$ is the degree of the polynomial that must approximate $f$
- monomials is the list of monomials that must be used to represent the polynomial that approximates $f$
- formats is a list indicating the formats that the coefficients of the polynomial must have
- range is the interval where the function must be approximated
- $L$ is a list of interpolation points used by the method
- indic1 (optional) is one of the optional indication parameters. See the detailed description below.
- indic2 (optional) is one of the optional indication parameters. See the detailed description below.
- indic3 (optional) is one of the optional indication parameters. See the detailed description below.
- $P$ (optional) is the minimax polynomial to be considered for solving the problem.


## Description:

- fpminimax uses a heuristic (but practically efficient) method to find a good polynomial approximation of a function $f$ on an interval range. It implements the method published in the article: Efficient polynomial $L^{\infty}$-approximations
Nicolas Brisebarre and Sylvain Chevillard
Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH 18) pp. 169-176
- The basic usage of this command is $\operatorname{fpminimax}(f, n$, formats, range $)$. It computes a polynomial approximation of $f$ with degree at most $n$ on the interval range. formats is a list of integers or format types (such as double, doubledouble, etc.). The polynomial returned by the command has its coefficients that fit the formats indications. For instance, if formats $[0]$ is 35 , the coefficient of degree 0 of the polynomial will fit a floating-point format of 35 bits. If formats[1] is D , the coefficient of degree 1 will be representable by a floating-point number with a precision of 53 bits (which is not necessarily an IEEE 754 double precision number. See the remark below), etc.
- The second argument may be either an integer or a list of integers interpreted as the list of desired monomials. For instance, the list $[|0,2,4,6|]$ indicates that the polynomial must be even and of degree at most 6. Giving an integer $n$ as second argument is equivalent as giving $[|0, \ldots, n|]$.
The list of formats is interpreted with respect to the list of monomials. For instance, if the list of monomials is $[|0,2,4,6|]$ and the list of formats is $[|161,107,53,24|]$, the coefficients of degree 0 is searched as a floating-point number with precision 161 , the coefficient of degree 2 is searched as a number of precision 107, and so on.
- The list of formats may contain either integers or format types (double, doubledouble, tripledouble and doubleextended). The list may be too large or even infinite. Only the first indications will be considered. For instance, for a degree $n$ polynomial, formats $[n+1]$ and above will be discarded. This lets one use elliptical indications for the last coefficients.
- The floating-point coefficients considered by fpminimax do not have an exponent range. In particular, in the format list, double or 53 does not imply that the corresponding coefficient is an IEEE-754 double.
- By default, the list of formats is interpreted as a list of floating-point formats. This may be changed by passing fixed as an optional argument (see below). Let us take an example: fpminimax(f, 2, [107, DD, 53], [0;1]). Here the optional argument is missing (we could have set it to floating). Thus, fpminimax will search for a polynomial of degree 2 with a constant coefficient that is a 107 bits floating-point number, etc.
Currently, doubledouble is just a synonym for 107 and tripledouble a synonym for 161. This behavior may change in the future (taking into account the fact that some double-doubles are not representable with 107 bits).
Second example: fpminimax(f, 2, [25, 18, 30], [0;1], fixed). In this case, fpminimax will search for a polynomial of degree 2 with a constant coefficient of the form $m / 2^{25}$ where $m$ is an integer. In other words, it is a fixed-point number with 25 bits after the point. Note that even with argument fixed, the formats list is allowed to contain double, doubledouble or tripledouble. In this this case, it is just a synonym for 53,107 or 161 . This is deprecated and may change in the future.
- The fourth argument may be a range or a list. Lists are for advanced users that know what they are doing. The core of the method is a kind of approximated interpolation. The list given here is a list of points that must be considered for the interpolation. It must contain at least as many points as unknown coefficients. If you give a list, it is also recommended that you provide the minimax polynomial as last argument. If you give a range, the list of points will be automatically computed.
- The fifth, sixth and seventh arguments are optional. By default, fpminimax will approximate $f$ while optimizing the relative error, and interpreting the list of formats as a list of floating-point formats.
This default behavior may be changed with these optional arguments. You may provide zero, one, two or three of the arguments in any order. This lets the user indicate only the non-default arguments.
The three possible arguments are:
- relative or absolute: the error to be optimized;
- floating or fixed: formats of the coefficients;
- a constrained part $q$.

The constrained part lets the user assign in advance some of the coefficients. For instance, for approximating $\exp (x)$, it may be interesting to search for a polynomial $p$ of the form

$$
p=1+x+\frac{x^{2}}{2}+a_{3} x^{3}+a_{4} x^{4}
$$

Thus, there is a constrained part $q=1+x+x^{2} / 2$ and the unknown polynomial should be considered in the monomial basis $[|3,4|]$. Calling fpminimax with monomial basis $[|3,4|]$ and constrained part $q$, will return a polynomial with the right form.

- The last argument is for advanced users. It is the minimax polynomial that approximates the function $f$ in the monomial basis. If it is not given this polynomial will be automatically computed by fpminimax.
This minimax polynomial is used to compute the list of interpolation points required by the method. In general, you do not have to provide this argument. But if you want to obtain several polynomials of the same degree that approximate the same function on the same range, just changing the formats, you should probably consider computing only once the minimax polynomial and the list of points instead of letting fpminimax recompute them each time.
Note that in the case when a constrained part is given, the minimax polynomial must take that into account. For instance, in the previous example, the minimax would be obtained by the following command:

$$
P=\operatorname{remez}\left(1-\left(1+x+x^{\wedge} 2 / 2\right) / \exp (x),[|3,4|], \text { range, } 1 / \exp (x)\right) ;
$$

Note that the constrained part is not to be added to $P$.

- Note that fpminimax internally computes a minimax polynomial (using the same algorithm as remez command). Thus fpminimax may encounter the same problems as remez. In particular, it may be very slow when Haar condition is not fulfilled. Another consequence is that currently fpminimax has to be run with a sufficiently high working precision.

Example 1:

```
> P = fpminimax(cos(x),6,[IDD, DD, D...|],[-1b-5;1b-5]);
> printexpansion(P);
(0x3ff0000000000000 + 0xbc09fda20235c100) + x * ((0x3b29ecd485d34781 + 0xb7c1cbc
97120359a) + x * (0xbfdffffffffffff98 + x * (0xbbfa6e0b3183cb0d + x * (0x3fa55555
55145337 + x * (0x3ca3540480618939 + x * 0xbf56c138142d8c3b)))))
```

Example 2:

```
P = fpminimax(sin(x),6,[|32...|],[-1b-5;1b-5], fixed, absolute);
> display = powers!;
> P;
x * (1 + x^2 * (-357913941 * 2^(-31) + x^2 * (35789873 * 2^(-32))))
```

Example 3:

```
P = fpminimax(exp(x), [|3,4|], [|D,24|], [-1/256; 1/246], 1+x+x^2/2);
display = powers!;
> P;
1 + x * (1 + x * (1 * 2^(-1) + x * (375300225001191 * 2^(-51) + x * (5592621 * 2
-(-27)))))
```

Example 4:

```
> f = cos(exp(x));
> pstar = remez(f, 5, [-1b-7;1b-7]);
> listpoints = dirtyfindzeros(f-pstar, [-1b-7; 1b-7]);
P1 = fpminimax(f, 5, [|DD...|], listpoints, absolute, default, default, pstar)
P2 = fpminimax(f, 5, [|D...|], listpoints, absolute, default, default, pstar);
> P3 = fpminimax(f, 5, [lD, D, D, 24...|], listpoints, absolute, default, defaul
t, pstar);
> print("Error of pstar: ", dirtyinfnorm(f-pstar, [-1b-7; 1b-7]));
Error of pstar: 7.9048441305459735102879831325718745399379329453102e-16
> print("Error of P1: ", dirtyinfnorm(f-P1, [-1b-7; 1b-7]));
Error of P1: 7.9048441305459735159848647089192667442047469404883e-16
> print("Error of P2: ", dirtyinfnorm(f-P2, [-1b-7; 1b-7]));
Error of P2: 8.2477144579950871061147021597406077993657714575238e-16
> print("Error of P3: ", dirtyinfnorm(f-P3, [-1b-7; 1b-7]));
Error of P3: 1.08454277156993282593701156841863009789063333951055e-15
```

See also: remez (8.131), dirtyfindzeros (8.34), absolute (8.2), relative 8.130), fixed (8.58), floating (8.59), default 8.28), single 8.147), double (8.39), doubledouble 8.40), tripledouble (8.163), doubleextended (8.41), implementpoly (8.72), coeff (8.22), degree (8.29), roundcoefficients (8.138), guessdegree 8.66)

### 8.62 fullparentheses

## Name: fullparentheses

activates, deactivates or inspects the state variable controlling output with full parenthesising Usage:

$$
\text { fullparentheses }=\text { activation value }: \text { on } \mid \text { off } \rightarrow \text { void }
$$

fullparentheses $=$ activation value!: on|off $\rightarrow$ void
Parameters:

- activation value represents on or off, i.e. activation or deactivation

Description:

- An assignment fullparentheses $=$ activation value, where activation value is one of on orf, activates respectively deactivates the output of expressions with full parenthesising. In full parenthesising mode, Sollya commands like print, write and the implicit command when an expression is given at the prompt will output expressions with parenthesising at all places where it is necessary for expressions containing infix operators to be parsed back with the same result. Otherwise parentheses around associative operators are omitted.
If the assignment fullparentheses $=$ activation value is followed by an exclamation mark, no message indicating the new state is displayed. Otherwise the user is informed of the new state of the global mode by an indication.

Example 1:

```
> autosimplify = off!;
> fullparentheses = off;
Full parentheses mode has been deactivated.
> print(1 + 2 + 3);
1 + 2 + 3
> fullparentheses = on;
Full parentheses mode has been activated.
> print(1 + 2 + 3);
(1 + 2) + 3
```

See also: print 8.116, write 8.169, autosimplify 8.15

### 8.63 function

Name: function
keyword representing a function type
Usage:

## function : type type

Description:

- function represents the function type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like function cannot be handled outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc 8.54, boolean 8.18), constant 8.24, integer 8.76, list of 8.83, range 8.124, string 8.151)

## $8.64>=$

Name: >=
greater-than-or-equal-to operator
Usage:

$$
\operatorname{expr} 1>=\operatorname{expr2} 2:(\text { constant, constant }) \rightarrow \text { boolean }
$$

Parameters:

- expr1 and expr2 represent constant expressions

Description:

- The operator $>=$ evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point numbers $a_{1}$ respectively $a_{2}$ with the global precision prec and $a_{1}$ is greater than or equal to $a_{2}$. The user should be aware of the fact that because of floating-point evaluation, the operator $>=$ is not exactly the same as the mathematical operation greater-than-or-equal-to.

Example 1:

```
> 5 >= 4;
true
> 5 >= 5;
true
> 5 >= 6;
false
> exp(2) >= exp(1);
true
> log(1) >= exp(2);
false
```

Example 2:

```
> prec = 12;
The precision has been set to 12 bits.
> 16384.1 >= 16385.1;
true
```

See also: $==88.43$, $,=8.95,>8.65,<=8.80,<8.88$, in 8.73, $!8.97, \& \& 8.6, \| 8.102$, prec 8.113

## $8.65>$

Name: >
greater-than operator
Usage:

$$
\text { expr1 > expr2 }:(\text { constant, constant }) \rightarrow \text { boolean }
$$

## Parameters:

- expr1 and expr2 represent constant expressions

Description:

- The operator $>$ evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point numbers $a_{1}$ respectively $a_{2}$ with the global precision prec and $a_{1}$ is greater than $a_{2}$. The user should be aware of the fact that because of floating-point evaluation, the operator $>$ is not exactly the same as the mathematical operation greater-than.

Example 1:

```
> 5 > 4;
true
> 5 > 5;
false
> 5 > 6;
false
> exp(2) > exp(1);
true
> log(1) > exp(2);
false
```

Example 2:

```
> prec = 12;
The precision has been set to 12 bits.
> 16385.1 > 16384.1;
false
```

See also: $==$ 8.43), $!=(8.95),>=8.64$,,$<=$ 8.80), $<8.88$, in 8.73), ! 8.97), \&\& 8.6), || 8.102), prec 8.113

### 8.66 guessdegree

Name: guessdegree
returns the minimal degree needed for a polynomial to approximate a function with a certain error on an interval.
Usage:
guessdegree $(f, I, e p s, w):($ function, range, constant, function) $\rightarrow$ range
Parameters:

- $f$ is the function to be approximated.
- $I$ is the interval where the function must be approximated.
- eps is the maximal acceptable error.
- $w$ (optional) is a weight function. Default is 1 .

Description:

- guessdegree tries to find the minimal degree needed to approximate $f$ on $I$ by a polynomial with an error $\epsilon=p w-f$ whose infinity norm not greater than eps. More precisely, it finds $n$ minimal such that there exists a polynomial $p$ of degree $n$ such that $\|p w-f\|_{\infty}<$ eps.
- guessdegree returns an interval: for common cases, this interval is reduced to a single number (e.g. the minimal degree). But in certain cases, guessdegree does not succeed in finding the minimal degree. In such cases the returned interval is of the form $[n, p]$ such that:
- no polynomial of degree $n-1$ gives an error less than eps.
- there exists a polynomial of degree $p$ giving an error less than eps.

Example 1:

```
> guessdegree(exp(x),[-1;1],1e-10);
[10;10]
```

Example 2:

```
> guessdegree(1, [-1;1], 1e-8, 1/exp(x));
[8;9]
```

See also: dirtyinfnorm 8.35, remez 8.131, fpminimax 8.61, degree 8.29)

### 8.67 head

Name: head
gives the first element of a list.
Usage:

$$
\text { head }(L): \text { list } \rightarrow \text { any type }
$$

## Parameters:

- $L$ is a list.

Description:

- head $(L)$ returns the first element of the list $L$. It is equivalent to $\mathrm{L}[0]$.
- If $L$ is empty, the command will fail with an error.

Example 1:

```
head([|1,2,3|]);
1
> head([|1,2...|]);
1
```

See also: tail 8.155

### 8.68 hexadecimal

## Name: hexadecimal

special value for global state display
Description:

- hexadecimal is a special value used for the global state display. If the global state display is equal to hexadecimal, all data will be output in hexadecimal C99/ IEEE 754-2008 notation.
As any value it can be affected to a variable and stored in lists.
See also: decimal 8.27, dyadic 8.42, powers 8.112, binary 8.17, display 8.37)


### 8.69 honorcoeffprec

Name: honorcoeffprec
indicates the (forced) honoring the precision of the coefficients in implementpoly
Usage:
honorcoeffprec : honorcoeffprec
Description:

- Used with command implementpoly, honorcoeffprec makes implementpoly honor the precision of the given polynomial. This means if a coefficient needs a double-double or a triple-double to be exactly stored, implementpoly will allocate appropriate space and use a double-double or triple-double operation even if the automatic (heuristic) determination implemented in command implementpoly indicates that the coefficient could be stored on less precision or, respectively, the operation could be performed with less precision. See implementpoly for details.

Example 1:

```
> verbosity = 1!;
> q = implementpoly(1 - simplify(TD (1/6)) * x^2, [-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c");
Warning: at least one of the coefficients of the given polynomial has been round
ed in a way
that the target precision can be achieved at lower cost. Nevertheless, the imple
mented polynomial
is different from the given one.
> printexpansion(q);
0x3ff0000000000000 + x^2 * 0xbfc5555555555555
> r = implementpoly(1 - simplify(TD (1/6)) * x^2, [-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c",honorcoeffprec);
Warning: the infered precision of the 2th coefficient of the polynomial is great
er than
the necessary precision computed for this step. This may make the automatic dete
rmination
of precisions useless.
> printexpansion(r);
0x3ff0000000000000 + x^2 * (0xbfc5555555555555 + 0xbc65555555555555 + 0xb9055555
55555555)
```

See also: implementpoly 8.72, printexpansion 8.118, fpminimax 8.61)

### 8.70 hopitalrecursions

## Name: hopitalrecursions

controls the number of recursion steps when applying L'Hopital's rule.
Usage:

$$
\begin{gathered}
\text { hopitalrecursions }=n: \text { integer } \rightarrow \text { void } \\
\text { hopitalrecursions }=n!: \text { integer } \rightarrow \text { void } \\
\text { hopitalrecursions : integer }
\end{gathered}
$$

## Parameters:

- $n$ represents the number of recursions

Description:

- hopitalrecursions is a global variable. Its value represents the number of steps of recursion that are tried when applying L'Hopital's rule. This rule is applied by the interval evaluator present in the core of Sollya (and particularly visible in commands like infnorm).
- If an expression of the form $f / g$ has to be evaluated by interval arithmetic on an interval $I$ and if $f$ and $g$ have a common zero in $I$, a direct evaluation leads to NaN. Sollya implements a safe heuristic to avoid this, based on L'Hopital's rule: in such a case, it can be shown that $(f / g)(I) \subseteq\left(f^{\prime} / g^{\prime}\right)(I)$. Since the same problem may exist for $f^{\prime} / g^{\prime}$, the rule is applied recursively. The number of step in this recursion process is controlled by hopitalrecursions.
- Setting hopitalrecursions to 0 makes Sollya use this rule only once; setting it to 1 makes Sollya use the rule twice, and so on. In particular: the rule is always applied at least once, if necessary.

Example 1:

```
> hopitalrecursions=0;
The number of recursions for Hopital's rule has been set to 0.
> evaluate(log(1+x)^2/x^2,[-1/2; 1]);
[-@Inf@;@Inf@]
> hopitalrecursions=1;
The number of recursions for Hopital's rule has been set to 1.
> evaluate(log(1+x)^2/x^2,[-1/2; 1]);
[-2.52258872223978123766892848583270627230200053744108;6.77258872223978123766892
84858327062723020005374411]
```

See also: taylorrecursions 8.160, infnorm 8.75, findzeros 8.57, evaluate 8.47)

### 8.71 horner

Name: horner
brings all polynomial subexpressions of an expression to Horner form Usage:

$$
\text { horner }(\text { function }): \text { function } \rightarrow \text { function }
$$

## Parameters:

- function represents the expression to be rewritten in Horner form


## Description:

- The command horner rewrites the expression representing the function function in a way such that all polynomial subexpressions (or the whole expression itself, if it is a polynomial) are written in Horner form. The command horner does not endanger the safety of computations even in Sollya's floating-point environment: the function returned is mathematically equal to the function function.

