AUTO-07P :
CONTINUATION AND BIFURCATION SOFTWARE
FOR ORDINARY DIFFERENTIAL EQUATIONS

Fusebius J. Doedel and Bart E. Oldeman

Concordia University
Montreal, Canada

with major contributions by
Alan R. Champneys (Bristol), Fabio Dercole (Milano), Thomas Fairgrieve (Toronto),
Yuri Kuznetsov (Utrecht), Randy Paffenroth (Pasadena),
Bjorn Sandstede (Brown), Xianjun Wang, and Chenghai Zhang.

January 2009



Contents

Installing AUTO.

1.1  Imstallation. . . . . . . . . . .o
1.1.1 Installation on Linux/Unix . . . . . . . ... ... .. L.
1.1.2 Imstallation on Mac OS X . . . . . . . . . . ...
1.1.3 Installation on Windows . . . . . . . . . . . . .. ... ... ... ...
1.2 Restrictions on Problem Size. . . . . . . . . . ...
1.3 Compatibility with Earlier Versions. . . . . . . . . ... . ... ... .. ....
1.4 Parallel Version. . . . . . . . . . .

Overview of Capabilities.

2.1 SUMMATY. .« . . o e
2.2 Algebraic Systems. . . . . . ...
2.3 Ordinary Differential Equations. . . . . . . . . ... ... ... ... ...
2.4 Parabolic PDEs. . . . . . . ..
2.5 Discretization. . . . . . . ..

User-Supplied Files.

3.1 The Equations-File xxx.£90, or xxx.f, or xxx.c . . . . . . . . . . ... ....
3.2  The Constants-File c.xxx . . . . . . . . . ...
3.3 User-Supplied Routines. . . . . . . . . . . . ... ...
3.4 User-Supplied Derivatives. . . . . . . . . . . ...
Running AUTO using Python Commands.
4.1 Typographical Conventions . . . . . . . . . . . ... ... ... ... ...,
4.2 General Overview. . . . . . . . ..
4.3 First Example . . . . . ..o
4.4 Scripting . . . ..
4.5 Second Example . . . . ...
4.6 Extending the AUTO CLUI . . . ... ... ... ... .. ... .. ......
4.7  Bifurcation Diagram Objects . . . . . . . . . . ...
4.7.1 Solutions . . . . . . . .
4.7.2 Summary and reference . . . . . ... oL
4.8  Exporting output data for use by Python or external visualization tools. . . . .
4.9 The .autorcor autorc File . . . . . . .. ..o
4.10 Two Dimensional Plotting Tool . . . . . . . . . .. ... ... ... ... ...,

11
11
12
13
14
14
15
15

17
17
17
18
19
20

21
21
21
22
22



5

4.11 Three Dimensional Plotting Tool . . . . . . . . . . ... ... ... .. .....
4.12 Quick Reference . . . . . . . . .
4.13 Reference . . . . .
4.13.1 Basic commands. . . . . . . ...
4.13.2 Plotting commands. . . . . . .. ... Lo
4.13.3 File-manipulation. . . . . . .. ... ...
4.13.4 Diagnostics. . . . . . . ...
4.13.5 File-maintenance. . . . . . . . . . ..o
4.13.6 Copying ademo. . . . . . . . . ..
4.13.7 Python data structure manipulation functions. . . . . . . . . . .. .. ..
4.13.8 Shell Commands. . . . . . . . .. ..
Running AUTO using Unix Commands.
5.1 Basic commands. . . . . . .. ..
5.2  Plotting commands. . . . . . ... Lo
5.3  File-manipulation. . . . . . . ... oo
5.4 Diagnostics. . . . . . . L
5.5 File-editing. . . . . . . .
5.6  File-maintenance. . . . . . . ... ..
5.7 HomCont commands. . . . . . . . . . . ...
5.8 Copying ademo. . . . . . . ..
5.9 Viewing the manual. . . . . . . .. . oo

Output Files.

The Graphics Programs PLAUT and PyPLAUT.

7.1
7.2
7.3
7.4

Basic PLAUT-Commands. . . . . . . . . . . . . . . . . ...
Default Options. . . . . . . . . . . .
Other PLAUT-Commands. . . . . . . . . . . . .
Printing PLAUT Files. . . . . . . . . . . .

The Graphics Program PLAUTO04.