Example 1:

```
> print(horner(1 + 2 * x + 3 * x^2));
1 + x * (2 + x * 3)
> print(horner((x + 1)^7));
1 + x * (7 + x * (21 + x * (35 + x * (35 + x * (21 + x * (7 + x))))))
```

Example 2:

```
> print(horner(exp((x + 1)^5) - log(asin(x + x^3) + x)));
exp(1 + x * (5 + x * (10 + x * (10 + x * (5 + x))))) - log(asin(x * (1 + x^2)) +
x)
```

See also: canonical (8.19), print (8.116), coeff 8.22), degree (8.29), autosimplify 8.15 , simplifysafe 8.145

### 8.72 implementpoly

Name: implementpoly
implements a polynomial using double, double-double and triple-double arithmetic and generates a Gappa proof
Usage:
implementpoly (polynomial, range, error bound, format, functionname, filename) : (function, range, constant, $\mathrm{D} \mid$ double|DD|doubledouble|TD|tripledouble, string, string) $\rightarrow$ function
implementpoly(polynomial, range, error bound, format, functionname, filename, honor coefficient precisions) : (function, range, constant, $\mathrm{D} \mid$ double|DD|doubledouble|TD|tripledouble, string, string, honorcoeffprec) $\rightarrow$ function
implementpoly (polynomial, range, error bound, format, functionname, filename, proof filename) : (function, range, constant, $\mathrm{D} \mid$ double|DD|doubledouble|TD|tripledouble, string, string, string) $\rightarrow$ function
implementpoly (polynomial, range, error bound, format, functionname, filename, honor coefficient precisions, proof filename) : (function, range, constant, $\mathrm{D} \mid$ double|DD|doubledouble|TD|tripledouble, string, string, honorcoeffprec, string) $\rightarrow$ function
Description:

- The command implementpoly implements the polynomial polynomial in range range as a function called functionname in C code using double, double-double and triple-double arithmetic in a way that the rounding error (estimated at its first order) is bounded by error bound. The produced code is output in a file named filename. The argument format indicates the double, double-double or triple-double format of the variable in which the polynomial varies, influencing also in the signature of the C function.
If a seventh or eighth argument proof filename is given and if this argument evaluates to a variable of type string, the command implementpoly will produce a Gappa proof that the rounding error is less than the given bound. This proof will be output in Gappa syntax in a file name proof filename.
The command implementpoly returns the polynomial that has been implemented. As the command implementpoly tries to adapt the precision needed in each evaluation step to its strict minimum and as it applies renormalization to double-double and triple-double precision coefficients to bring them to a round-to-nearest expansion form, the returned polynomial may differ from the polynomial polynomial. Nevertheless the difference will be small enough that the rounding error bound with regard to the polynomial polynomial (estimated at its first order) will be less than the given error bound.
If a seventh argument honor coefficient precisions is given and evaluates to a variable honorcoeffprec of type honorcoeffprec, implementpoly will honor the precision of the given polynomial polynomials. This means if a coefficient needs a double-double or a triple-double to be exactly stored, implementpoly will allocate appropriate space and use a double-double or triple-double operation even if the automatic (heuristic) determination implemented in command implementpoly indicates that the coefficient could be stored on less precision or, respectively, the operation could be performed with less precision. The use of honorcoeffprec has advantages and disadvantages. If the polynomial polynomial given has not been determined by a process considering directly polynomials with floating-point coefficients, honorcoeffprec should not be indicated. The implementpoly command can then determine the needed precision using the same error estimation as used for the determination of the precisions of the operations. Generally, the coefficients will get rounded to double, double-double and triple-double precision in a way that minimizes their number and respects the rounding error bound error bound. Indicating honorcoeffprec may in this case short-circuit most precision estimations leading to sub-optimal code. On the other hand, if the polynomial polynomial has been determined with floating-point precisions in mind, honorcoeffprec should be indicated because such polynomials often are very sensitive in terms of error propagation with regard to their coefficients' values. Indicating honorcoeffprec prevents the implementpoly command from rounding the coefficients and altering by many orders of magnitude the approximation error of the polynomial with regard to the function it approximates.
The implementer behind the implementpoly command makes some assumptions on its input and verifies them. If some assumption cannot be verified, the implementation will not succeed and
implementpoly will evaluate to a variable error of type error. The same behaviour is observed if some file is not writable or some other side-effect fails, e.g. if the implementer runs out of memory. As error estimation is performed only on the first order, the code produced by the implementpoly command should be considered valid iff a Gappa proof has been produced and successfully run in Gappa.

Example 1:

```
> implementpoly(1 - 1/6 * x^2 + 1/120 * x^4, [-1b-10;1b-10], 1b-30, D, "p","impl
ementation.c");
1 + x^2 * (-0.166666666666666657414808128123695496469736099243164 + x^2 * 8.3333
333333333332176851016015461937058717012405395e-3)
> readfile("implementation.c");
#define p_coeff_Oh 1.00
000000000000000000000e+00
#define p_coeff_2h -1.6666666666666665741480812812369549646973609924316406250000
00000000000000000000000e-01
#define p_coeff_4h 8.33333333333333321768510160154619370587170124053955078125000
000000000000000000000e-03
void p(double *p_resh, double x) {
double p_x_0_pow2h;
p_x_0_pow2h = x * x;
double p_t_1_0h;
double p_t_2_0h;
double p_t_3_0h;
double p_t_4_0h;
double p_t_5_0h;
p_t_1_0h = p_coeff_4h;
p_t_2_0h = p_t_1_0h * p_x_0_pow2h;
p_t_3_Oh = p_coeff_2h + p_t_2_0h;
p_t_4_0h = p_t_3_0h * p_x_0_pow2h;
p_t_5_Oh = p_coeff_Oh + p_t_4_0h;
*p_resh = p_t_5_Oh;
}
```

Example 2:

```
> implementpoly(1 - 1/6 * x^2 + 1/120 * x^4, [-1b-10;1b-10], 1b-30, D, "p","impl
ementation.c","implementation.gappa");
1 + x^2 * (-0.166666666666666657414808128123695496469736099243164 + x^2 * 8.3333
333333333332176851016015461937058717012405395e-3)
```


## Example 3:

```
> verbosity = 1!;
> q = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c");
Warning: at least one of the coefficients of the given polynomial has been round
ed in a way
that the target precision can be achieved at lower cost. Nevertheless, the imple
mented polynomial
is different from the given one.
> printexpansion(q);
0x3ff0000000000000 + x^2 * 0xbfc55555555555555
> r = implementpoly(1 - simplify(TD(1/6)) * x^2,[-1b-10;1b-10],1b-60,DD,"p","imp
lementation.c",honorcoeffprec);
Warning: the infered precision of the 2th coefficient of the polynomial is great
er than
the necessary precision computed for this step. This may make the automatic dete
rmination
of precisions useless.
> printexpansion(r);
0x3ff0000000000000 + x^2 * (0xbfc55555555555555 + 0xbc65555555555555 + 0xb9055555
55555555)
```

Example 4:

```
> p = 0x3ff0000000000000 + x * (0x3ff0000000000000 + x * (0x3fe0000000000000 + x
 * (0x3fc5555555555559 + x * (0x3fa555555555555bd + x * (0x3f811111111106e2 + x
 * (0x3f56c16c16bf5eb7 + x * (0x3f2a01a01a292dcd + x * (0x3efa01a0218a016a + x
 * (0x3ec71de360331aad + x * (0x3e927e42e3823bf3 + x * (0x3e5ae6b2710c2c9a + x
 * (0x3e2203730c0a7c1d + x * 0x3de5da557e0781df))))))))))));
> q = implementpoly(p,[-1/2;1/2],1b-60,D,"p","implementation.c",honorcoeffprec,"
implementation.gappa");
> if (q != p) then print("During implementation, rounding has happened.") else p
rint("Polynomial implemented as given.");
Polynomial implemented as given.
```

See also: honorcoeffprec (8.69), roundcoefficients 8.138), double 8.39), doubledouble 8.40), tripledouble 8.163), readfile (8.128), printexpansion 8.118, error 8.46), remez 8.131), fpminimax 8.61), taylor 8.158

### 8.73 in

Name: in containment test operator Usage:
expr in range1 : (constant, range) $\rightarrow$ boolean range1 in range2 : (range, range) $\rightarrow$ boolean

Parameters:

- expr represents a constant expression
- range1 and range2 represent ranges (intervals)


## Description:

- When its first operand is a constant expression expr, the operator in evaluates to true iff the constant value of the expression expr is contained in the interval range1.
- When both its operands are ranges (intervals), the operator in evaluates to true iff all values in range1 are contained in the interval range2.
- in is also used as a keyword for loops over the different elements of a list.

Example 1:

```
> 5 in [-4;7];
true
> 4 in [-1;1];
false
> 0 in sin([-17;17]);
true
```

Example 2:

```
> [5;7] in [2;8];
true
> [2;3] in [4;5];
false
> [2;3] in [2.5;5];
false
```

Example 3:

```
for i in [|1,...,5|] do print(i);
```

1
2
3
4
5

See also: $==88.43,!=8.95,>=8.64,>8.65,<=8.80,<8.88,!8.97, \& \& 8.6$, || 8.102), prec 8.113, print 8.116

### 8.74 inf

Name: inf
gives the lower bound of an interval.
Usage:

$$
\begin{gathered}
\inf (I): \text { range } \rightarrow \text { constant } \\
\inf (x): \text { constant } \rightarrow \text { constant }
\end{gathered}
$$

## Parameters:

- $I$ is an interval.
- $x$ is a real number.

Description:

- Returns the lower bound of the interval $I$. Each bound of an interval has its own precision, so this command is exact, even if the current precision is too small to represent the bound.
- When called on a real number $x$, inf considers it as an interval formed of a single point: $[x, x]$. In other words, inf behaves like the identity.

Example 1:

```
inf([1;3]);
1
inf(0);
0
```

Example 2:

```
display=binary!;
> I=[0.111110000011111_2; 1];
> inf(I);
1.11110000011111_2 * 2^(-1)
> prec=12!;
> inf(I);
1.11110000011111_2 * 2^(-1)
```

See also: mid 8.90, sup 8.154

### 8.75 infnorm

## Name: infnorm

computes an interval bounding the infinity norm of a function on an interval. Usage:

$$
\text { infnorm }(f, I, \text { filename, Ilist }):(\text { function, range, string, list }) \rightarrow \text { range }
$$

## Parameters:

- $f$ is a function.
- $I$ is an interval.
- filename (optional) is the name of the file into a proof will be saved.
- IList (optional) is a list of intervals to be excluded.

Description:

- infnorm $(f$, range $)$ computes an interval bounding the infinity norm of the given function $f$ on the interval $I$, e.g. computes an interval $J$ such that $\max _{x \in I}\{|f(x)|\} \subseteq J$.
- If filename is given, a proof in English will be produced (and stored in file called filename) proving that $\max _{x \in I}\{|f(x)|\} \subseteq J$.
- If a list IList of intervals $I_{1}, \ldots, I_{n}$ is given, the infinity norm will be computed on $I \backslash\left(I_{1} \cup \ldots \cup I_{n}\right)$.
- The function $f$ is assumed to be at least twice continuous on $I$. More generally, if $f$ is $\mathcal{C}^{k}$, global variables hopitalrecursions and taylorrecursions must have values not greater than $k$.
- If the interval is reduced to a single point, the result of infnorm is an interval containing the exact absolute value of $f$ at this point.
- If the interval is not bound, the result will be $[0,+\infty]$ which is correct but perfectly useless. infnorm is not meant to be used with infinite intervals.
- The result of this command depends on the global variables prec, diam, taylorrecursions and hopitalrecursions. The contribution of each variable is not easy even to analyse.
- The algorithm uses interval arithmetic with precision prec. The precision should thus be set high enough to ensure that no critical cancellation will occur.
- When an evaluation is performed on an interval $[a, b]$, if the result is considered being too large, the interval is split into $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$ and so on recursively. This recursion step is not performed if the $(b-a)<\delta \cdot|I|$ where $\delta$ is the value of variable diam. In other words, diam controls the minimum length of an interval during the algorithm.
- To perform the evaluation of a function on an interval, Taylor's rule is applied, e.g. $f([a, b]) \subseteq$ $f(m)+[a-m, b-m] \cdot f^{\prime}([a, b])$ where $m=\frac{a+b}{2}$. This rule is recursively applied $n$ times where $n$ is the value of variable taylorrecursions. Roughly speaking, the evaluations will avoid decorrelation up to order $n$.
- When a function of the form $\frac{g}{h}$ has to be evaluated on an interval $[a, b]$ and when $g$ and $h$ vanish at a same point $z$ of the interval, the ratio may be defined even if the expression $\frac{g(z)}{h(z)}=\frac{0}{0}$ does not make any sense. In this case, L'Hopital's rule may be used and $\left(\frac{g}{h}\right)([a, b]) \subseteq\left(\frac{g^{\prime}}{h^{\prime}}\right)([a, b])$. Since the same can occur with the ratio $\frac{g^{\prime}}{h^{\prime}}$, the rule is applied recursively. The variable hopitalrecursions controls the number of recursion steps.
- The algorithm used for this command is quite complex to be explained here. Please find a complete description in the following article:
S. Chevillard and C. Lauter

A certified infinity norm for the implementation of elementary functions
LIP Research Report number RR2007-26
http://prunel.ccsd.cnrs.fr/ensl-00119810

## Example 1:

```
> infnorm(exp(x),[-2;3]);
[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928
5296545817178969879078385544e1]
```

Example 2:

```
> infnorm(exp(x),[-2;3],"proof.txt");
[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928
5296545817178969879078385544e1]
```

Example 3:

```
> infnorm(exp(x),[-2;3],[l [0;1], [2;2.5] |]);
[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928
5296545817178969879078385544e1]
```


## Example 4:

```
> infnorm(exp(x),[-2;3],"proof.txt", [| [0;1], [2;2.5] |]);
[2.00855369231876677409285296545817178969879078385537e1;2.0085536923187667740928
5296545817178969879078385544e1]
```

Example 5:

```
> infnorm(exp(x),[1;1]);
[2.71828182845904523536028747135266249775724709369989;2.718281828459045235360287
47135266249775724709369998]
```

Example 6:

```
> infnorm(exp(x), [log(0);log(1)]);
[0;@Inf@]
```

See also: prec 8.113), diam (8.31), hopitalrecursions 8.70), dirtyinfnorm 8.35), checkinfnorm (8.21), findzeros (8.57), diff (8.33), taylorrecursions 8.160), autodiff (8.14), numberroots 8.98), taylorform 8.159)

### 8.76 integer

Name: integer
keyword representing a machine integer type
Usage:

```
integer : type type
```

Description:

- integer represents the machine integer type for declarations of external procedures externalproc.

Remark that in contrast to other indicators, type indicators like integer cannot be handled outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc 8.54, boolean 8.18, constant 8.24, function 8.63, list of 8.83), range 8.124, string 8.151)

### 8.77 integral

Name: integral
computes an interval bounding the integral of a function on an interval. Usage:

$$
\text { integral }(f, I):(\text { function, range }) \rightarrow \text { range }
$$

## Parameters:

- $f$ is a function.
- $I$ is an interval.

Description:

- integral $(f, I)$ returns an interval $J$ such that the exact value of the integral of $f$ on $I$ lies in $J$.
- This command is safe but very inefficient. Use dirtyintegral if you just want an approximate value.
- The result of this command depends on the global variable diam. The method used is the following: $I$ is cut into intervals of length not greater then $\delta \cdot|I|$ where $\delta$ is the value of global variable diam. On each small interval $J$, an evaluation of $f$ by interval is performed. The result is multiplied by the length of $J$. Finally all values are summed.

Example 1:

```
> sin(10);
-0.54402111088936981340474766185137728168364301291621
> integral(cos(x),[0;10]);
[-0.54710197983579690224097637163525943075698599257332;-0.5409401513001318384815
0540881373370744053741191728]
> diam=1e-5!;
> integral(cos(x),[0;10]);
[-0.54432915685955427101857780295936956775293876382777;-0.5437130640124996950803
9644221927489010425803173555]
```

See also: diam 8.31, dirtyintegral 8.36, prec 8.113

### 8.78 isbound

## Name: isbound

indicates whether a variable is bound or not.
Usage:
isbound(ident) : boolean

Parameters:

- ident is a name.

Description:

- isbound (ident) returns a boolean value indicating whether the name ident is used or not to represent a variable. It returns true when ident is the name used to represent the global variable or if the name is currently used to refer to a (possibly local) variable.
- When a variable is defined in a block and has not been defined outside, isbound returns true when called inside the block, and false outside. Note that isbound returns true as soon as a variable has been declared with var, even if no value is actually stored in it.
- If ident1 is bound to a variable and if ident2 refers to the global variable, the command rename(ident2, ident1) hides the value of ident1 which becomes the global variable. However, if the global variable is again renamed, ident1 gets its value back. In this case, isbound(ident1) returns true. If ident1 was not bound before, isbound(ident1) returns false after that ident1 has been renamed.

Example 1:

```
> isbound(x);
false
> isbound(f);
false
> isbound(g);
false
> f=sin(x);
> isbound(x);
true
> isbound(f);
true
> isbound(g);
false
```

Example 2:

```
> isbound(a);
false
> { var a; isbound(a); };
true
> isbound(a);
false
```

Example 3:

```
> f=sin(x);
> isbound(x);
true
> rename(x,y);
> isbound(x);
false
```

Example 4:

```
x=1;
f=sin(y);
rename(y,x);
> f;
sin(x)
> x;
x
> isbound(x);
true
> rename(x,y);
> isbound(x);
true
> x;
1
```

See also: rename (8.132)

### 8.79 isevaluable

## Name: isevaluable

tests whether a function can be evaluated at a point Usage:

$$
\text { isevaluable(function, constant) : (function, constant) } \rightarrow \text { boolean }
$$

Parameters:

- function represents a function
- constant represents a constant point

Description:

- isevaluable applied to function function and a constant constant returns a boolean indicating whether or not a subsequent call to evaluate on the same function function and constant constant will produce a numerical result or NaN . This means isevaluable returns false iff evaluate will return NaN .

Example 1:

```
> isevaluable(sin(pi * 1/x), 0.75);
true
> print(evaluate(sin(pi * 1/x), 0.75));
-0.86602540378443864676372317075293618347140262690518
```


## Example 2:

```
> isevaluable(sin(pi * 1/x), 0.5);
true
> print(evaluate(sin(pi * 1/x), 0.5));
[-1.72986452514381269516508615031098129542836767991679e-12715;7.5941198201187963
145069564314525661706039084390067e-12716]
```


## Example 3:

```
> isevaluable(sin(pi * 1/x), 0);
false
> print(evaluate(sin(pi * 1/x), 0));
[@NaN@;@NaN@]
```

See also: evaluate 8.47)
$8.80<=$
Name: <=
less-than-or-equal-to operator
Usage:

$$
\operatorname{expr} 1<=\text { expr2 }:(\text { constant, constant }) \rightarrow \text { boolean }
$$

## Parameters:

- expr1 and expr2 represent constant expressions


## Description:

- The operator $<=$ evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point numbers $a_{1}$ respectively $a_{2}$ with the global precision prec and $a_{1}$ is less than or equal to $a_{2}$. The user should be aware of the fact that because of floating-point evaluation, the operator $<=$ is not exactly the same as the mathematical operation less-than-or-equal-to.

Example 1:

```
> 5 <= 4;
false
> 5 <= 5;
true
> 5 <= 6;
true
> exp(2) <= exp(1);
false
> log(1) <= exp(2);
true
```

Example 2:

```
> prec = 12;
The precision has been set to 12 bits.
> 16385.1 <= 16384.1;
true
```

See also: $==$ 8.43), $!=8.95,>=8.64,>8.65,<8.88$, in 8.73, $!8.97, \& \& 8.6,| | 8.102$, prec 8.113)

### 8.81 length

Name: length
computes the length of a list or string.
Usage:

$$
\begin{gathered}
\text { length }(L): \text { list } \rightarrow \text { integer } \\
\text { length }(s): \text { string } \rightarrow \text { integer }
\end{gathered}
$$

## Parameters:

- $L$ is a list.
- $s$ is a string.

Description:

- length returns the length of a list or a string, e.g. the number of elements or letters.
- The empty list or string have length 0 . If $L$ is an end-elliptic list, length returns + Inf.

Example 1:

```
> length("Hello World!");
12
```


## Example 2:

```
length([|1,...,5|]);
5
```

Example 3:

```
length([| |]);
```

0

Example 4:

```
> length([|1,2...|]);
@Inf@
```


### 8.82 library

## Name: library

binds an external mathematical function to a variable in Sollya Usage:

$$
\text { library }(\text { path }): \text { string } \rightarrow \text { function }
$$

Description:

- The command library lets you extend the set of mathematical functions known to Sollya. By default, Sollya knows the most common mathematical functions such as exp, sin, erf, etc. Within Sollya, these functions may be composed. This way, Sollya should satisfy the needs of a lot of users. However, for particular applications, one may want to manipulate other functions such as Bessel functions, or functions defined by an integral or even a particular solution of an ODE.
- library makes it possible to let Sollya know about new functions. In order to let it know, you have to provide an implementation of the function you are interested in. This implementation is a C file containing a function of the form:

```
int my_ident(mpfi_t result, mpfi_t op, int n)
```

The semantic of this function is the following: it is an implementation of the function and its derivatives in interval arithmetic. my_ident (result, I, n) shall store in result an enclosure of the image set of the $n$-th derivative of the function f over $\mathrm{I}: f^{(n)}(I) \subseteq$ result.

- The integer value returned by the function implementation currently has no meaning.
- You do not need to provide a working implementation for any n. Most functions of Sollya requires a relevant implementation only for $f, f^{\prime}$ and $f^{\prime \prime}$. For higher derivatives, its is not so critical and the implementation may just store $[-\infty,+\infty]$ in result whenever $n>2$.
- Note that you should respect somehow MPFI standards in your implementation: result has its own precision and you should perform the intermediate computations so that result is as tight as possible.
- You can include sollya.h in your implementation and use library functionnalities of Sollya for your implementation. However, this requires to have compiled Sollya with -fPIC in order to make the Sollya executable code position independent and to use a system on with programs, using dlopen to open dynamic routines can dynamically open themselves.
- To bind your function into Sollya, you must use the same identifier as the function name used in your implementation file (my_ident in the previous example). Once the function code has been bound to an identifier, you can use a simple assignment to assign the bound identifier to yet another identifier. This way, you may use convenient names inside Sollya even if your implementation environment requires you to use a less convenient name.


## Example 1:

```
bashexecute("gcc -fPIC -Wall -c libraryexample.c -I$HOME/.local/include");
> bashexecute("gcc -shared -o libraryexample libraryexample.o -lgmp -lmpfr");
> myownlog = library("./libraryexample");
> evaluate(log(x), 2);
0.69314718055994530941723212145817656807550013436024
> evaluate(myownlog(x), 2);
0.69314718055994530941723212145817656807550013436024
```

See also: bashexecute 8.16, externalproc 8.54), externalplot 8.53), diff 8.33), evaluate 8.47

### 8.83 list of

Name: list of
keyword used in combination with a type keyword
Description:

- list of is used in combination with one of the following keywords for indicating lists of the respective type in declarations of external procedures using externalproc: boolean, constant, function, integer, range and string.

See also: externalproc 8.54, boolean 8.18, constant 8.24, function 8.63, integer 8.76), range 8.124, string 8.151)

## $8.84 \log$

Name: log
natural logarithm.
Description:

- $\log$ is the natural $\operatorname{logarithm}$ defined as the inverse of the exponential function: $\log (y)$ is the unique real number $x$ such that $\exp (x)=y$.
- It is defined only for $y \in[0 ;+\infty]$.

See also: $\exp 8.49, \log 2$ 8.87, $\log 108.85$

## $8.85 \quad \log 10$

## Name: $\log 10$

decimal logarithm.
Description:

- $\log 10$ is the decimal $\operatorname{logarithm~defined~by:~} \log 10(x)=\log (x) / \log (10)$.
- It is defined only for $x \in[0 ;+\infty]$.

See also: $\log 8.84, \log 28.87$

## $8.86 \quad \log 1 p$

Name: $\log 1 p$
translated logarithm.
Description:

- $\log \mathbf{1 p}$ is the function defined by $\log 1 \mathrm{p}(x)=\log (1+x)$.
- It is defined only for $x \in[-1 ;+\infty]$.

See also: $\log 8.84$

## $8.87 \quad \log 2$

Name: log2
binary logarithm.
Description:

- $\log 2$ is the binary $\operatorname{logarithm}$ defined by: $\log 2(x)=\log (x) / \log (2)$.
- It is defined only for $x \in[0 ;+\infty]$.

See also: $\log (8.84, \log 108.85$

## $8.88<$

Name: <
less-than operator
Usage:

$$
\text { expr1 < expr2 : (constant, constant) } \rightarrow \text { boolean }
$$

## Parameters:

- expr1 and expr2 represent constant expressions

Description:

- The operator < evaluates to true iff its operands expr1 and expr2 evaluate to two floating-point numbers $a_{1}$ respectively $a_{2}$ with the global precision prec and $a_{1}$ is less than $a_{2}$. The user should be aware of the fact that because of floating-point evaluation, the operator $<$ is not exactly the same as the mathematical operation less-than.
Example 1:

```
> 5 < 4;
false
> 5 < 5;
false
> 5 < 6;
true
> exp(2) < exp(1);
false
> log(1) < exp(2);
true
```

Example 2:

```
> prec = 12;
The precision has been set to 12 bits.
> 16384.1 < 16385.1;
false
```

See also: $==8.43$, $!=8.95,>=8.64,>8.65,<=8.80$, in 8.73), ! 8.97, \&\& 8.6), || 8.102,, prec 8.113

### 8.89 mantissa

Name: mantissa
returns the integer mantissa of a number.
Usage:

$$
\operatorname{mantissa}(x): \text { constant } \rightarrow \text { integer }
$$

Parameters:

- $x$ is a dyadic number.

Description:

- mantissa $(x)$ is by definition $x$ if $x$ equals $0, \mathrm{NaN}$, or Inf.
- If $x$ is not zero, it can be uniquely written as $x=m \cdot 2^{e}$ where $m$ is an odd integer and $e$ is an integer. mantissa(x) returns $m$.


## Example 1:

```
a=round(Pi,20,RN);
>e=exponent(a);
> m=mantissa(a);
> m;
411775
> a-m*2^e;
0
```

See also: exponent 8.52, precision 8.114

### 8.90 mid

Name: mid
gives the middle of an interval.
Usage:

$$
\begin{gathered}
\operatorname{mid}(I): \text { range } \rightarrow \text { constant } \\
\operatorname{mid}(x): \text { constant } \rightarrow \text { constant }
\end{gathered}
$$

Parameters:

- $I$ is an interval.
- $x$ is a real number.

Description:

- Returns the middle of the interval $I$. If the middle is not exactly representable at the current precision, the value is returned as an unevaluated expression.
- When called on a real number $x$, mid considers it as an interval formed of a single point: $[x, x]$. In other words, mid behaves like the identity.

Example 1:

```
> mid([1;3]);
2
> mid(17);
17
```

See also: inf 8.74, sup 8.154

### 8.91 midpointmode

Name: midpointmode
global variable controlling the way intervals are displayed.
Usage:

$$
\begin{gathered}
\text { midpointmode }=\text { activation value }: \text { on } \mid \text { off } \rightarrow \text { void } \\
\text { midpointmode }=\text { activation value }!: \text { on } \mid \text { off } \rightarrow \text { void } \\
\text { midpointmode }: \text { on } \mid \text { off }
\end{gathered}
$$

Parameters:

- activation value enables or disables the mode.

Description:

- midpointmode is a global variable. When its value is off, intervals are displayed as usual (in the form $[a ; b])$. When its value is on, and if $a$ and $b$ have the same first significant digits, the interval in displayed in a way that lets one immediately see the common digits of the two bounds.
- This mode is supported only with display set to decimal. In other modes of display, midpointmode value is simply ignored.

Example 1:

```
a = round(Pi,30,RD);
b = round(Pi,30,RU);
>d = [a,b];
> d;
[3.1415926516056060791015625;3.1415926553308963775634765625]
> midpointmode=on!;
> d;
0.314159265~1/6~ e1
```

See also: on 8.101, off 8.100, roundingwarnings 8.140, display (8.37, decimal 8.27)

### 8.92

Name: -
subtraction function
Usage:

> function1 - function2 : (function, function) $\rightarrow$ function interval1 - interval2 $:($ range, range $) \rightarrow$ range
> interval1 - constant $:($ range, constant $) \rightarrow$ range
> interval1 - constant $:($ constant, range $) \rightarrow$ range
> - function $:$ function $\rightarrow$ function
> - interval1 $:$ range $\rightarrow$ range

## Parameters:

- function1 and function2 represent functions
- interval1 and interval2 represent intervals (ranges)
- constant represents a constant or constant expression

Description:

-     - represents the subtraction (function) on reals. The expression function1 - function2 stands for the function composed of the subtraction function and the two functions function 1 and function2, where function1 is the subtrahend and function2 the subtractor.
-     - can be used for interval arithmetic on intervals (ranges). - will evaluate to an interval that safely encompasses all images of the subtraction function with arguments varying in the given intervals. Any combination of intervals with intervals or constants (resp. constant expressions) is supported. However, it is not possible to represent families of functions using an interval as one argument and a function (varying in the free variable) as the other one.
-     - stands also for the negation function.

Example 1:

```
5-2;
```

3

Example 2:

```
> x - 2;
-2 + x
```

Example 3:

```
x - x;
```

0

Example 4:

```
> diff(sin(x) - exp(x));
cos(x) - exp(x)
```

Example 5:

```
> [1;2] - [3;4];
[-3;-1]
> [1;2] - 17;
[-16;-15]
> 13 - [-4;17];
[-4;17]
```

Example 6:

```
> - exp(x);
-exp(x)
> -13;
-13
> -[13;17];
[-17;-13]
```

See also: + 8.107),$*$ 8.93, $/$ 8.38, $\wedge_{8.111) ~}^{8}$

## $8.93 *$

Name: *
multiplication function
Usage:
function1 $*$ function2 : (function, function) $\rightarrow$ function
interval1 $*$ interval2 : (range, range) $\rightarrow$ range
interval1 $*$ constant $:($ range, constant) $\rightarrow$ range
interval1 $*$ constant $:($ constant, range) $\rightarrow$ range

## Parameters:

- function1 and function2 represent functions
- interval1 and interval2 represent intervals (ranges)
- constant represents a constant or constant expression

Description:

-     * represents the multiplication (function) on reals. The expression function1 $*$ function2 stands for the function composed of the multiplication function and the two functions function1 and function2.
-     * can be used for interval arithmetic on intervals (ranges). * will evaluate to an interval that safely encompasses all images of the multiplication function with arguments varying in the given intervals. Any combination of intervals with intervals or constants (resp. constant expressions) is supported. However, it is not possible to represent families of functions using an interval as one argument and a function (varying in the free variable) as the other one.

Example 1:

```
> 5 * 2;
```

10

Example 2:

```
> x * 2;
x * 2
```

Example 3:

```
> x * x;
x^2
```

Example 4:

```
> diff(sin(x) * exp(x));
sin(x)* exp(x) + exp(x) * cos(x)
```


## Example 5:

```
> [1;2] * [3;4];
[3;8]
> [1;2] * 17;
[17;34]
> 13 * [-4;17];
[-52;221]
```

See also: $+8.107,-8.92, / 8.38, \wedge 8.111$

### 8.94 nearestint

## Name: nearestint

the function mapping the reals to the integers nearest to them.
Description:

- nearestint is defined as usual: nearestint $(x)$ is the integer nearest to $x$, with the special rule that the even integer is chosen if there exist two integers equally near to $x$.
- It is defined for every real number $x$.

See also: ceil 8.20, floor 8.60, round 8.137), RN 8.136)

### 8.95 !=

Name: !=
negated equality test operator
Usage:

$$
\operatorname{expr} 1!=\operatorname{expr2} 2:(\text { any type, any type }) \rightarrow \text { boolean }
$$

Parameters:

- expr1 and expr2 represent expressions

Description:

- The operator $!=$ evaluates to true iff its operands expr1 and expr2 are syntactically unequal and both different from error or constant expressions that are not constants and that evaluate to two different floating-point number with the global precision prec. The user should be aware of the fact that because of floating-point evaluation, the operator $!=$ is not exactly the same as the negation of the mathematical equality.
Note that the expressions $!($ expr1 $!=$ expr2 $)$ and expr1 $==$ expr2 do not evaluate to the same boolean value. See error for details.

Example 1:

```
> "Hello" != "Hello";
false
> "Hello" != "Salut";
true
> "Hello" != 5;
true
> 5 + x != 5 + x;
false
```

Example 2:

```
> 1 != exp(0);
false
> asin(1) * 2 != pi;
false
> exp(5) != log(4);
true
```


## Example 3:

```
> sin(pi/6) != 1/2 * sqrt(3);
true
```

Example 4:

```
> prec = 12;
The precision has been set to 12 bits.
> 16384.1 != 16385.1;
false
```

Example 5:

```
> error != error;
false
```

See also: $==8.43$,,$>8.65$, $>=8.64$,,$<=8.80$, $<8.88$, in 8.73), ! 8.97, \&\& 8.6), || 8.102, , error 8.46, prec 8.113)

### 8.96 nop

Name: nop
no operation
Usage:

$$
\begin{gathered}
\text { nop }: \text { void } \rightarrow \text { void } \\
\operatorname{nop}(): \text { void } \rightarrow \text { void } \\
\operatorname{nop}(n): \text { integer } \rightarrow \text { void }
\end{gathered}
$$

Description:

- The command nop does nothing. This means it is an explicit parse element in the Sollya language that finally does not produce any result or side-effect.
- The command nop may take an optional positive integer argument $n$. The argument controls how much (useless) integer additions Sollya performs while doing nothing. With this behaviour, nop can be used for calibration of timing tests.
- The keyword nop is implicit in some procedure definitions. Procedures without imperative body get parsed as if they had an imperative body containing one nop statement.

Example 1:

```
nop;
```

Example 2:

```
> nop(100);
```

Example 3:

```
> succ = proc(n) { return n + 1; };
> succ;
proc(n)
{
nop;
return (n) + (1);
}
> succ(5);
6
```

See also: proc 8.121, time 8.161

### 8.97 !

Name: !
boolean NOT operator
Usage:

$$
!\text { expr : boolean } \rightarrow \text { boolean }
$$

## Parameters:

- expr represents a boolean expression

Description:

- ! evaluates to the boolean NOT of the boolean expression expr. ! expr evaluates to true iff expr does not evaluate to true.


## Example 1:

```
> ! false;
true
```

Example 2:

```
> ! (1 == exp(0));
false
```

See also: \&\& 8.6), || 8.102

### 8.98 numberroots

## Name: numberroots

Computes the number of roots of a polynomial in a given range.
Usage:

$$
\text { numberroots }(p, I):(\text { function, range) } \rightarrow \text { integer }
$$

## Parameters:

- $p$ is a polynomial.
- $I$ is an interval.


## Description:

- numberroots rigorously computes the number of roots of polynomial the $p$ in the interval $I$. The technique used is Sturm's algorithm. The value returned is not just a numerical estimation of the number of roots of $p$ in $I$ : it is the exact number of roots.
- The command findzeros computes safe enclosures of all the zeros of a function, without forgetting any, but it is not guaranteed to separate them all in distinct intervals. numberroots is more accurate since it guarantees the exact number of roots. However, it does not compute them. It may be used, for instance, to certify that findzeros did not put two distinct roots in the same interval.
- Multiple roots are counted only once.
- The interval $I$ must be bounded. The algorithm cannot handle unbounded intervals. Moreover, the interval is considered as a closed interval: if one (or both) of the endpoints of $I$ are roots of $p$, they are counted.
- The argument $p$ can be any expression, but if Sollya fails to prove that it is a polynomial an error is produced. Also, please note that if the coefficients of $p$ or the endpoints of $I$ are not exactly representable, they are first numerically evaluated, before the algorithm is used. In that case, the counted number of roots corresponds to the rounded polynomial on the rounded interval and not to the exact parameters given by the user. A warning is displayed to inform the user.


## Example 1:

```
> numberroots(1+x-x^2, [1,2]);
1
> findzeros(1+x-x^2, [1,2]);
[|[1.617919921875;1.6180419921875]|]
```

Example 2:

```
numberroots((1+x)*(1-x), [-1,1]);
2
numberroots(x^2, [-1,1]);
1
```

Example 3:

```
> verbosity = 1!;
> numberroots(x-pi, [0,4]);
Warning: the Oth coefficient of the polynomial is neither a floating point
constant nor can be evaluated without rounding to a floating point constant.
Will faithfully evaluate it with the current precision (165 bits)
1
```

Example 4:

```
> verbosity = 1!;
> numberroots(1+x-x^2, [0, @Inf@]);
Warning: the given interval must have finite bounds.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> numberroots(exp(x), [0, 1]);
Warning: the given function must be a polynomial in this context.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
```

See also: dirtyfindzeros 8.34, findzeros 8.57

### 8.99 numerator

## Name: numerator

gives the numerator of an expression
Usage:

$$
\text { numerator }(\text { expr }): \text { function } \rightarrow \text { function }
$$

Parameters:

- expr represents an expression

Description:

- If expr represents a fraction expr1 / expr2, numerator (expr) returns the numerator of this fraction, i.e. expr1.

If expr represents something else, numerator (expr) returns the expression itself, i.e. expr.
Note that for all expressions expr, numerator (expr) / denominator (expr) is equal to expr.
Example 1:

```
numerator(5/3);
```

5

Example 2:

```
> numerator(exp(x));
exp(x)
```

Example 3:

```
> a = 5/3;
> b = numerator(a)/denominator(a);
> print(a);
5 / 3
> print(b);
5 / 3
```

Example 4:

```
> a = exp(x/3);
> b = numerator(a)/denominator(a);
> print(a);
exp(x / 3)
> print(b);
exp(x / 3)
```

See also: denominator 8.30, rationalmode 8.126

### 8.100 off

Name: off
special value for certain global variables.
Description:

- off is a special value used to deactivate certain functionnalities of Sollya.
- As any value it can be affected to a variable and stored in lists.

Example 1:

```
> canonical=on;
Canonical automatic printing output has been activated.
> p=1+x+x^2;
> mode=off;
> p;
1 + x + x^2
> canonical=mode;
Canonical automatic printing output has been deactivated.
> p;
1 + x * (1 + x)
```

See also: on 8.101), autosimplify (8.15), canonical 8.19), timing 8.162), fullparentheses 8.62), midpointmode (8.91), rationalmode (8.126), roundingwarnings 8.140), timing 8.162), dieonerrormode 8.32)

### 8.101 on

Name: on
special value for certain global variables.
Description:

- on is a special value used to activate certain functionnalities of Sollya.
- As any value it can be affected to a variable and stored in lists.


## Example 1:

```
> p=1+x+x^2;
> mode=on;
> p;
1 + x * (1 + x)
> canonical=mode;
Canonical automatic printing output has been activated.
> p;
1+x + x^2
```

See also: off 8.100), autosimplify 8.15), canonical 8.19), timing 8.162 , fullparentheses 8.62), midpointmode (8.91), rationalmode (8.126), roundingwarnings (8.140), timing (8.162), dieonerrormode 8.32)

### 8.102

Name: ||
boolean OR operator
Usage:

$$
\operatorname{expr} 1 \text { || expr2 : (boolean, boolean) } \rightarrow \text { boolean }
$$

Parameters:

- expr1 and expr2 represent boolean expressions

Description:

- || evaluates to the boolean OR of the two boolean expressions expr1 and expr2. || evaluates to true iff at least one of expr1 or expr2 evaluates to true.