8.1

Quick start . . . . oL
8.1.1 Starting and stopping PLAuTO04 . . . . . . ...
8.1.2 Changing the “Type” . . . . . . . . . . . .
8.1.3 Changing the “Style” . . . . . . . . . . ...
8.1.4 Coordinate axes . . . . . . . . ..o
8.1.5 Options . . . . . . .
8.1.6 CR3BP animation . . . . . . . ... .. ...
81.7 Help . . . .
8.1.8 Picking a point in the diagram . . . . . . .. ... ... .00
8.1.9 Choosing the variables . . . . . . . . . ...
8.1.10 Choosing labels . . . . . . . . ..o
8.1.11 Coloring . . . . . . . . .
8.1.12 Number of periods to be animated . . . . . .. .. ... ... ... ...



8.1.13 Changing the line/tube thickness . . . . . . . ... ... ... ... ... 78

8.1.14 Changing the animation speed . . . . . . . . . . . . ... ... ... .. 78
8.1.15 Changing the background picture . . . . . . . . . . ... ... ... ... 78

8.2 Setting up the resource file . . . . . . . . ..o 78
8.3 Example . . . . . .. 81
9 The Graphical User Interface GUI94. 84
9.1 General Overview. . . . . . . . . . . e 84
9.1.1 The Menubar. . . . . . . . . . . e 84
9.1.2 The Define-Constants-buttons. . . . . . . . . . .. ... ... ...... 84
9.1.3 The Load-Constants-buttons. . . . . . . . . . . .. ... ... ...... 85
9.1.4  The Stop- and Exit-buttons. . . . . . .. . ... ... ... ... .. 85

9.2 TheMenuBar. . . . . . ... .. 85
9.2.1 Equations-button. . . . . . .. ... oo 85
9.2.2 Edit-button. . . . . ... 85
9.2.3  Write-button. . . . . . . . . .. 85
9.2.4 Define-button. . . . . . . . . 85
9.2.5 Run-button. . . . . . . . . . . e 86
9.2.6 Save-button. . . . . . . . . .. 86
9.2.7 Append-button. . . . . ... 86
9.2.8 Plot-button. . . . . . . . ... 86
9.2.9 Files-button. . . . . . . . ... 86
9.2.10 Demos-button. . . . . . . . . . ... 86
9.2.11 Misc.-button. . . . . . . . .. e 87
9.2.12 Help-button. . . . . . ... . 87

9.3 Using the GUL . . . . . . . . . . 87
9.4 Customizing the GUL. . . . . . . .. ... . 87
9.4.1 Print-button. . . . . . . . .. 87
9.4.2 GUlcolors. . . . . . . . . e 87
9.4.3 On-line help. . . . . . . . . 88

10 Description of AUTO-Constants. 89
10.1 The AUTO-Constants File. . . . . . . . . . . . ... ... ... . ..... &9
10.2 Problem Constants. . . . . . . . . . . 90
10.2.1 NDIM . . . . . . o 90
10.2.2 NBC . . . . . . 90
10.2.3 NINT . . . . . . o 90
10.2.4 NPAR . . . . . . . 90
10.2.5 JAC . . . . 90

10.3 Discretization Constants. . . . . . . . . . . . ... 90
10.3.1 NTST . . . . . . e 90
10.3.2 NCOL . . . . . . . e 90
10.3.3 IAD . . . . . 91

10.4 Tolerances. . . . . . . . .. 91
10.4.1 EPSL . . . . . . 91



10.5

10.6

10.7

10.8

10.9

10.4.2 EPSU . . . . . o L 91

10.4.3 EPSS . . . . . 91
10.4.4 ITMX . . . . o o 91
10.4.5 NWTN . . . L o 91
10.4.6 ITNW . . . . . o o e e 92
Continuation Step Size. . . . . . . . . . .. 92
10.5.1 DS . . o o 92
10.5.2 DSMIN . . . . . o 92
10.5.3 DSMAX . . . . . e 92
10.5.4 TIADS . . . . L 92
10.5.5 THL . . . . o o 93
10.5.6 THU . . . . . . o 93
Diagram Limits. . . . . . . . .. ..o 93
10.6.1 NMX . . . . . o 93
10.6.2 RLO . . . . . o o 94
10.6.3 RL1 . . . . o 94
10.6.4 A0 . . . L 94
10.6.5 AL . o L 94
Free Parameters. . . . . . . . . . .. 94
10.7.1 ICP . . . o o 94
10.7.2 Fixed points. . . . . . . . . 94
10.7.3 Periodic solutions and rotations. . . . . ... .. .. ... .. ... ... 94
10.7.4 Folds and Hopf bifurcations. . . . . . . . .. .. .. ... ... 95
10.7.5 Folds and period-doublings. . . . . . . . ... ... oL 95
10.7.6 Boundary value problems. . . . . . . . . ... o 95
10.7.7 Boundary value folds. . . . . . . ... ... 96
10.7.8 Optimization problems. . . . . . . . . . ... ... ... ... ... 96
10.7.9 Internal free parameters. . . . . . . ... ..o 96
10.7.10 Parameter overspecification. . . . . . . . . .. ... 96
Computation Constants. . . . . . . . . . . . . . ... ... 97
10.8.1 ILP . . o o o o 97
10.8.2 SP . . . 97
10.8.3 ISP . . . . o o 97
10.8.4 ISW . . . . o o 98
10.8.5 MXBF . . . . . . o 98
10.8.6 s . . . . 98
10.8.7 dat . . . . . . 99
10.8.8 U . o o o o 99
10.8.9 PAR . . . . . L 99
10.8.10IRS . . . o o o 99
10811 TIPS . . . o o 99
Output Control. . . . . . . . . . . . 101
10.9.1 wnames . . . . . . . .. 101
10.9.2 parnames . . . . . ... 101
10.9.3 e . . o 101