Example 1:

```
> false || false;
false
```

Example 2:

```
> (1 == exp(0)) || (0 == log(1));
true
```

See also: \&\& 8.6, ! 8.97

### 8.103 parse

Name: parse
parses an expression contained in a string
Usage:

$$
\text { parse(string) : string } \rightarrow \text { function | error }
$$

Parameters:

- string represents a character sequence

Description:

- parse(string) parses the character sequence string containing an expression built on constants and base functions.
If the character sequence does not contain a well-defined expression, a warning is displayed indicating a syntax error and parse returns a error of type error.
- The character sequence to be parsed by parse may contain commands that return expressions, including parse itself. Those commands get executed after the string has been parsed. parse(string) will return the expression computed by the commands contained in the character sequence string.

Example 1:

```
> parse("exp(x)");
exp(x)
```

Example 2:

```
> text = "remez(exp(x),5,[-1;1])";
> print("The string", text, "gives", parse(text));
The string remez(exp(x),5,[-1;1]) gives 1.00004475029055070643077052482053398765
426158966754 + x * (1.00003834652983970735244541124504033817544233075356 + x * (
0.49919698262882986492168824494240374771969012861297 + x * (0.166424656075155194
415920597322727380932279602909199 + x * (4.3793696387328047027125756620718349665
9575464236489e-2 + x * 8.7381910388065551140158420278330960479960476713376e-3)))
)
```

Example 3:

```
> verbosity = 1!;
> parse("5 + * 3");
Warning: syntax error, unexpected MULTOKEN. Will try to continue parsing (expect
ing ";"). May leak memory.
Warning: the string "5 + * 3" could not be parsed by the miniparser.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
```

See also: execute 8.48, readfile (8.128), print 8.116, error 8.46), dieonerrormode 8.32)

### 8.104 perturb

Name: perturb
indicates random perturbation of sampling points for externalplot
Usage:
perturb : perturb

Description:

- The use of perturb in the command externalplot enables the addition of some random noise around each sampling point in externalplot.
See externalplot for details.
Example 1:

```
> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",relative,exp(x),[-1/2;1/2],12,perturb);
```

See also: externalplot (8.53), absolute (8.2), relative 8.130), bashexecute 8.16)

### 8.105

Name: pi
the constant $\pi$.
Description:

- $\mathbf{p i}$ is the constant $\pi$, defined as half the period of sine and cosine.
- In Sollya, pi is considered a 0 -ary function. This way, the constant is not evaluated at the time of its definition but at the time of its use. For instance, when you define a constant or a function relating to $\pi$, the current precision at the time of the definition does not matter. What is important is the current precision when you evaluate the function or the constant value.
- Remark that when you define an interval, the bounds are first evaluated and then the interval is defined. In this case, pi will be evaluated as any other constant value at the definition time of the interval, thus using the current precision at this time.

Example 1:

```
> verbosity=1!; prec=12!;
> a = 2*pi;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
6.283
> prec=20!;
> a;
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
6.283187
```

Example 2:

```
> display=binary;
Display mode is binary numbers.
> prec=12!;
> d = [pi; 5];
> d;
[1.1001001_2 * 2^(1);1.01_2 * 2^(2)]
> prec=20!;
> d;
[1.1001001_2 * 2^(1);1.01_2 * 2^(2)]
```

See also: $\cos 8.25$, $\sin 8.146$, $\tan 8.156$, asin 8.10, $\operatorname{acos} 8.4$, atan 8.12, evaluate 8.47), prec 8.113

### 8.106 plot

Name: plot
plots one or several functions
Usage:
$\operatorname{plot}(f 1, \ldots, f n, I):($ function, $\ldots$, function, range) $\rightarrow$ void
$\operatorname{plot}(f 1, \ldots, f n, I$, file, name) : (function, ... ,function, range, file, string) $\rightarrow$ void
$\operatorname{plot}(f 1, \ldots, f n, I$, postscript, name $):($ function, $\ldots$, function, range, postscript, string) $\rightarrow$ void
$\operatorname{plot}(f 1, \ldots, f n, I$, postscriptfile, name) : (function, ... ,function, range, postscriptfile, string) $\rightarrow$ void
$\operatorname{plot}(L, I):($ list, range $) \rightarrow$ void
$\operatorname{plot}(L, I$, file, name) : (list, range, file, string) $\rightarrow$ void
$\operatorname{plot}(L, I$, postscript, name) : (list, range, postscript, string) $\rightarrow$ void
$\operatorname{plot}(L, I$, postscriptfile, name) : (list, range, postscriptfile, string) $\rightarrow$ void

- $f 1, \ldots, f n$ are functions to be plotted.
- $L$ is a list of functions to be plotted.
- $I$ is the interval where the functions have to be plotted.
- name is a string representing the name of a file.

Description:

- This command plots one or several functions $f 1, \ldots, f n$ on an interval $I$. Functions can be either given as parameters of plot or as a list $L$ which elements are functions. The functions are drawn on the same plot with different colors.
- If $L$ contains an element that is not a function (or a constant), an error occurs.
- plot relies on the value of global variable points. Let $n$ be the value of this variable. The algorithm is the following: each function is evaluated at $n$ evenly distributed points in $I$. At each point, the computed value is a faithful rounding of the exact value with a sufficiently high precision. Each point is finally plotted. This should avoid numerical artefacts such as critical cancellations.
- You can save the function plot either as a data file or as a postscript file.
- If you use argument file with a string name, Sollya will save a data file called name.dat and a gnuplot directives file called name.p. Invoking gnuplot on name.p will plot the data stored in name.dat.
- If you use argument postscript with a string name, Sollya will save a postscript file called name.eps representing your plot.
- If you use argument postscriptfile with a string name, Sollya will produce the corresponding name.dat, name.p and name.eps.
- This command uses gnuplot to produce the final plot. If your terminal is not graphic (typically if you use Sollya through ssh without -X) gnuplot should be able to detect that and produce an ASCII-art version on the standard output. If it is not the case, you can either store the plot in a postscript file to view it locally, or use asciiplot command.
- If every function is constant, plot will not plot them but just display their value.
- If the interval is reduced to a single point, plot will just display the value of the functions at this point.
Example 1:

```
> plot(sin(x),0,\operatorname{cos}(x),[-Pi,Pi]);
```

Example 2:

```
plot(sin(x),0,cos(x),[-Pi,Pi],postscriptfile,"plotSinCos");
```

Example 3:

```
> plot(exp(0), sin(1), [0;1]);
1
0.84147098480789650665250232163029899962256306079837
```


## Example 4:

```
> plot(sin(x), cos(x), [1;1]);
0.84147098480789650665250232163029899962256306079837
0.54030230586813971740093660744297660373231042061792
```

See also: externalplot (8.53), asciiplot (8.9), file (8.56), postscript (8.109), postscriptfile (8.110), points 8.108

### 8.107

Name: + addition function Usage:

> function1 + function2 : (function, function) $\rightarrow$ function interval1 + interval2 $:($ range, range $) \rightarrow$ range interval1 + constant $:($ range, constant $) \rightarrow$ range
> interval1 + constant $:($ constant, range $) \rightarrow$ range

## Parameters:

- function1 and function2 represent functions
- interval1 and interval2 represent intervals (ranges)
- constant represents a constant or constant expression

Description:

-     + represents the addition (function) on reals. The expression function1 + function2 stands for the function composed of the addition function and the two functions function1 and function2.
-     + can be used for interval arithmetic on intervals (ranges). + will evaluate to an interval that safely encompasses all images of the addition function with arguments varying in the given intervals. Any combination of intervals with intervals or constants (resp. constant expressions) is supported. However, it is not possible to represent families of functions using an interval as one argument and a function (varying in the free variable) as the other one.

Example 1:

```
1 + 2;
```

3

Example 2:

```
> x + 2;
2 + x
```

Example 3:

```
> x + x;
x * 2
```

Example 4:

```
> diff(sin(x) + exp(x));
cos(x) + exp(x)
```

Example 5:

```
> [1;2] + [3;4];
[4;6]
> [1;2] + 17;
[18;19]
> 13 + [-4;17];
[9;30]
```

See also: - 8.92, * 8.93), / 8.38, ^8.111

### 8.108 points

Name: points
controls the number of points chosen by Sollya in certain commands.
Usage:

$$
\begin{gathered}
\text { points }=n: \text { integer } \rightarrow \text { void } \\
\text { points }=n!: \text { integer } \rightarrow \text { void } \\
\text { points }: \text { constant }
\end{gathered}
$$

Parameters:

- $n$ represents the number of points

Description:

- points is a global variable. Its value represents the number of points used in numerical algorithms of Sollya (namely dirtyinfnorm, dirtyintegral, dirtyfindzeros, plot).

Example 1:

```
> f=x^2*sin(1/x);
> points=10;
The number of points has been set to 10.
> dirtyfindzeros(f, [0;1]);
[l0, 0.318309886183790671537767526745028724068919291480918|]
> points=100;
The number of points has been set to 100.
> dirtyfindzeros(f, [0;1]);
[lO, 2.4485375860291590118289809749617594159147637806224e-2, 3.97887357729738339
422209408431285905086149114351147e-2, 4.5472840883398667362538218106432674866988
4702115589e-2, 5.3051647697298445256294587790838120678153215246819e-2, 6.3661977
236758134307553505349005744813783858296183e-2, 7.9577471545947667884441881686257
181017229822870229e-2, 0.106103295394596890512589175581676241356306430493638, 0.
159154943091895335768883763372514362034459645740459, 0.3183098861837906715377675
26745028724068919291480918|]
```

See also: dirtyinfnorm (8.35), dirtyintegral 8.36), dirtyfindzeros (8.34), plot 8.106), diam (8.31), prec 8.113

### 8.109 postscript

Name: postscript
special value for commands plot and externalplot
Description:

- postscript is a special value used in commands plot and externalplot to save the result of the command in a postscript file.
- As any value it can be affected to a variable and stored in lists.

Example 1:

```
> savemode=postscript;
> name="plotSinCos";
> plot(sin(x),0,\operatorname{cos(x),[-Pi,Pi],savemode, name);}
```

See also: externalplot 8.53, plot 8.106), file 8.56, postscriptfile 8.110

### 8.110 postscriptfile

## Name: postscriptfile

special value for commands plot and externalplot
Description:

- postscriptfile is a special value used in commands plot and externalplot to save the result of the command in a data file and a postscript file.
- As any value it can be affected to a variable and stored in lists.

Example 1:

```
savemode=postscriptfile;
name="plotSinCos";
plot(sin(x),0, cos(x),[-Pi,Pi],savemode, name);
```

See also: externalplot (8.53), plot 8.106), file 8.56, postscript 8.109)

### 8.111

Name: ^
power function
Usage:

$$
\begin{gathered}
\text { function } 1^{\wedge} \text { function2 }:(\text { function, function }) \rightarrow \text { function } \\
\text { interval1 ^ interval2 }:(\text { range, range }) \rightarrow \text { range } \\
\text { interval1 }{ }^{\wedge} \text { constant }:(\text { range, constant }) \rightarrow \text { range } \\
\text { interval1 }{ }^{\wedge} \text { constant }:(\text { constant, range }) \rightarrow \text { range }
\end{gathered}
$$

## Parameters:

- function1 and function2 represent functions
- interval1 and interval2 represent intervals (ranges)
- constant represents a constant or constant expression


## Description:

- ^ represents the power (function) on reals. The expression function1 ^ function2 stands for the function composed of the power function and the two functions function1 and function2, where function1 is the base and function2 the exponent. If function2 is a constant integer, ${ }^{\wedge}$ is defined on negative values of function1. Otherwise ${ }^{\wedge}$ is defined as $e^{y \cdot \ln x}$.
- Note that whenever several ^ are composed, the priority goes to the last ^. This corresponds to the natural way of thinking when a tower of powers is written on a paper. Thus, $2^{\wedge} 3^{\wedge} 5$ is read as $2^{3^{5}}$ and is interpreted as $2^{\left(3^{5}\right)}$.
- ^ can be used for interval arithmetic on intervals (ranges). ^ will evaluate to an interval that safely encompasses all images of the power function with arguments varying in the given intervals. If the intervals given contain points where the power function is not defined, infinities and NaNs will be produced in the output interval. Any combination of intervals with intervals or constants (resp. constant expressions) is supported. However, it is not possible to represent families of functions using an interval as one argument and a function (varying in the free variable) as the other one.


## Example 1:

```
> 5 - 2;
25
```

Example 2:

```
> x - 2;
x^2
```

Example 3:

```
> 3 ^ (-5);
4.1152263374485596707818930041152263374485596707818e-3
```

Example 4:

```
> (-3) ~ (-2.5);
@NaN@
```

Example 5:

```
> diff(sin(x) ^ exp(x));
sin(x)^exp(x) * ((cos(x) * exp(x)) / sin(x) + exp(x) * log(sin(x)))
```

Example 6:

```
> 2^3^5;
1.4134776518227074636666380005943348126619871175005e73
> (2~3)^5;
32768
> 2^(3^5);
1.4134776518227074636666380005943348126619871175005e73
```


## Example 7:

```
> [1;2] ~ [3;4];
[1;1.60007e1]
> [1;2] ~ 17;
[1;131072]
> 13 ~ [-4;17];
[3.501277966457757081334687160813696999404782745702e-5;8650415919381337933]
```

See also: $+8.107,-8.92, * 8.93, / 8.38$

### 8.112 powers

Name: powers
special value for global state display
Description:

- powers is a special value used for the global state display. If the global state display is equal to powers, all data will be output in dyadic notation with numbers displayed in a Maple and PARI/GP compatible format.
As any value it can be affected to a variable and stored in lists.
See also: decimal 8.27, dyadic 8.42, hexadecimal 8.68, binary 8.17, display 8.37)


### 8.113 prec

Name: prec
controls the precision used in numerical computations.
Description:

- prec is a global variable. Its value represents the precision of the floating-point format used in numerical computations.
- Many commands try to adapt their working precision in order to have approximately $n$ correct bits in output, where $n$ is the value of prec.

Example 1:

```
> display=binary!;
> prec=50;
The precision has been set to 50 bits.
> dirtyinfnorm(exp(x),[1;2]);
1.110110001110011001001011100011010100110111011011_2 * 2^(2)
> prec=100;
The precision has been set to 100 bits.
> dirtyinfnorm(exp(x),[1;2]);
1.110110001110011001001011100011010100110111011010110111001100001100111010001110
11101000100000011011_2 * 2^(2)
```

See also: evaluate 8.47, diam 8.31)

### 8.114 precision

## Name: precision

returns the precision necessary to represent a number.
Usage:

$$
\operatorname{precision}(x): \text { constant } \rightarrow \text { integer }
$$

## Parameters:

- $x$ is a dyadic number.

Description:

- precision(x) is by definition $|x|$ if x equals $0, \mathrm{NaN}$, or Inf.
- If $x$ is not zero, it can be uniquely written as $x=m \cdot 2^{e}$ where $m$ is an odd integer and $e$ is an integer. precision(x) returns the number of bits necessary to write $m$ in binary (i.e. $\left\lceil\log _{2}(m)\right\rceil$ ).


## Example 1:

```
a=round(Pi,20,RN);
> precision(a);
19
> m=mantissa(a);
> ceil(log2(m));
19
```

See also: mantissa 8.89, exponent 8.52, round 8.137)

### 8.115 .:

Name: .:
add an element at the beginning of a list.
Usage:

$$
x: L:(\text { any type, list }) \rightarrow \text { list }
$$

Parameters:

- $x$ is an object of any type.
- $L$ is a list (possibly empty).


## Description:

- .: adds the element $x$ at the beginning of the list $L$.
- Note that since $x$ may be of any type, it can be in particular a list.

Example 1:

```
> 1.:[|2,3,4|];
[|1, 2, 3, 4|]
```

Example 2:

```
> [|1,2,3|].:[|4,5,6|];
[|[|1, 2, 3|], 4, 5, 6|]
```

Example 3:

```
> 1.:[||];
[|1|]
```

See also: :. 8.7), @ 8.23)

### 8.116 print

## Name: print

prints an expression
Usage:

$$
\begin{gathered}
\operatorname{print}(\text { expr } 1, \ldots, \text { exprn }):(\text { any type }, \ldots, \text { any type }) \rightarrow \text { void } \\
\operatorname{print}(\text { expr } 1, \ldots, \text { exprn })>\text { filename }:(\text { any type,..., any type, string }) \rightarrow \text { void } \\
\operatorname{print}(\text { expr } 1, \ldots, \text { exprn }) \gg \text { filename }:(\text { any type,...,any type, string }) \rightarrow \text { void }
\end{gathered}
$$

Parameters:

- expr represents an expression
- filename represents a character sequence indicating a file name

Description:

- print (expr1,..., exprn) prints the expressions expr1 through exprn separated by spaces and followed by a newline.
If a second argument filename is given after a single ">", the displaying is not output on the standard output of Sollya but if in the file filename that get newly created or overwritten. If a double " $\gg$ " is given, the output will be appended to the file filename.
The global variables display, midpointmode and fullparentheses have some influence on the formatting of the output (see display, midpointmode and fullparentheses).

Remark that if one of the expressions expri given in argument is of type string, the character sequence expri evaluates to is displayed. However, if expri is of type list and this list contains a variable of type string, the expression for the list is displayed, i.e. all character sequences get displayed surrounded by double quotes ("). Nevertheless, escape sequences used upon defining character sequences are interpreted immediately.

Example 1:

```
> print(x + 2 + exp(sin(x)));
x + 2 + exp(sin(x))
> print("Hello","world");
Hello world
> print("Hello","you", 4 + 3, "other persons.");
Hello you 7 other persons.
```

Example 2:

```
> print("Hello");
Hello
> print([|"Hello"|]);
[| "Hello"|]
> s = "Hello";
> print(s,[|s|]);
Hello [|"Hello"|]
> t = "Hello\tyou";
> print(t,[|t|]);
Hello you [l"Hello you"|]
```

Example 3:

```
print(x + 2 + exp(sin(x))) > "foo.sol";
> readfile("foo.sol");
x + 2 + exp(sin(x))
```

Example 4:

```
print(x + 2 + exp(sin(x))) >> "foo.sol";
```

Example 5:

```
> display = decimal;
Display mode is decimal numbers.
> a = evaluate(sin(pi * x), 0.25);
> b = evaluate(sin(pi * x), [0.25; 0.25 + 1b-50]);
> print(a);
0.70710678118654752440084436210484903928483593768847
> display = binary;
Display mode is binary numbers.
> print(a);
1.0110101000001001111001100110011111111001110111100110010010000100010110010111110
11000100110110011011101010100101010111110100111110001110101101111011000001011101
010001_2 * 2^(-1)
> display = hexadecimal;
Display mode is hexadecimal numbers.
> print(a);
0xb.504f333f9de6484597d89b3754abe9f1d6f60ba88p-4
> display = dyadic;
Display mode is dyadic numbers.
> print(a);
33070006991101558613323983488220944360067107133265b-165
> display = powers;
Display mode is dyadic numbers in integer-power-of-2 notation.
> print(a);
33070006991101558613323983488220944360067107133265 * 2^(-165)
> display = decimal;
Display mode is decimal numbers.
> midpointmode = off;
Midpoint mode has been deactivated.
> print(b);
[0.70710678118654752440084436210484903928483593768844;0.707106781186549497437217
82517557347782646274417048]
> midpointmode = on;
Midpoint mode has been activated.
> print(b);
0.7071067811865~4/5~
> display = dyadic;
Display mode is dyadic numbers.
> print(b);
[2066875436943847413332748968013809022504194195829b-161;165350034955508254441962
37019385936414432675156571b-164]
> display = decimal;
Display mode is decimal numbers.
> autosimplify = off;
Automatic pure tree simplification has been deactivated.
> fullparentheses = off;
Full parentheses mode has been deactivated.
> print(x + x * ((x + 1) + 1));
x + x * (x + 1 + 1)
> fullparentheses = on;
Full parentheses mode has been activated.
> print(x + x * ((x + 1) + 1));
x + (x * ((x + 1) + 1))
```

See also: write 8.169), printexpansion 8.118, printdouble 8.117), printsingle 8.119), printxml (8.120), readfile (8.128), autosimplify 8.15), display (8.37), midpointmode (8.91), fullparentheses (8.62), evaluate (8.47), rationalmode (8.126)

### 8.117 printdouble

## Name: printdouble

prints a constant value as a hexadecimal double precision number Usage:

$$
\text { printdouble(constant) : constant } \rightarrow \text { void }
$$

## Parameters:

- constant represents a constant


## Description:

- Prints a constant value as a hexadecimal number on 16 hexadecimal digits. The hexadecimal number represents the integer equivalent to the 64 bit memory representation of the constant considered as a double precision number.
If the constant value does not hold on a double precision number, it is first rounded to the nearest double precision number before displayed. A warning is displayed in this case.


## Example 1:

```
> printdouble(3);
0x40080000000000000
```

Example 2:

```
> prec=100!;
> verbosity = 1!;
> printdouble(exp(5));
Warning: the given expression is not a constant but an expression to evaluate. A
faithful evaluation will be used.
Warning: rounding down occurred before printing a value as a double.
0x40628d389970338f
```

See also: printsingle 8.119, printexpansion 8.118), double 8.39)

### 8.118 printexpansion

## Name: printexpansion

prints a polynomial in Horner form with its coefficients written as a expansions of double precision numbers
Usage:

$$
\text { printexpansion }(\text { polynomial }): \text { function } \rightarrow \text { void }
$$

## Parameters:

- polynomial represents the polynomial to be printed


## Description:

- The command printexpansion prints the polynomial polynomial in Horner form writing its coefficients as expansions of double precision numbers. The double precision numbers themselves are displayed in hexadecimal memory notation (see printdouble).
If some of the coefficients of the polynomial polynomial are not floating-point constants but constant expressions, they are evaluated to floating-point constants using the global precision prec. If a rounding occurs in this evaluation, a warning is displayed.
If the exponent range of double precision is not sufficient to display all the mantissa bits of a coefficient, the coefficient is displayed rounded and a warning is displayed.
If the argument polynomial does not a polynomial, nothing but a warning or a newline is displayed. Constants can be displayed using printexpansion since they are polynomials of degree 0 .

Example 1:

```
> printexpansion(roundcoefficients(taylor(exp(x),5,0),[|DD...|]));
0x3ff0000000000000 + x * (0x3ff00000000000000 + x * (0x3fe0000000000000 + x * ((0
x3fc5555555555555 + 0x3c655555555555555) + x * ((0x3fa5555555555555 + 0x3c4555555
5555555) + x * (0x3f81111111111111 + 0x3c01111111111111)))))
```

Example 2:

```
> printexpansion(remez(exp(x),5,[-1;1]));
(0x3ff0002eec908ce9 + 0xbc7df99eb225af5b + 0xb8d55834b08b1f18) + x * ((0x3ff0002
835917719 + 0x3c6d82c073b25ebf + 0xb902cf062b54b7b6 + 0x35b0000000000000) + x *
((0x3fdff2d7e6a9c5e9 + 0xbc7b09a95b0d520f + 0xb915b639add55731 + 0x35a8000000000
000) + x * ((0x3fc54d67338ba09f + 0x3c4867596d0631cf + 0xb8ef0756bdb4af6e) + x *
 ((0x3fa66c209b825167 + 0x3c45ec5b6655b076 + 0xb8d8c125286400bc) + x * (0x3f81e5
5425e72ab4 + 0x3c263b25a1bf597b + 0xb8c843e0401dadd0 + 0x3540000000000000)))))
```

Example 3:

```
> verbosity = 1!;
> prec = 3500!;
> printexpansion(pi);
(0x400921fb54442d18 + 0x3ca1a62633145c07 + 0xb92f1976b7ed8fbc + 0x35c4cf98e80417
7d + 0x32631d89cd9128a5 + 0x2ec0f31c6809bbdf + 0x2b5519b3cd3a431b + 0x27e8158536
f92f8a + 0x246ba7f09ab6b6a9 + 0xa0eedd0dbd2544cf + 0x1d779fb1bd1310ba + 0x1a1a63
7ed6b0bff6 + 0x96aa485fca40908e + 0x933e501295d98169 + 0x8fd160dbee83b4e0 + 0x8c
59b6d799ae131c + 0x08f6cf70801f2e28 + 0x05963bf0598da483 + 0x023871574e69a459 +
0x8000000005702db3 + 0x80000000000000000)
Warning: the expansion is not complete because of the limited exponent range of
double precision.
Warning: rounding occurred while printing.
```

See also: printdouble 8.117), horner 8.71, print 8.116), prec 8.113), remez 8.131, taylor (8.158), roundcoefficients (8.138), fpminimax (8.61), implementpoly (8.72)

### 8.119 printsingle

## Name: printsingle

prints a constant value as a hexadecimal single precision number
Usage:

$$
\text { printsingle( constant) : constant } \rightarrow \text { void }
$$

Parameters:

- constant represents a constant

Description:

- Prints a constant value as a hexadecimal number on 8 hexadecimal digits. The hexadecimal number represents the integer equivalent to the 32 bit memory representation of the constant considered as a single precision number.
If the constant value does not hold on a single precision number, it is first rounded to the nearest single precision number before it is displayed. A warning is displayed in this case.

Example 1:

```
> printsingle(3);
0x40400000
```

Example 2:

```
> prec=100!;
> verbosity = 1!;
> printsingle(exp(5));
Warning: the given expression is not a constant but an expression to evaluate. A
faithful evaluation will be used.
Warning: rounding down occurred before printing a value as a simple.
0x431469c5
```

See also: printdouble (8.117), single 8.147)

### 8.120 printxml

## Name: printxml

prints an expression as an MathML-Content-Tree
Usage:
$\operatorname{printxml}($ expr $):$ function $\rightarrow$ void
printxml $($ expr $)>$ filename $:($ function, string $) \rightarrow$ void printxml $($ expr $) \gg$ filename $:($ function, string $) \rightarrow$ void

## Parameters:

- expr represents a functional expression
- filename represents a character sequence indicating a file name

Description:

- printxml (expr) prints the functional expression expr as a tree of MathML Content Definition Markups. This XML tree can be re-read in external tools or by usage of the readxml command.

If a second argument filename is given after a single $>$, the MathML tree is not output on the standard output of Sollya but if in the file filename that get newly created or overwritten. If a double $\gg$ is given, the output will be appended to the file filename.

## Example 1:

```
> printxml(x + 2 + exp(sin(x)));
<?xml version="1.0" encoding="UTF-8"?>
<!-- generated by sollya: http://sollya.gforge.inria.fr/ -->
<!-- syntax: printxml(...); example: printxml(x^2-2*x+5); -->
<?xml-stylesheet type="text/xsl" href="http://sollya.gforge.inria.fr/mathmlc2p-w
eb.xsl"?>
<?xml-stylesheet type="text/xsl" href="mathmlc2p-web.xsl"?>
<!-- This stylesheet allows direct web browsing of MathML-c XML files (http:// o
r file://) -->
<math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<annotation-xml encoding="MathML-Content">
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<apply>
<plus/>
<apply>
<plus/>
<ci> x </ci>
<cn type="integer" base="10"> 2 </cn>
</apply>
<apply>
<exp/>
<apply>
<sin/>
<ci> x </ci>
</apply>
</apply>
</apply>
</apply>
</lambda>
</annotation-xml>
<annotation encoding="sollya/text">(x + 1b1) + exp(sin(x))</annotation>
</semantics>
</math>
```

Example 2:

```
> printxml(x + 2 + exp(sin(x))) > "foo.xml";
```

Example 3:

```
printxml(x + 2 + exp(sin(x))) >> "foo.xml";
```

See also: readxml 8.129, print 8.116, write 8.169

### 8.121 proc

Name: proc
defines a Sollya procedure
Usage:

# $\operatorname{proc}($ formal parameter1, formal parameter2,..., formal parameter $n$ ) begin procedure body end : void $\rightarrow$ procedure <br> $\operatorname{proc}($ formal parameter1, formal parameter2,..., formal parameter $n$ ) begin procedure body return expression; end : void $\rightarrow$ procedure <br> $\operatorname{proc}($ formal list parameter $=\ldots$ ) begin procedure body end : void $\rightarrow$ procedure <br> $\operatorname{proc}($ formal list parameter $=\ldots)$ begin procedure body return expression; end : void $\rightarrow$ procedure 

Parameters:

- formal parameter1, formal parameter2 through formal parameter $n$ represent identifiers used as formal parameters
- formal list parameter represents an identifier used as a formal parameter for the list of an arbitrary number of parameters
- procedure body represents the imperative statements in the body of the procedure
- expression represents the expression proc shall evaluate to

Description:

- The proc keyword allows for defining procedures in the Sollya language. These procedures are common Sollya objects that can be applied to actual parameters after definition. Upon such an application, the Sollya interpreter applies the actual parameters to the formal parameters formal parameter 1 through formal parameter $n$ (resp. builds up the list of arguments and applies it to the list formal list parameter) and executes the procedure body. The procedure applied to actual parameters evaluates then to the expression expression in the return statement after the iprocedure bodyj or to void, if no return statement is given (i.e. a return void statement is implicitly given).
- Sollya procedures defined by proc have no name. They can be bound to an identifier by assigning the procedure object a proc expression produces to an identifier. However, it is possible to use procedures without giving them any name. For instance, Sollya procedures, i.e. procedure objects, can be elements of lists. They can even be given as an argument to other internal Sollya procedures. See also procedure on this subject.
- Upon definition of a Sollya procedure using proc, no type check is performed. More precisely, the statements in procedure body are merely parsed but not interpreted upon procedure definition with proc. Type checks are performed once the procedure is applied to actual parameters or to void. At this time, if the procedure was defined using several different formal parameters formal parameter 1 through formal parameter $n$, it is checked whether the number of actual parameters corresponds to the number of formal parameters. If the procedure was defined using the syntax for a procedure with an arbitrary number of parameters by giving a formal list parameter, the number of actual arguments is not checked but only a list iformal list parameter; of appropriate length is built up. Type checks are further performed upon execution of each statement in procedure body and upon evaluation of the expression expression to be returned.
Procedures defined by proc containing a quit or restart command cannot be executed (i.e. applied). Upon application of a procedure, the Sollya interpreter checks beforehand for such a statement. If one is found, the application of the procedure to its arguments evaluates to error. A warning is displayed. Remark that in contrast to other type or semantic correctness checks, this check is really performed before interpreting any other statement in the body of the procedure.
- Through the var keyword it is possible to declare local variables and thus to have full support of recursive procedures. This means a procedure defined using proc may contain in its procedure body an application of itself to some actual parameters: it suffices to assign the procedure (object) to an identifier with an appropriate name.
- Sollya procedures defined using proc may return other procedures. Further procedure body may contain assignments of locally defined procedure objects to identifiers. See var for the particular behaviour of local and global variables.
- The expression expression returned by a procedure is evaluated with regard to Sollya commands, procedures and external procedures. Simplification may be performed. However, an application of a procedure defined by proc to actual parameters evaluates to the expression expression that may contain the free global variable or that may be composed.


## Example 1:

```
> succ = proc(n) { return n + 1; };
> succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
{
nop;
return (n) + (1);
}
```

Example 2:

```
> add = proc(m,n) { var res; res := m + n; return res; };
> add(5,6);
11
> add;
proc(m, n)
{
var res;
res := (m) + (n);
return res;
}
> verbosity = 1!;
> add(3);
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> add(true,false);
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
Warning: the given expression or command could not be handled.
error
```

Example 3:

```
> succ = proc(n) { return n + 1; };
> succ(5);
6
> succ(x);
1 + x
```

Example 4:

```
> hey = proc() { print("Hello world."); };
> hey();
Hello world.
> print(hey());
Hello world.
void
> hey;
proc()
{
print("Hello world.");
return void;
}
```

Example 5:

```
> fac = proc(n) { var res; if (n == 0) then res := 1 else res := n * fac(n - 1);
return res; };
> fac(5);
120
> fac(11);
39916800
> fac;
proc(n)
{
var res;
if (n) == (0) then
res := 1
else
res := (n) * (fac((n) - (1)));
return res;
}
```

Example 6:

```
> myprocs = [l proc(m,n) { return m + n; }, proc(m,n) { return m - n; } l];
> (myprocs[0]) (5,6);
11
> (myprocs[1]) (5,6);
-1
> succ = proc(n) { return n + 1; };
> pred = proc(n) { return n-1; };
> applier = proc(p,n) { return p(n); };
> applier(succ,5);
6
> applier(pred,5);
4
```

Example 7:

```
> verbosity = 1!;
> myquit = proc(n) { print(n); quit; };
> myquit;
proc(n)
{
print(n);
quit;
return void;
}
> myquit(5);
Warning: a quit or restart command may not be part of a procedure body.
The procedure will not be executed.
Warning: an error occurred while executing a procedure.
Warning: the given expression or command could not be handled.
error
```

Example 8:

```
> printsucc = proc(n) { var succ; succ = proc(n) { return n + 1; }; print("Succe
ssor of",n,"is",succ(n)); };
> printsucc(5);
Successor of 5 is 6
```

Example 9:

```
> makeadd = proc(n) { var add; print("n =",n); add = proc(m,n) { return n + m; }
; return add; };
> makeadd(4);
n = 4
proc(m, n)
{
nop;
return (n) + (m);
}
> (makeadd(4)) (5,6);
n = 4
11
```


## Example 10:

```
> sumall = proc(L = ...) { var acc, i; acc = 0; for i in L do acc = acc + i; ret
urn acc; };
> sumall;
proc(L = ...)
{
var acc, i;
acc = 0;
for i in L do
acc = (acc) + (i);
return acc;
}
sumall();
0
sumall(2);
2
sumall(2,5);
7
sumall(2,5,7,9,16);
39
> sumall @ [|1,...,10|];
55
```

See also: return (8.134), externalproc (8.54, void 8.167), quit 8.123), restart 8.133), var 8.165), @ (8.23), error 8.46)

### 8.122 procedure

Name: procedure
defines and assigns a Sollya procedure
Usage:
procedure identifier(formal parameter1, formal parameter2,..., formal parameter $n$ ) begin procedure body end : void $\rightarrow$ void
procedure identifier(formal parameter1, formal parameter2,..., formal parameter $n$ ) begin procedure body return expression; end : void $\rightarrow$ void
procedure identifier (formal list parameter $=\ldots$ ) begin procedure body end : void $\rightarrow$ void procedure identifier (formal list parameter $=\ldots$ ) begin procedure body return expression; end : void $\rightarrow$ void

Parameters:

- identifier represents the name of the procedure to be defined and assigned
- formal parameter1, formal parameter2 through formal parameter $n$ represent identifiers used as formal parameters
- formal list parameter represents an identifier used as a formal parameter for the list of an arbitrary number of parameters
- procedure body represents the imperative statements in the body of the procedure
- expression represents the expression procedure shall evaluate to


## Description:

- The procedure keyword allows for defining and assigning procedures in the Sollya language. It is an abbreviation to a procedure definition using proc with the same formal parameters, procedure body and return-expression followed by an assignment of the procedure (object) to the identifier identifier. In particular, all rules concerning local variables declared using the var keyword apply for procedure.

Example 1:

```
procedure succ(n) { return n + 1; };
>succ(5);
6
> 3 + succ(0);
4
> succ;
proc(n)
{
nop;
return (n) + (1);
}
```

Example 2:

```
> procedure myprint(L = ...) { var i; for i in L do i; };
> myprint("Lyon","Nancy", "Beaverton","Coye-la-Foret","Amberg","Nizhny Novgorod",
"Cluj-Napoca");
Lyon
Nancy
Beaverton
Coye-la-Foret
Amberg
Nizhny Novgorod
Cluj-Napoca
```

See also: proc 8.121), var 8.165

### 8.123 quit

Name: quit
quits Sollya
Usage:

$$
\text { quit : void } \rightarrow \text { void }
$$

Description:

- The command quit, when executed, stops the execution of a Sollya script and leaves the Sollya interpreter unless the quit command is executed in a Sollya script read into a main Sollya script by execute or \#include.
Upon exiting the Sollya interpreter, all state is thrown away, all memory is deallocated, all bound libraries are unbound and the temporary files produced by plot and externalplot are deleted.
If the quit command does not lead to a halt of the Sollya interpreter, a warning is displayed.


## Example 1:

## quit;

See also: restart 8.133, execute 8.48, plot 8.106, externalplot 8.53, return 8.134

### 8.124 range

Name: range
keyword representing a range type
Usage:

Description:

- range represents the range type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like range cannot be handled outside the externalproc context. In particular, they cannot be assigned to variables.

See also: externalproc 8.54), boolean 8.18), constant 8.24, function 8.63, integer 8.76), list of 8.83, string 8.151

### 8.125 rationalapprox

## Name: rationalapprox

returns a fraction close to a given number.
Usage:

$$
\text { rationalapprox }(x, n): \text { (constant, integer) } \rightarrow \text { function }
$$

## Parameters:

- $x$ is a number to approximate.
- $n$ is a integer (representing a format).


## Description:

- rationalapprox $(x, n)$ returns a constant function of the form $a / b$ where $a$ and $b$ are integers. The value $a / b$ is an approximation of $x$. The quality of this approximation is determined by the parameter $n$ that indicates the number of correct bits that $a / b$ should have.
- The command is not safe in the sense that it is not ensured that the error between $a / b$ and $x$ is less than $2^{-n}$.
- The following algorithm is used: $x$ is first rounded downwards and upwards to a format of $n$ bits, thus obtaining an interval $\left[x_{l}, x_{u}\right]$. This interval is then developped into a continued fraction as far as the representation is the same for every elements of $\left[x_{l}, x_{u}\right]$. The corresponding fraction is returned.
- Since rational numbers are not a primitive object of Sollya, the fraction is returned as a constant function. This can be quite amazing, because Sollya immediately simplifies a constant function by evaluating it when the constant has to be displayed. To avoid this, you can use print (that displays the expression representing the constant and not the constant itself) or the commands numerator and denominator.

Example 1:

```
> pi10 = rationalapprox(Pi,10);
> pi50 = rationalapprox(Pi,50);
> pi100 = rationalapprox(Pi,100);
> print(pi10, ": ", simplify(floor(-log2(abs(pi10-Pi)/Pi))), "bits.");
22 / 7 : 11 bits.
> print(pi50, ": ", simplify(floor(-log2(abs(pi50-Pi)/Pi))), "bits.");
90982559 / 28960648 : 50 bits.
> print(pi100, ": ", simplify(floor(-log2(abs(pi100-Pi)/Pi))), "bits.");
4850225745369133 / 1543874804974140 : 101 bits.
```

Example 2:

```
a=0.1;
b=rationalapprox(a,4);
numerator(b); denominator(b);
1
10
> print(simplify(floor(-log2(abs((b-a)/a)))), "bits.");
166 bits.
```

See also: print 8.116, numerator 8.99, denominator 8.30, rationalmode 8.126

### 8.126 rationalmode

Name: rationalmode
global variable controlling if rational arithmetic is used or not.
Usage:

$$
\begin{gathered}
\text { rationalmode }=\text { activation value }: \text { on } \mid \text { off } \rightarrow \text { void } \\
\text { rationalmode }=\text { activation value }!: \text { on } \mid \text { off } \rightarrow \text { void } \\
\text { rationalmode }: \text { on } \mid \text { off }
\end{gathered}
$$

## Parameters:

- activation value controls if rational arithmetic should be used or not

Description:

- rationalmode is a global variable. When its value is off, which is the default, Sollya will not use rational arithmetic to simplify expressions. All computations, including the evaluation of constant expressions given on the Sollya prompt, will be performed using floating-point and interval arithmetic. Constant expressions will be approximated by floating-point numbers, which are in most cases faithful roundings of the expressions, when shown at the prompt.
- When the value of the global variable rationalmode is on, Sollya will use rational arithmetic when simplifying expressions. Constant expressions, given at the Sollya prompt, will be simplified to rational numbers and displayed as such when they are in the set of the rational numbers. Otherwise, flaoting-point and interval arithmetic will be used to compute a floating-point approximation, which is in most cases a faithful rounding of the constant expression.