10.9.
10.9.
10.9.
10.9.
10.9.

4 SV . . e
5 NPR . . . o s
6 IID . . . . .
T IPLT . . .
8 UZR . . . . . e

10.10 Quick reference . . . . . . . ..

11 Notes on Using AUTO.

Restrictions on the Use of PAR. . . . . . . . . . . . . . ...
Efficiency. . . . . . . .
Correctness of Results. . . . . . . . . . . .
Bifurcation Points and Folds. . . . . . . . . . . ... ...
Floquet Multipliers. . . . . . . . . . . . . .
Memory Requirements. . . . . . . . . . ... Lo o

11.1
11.2
11.3
11.4
11.5
11.6

12 AUTO Demos : Tutorial.

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Intr

oduction. . . . . .. s,

cusp : A Tutorial Demo. . . . . . . . . . . ...
Copying the Demo Files. . . . . . . . . .. .. ... ...

Exe

cuting all Runs Automatically. . . . . . ... ... ... ... ... ... .

Plotting the Results with AUTO. . . . . . . ... ... ... .. ... ......
Plotting the Results with AUTO in3D. . . .. ... ... .. ... .......
Exporting the Results for different plotters. . . . . . .. .. ... ... ... ..

ab :

A Programmed Demo. . . . . .. .. ... Lo

13 AUTO Demos : Fixed points.
13.1 enz : Stationary Solutions of an Enzyme Model. . . . . . . ... ... .. ...
13.2 dd2 : Fixed Points of a Discrete Dynamical System. . . . .. .. .. ... ...

14 AUTO Demos : Periodic solutions.

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Irz :
abe

pp2

lor :

fre :
ppp
plp

phl
pp3

14.10 tor

14.11 pen :
14.12 chu :
14.13 phs :
14.14 ivp :
14.15 r3b :

The Lorenz Equations. . . . . . . . . .. . ... .. ... .. .. ......
: The A—- B —- CReaction. . . . . .. ... ... ... ... .. ......
: A 2D Predator-Prey Model. . . . . .. . . ... ...
Starting an Orbit from Numerical Data. . . . . . . ... ... ... ....
A Periodically Forced System. . . . . . .. ... ... ... ... ...
: Continuation of Hopf Bifurcations. . . . . . . . . ... .. ... ... ...
: Fold Continuation for Periodic Solutions. . . . . . .. .. ... ... ...
: Phase-Shifting using Continuation. . . . . . . . . . ... .. .. ... ...
: Periodic Families and Loci of Hopf Points. . . . . . .. .. ... ... ..
: Detection of Torus Bifurcations. . . . . .. .. ... ... ... ......
Rotations of Coupled Pendula. . . . . . . ... ... ... ... ......
A Non-Smooth System (Chua’s Circuit). . . . ... ... ... ... ...
Effect of the Phase Condition. . . . . . .. .. .. ... ... ... ....
Time Integration with Euler’'s Method. . . . . . . . .. .. .. .. ... ..
The Circular Restricted 3-Body Problem (CR3BP). . ... ... ... ..

106
106
106
107
107
107
108

109
110
110
110
111
113
114
114
116

117
117
118



15 AUTO Demos :

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

16 AUTO Demos :

16.1
16.2
16.3
16.4
16.5
16.6

17 AUTO Demos :

14.15.1 Computation of Periodic Solutions of the CR3BP . . . . . . . .. .. ..
14.15.2 Computing Unstable Manifolds of Periodic Orbits in the CR3BP . . . . .