Example 1:

```
> rationalmode=off!;
> 19/17 + 3/94;
1.1495619524405506883604505632040050062578222778473
> rationalmode=on!;
> 19/17 + 3/94;
1837 / 1598
```

Example 2:

```
> rationalmode=off!;
> exp(19/17 + 3/94);
3.15680977395514136754709208944824276340328162814418
> rationalmode=on!;
> exp(19/17 + 3/94);
3.15680977395514136754709208944824276340328162814418
```

See also: on 8.101, off 8.100, numerator 8.99, denominator 8.30, simplifysafe 8.145, rationalapprox 8.125, autosimplify 8.15

### 8.127 RD

Name: RD
constant representing rounding-downwards mode.
Description:

- RD is used in command round to specify that the value $x$ must be rounded to the greatest floating-point number $y$ such that $y \leq x$.


## Example 1:

```
> display=binary!;
> round(Pi,20,RD);
1.1001001000011111101_2 * 2^(1)
```

See also: RZ 8.142), RU (8.141), RN 8.136), round 8.137), floor 8.60)

### 8.128 readfile

Name: readfile
reads the content of a file into a string variable
Usage:

$$
\text { readfile(filename) : string } \rightarrow \text { string }
$$

## Parameters:

- filename represents a character sequence indicating a file name

Description:

- readfile opens the file indicated by filename, reads it and puts its contents in a character sequence of type string that is returned.
If the file indicated by filename cannot be opened for reading, a warning is displayed and readfile evaluates to an error variable of type error.


## Example 1:

```
> print("Hello world") > "myfile.txt";
> t = readfile("myfile.txt");
> t;
Hello world
```

Example 2:

```
> verbosity=1!;
> readfile("afile.txt");
Warning: the file "afile.txt" could not be opened for reading.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
```

See also: parse 8.103, execute 8.48, write 8.169, print 8.116, bashexecute 8.16, error (8.46)

### 8.129 readxml

Name: readxml
reads an expression written as a MathML-Content-Tree in a file Usage:

$$
\text { readxml }(\text { filename }): \text { string } \rightarrow \text { function } \mid \text { error }
$$

## Parameters:

- filename represents a character sequence indicating a file name


## Description:

- readxml(filename) reads the first occurrence of a lambda application with one bounded variable on applications of the supported basic functions in file filename and returns it as a Sollya functional expression.
If the file filename does not contain a valid MathML-Content tree, readxml tries to find an "annotation encoding" markup of type "sollya/text". If this annotation contains a character sequence that can be parsed by parse, readxml returns that expression. Otherwise readxml displays a warning and returns an error variable of type error.

Example 1:

```
> readxml("readxmlexample.xml");
2 + x + exp (sin(x))
```

See also: printxml 8.120, readfile 8.128, parse 8.103), error 8.46

### 8.130 relative

## Name: relative

indicates a relative error for externalplot or fpminimax
Usage:
relative : absolute|relative

## Description:

- The use of relative in the command externalplot indicates that during plotting in externalplot a relative error is to be considered.
See externalplot for details. Used with fpminimax, relative indicates that fpminimax must try to minimize the relative error.
See fpminimax for details.
Example 1:

```
> bashexecute("gcc -fPIC -c externalplotexample.c");
> bashexecute("gcc -shared -o externalplotexample externalplotexample.o -lgmp -l
mpfr");
> externalplot("./externalplotexample",absolute, exp(x),[-1/2;1/2],12,perturb);
```

See also: externalplot 8.53), fpminimax 8.61, absolute 8.2, bashexecute 8.16)

### 8.131 remez

Name: remez
computes the minimax of a function on an interval.
Usage:
$\operatorname{remez}(f, n$, range, $w$, quality $):($ function, integer, range, function, constant) $\rightarrow$ function $\operatorname{remez}(f, L$, range, $w$, quality $):($ function, list, range, function, constant) $\rightarrow$ function

Parameters:

- $f$ is the function to be approximated
- $n$ is the degree of the polynomial that must approximate $f$
- $L$ is a list of monomials that can be used to represent the polynomial that must approximate $f$
- range is the interval where the function must be approximated
- $w$ (optional) is a weight function. Default is 1 .
- quality (optional) is a parameter that controls the quality of the returned polynomial $p$, with respect to the exact minimax $p^{\star}$. Default is $1 \mathrm{e}-5$.
Description:
- remez computes an approximation of the function $f$ with respect to the weight function $w$ on the interval range. More precisely, it searches a polynomial $p$ such that $\|p w-f\|_{\infty}$ is (almost) minimal among all polynomials $p$ of a certain form. The norm is the infinity norm, e.g. $\|g\|_{\infty}=$ $\max \{|g(x)|, x \in$ range $\}$.
- If $w=1$ (the default case), it consists in searching the best polynomial approximation of $f$ with respect to the absolute error. If $f=1$ and $w$ is of the form $1 / g$, it consists in searching the best polynomial approximation of $g$ with respect to the relative error.
- If $n$ is given, the polynomial $p$ is searched among the polynomials with degree not greater than $n$. If $L$ is given, the polynomial $p$ is searched as a linear combination of monomials $X^{k}$ where $k$ belongs to $L$. $L$ may contain ellipses but cannot be end-elliptic.
- The polynomial is obtained by a convergent iteration called Remez' algorithm. The algorithm computes a sequence $p_{1}, \ldots, p_{k}, \ldots$ such that $e_{k}=\left\|p_{k} w-f\right\|_{\infty}$ converges towards the optimal value $e$. The algorithm is stopped when the relative error between $e_{k}$ and $e$ is less than quality.
- Note: the algorithm may not converge in certain cases. Moreover, it may converge towards a polynomial that is not optimal. These cases correspond to the cases when the Haar condition is not fulfilled. See [Cheney - Approximation theory] for details.
Example 1:

```
p = remez(exp(x),5,[0;1]);
degree(p);
5
> dirtyinfnorm(p-exp(x),[0;1]);
1.12956984638214536849843017679626063762687501534126e-6
```

Example 2:

```
> p = remez(1,[|0,2,4,6,8|],[0,Pi/4],1/cos(x));
> canonical=on!;
> p;
0.99999999994393749280444571988532724907643631727381 + -0.4999999957155746773720
4931630836834563663039748203 * x^2 + 4.16666132335010905188253972212748718651775
241902969e-2 * x^4 + -1.38865291475286141707180658383176799662601691348739e-3 *
x^6 + 2.437267919111162694221738667927916761689966804242e-5 * x^8
```

Example 3:

```
p1 = remez(exp(x),5,[0;1],default,1e-5);
p2 = remez(exp(x),5,[0;1],default,1e-10);
p3 = remez(exp(x),5,[0;1],default,1e-15);
dirtyinfnorm(p1-exp(x),[0;1]);
1.12956984638214536849843017679626063762687501534126e-6
dirtyinfnorm(p2-exp(x), [0;1]);
1.12956980227478687332174207517728389861926659249056e-6
dirtyinfnorm(p3-exp(x),[0;1]);
1.12956980227478687332174207517728389861926659249056e-6
```

See also: dirtyinfnorm 8.35, infnorm 8.75), fpminimax 8.61), guessdegree 8.66), taylorform 8.159) , taylor 8.158

### 8.132 rename

Name: rename rename the free variable.
Usage:
rename(ident1,ident2) : void

Parameters:

- ident1 is the current name of the free variable.
- ident2 is a fresh name.

Description:

- rename permits a change of the name of the free variable. Sollya can handle only one free variable at a time. The first time in a session that an unbound name is used in a context where it can be interpreted as a free variable, the name is used to represent the free variable of Sollya. In the following, this name can be changed using rename.
- Be careful: if ident2 has been set before, its value will be lost. Use the command isbound to know if ident2 is already used or not.
- If ident1 is not the current name of the free variable, an error occurs.
- If rename is used at a time when the name of the free variable has not been defined, ident1 is just ignored and the name of the free variable is set to ident2.

Example 1:

```
f=sin(x);
> f;
sin(x)
> rename(x,y);
> f;
sin(y)
```

Example 2:

```
a=1;
f=sin(x);
rename(x,a);
> a;
a
> f;
sin(a)
```

Example 3:

```
> verbosity=1!;
> f=sin(x);
> rename(y,z);
Warning: the current free variable is named "x" and not "y". Can only rename the
free variable.
The last command will have no effect.
```

Example 4:

```
> rename(x,y);
> isbound(x);
false
> isbound(y);
true
```

See also: isbound 8.78

### 8.133 restart

Name: restart
brings Sollya back to its initial state
Usage:
restart : void $\rightarrow$ void
Description:

- The command restart brings Sollya back to its initial state. All current state is abandoned, all libraries unbound and all memory freed.
The restart command has no effect when executed inside a Sollya script read into a main Sollya script using execute. It is executed in a Sollya script included by a \#include macro.
Using the restart command in nested elements of imperative programming like for or while loops is possible. Since in most cases abandoning the current state of Sollya means altering a loop invariant, warnings for the impossibility of continuing a loop may follow unless the state is rebuilt.

Example 1:

```
> print(exp(x));
exp(x)
> a = 3;
> restart;
The tool has been restarted.
> print(x);
x
> a;
Warning: the identifier "a" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "a" as "x".
x
```


## Example 2:

```
> print(exp(x));
exp(x)
> for i from 1 to 10 do {
 print(i);
> if (i == 5) then restart;
};
1
2
3
4
The tool has been restarted.
Warning: the tool has been restarted inside a for loop.
The for loop will no longer be executed.
```

Example 3:

```
> print(exp(x));
exp(x)
> a = 3;
for i from 1 to 10 do {
 print(i);
 if (i == 5) then {
 restart;
 i = 7;
 };
};
1
2
3
4
5
The tool has been restarted.
8
9
10
> print(x);
x
> a;
Warning: the identifier "a" is neither assigned to, nor bound to a library funct
ion nor external procedure, nor equal to the current free variable.
Will interpret "a" as "x".
x
```

See also: quit 8.123, execute 8.48

### 8.134 return

Name: return
indicates an expression to be returned in a procedure
Usage:
return expression : void

## Parameters:

- expression represents the expression to be returned

Description:

- The keyword return allows for returning the (evaluated) expression expression at the end of a begin-end-block (-block) used as a Sollya procedure body. See proc for further details concerning Sollya procedure definitions.
Statements for returning expressions using return are only possible at the end of a begin-end-block used as a Sollya procedure body. Only one return statement can be given per begin-end-block.
- If at the end of a procedure definition using proc no return statement is given, a return void statement is implicitely added. Procedures, i.e. procedure objects, when printed out in Sollya defined with an implicit return void statement are displayed with this statement explicitly given.

Example 1:

```
> succ = proc(n) { var res; res := n + 1; return res; };
> succ(5);
6
> succ;
proc(n)
{
var res;
res := (n) + (1);
return res;
}
```

Example 2:

```
> hey = proc(s) { print("Hello",s); };
> hey("world");
Hello world
> hey;
proc(s)
{
print("Hello", s);
return void;
}
```

See also: proc 8.121), void 8.167)

### 8.135 revert

Name: revert
reverts a list.
Usage:

$$
\operatorname{revert}(L): \text { list } \rightarrow \text { list }
$$

## Parameters:

- $L$ is a list.

Description:

- $\operatorname{revert}(L)$ returns the same list, but with its elements in reverse order.
- If $L$ is an end-elliptic list, revert will fail with an error.

Example 1:

```
> revert([| |]);
[l |]
```

Example 2:

```
> revert([|2,3,5,2,1,4|]);
[|4, 1, 2, 5, 3, 2|]
```


### 8.136 RN

Name: RN
constant representing rounding-to-nearest mode.
Description:

- $\mathbf{R N}$ is used in command round to specify that the value must be rounded to the nearest representable floating-point number.

Example 1:

```
> display=binary!;
> round(Pi,20,RN);
1.100100100001111111_2 * 2^(1)
```

See also: RD 8.127, RU 8.141, RZ 8.142, round 8.137, nearestint 8.94)

### 8.137 round

Name: round
rounds a number to a floating-point format.
Usage:
round $(x, n$, mode $):$ (constant, integer, $\mathbf{R D}|\mathbf{R U}| \mathbf{R N} \mid \mathbf{R Z}) \rightarrow$ constant
round ( $x$, format,mode) : (constant, $\mathrm{D} \mid$ double $|\mathrm{DD}|$ doubledouble $|\mathrm{DE}|$ doubleextended $\mid$ TD $\mid$ tripledouble, $\mathbf{R D} \mid$ $\mathbf{R U}|\mathbf{R N}| \mathbf{R Z}) \rightarrow$ constant

Parameters:

- $x$ is a constant to be rounded.
- $n$ is the precision of the target format.
- format is the name of a supported floating-point format.
- mode is the desired rounding mode.

Description:

- If used with an integer parameter $n$, round $(x, n$, mode $)$ rounds $x$ to a floating-point number with precision $n$, according to rounding-mode mode.
- If used with a format parameter format, round (x,format,mode) rounds $x$ to a floating-point number in the floating-point format format, according to rounding-mode mode.
- Subnormal numbers are not handled are handled only if a format parameter is given that is different from doubleextended. The range of possible exponents is the range used for all numbers represented in Sollya (e.g. basically the range used in the library MPFR).


## Example 1:

```
> display=binary!;
> round(Pi,20,RN);
1.100100100001111111_2 * 2^(1)
```

Example 2:

```
> printdouble(round(exp(17),53,RU));
0x417709348c0ea4f9
> printdouble(D(exp(17)));
0x417709348c0ea4f9
```

Example 3:

```
display=binary!;
a=2^(-1100);
> round(a,53,RN);
1_2 * 2^(-1100)
> round(a,D,RN);
0
> double(a);
0
```

See also: RN (8.136), RD 8.127), RU (8.141), RZ (8.142), single (8.147), double (8.39), doubleextended (8.41), doubledouble (8.40), tripledouble (8.163), roundcoefficients 8.138), roundcorrectly (8.139), printdouble 8.117), printsingle 8.119), ceil 8.20), floor (8.60), nearestint (8.94)

### 8.138 roundcoefficients

Name: roundcoefficients
rounds the coefficients of a polynomial to classical formats.
Usage:

$$
\text { roundcoefficients }(p, L):(\text { function, list }) \rightarrow \text { function }
$$

## Parameters:

- $p$ is a function. Usually a polynomial.
- $L$ is a list of formats.

Description:

- If $p$ is a polynomial and $L$ a list of floating-point formats, roundcoefficients $(p, L)$ rounds each coefficient of $p$ to the corresponding format in $L$.
- If $p$ is not a polynomial, roundcoefficients does not do anything.
- If $L$ contains other elements than $\mathbf{D}$, double, $\mathbf{D D}$, doubledouble, TD and tripledouble, an error occurs.
- The coefficients in $p$ corresponding to $X^{i}$ is rounded to the format $\mathrm{L}[\mathrm{i}]$. If $L$ does not contain enough elements (e.g. if length $(\mathrm{L})<\operatorname{degree}(\mathrm{p})+1$ ), a warning is displayed. However, the coefficients corresponding to an element of $L$ are rounded. The trailing coefficients (that do not have a corresponding element in $L$ ) are kept with their own precision. If $L$ contains too much elements, the trailing useless elements are ignored. In particular $L$ may be end-elliptic in which case roundcoefficients has the natural behavior.

Example 1:

```
> p=exp(1) + x*(exp(2) + x*exp(3));
> display=binary!;
> roundcoefficients(p,[|DD,D,D|]);
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100
010000011_2 * 2^(4)))
> roundcoefficients(p,[|DD,D...|]);
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100
010000011_2 * 2^(4)))
```

Example 2:

```
> f=sin(exp(1)*x);
> display=binary!;
> f;
sin(x * (1.010110111111000010101000101100010100010101110110100101010011010101011
11110111000101011000100000001001110011110100111100111100011101100010111001110001
01100000111101_2 * 2^(1)))
> roundcoefficients(f,[lD...l]);
sin(x * (1.010110111111000010101000101100010100010101110110100101010011010101011
11110111000101011000100000001001110011110100111100111100011101100010111001110001
01100000111101_2 * 2^(1)))
```

Example 3:

```
> p=exp(1) + x*(exp(2) + x*exp(3));
> verbosity=1!;
> display=binary!;
> roundcoefficients(p,[|DD,D|]);
Warning: the number of the given formats does not correspond to the degree of th
e given polynomial.
Warning: the Oth coefficient of the given polynomial does not evaluate to a floa
ting-point constant without any rounding.
Will evaluate the coefficient in the current precision in floating-point before
rounding to the target format.
Warning: the 1th coefficient of the given polynomial does not evaluate to a floa
ting-point constant without any rounding.
Will evaluate the coefficient in the current precision in floating-point before
rounding to the target format.
Warning: rounding may have happened.
1.010110111111000010101000101100010100010101110110100101010011010101011111101110
001010110001000000010011101_2 * 2^(1) + x * (1.110110001110011001001011100011010
100110111011010111_2 * 2^(2) + x * (1.010000010101111001011011111101101111101100
01000001011111001011010100101111011111110001010011011101000100110000111010001110
010000010110000101100000111001011100101001_2 * 2^(4)))
```

See also: single (8.147), double 8.39), doubledouble (8.40), tripledouble 8.163), fpminimax (8.61), remez 8.131), implementpoly 8.72), subpoly (8.152)

### 8.139 roundcorrectly

Name: roundcorrectly
rounds an approximation range correctly to some precision
Usage:

```
roundcorrectly(range) : range }->\mathrm{ constant
```

Parameters:

- range represents a range in which an exact value lies

Description:

- Let range be a range of values, determined by some approximation process, safely bounding an unknown value $v$. The command roundcorrectly (range) determines a precision such that for this precision, rounding to the nearest any value in range yields to the same result, i.e. to the correct rounding of $v$.
If no such precision exists, a warning is displayed and roundcorrectly evaluates to NaN .
Example 1:

```
> printbinary(roundcorrectly([1.010001_2; 1.0101_2]));
1.01_2
> printbinary(roundcorrectly([1.00001_2; 1.001_2]));
1_2
```

Example 2:

```
> roundcorrectly([-1; 1]);
@NaN@
```

See also: round 8.137, mantissa 8.89, exponent 8.52, precision 8.114)

### 8.140 roundingwarnings

## Name: roundingwarnings

global variable controlling whether or not a warning is displayed when roundings occur. Usage:

$$
\begin{gathered}
\text { roundingwarnings }=\text { activation value }: \text { on } \mid \text { off } \rightarrow \text { void } \\
\text { roundingwarnings }=\text { activation value }!: \text { on } \mid \text { off } \rightarrow \text { void } \\
\text { roundingwarnings }: \text { on } \mid \text { off }
\end{gathered}
$$

## Parameters:

- activation value controls if warnings should be shown or not

Description:

- roundingwarnings is a global variable. When its value is on, warnings are emitted in appropriate verbosity modes (see verbosity) when roundings occur. When its value is off, these warnings are suppressed.
- This mode depends on a verbosity of at least 1 . See verbosity for more details.
- Default is on when the standard input is a terminal and off when Sollya input is read from a file.