BVP.

exp : Bratu’s Equation. . . . . . ... ..o o
int : Boundary and Integral Constraints. . . . . . . . . ... .. ... ... ...
bvp : A Nonlinear ODE Eigenvalue Problem. . . . . . . ... ... ... ... .
lin : A Linear ODE Eigenvalue Problem. . . . . . . . ... ... ... ......
non : A Non-Autonomous BVP. . . . ... ... ... .. .. ..., .
kar : The Von Karman Swirling Flows. . . . . . . .. .. ... ... ... ....
spb : A Singularly-Perturbed BVP. . . . . ... ... 0000000
ezp : Complex Bifurcationina BVP. . . . . . . ... ... ... . ... .....
um?2 : Basic computation of a 2D unstable manifold. . . . . . ... .. ... ..
15.10 um3 : A 2D unstable manifold in 3D. . . . . . ... ... ...
15.11 p2c : Point to cycle connections. . . . . . . . . . ... ... ...
15.12 c2¢ : Cycle to cycle connections. . . . . . . . . . . .. ... .

Parabolic PDEs.

pdl : Stationary States (1D Problem). . . . . . . ... ... ... L.
pd2 : Stationary States (2D Problem). . . . . . . ... ... oL
wav : Periodic Waves. . . . . . . . ..o
brc : Chebyshev Collocation in Space. . . . . . . . . . .. .. ... ... ....
brf : Finite Differences in Space. . . . . . . . . . .. ...
bru : Euler Time Integration (the Brusselator). . . . . . .. .. ... ... ...

Optimization.

17.1 opt : A Model Algebraic Optimization Problem. . . . . ... .. ... ... ..
17.2 ops : Optimization of Periodic Solutions. . . . . . . . . . . ... ... ... ...
17.3 obv : Optimization fora BVP. . . . . ... ... ... o000

18 AUTO Demos :

Connecting orbits.

18.1 fsh: A Saddle-Node Connection. . . . . . . . . . .. ... ... ... ......
18.2 nag : A Saddle-Saddle Connection. . . . . . . . . . ... ... ... ... ....
18.3 stw : Continuation of Sharp Traveling Waves. . . . . . . . ... ... ... ...

19 AUTO Demos :

Miscellaneous.

19.1 pvl: Use of the Routine PVLS. . . . . . . ... ... ... .. ... ......
19.2 ext : Spurious Solutions to BVP. . . . . . .. ... o
19.3 tim : A Test Problem for Timing AUTO. . .. ... ... ... ... ......

20 HomCont.

20.1 Introduction.

20.2 HomCont Files and Routines. . . . . . . . . . . . . . . . ..
20.3 HomCont-Constants. . . . . . . . . . . .
20.3.1 NUNSTAB . . . . . s,

20.3.2 NSTAB



20.3.3 IEQUIB . . . . . . . . . e 185

20.3.4 ITWIST . . . . . . o o 186

20.3.5 ISTART . . . . . . . o o o 186

20.3.6 IREV . . . . . . 187

20.3.7 IFIXED . . . . . . . 187

20.3.8 IPSI . . . . . .o 187

20.4 Restrictions on HomCont Constants. . . . . . . . . . . . .. ... ... ..... 187
20.5 Restrictions on the Use of PAR. . . . . . . . . . . . . .. ... ... . ...... 188
20.6 Test Functions. . . . . . . . . . . e 188
20.7 Starting Strategies. . . . . . . . .. 189
20.8 Notes on Running HomCont Demos. . . . . . . .. .. ... ... ... ..... 191

21 HomCont Demo : san. 193
21.1 Sandstede’s Model. . . . . . . . .. 193
21.2 Inclination Flip. . . . . . . . . . . 193
21.3 Non-orientable Resonant Eigenvalues. . . . . . . .. ... ... ... ... .... 195
21.4 Orbit Flip. . . . . . . . . 195
21.5 Detailed AUTO-Commands. . . . . . . . .. ... .. .. 196

22 HomCont Demo : mtn. 199
22.1 A Predator-Prey Model with Immigration. . . . . . . . ... ... .. ... ... 199
22.2 Continuation of Central Saddle-Node Homoclinics. . . . . . . . . . . . ... ... 199
22.3 Switching between Saddle-Node and Saddle Homoclinic Orbits. . . . . . . . . .. 201
22.4 Three-Parameter Continuation. . . . . . . . . . . . . . . . . ... 202
22.5 Detailed AUTO-Commands. . . . . . . . . . . . . ... ... . ... ... 202