## Example 1:

```
> verbosity=1!;
> roundingwarnings = on;
Rounding warning mode has been activated.
> exp(0.1);
Warning: Rounding occurred when converting the constant "0.1" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: rounding has happened. The value displayed is a faithful rounding of th
e true result.
1.1051709180756476248117078264902466682245471947375
> roundingwarnings = off;
Rounding warning mode has been deactivated.
> exp(0.1);
1.1051709180756476248117078264902466682245471947375
```

See also: on 8.101, off 8.100, verbosity 8.166, midpointmode 8.91, rationalmode 8.126

### 8.141 RU

Name: RU
constant representing rounding-upwards mode.
Description:

- RU is used in command round to specify that the value $x$ must be rounded to the smallest floating-point number $y$ such that $x \leq y$.


## Example 1:

```
> display=binary!;
> round(Pi,20,RU);
1.1001001000011111111_2 * 2^(1)
```

See also: RZ 8.142, RD 8.127, RN 8.136, round 8.137, ceil 8.20

### 8.142 RZ

Name: RZ
constant representing rounding-to-zero mode.
Description:

- RZ is used in command round to specify that the value must be rounded to the closest floatingpoint number towards zero. It just consists in truncating the value to the desired format.

Example 1:

```
display=binary!;
> round(Pi,20,RZ);
1.1001001000011111101_2 * 2^(1)
```

See also: RD 8.127, RU 8.141, RN 8.136, round 8.137, floor 8.60, ceil 8.20

### 8.143 searchgal

Name: searchgal
searches for a preimage of a function such that the rounding the image yields an error smaller than a constant
Usage:
searchgal(function, start, preimage precision, steps, format, error bound) : (function, constant, integer, integer, $\mathrm{D} \mid$ double|DD|doubledouble|DE|doubleextended|TD|tripledouble, constant) $\rightarrow$ list
searchgal(list of functions, start, preimage precision, steps, list of format, list of error bounds) : (list, constant, integer, integer, list, list) $\rightarrow$ list

Parameters:

- function represents the function to be considered
- start represents a value around which the search is to be performed
- preimage precision represents the precision (discretization) for the eligible preimage values
- steps represents the binary logarithm $\left(\log _{2}\right)$ of the number of search steps to be performed
- format represents the format the image of the function is to be rounded to
- error bound represents a upper bound on the relative rounding error when rounding the image
- list of functions represents the functions to be considered
- list of formats represents the respective formats the images of the functions are to be rounded to
- list of error bounds represents a upper bound on the relative rounding error when rounding the image

Description:

- The command searchgal searches for a preimage $z$ of function function or a list of functions list of functions such that $z$ is a floating-point number with preimage precision significant mantissa bits and the image $y$ of the function, respectively each image $y_{i}$ of the functions, rounds to format format respectively to the corresponding format in list of format with a relative rounding error less than error bound respectively the corresponding value in list of error bounds. During this search, at most $2^{\text {steps }}$ attempts are made. The search starts with a preimage value equal to start. This value is then increased and decreased by 1 ulp in precision preimage precision until a value is found or the step limit is reached.
If the search finds an appropriate preimage $z$, searchgal evaluates to a list containing this value. Otherwise, searchgal evaluates to an empty list.


## Example 1:

```
> searchgal(log(x),2,53,15,DD,1b-112);
[l I]
> searchgal(log(x),2,53,18,DD,1b-112);
[|2.0000000000384972054234822280704975128173828125|]
```

Example 2:

```
f = exp(x);
s = searchgal(f,2,53,18,DD,1b-112);
if (s != [||]) then {
 v = s[0];
 print("The rounding error is 2^(",evaluate(log2(abs(DD(f)/f - 1)),v),")");
} else print("No value found");
The rounding error is 2^(-1.12106878438809380148206984258358542322113874177832e
2)
```

Example 3:

```
> searchgal([|\operatorname{sin}(x),\operatorname{cos}(x)|],1,53,15,[|D,D|],[|1b-62,1b-60|]);
[|1.00000000000159494639717649988597258925437927246094|]
```

See also: round (8.137), double (8.39), doubledouble 8.40), tripledouble 8.163), evaluate 8.47), worstcase 8.168)

### 8.144 simplify

Name: simplify
simplifies an expression representing a function
Usage:

$$
\text { simplify }(\text { function }): \text { function } \rightarrow \text { function }
$$

## Parameters:

- function represents the expression to be simplified

Description:

- The command simplify simplifies constant subexpressions of the expression given in argument representing the function function. Those constant subexpressions are evaluated using floatingpoint arithmetic with the global precision prec.

Example 1:

```
> print(simplify(sin(pi * x)));
sin(3.14159265358979323846264338327950288419716939937508 * x)
> print(simplify(erf(exp(3) + x * log(4))));
erf(2.00855369231876677409285296545817178969879078385544e1 + x * 1.3862943611198
906188344642429163531361510002687205)
```

Example 2:

```
prec = 20!;
t = erf(0.5);
> s = simplify(erf(0.5));
> prec = 200!;
> t;
0.5204998778130465376827466538919645287364515757579637000588058
> s;
0.52050018310546875
```

See also: simplifysafe 8.145, autosimplify (8.15), prec 8.113, evaluate 8.47), horner 8.71), rationalmode 8.126)

### 8.145 simplifysafe

Name: simplifysafe
simplifies an expression representing a function
Usage:

$$
\text { simplifysafe(function) : function } \rightarrow \text { function }
$$

## Parameters:

- function represents the expression to be simplified

Description:

- The command simplifysafe simplifies the expression given in argument representing the function function. The command simplifysafe does not endanger the safety of computations even in Sollya's floating-point environment: the function returned is mathematically equal to the function function.

Remark that the simplification provided by simplifysafe is not perfect: they may exist simpler equivalent expressions for expressions returned by simplifysafe.

Example 1:

```
> print(simplifysafe((6 + 2) + (5 + exp(0)) * x));
8 + 6 * x
```

Example 2:

```
> print(simplifysafe((log(x - x + 1) + asin(1))));
(pi) / 2
```

Example 3:

```
> print(simplifysafe((log(x - x + 1) + asin(1)) - (atan(1) * 2)));
(pi) / 2 -(pi) / 4 * 2
```

See also: simplify 8.144, autosimplify 8.15, rationalmode 8.126, horner 8.71)

## $8.146 \sin$

Name: sin
the sine function.
Description:

- $\sin$ is the usual sine function.
- It is defined for every real number $x$.

See also: $\operatorname{asin} 8.10$, $\boldsymbol{\operatorname { c o s }} 8.25$, $\tan 8.156$

### 8.147 single

Names: single, SG
rounding to the nearest IEEE 754 single (binary32).
Description:

- single is both a function and a constant.
- As a function, it rounds its argument to the nearest IEEE 754 single precision (i.e. IEEE754-2008 binary32) number. Subnormal numbers are supported as well as standard numbers: it is the real rounding described in the standard.
- As a constant, it symbolizes the single precision format. It is used in contexts when a precision format is necessary, e.g. in the commands round and roundcoefficients. In is not supported for implementpoly. See the corresponding help pages for examples.

Example 1:

```
> display=binary!;
> SG(0.1);
1.10011001100110011001101_2 * 2^(-4)
> SG(4.17);
1.000010101110000101001_2 * 2^(2)
> SG(1.011_2 * 2^(-1073));
0
```

See also: double $\sqrt{8.39}$, doubleextended 8.41 , doubledouble 8.40 , tripledouble 8.163 , roundcoefficients 8.138, implementpoly (8.72), round 8.137), printsingle 8.119)

### 8.148 sinh

Name: sinh
the hyperbolic sine function.
Description:

- $\sinh$ is the usual hyperbolic sine function: $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$.
- It is defined for every real number $x$.

See also: asinh 8.11, cosh 8.26, tanh 8.157

### 8.149 sort

Name: sort
sorts a list of real numbers.
Usage:

$$
\operatorname{sort}(L): \text { list } \rightarrow \text { list }
$$

## Parameters:

- $L$ is a list.

Description:

- If $L$ contains only constant values, $\operatorname{sort}(L)$ returns the same list, but sorted in increasing order.
- If $L$ contains at least one element that is not a constant, the command fails with a type error.
- If $L$ is an end-elliptic list, sort will fail with an error.

Example 1:

```
> sort([| |]);
[l |]
> sort([|2,3,5,2,1,4|]);
[l1, 2, 2, 3, 4, 5|]
```


### 8.150 sqrt

Name: sqrt
square root.
Description:

- sqrt is the square root, e.g. the inverse of the function square: $\sqrt{y}$ is the unique positive $x$ such that $x^{2}=y$.
- It is defined only for $x$ in $[0 ;+\infty]$.


### 8.151 string

Name: string
keyword representing a string type
Usage:

> string : type type

Description:

- string represents the string type for declarations of external procedures by means of externalproc.

Remark that in contrast to other indicators, type indicators like string cannot be handled outside the externalproc context. In particular, they cannot be assigned to variables.
See also: externalproc (8.54), boolean (8.18), constant 8.24), function (8.63), integer 8.76), list of 8.83), range 8.124

### 8.152 subpoly

Name: subpoly
restricts the monomial basis of a polynomial to a list of monomials Usage:

$$
\text { subpoly }(\text { polynomial, list }):(\text { function, list }) \rightarrow \text { function }
$$

## Parameters:

- polynomial represents the polynomial the coefficients are taken from
- list represents the list of monomials to be taken

Description:

- subpoly extracts the coefficients of a polynomial polynomial and builds up a new polynomial out of those coefficients associated to monomial degrees figuring in the list list.

If polynomial represents a function that is not a polynomial, subpoly returns 0 .
If list is a list that is end-elliptic, let be $j$ the last value explicitly specified in the list. All coefficients of the polynomial associated to monomials greater or equal to $j$ are taken.

Example 1:

```
> p = taylor(exp(x),5,0);
> s = subpoly(p,[|1,3,5|]);
> print(p);
1 + x * (1 + x * (0.5 + x * (1 / 6 + x * (1 / 24 + x / 120))))
> print(s);
x * (1 + x^2 * (1 / 6 + x^2 / 120))
```

Example 2:

```
> p = remez(atan(x),10,[-1,1]);
> subpoly(p,[|1,3,5\ldots..|]);
x * (0.99986632946591986997581285958052433296267358727229 + x^2 * (-0.3303047855
04861260596093435534236137298206064685038 + x^2 * (0.180159294636523467997437751
178959039617773054107393 + x * (-1.217048583218660289061758356493901143118773602
60197e-14 + x * (-8.5156350833702702996505336803770858918120961566741e-2 + x * (
1.39681284176342339364451388757935358048374878126733e-14 + x * (2.08451141754345
61643018447784809880955983412532269e-2 + x * (-5.6810131012579436265697622426011
349460288598691964e-15))))))))
```

Example 3:

```
> subpoly(exp(x),[|1,2,3|]);
0
```

See also: roundcoefficients 8.138, taylor 8.158, remez 8.131, fpminimax 8.61, implementpoly 8.72

### 8.153 substitute

Name: substitute
replace the occurrences of the free variable in an expression.
Usage:
substitute $(f, g):($ function, function) $\rightarrow$ function
substitute $(f, t):($ function, constant $) \rightarrow$ constant

## Parameters:

- $f$ is a function.
- $g$ is a function.
- $t$ is a real number.


## Description:

- substitute $(f, g)$ produces the function $(f \circ g): x \mapsto f(g(x))$.
- substitute $(f, t)$ is the constant $f(t)$. Note that the constant is represented by its expression until it has been evaluated (exactly the same way as if you type the expression $f$ replacing instances of the free variable by $t$ ).
- If $f$ is stored in a variable $F$, the effect of the commands $\operatorname{substitute}(F, g)$ or $\operatorname{substitute}(F, t)$ is absolutely equivalent to writing $F(g)$ resp. $F(t)$.

Example 1:

```
f=sin(x);
> g=cos(x);
> substitute(f,g);
sin(cos(x))
> f(g);
sin(cos(x))
```

Example 2:

```
> a=1;
> f=sin(x);
> substitute(f,a);
0.84147098480789650665250232163029899962256306079837
> f(a);
0.841470984807896506652502321630298999962256306079837
```

See also: evaluate 8.47

### 8.154 sup

Name: sup
gives the upper bound of an interval.
Usage:

$$
\begin{gathered}
\sup (I): \text { range } \rightarrow \text { constant } \\
\sup (x): \text { constant } \rightarrow \text { constant }
\end{gathered}
$$

## Parameters:

- $I$ is an interval.
- $x$ is a real number.

Description:

- Returns the upper bound of the interval $I$. Each bound of an interval has its own precision, so this command is exact, even if the current precision is too small to represent the bound.
- When called on a real number $x$, sup considers it as an interval formed of a single point: $[x, x]$. In other words, sup behaves like the identity.

Example 1:

```
> sup([1;3]);
3
> sup(5);
5
```


## Example 2:

```
display=binary!;
I=[0; 0.111110000011111_2];
> sup(I);
1.11110000011111_2 * 2^(-1)
> prec=12!;
> sup(I);
1.11110000011111_2 * 2^(-1)
```

See also: inf 8.74, mid 8.90

### 8.155 tail

Name: tail
gives the tail of a list.
Usage:

$$
\operatorname{tail}(L): \text { list } \rightarrow \text { list }
$$

Parameters:

- $L$ is a list.

Description:

- tail $(L)$ returns the list $L$ without its first element.
- If $L$ is empty, the command will fail with an error.
- tail can also be used with end-elliptic lists. In this case, the result of tail is also an end-elliptic list.

Example 1:

```
> tail([|1,2,3|]);
[|2, 3|]
> tail([|1,2...|]);
[|2...|]
```

See also: head 8.67)

### 8.156 tan

## Name: tan

the tangent function.
Description:

- tan is the tangent function, defined by $\tan (x)=\sin (x) / \cos (x)$.
- It is defined for every real number $x$ that is not of the form $n \pi+\pi / 2$ where $n$ is an integer.

See also: atan 8.12, $\boldsymbol{\operatorname { c o s }} 8.25$, $\boldsymbol{\operatorname { s i n }} 8.146$ )

### 8.157 tanh

Name: tanh
the hyperbolic tangent function.
Description:

- tanh is the hyperbolic tangent function, defined by $\tanh (x)=\sinh (x) / \cosh (x)$.
- It is defined for every real number $x$.

See also: atanh 8.13, $\cosh$ 8.26, $\sinh 8.148$

### 8.158 taylor

Name: taylor
computes a Taylor expansion of a function in a point
Usage:

$$
\text { taylor }(\text { function, degree, point }):(\text { function, integer, constant }) \rightarrow \text { function }
$$

## Parameters:

- function represents the function to be expanded
- degree represents the degree of the expansion to be delivered
- point represents the point in which the function is to be developped

Description:

- The command taylor returns an expression that is a Taylor expansion of function function in point point having the degree degree.
Let $f$ be the function function, $t$ be the point point and $n$ be the degree degree. Then, tay$\operatorname{lor}($ function, degree,point) evaluates to an expression mathematically equal to

$$
\sum_{i=0}^{n} \frac{f^{(i)}(t)}{i!}(x-t)^{i}
$$

Remark that taylor evaluates to 0 if the degree degree is negative.
Example 1:

```
> print(taylor(exp(x),5,0));
1 + x * (1 + x * (0.5 + x * (1 / 6 + x * (1 / 24 + x / 120))))
```

Example 2:

```
> print(taylor(asin(x),7,0));
x * (1 + x^2 * (1 / 6 + x^2 * (9 / 120 + x^2 * 225 / 5040)))
```

Example 3:

```
> print(taylor(erf(x),6,0));
x * (1 / sqrt((pi) / 4) + x^2 * ((sqrt((pi) / 4) * 4 / (pi) * (-2)) / 6 + x^2 *
(sqrt((pi) / 4) * 4 / (pi) * 12) / 120))
```

See also: remez 8.131, fpminimax 8.61, taylorform 8.159

### 8.159

## taylorform

Name: taylorform
computes a rigorous polynomial approximation (polynomial, interval error bound) for a function, based on Taylor expansions.
Usage:

```
taylorform(\(f, n, x_{0}, I\), errorType) : (function, integer, constant, range, absolute|relative) \(\rightarrow\) list
 taylorform(\(f, n, x_{0}, I\), errorType) : (function, integer, range, range, absolute|relative) \(\rightarrow\) list
 taylorform \(\left(f, n, x_{0}\right.\), errorType) : (function, integer, constant, absolute|relative) \(\rightarrow\) list
 taylorform \(\left(f, n, x_{0}\right.\), errorType) : (function, integer, range, absolute|relative) \(\rightarrow\) list
```


## Parameters:

- $f$ is the function to be approximated.
- $n$ is the order of the Taylor form, meaning $n-1$ is the degree of the polynomial that must approximate $f$.
- $x_{0}$ is the point (it can be a real number or an interval) where the Taylor exansion of the function is to be considered.
- $I$ is the interval over which the function is to be approximated. If this parameter is omitted, the behavior is changed (see detailed description below).
- errorType (optional) is the type of error to be considered. See the detailed description below. Default is absolute.


## Description:

- taylorform computes an approximation polynomial and an interval error bound for function $f$. More precisely, it returns a list $L=[p$, coeffErrors, $\Delta]$ where:
- $p$ is an approximation polynomial of degree $n-1$ which is roughly speaking a numerical Taylor expansion of $f$ at the point $x_{0}$.
- coeffsErrors is a list of $n$ intervals. Each interval coeffsErrors $[i]$ contains an enclosure of all the errors accumulated when computing the $i$-th coefficient of $p$.
$-\Delta$ is an interval that provides a bound for the approximation error between $p$ and $f$. Its significance depends on the errorType considered.
- The polynomial $p$ and the bound $\Delta$ are obtained using Taylor Models principles.
- Please note that $x_{0}$ can be an interval. In general, it is meant to be a small interval approximating a non representable value. If $x_{0}$ is given as a constant expression, it is first numerically evaluated (leading to a faithful rounding $\tilde{x_{0}}$ at precision prec), and it is then replaced by the (exactly representable) point-interval $\left[\tilde{x_{0}}, \tilde{x_{0}}\right]$. In particular, it is not the same to call taylorform with $x_{0}=\mathbf{p i}$ and with $x_{0}=[\mathbf{p i}]$, for instance. In general, if the point around which one desires to compute the polynomial is not exactly representable, one should preferably use a small interval for $x_{0}$.
- More formally, the mathematical property ensured by the algorithm may be stated as follows. For all $\xi_{0}$ in $x_{0}$, there exist (small) values $\varepsilon_{i} \in$ coeffsErrors $[i]$ such that:
If errorType is absolute, $\forall x \in I, \exists \delta \in \Delta, f(x)-p\left(x-\xi_{0}\right)=\sum_{i=0}^{n-1} \varepsilon_{i}\left(x-\xi_{0}\right)^{i}+\delta$.
If errorType is relative, $\forall x \in I, \exists \delta \in \Delta, f(x)-p\left(x-\xi_{0}\right)=\sum_{i=0}^{n-1} \varepsilon_{i}\left(x-\xi_{0}\right)^{i}+\delta\left(x-\xi_{0}\right)^{n}$.
- It is also possible to use a large interval for $x_{0}$, though it is not obvious to give an intuitive sense to the result of taylorform in that case. A particular case that might be interesting is when $x_{0}=I$ in relative mode. In that case, denoting by $p_{i}$ the coefficient of $p$ of order $i$, the interval $p_{i}+$ coeffsError $[i]$ gives an enclosure of $f^{(i)}(I) / i!$. However, the command autodiff is more convenient for computing such enclosures.
- When the interval $I$ is not given, the approximated Taylor polynomial is computed but no remainder is produced. In that case the returned list is $L=[p$, coeffErrors $]$.
- The relative case is especially useful when functions with removable singularities are considered. In such a case, this routine is able to compute a finite remainder bound, provided that the expansion point given is the problematic removable singularity point.
- The algorithm does not guarantee that by increasing the degree of the approximation, the remainder bound will become smaller. Moreover, it may even become larger due to the dependecy phenomenon present with interval arithmetic. In order to reduce this phenomenon, a possible solution is to split the definition domain $I$ into several smaller intervals.
- The command taylor also computes a Taylor polynomial of a function. However it does not provide a bound on the remainder. Besides, taylor is a somehow symbolic command: each coefficient of the Taylor polynomial is computed exactly and returned as an expression tree exactly equal to theoretical value. It is henceforth much more inefficient than taylorform and taylorform should be prefered if only numercial (yet safe) computations are required. The same difference exists between commands diff and autodiff.

Example 1:

```
> TL=taylorform(sin(x)/x, 10, 0, [-1,1], relative);
> p=TL[0];
> Delta=TL[2];
> errors=TL[1];
> for epsi in errors do epsi;
[0;0]
[0;0]
[0;5.3455294201843912922810729343029637576303937602101e-51]
[0;0]
[-3.3409558876152445576756705839393523485189961001313e-52;3.34095588761524455767
56705839393523485189961001313e-52]
[0;0]
[-1.04404871487976392427364705748104760891218628129103e-53;1.0440487148797639242
7364705748104760891218628129103e-53]
[0;0]
[-1.63132611699963113167757352731413688892529106451724e-55;1.6313261169996311316
7757352731413688892529106451724e-55]
[0;0]
[-1.91171029335894273243465647732125416670932546623114e-57;1.9117102933589427324
3465647732125416670932546623114e-57]
> p; Delta;
1 + x^2 * (-0.16667 + x^2 * (8.3333
333e-3 + x^2 * (-1.9841269841269841269
8412698412698412698412698412698e-4 + x^2 * (2.7557319223985890652557319223985890
6525573192239859e-6 + x^2 * (-2.505210838544171877505210838544171877505210838544
19e-8)))))
[-1.6135797443886066084999806203254010793747502812764e-10;1.61357974438860660849
99806203254010793747502812764e-10]
```

Example 2:

```
> TL=taylorform(exp(x), 10, 0, [-1,1], absolute);
> p=TL[0];
> Delta=TL[2];
> p; Delta;
1 + x * (1 + x * (0.5 + x * (0.1666
7 + x * (4.1667e-2 + x * (8.3333333
33e-3 + x * (1.3888888888888888888888888
8888888888888888888888889e-3 + x * (1.984126984126984126984126984126984126984126
98412698e-4 + x * (2.4801587301587301587301587301587301587301587301587e-5 + x *
(2.75573192239858906525573192239858906525573192239859e-6 + x * 2.755731922398589
0652557319223985890652557319223986e-7)))))))))
[-2.31142719641187619441242534182684745832539555102969e-8;2.73126607556424744202
06278018039434042553645532164e-8]
```

Example 3:

```
> TL1 = taylorform(exp(x), 10, log2(10), [-1,1], absolute);
> TL2 = taylorform(exp(x), 10, [log2(10)], [-1,1], absolute);
> TL1==TL2;
false
```

Example 4:

```
> TL1 = taylorform(exp(x), 3, 0, [0,1], relative);
> TL2 = taylorform(exp(x), 3, 0, relative);
> TL1[0]==TL2 [0];
true
> TL1[1]==TL2[1];
true
> length(TL1);
3
> length(TL2);
2
```

Example 5:

```
> f = exp(cos(x)); x0 = 0;
> TL = taylorform(f, 3, x0);
> T1 = TL[0];
> T2 = taylor(f, 3, x0);
> print(coeff(T1, 2));
-1.35914091422952261768014373567633124887862354684999
> print(coeff(T2, 2));
-(0.5 * exp(1))
```

See also: diff 8.33, autodiff 8.14), taylor 8.158, remez 8.131)

### 8.160 taylorrecursions

Name: taylorrecursions
controls the number of recursion steps when applying Taylor's rule.
Usage:

> taylorrecursions $=n:$ integer $\rightarrow$ void taylorrecursions $=n!:$ integer $\rightarrow$ void taylorrecursions : integer

Parameters:

- $n$ represents the number of recursions


## Description:

- taylorrecursions is a global variable. Its value represents the number of steps of recursion that are used when applying Taylor's rule. This rule is applied by the interval evaluator present in the core of Sollya (and particularly visible in commands like infnorm).
- To improve the quality of an interval evaluation of a function $f$, in particular when there are problems of decorrelation), the evaluator of Sollya uses Taylor's rule: $f([a, b]) \subseteq f(m)+[a-$ $m, b-m] \cdot f^{\prime}([a, b])$ where $m=\frac{a+b}{2}$. This rule can be applied recursively. The number of step in this recursion process is controlled by taylorrecursions.
- Setting taylorrecursions to 0 makes Sollya use this rule only once; setting it to 1 makes Sollya use the rule twice, and so on. In particular: the rule is always applied at least once.

Example 1:

```
> f=exp(x);
> p=remez(f,3,[0;1]);
> taylorrecursions=0;
The number of recursions for Taylor evaluation has been set to 0.
> evaluate(f-p, [0;1]);
[-0.46839364816303627522963565754743169862357620487739;0.46947781754667086491682
464997088054443583003517779]
> taylorrecursions=1;
The number of recursions for Taylor evaluation has been set to 1.
> evaluate(f-p, [0;1]);
[-0.13813111495387910066337940912697015317218647208804;0.13921528433751369035056
840155041899898444030238844]
```

See also: hopitalrecursions 8.70, evaluate 8.47, infnorm 8.75

### 8.161 time

Name: time
procedure for timing Sollya code. Usage:

$$
\text { time }(\text { code }): \text { code } \rightarrow \text { constant }
$$

Parameters:

- code is the code to be timed.

Description:

- time permits timing a Sollya instruction, resp. a begin-end block of Sollya instructions. The timing value, measured in seconds, is returned as a Sollya constant (and not merely displayed as for timing). This permits performing computations of the timing measurement value inside Sollya.
- The extended nop command permits executing a defined number of useless instructions. Taking the ratio of the time needed to execute a certain Sollya instruction and the time for executing a nop therefore gives a way to abstract from the speed of a particular machine when evaluating an algorithm's performance.


## Example 1:

```
> t = time(p=remez(sin(x),10,[-1;1]));
> write(t,"s were spent computing p = ",p,"\n");
0.237514000000000000025878604814622008234437089413404s were spent computing p =
-3.3426550293345171908513995127407122194691200059639e-17 + x * (0.99999999973628
359955372011464713121003442988167693 + x * (7.8802751877302786684499343799047732
495568873819693e-16 + x * (-0.16666666138601303703291298219674138568049869810728
5 + x * (-5.3734444911159112186289355138557504839692987221233e-15 + x * (8.33330
37186548537651002133031675072810009327877148e-3 + x * (1.33797221389218815884112
341005509831429347230871284e-14 + x * (-1.98344863018277416493268155154158924422
004290239026e-4 + x * (-1.3789116451286674170531616441916183417598709732816e-14
+ x * (2.6876259495430304684251822024896210963401672262005e-6 + x * 5.0282378350
010211058128384123578805586173782863605e-15)))))))))
```

Example 2:

```
> write(time({ p=remez(sin(x),10, [-1;1]); write("The error is 2^(", log2(dirtyin
fnorm(p-sin(x),[-1;1])), ")\n"); }), " s were spent\n");
The error is 2^(log2(2.39602467695631727848641768186659313738474584992648e-11))
0.379498000000000000045061177011973541084444150328636 s were spent
```

Example 3:

```
> t = time(bashexecute("sleep 10"));
> write(~}(t-10),"s of execution overhead.\n")
8.3419999999999987216892094465947593562304973602294e-3s of execution overhead.
```

Example 4:

```
> ratio := time(p=remez(sin(x),10, [-1;1]))/time(nop(10));
> write("This ratio = ", ratio, " should somehow be independent of the type of m
achine.\n");
This ratio = 6.9906499636891793757800258513922718896962350393502 should somehow
be independent of the type of machine.
```

See also: timing 8.162, nop 8.96

### 8.162 timing

## Name: timing

global variable controlling timing measures in Sollya.
Usage:

$$
\begin{aligned}
& \operatorname{timing}=\text { activation value }: \text { on } \mid \text { off } \rightarrow \text { void } \\
& \text { timing }=\text { activation value }!: \text { on } \mid \text { off } \rightarrow \text { void } \\
& \text { } \text { timing }: \text { on } \mid \text { off }
\end{aligned}
$$

Parameters:

- activation value controls if timing should be performed or not

Description:

- timing is a global variable. When its value is on, the time spent in each command is measured and displayed (for verbosity levels higher than 1).

Example 1:

```
> verbosity=1!;
> timing=on;
Timing has been activated.
> p=remez(sin(x),10,[-1;1]);
Information: Remez: computing the matrix spent 1 ms
Information: Remez: computing the quality of approximation spent 16 ms
Information: Remez: computing the matrix spent 1 ms
Information: Remez: computing the quality of approximation spent 11 ms
Information: Remez: computing the matrix spent 1 ms
Information: Remez: computing the quality of approximation spent 15 ms
Information: computing a minimax approximation spent 236 ms
Information: assignment spent 236 ms
Information: full execution of the last parse chunk spent 236 ms
```

See also: on 8.101, off 8.100, time 8.161

### 8.163 tripledouble

Names: tripledouble, TD
represents a number as the sum of three IEEE doubles.
Description:

- tripledouble is both a function and a constant.
- As a function, it rounds its argument to the nearest number that can be written as the sum of three double precision numbers.
- The algorithm used to compute $\operatorname{tripledouble}(x)$ is the following: let $x_{h}=\operatorname{double}(x)$, let $x_{m}=$ double $\left(x-x_{h}\right)$ and let $x_{l}=\operatorname{double}\left(x-x_{h}-x_{m}\right)$. Return the number $x_{h}+x_{m}+x_{l}$. Note that if the current precision is not sufficient to represent exactly $x_{h}+x_{m}+x_{l}$, a rounding will occur and the result of tripledouble ( x ) will be useless.
- As a constant, it symbolizes the triple-double precision format. It is used in contexts when a precision format is necessary, e.g. in the commands roundcoefficients and implementpoly. See the corresponding help pages for examples.

Example 1:

```
> verbosity=1!;
> a = 1+ 2^ (-55)+2^ (-115);
> TD (a);
1.00000000000000002775557561562891353466491600711096
> prec=110!;
>TD(a);
Warning: double rounding occurred on invoking the triple-double rounding operato
r.
Try to increase the working precision.
1.000000000000000027755575615628913
```

See also: single 8.147), double 8.39, doubleextended 8.41), doubledouble 8.40, roundcoefficients 8.138, implementpoly 8.72, fpminimax 8.61, , printexpansion 8.118)

### 8.164 true

Name: true
the boolean value representing the truth.
Description:

- true is the usual boolean value.

Example 1:

```
> true && false;
false
> 2>1;
true
```

See also: false 8.55, \&\& 8.6, || 8.102

### 8.165 var

## Name: var

declaration of a local variable in a scope
Usage:
var identifier1, identifier2,... , identifiern : void

## Parameters:

- identifier1, identifier2,... , identifiern represent variable identifiers

Description:

- The keyword var allows for the declaration of local variables identifier1 through identifiern in a begin-end-block (\{\}-block). Once declared as a local variable, an identifier will shadow identifiers declared in higher scopes and undeclared identifiers available at top-level.
Variable declarations using var are only possible in the beginning of a begin-end-block. Several var statements can be given. Once another statement is given in a begin-end-block, no more var statements can be given.
Variables declared by var statements are dereferenced as error until they are assigned a value.


## Example 1:

```
> exp(x);
exp(x)
> a = 3;
> {var a, b; a=5; b=3; {var a; var b; b = true; a = 1; a; b;}; a; b; };
1
true
5
3
> a;
3
```

See also: error 8.46), proc 8.121

### 8.166 verbosity

Name: verbosity
global variable controlling the amount of information displayed by commands.
Usage:

$$
\begin{gathered}
\text { verbosity }=n: \text { integer } \rightarrow \text { void } \\
\text { verbosity }=n!: \text { integer } \rightarrow \text { void } \\
\text { verbosity }: \text { integer }
\end{gathered}
$$

Parameters:

- $n$ controls the amount of information to be displayed


## Description:

- verbosity accepts any integer value. At level 0 , commands do not display anything on standard output. Note that very critical information may however be displayed on standard error.
- Default level is 1 . It displays important information such as warnings when roundings happen.
- For higher levels more information is displayed depending on the command.

Example 1:

```
> verbosity=0!;
> 1.2+"toto";
error
> verbosity=1!;
> 1.2+"toto";
Warning: Rounding occurred when converting the constant "1.2" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
error
> verbosity=2!;
> 1.2+"toto";
Warning: Rounding occurred when converting the constant "1.2" to floating-point
with 165 bits.
If safe computation is needed, try to increase the precision.
Warning: at least one of the given expressions or a subexpression is not correct
ly typed
or its evaluation has failed because of some error on a side-effect.
Information: the expression or a partial evaluation of it has been the following
:
(1.199) + ("toto")
error
```

See also: roundingwarnings 8.140

### 8.167 void

Name: void
the functional result of a side-effect or empty argument resp. the corresponding type Usage:
void : void | type type

Description:

- The variable void represents the functional result of a side-effect or an empty argument. It is used only in combination with the applications of procedures or identifiers bound through externalproc to external procedures.
The void result produced by a procedure or an external procedure is not printed at the prompt. However, it is possible to print it out in a print statement or in complex data types such as lists.
The void argument is implicit when giving no argument to a procedure or an external procedure when applied. It can nevertheless be given explicitly. For example, suppose that foo is a procedure or an external procedure with a void argument. Then foo() and foo(void) are correct calls to foo. Here, a distinction must be made for procedures having an arbitrary number of arguments. In this case, an implicit void as the only parameter to a call of such a procedure gets converted into an empty list of arguments, an explicit void gets passed as-is in the formal list of parameters the procedure receives.
- void is used also as a type identifier for externalproc. Typically, an external procedure taking void as an argument or returning void is bound with a signature void $->$ some type or some type $->$ void. See externalproc for more details.

Example 1:

```
> print(void);
void
> void;
```

Example 2:

```
> hey = proc() { print("Hello world."); };
> hey;
proc()
{
print("Hello world.");
return void;
}
> hey();
Hello world.
> hey(void);
Hello world.
> print(hey());
Hello world.
void
```

Example 3:

```
> bashexecute("gcc -fPIC -Wall -c externalprocvoidexample.c");
> bashexecute("gcc -fPIC -shared -o externalprocvoidexample externalprocvoidexam
ple.o");
> externalproc(foo, "./externalprocvoidexample", void -> void);
> foo;
foo(void) -> void
> foo();
Hello from the external world.
> foo(void);
Hello from the external world.
> print(foo());
Hello from the external world.
void
```

Example 4:

```
procedure blub(L = ...) { print("Argument list:", L); };
> blub(1);
Argument list: [|1|]
> blub();
Argument list: [| |]
> blub(void);
Argument list: [|void|]
```

See also: error 8.46, proc 8.121, externalproc 8.54)

### 8.168 worstcase

Name: worstcase
searches for hard-to-round cases of a function
Usage:

> worstcase(function, preimage precision, preimage exponent range, image precision, error bound) :
> (function, integer, range, integer, constant) $\rightarrow$ void
> worstcase(function, preimage precision, preimage exponent range, image precision, error bound,
> filename) $:$ (function, integer, range, integer, constant, string) $\rightarrow$ void

Parameters:

- function represents the function to be considered
- preimage precision represents the precision of the preimages
- preimage exponent range represents the exponents in the preimage format
- image precision represents the precision of the format the images are to be rounded to
- error bound represents the upper bound for the search w.r.t. the relative rounding error
- filename represents a character sequence containing a filename

Description:

- The worstcase command is deprecated. It searches for hard-to-round cases of a function. The command searchgal has a comparable functionality.

Example 1:

```
> worstcase(exp(x),24,[1,2],24,1b-26);
prec = 165
x = 1.99999988079071044921875 f(x)=7.3890552520751953125 eps = 4
.5998601423446695596184695493764120138001954979037e-9 = 2^(-27.695763)
x = 2 f(x) = 7.38905620574951171875 eps = 1.4456360874967301812222
8379395533417878125150587072e-8 = 2^(-26.043720)
```

See also: round 8.137, searchgal 8.143, evaluate 8.47)

### 8.169 write

Name: write
prints an expression without separators
Usage:

> write $($ expr $1, \ldots$, exprn $):($ any type,...., any type $) \rightarrow$ void
> write $($ expr $1, \ldots$, exprn $)>$ filename $:($ any type,..., any type, string $) \rightarrow$ void write $($ expr $1, \ldots$, exprn $) \gg$ filename $:($ any type,...,any type, string $) \rightarrow$ void

Parameters:

- expr represents an expression
- filename represents a character sequence indicating a file name

Description:

- write (expr1,..., exprn) prints the expressions expr1 through exprn. The character sequences corresponding to the expressions are concatenated without any separator. No newline is displayed at the end. In contrast to print, write expects the user to give all separators and newlines explicitly.
If a second argument filename is given after a single " $>$ ", the displaying is not output on the standard output of Sollya but if in the file filename that get newly created or overwritten. If a double " $\gg$ " is given, the output will be appended to the file filename.
The global variables display, midpointmode and fullparentheses have some influence on the formatting of the output (see display, midpointmode and fullparentheses).
Remark that if one of the expressions expri given in argument is of type string, the character sequence expri evaluates to is displayed. However, if expri is of type list and this list contains a variable of type string, the expression for the list is displayed, i.e. all character sequences get displayed surrounded by quotes ("). Nevertheless, escape sequences used upon defining character sequences are interpreted immediately.

Example 1:

```
> write(x + 2 + exp(sin(x)));
> write("Hello\n");
x + 2 + exp(sin(x))Hello
> write("Hello","world\n");
Helloworld
> write("Hello","you", 4 + 3, "other persons.\n");
Helloyou7other persons.
```

Example 2:

```
> write("Hello","\n");
Hello
> write([|"Hello"|],"\n");
[|"Hello"|]
> s = "Hello";
> write(s,[|s|],"\n");
Hello[|"Hello"|]
> t = "Hello\tyou";
> write(t,[|t|],"\n");
Hello you[l"Hello you"|]
```

Example 3:

```
> write(x + 2 + exp(sin(x))) > "foo.sol";
> readfile("foo.sol");
x + 2 + exp(sin(x))
```

Example 4:

```
write(x + 2 + exp(sin(x))) >> "foo.sol";
```

See also: print 8.116), printexpansion 8.118, printdouble 8.117), printsingle 8.119), printxml (8.120), readfile (8.128), autosimplify (8.15), display (8.37), midpointmode 8.91), fullparentheses (8.62), evaluate (8.47), roundingwarnings 8.140, autosimplify 8.15


[^0]:    ${ }^{1}$ Remark: some of the behaviors of Sollya slightly change when it is used in scripts. For example, no prompt is printed.