23 HomCont Demo : kpr. 205
23.1 Koper’s Extended Van der Pol Model. . . . . . .. ... ... ... ....... 205
23.2 The Primary Branch of Homoclinics. . . . ... . ... ... ... ... ..... 205
23.3 More Accuracy and Saddle-Node Homoclinic Orbits. . . . . . . . ... ... .. 209
23.4 Three-Parameter Continuation. . . . . . . . . . . . . . . .. ... ... ... 212
23.5 Detailed AUTO-Commands. . . . . . . . . . . . . ... . ... ....... 213

24 HomCont Demo : cir. 215
24.1 Electronic Circuit of Freire et al. . . . . . . . . . . . . ... ... ... 215
24.2 Detailed AUTO-Commands. . . . . . . . . . . . ... . 218

25 HomCont Demo : she. 219
25.1 A Heteroclinic Example. . . . . . . . ... .. 219
25.2 Detailed AUTO-Commands. . . . . . . . . . . . e 220

26 HomCont Demo : rev. 222
26.1 A Reversible System. . . . . . ... 222
26.2 An R;-Reversible Homoclinic Solution. . . . . . . . . . . . . .. ... ... ... 222
26.3 An Rs-Reversible Homoclinic Solution. . . . . . . . . . .. ... ... ... ... 223
26.4 Detailed AUTO-Commands. . . . . . . . . . . . ... 225



27 HomCont Demo : Homoclinic branch switching. 227

27.1 Branch switching at an inclination flip in Sandstede’s model. . . . . . . . . .. 227
27.2 Branch switching for a Shil'nikov type homoclinic orbit in the FitzZHugh-Nagumo
equations. . . . . .. .. 234
27.3 Branch switching to a 3-homoclinic orbit in a
Sth-order Korteweg-De Vriesmodel . . . . . . . .. .. .. ... ... ... .. 237



Preface

This is a guide to the software package AUTO for continuation and bifurcation problems in ordi-
nary differential equations. Earlier versions of AUTO were described in Doedel (1981), Doedel
& Kernévez (1986a), Doedel & Wang (1995), Wang & Doedel (1995), Doedel, Champneys,
Fairgrieve, Kuznetsov, Sandstede & Wang (1997), Doedel, Paffenroth, Champneys, Fairgrieve,
Kuznetsov, Oldeman, Sandstede & Wang (2000). For a description of the basic algorithms see
Doedel, Keller & Kernévez (1991a), Doedel, Keller & Kernévez (19916). AUTO incorporates the
HomCont algorithms of Champneys & Kuznetsov (1994), Champneys, Kuznetsov & Sandstede
(1996) for the bifurcation analysis of homoclinic orbits, and the BPcont algorithms of Dercole
(2008) for the continuation of branch points in both symmetric and non-symmetric problems.
The Floquet multiplier algorithms were written by Fairgrieve (1994), Fairgrieve & Jepson (1991).
A GUI was written by Wang (1994). The Python CLUI is the work of Randy Paffenroth.
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License
AUTO is available under the terms of the BSD license:

Copyright (© 1979-2007, E. J. Doedel, California Institute of Technology, and Concordia University. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer listed in this license in the documentation and/or other materials provided with the
distribution.

e Neither the name of the copyright holders nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Note that the three-dimensional plotting tool PLAUTO04 optionally depends on libraries that
are covered by the GNU General Public License (GPL), in particular, Coin, SoQt and Qt. In
that case the PLAUT04 binaries are also covered by the GPL.
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Chapter 1
Installing AUTO.

1.1 Installation.

The AUTO file auto07p-0.6.tar.gz is available via http://cmvl.cs.concordia.ca/auto. Here
it is assumed that you are using the Unix (e.g. bash) shell and that the file auto07p-0.6.tar.gz is
in your main directory. See below for OS-specific notes.

While in your main directory, enter the commands gunzip auto07p-0.6.tar.gz, followed
by tar xvfo auto07p-0.6.tar. This will result in a directory auto, with one subdirectory,
auto/07p. Type cd auto/07p to change directory to auto/07p. Then type ./configure , to
check your system for required compilers and libraries. Once the configure script has finished
you may then type make to compile AUTO and its ancillary software. The configure script is
designed to detect the details of your system which AUTO requires to compile successfully. If
either the configure script or the make command should fail, you may assist the configure script
by giving it various command line options. Please type ./configure --help for more details.
Upon compilation, you may type make clean to remove unnecessary files.

To run AUTO you need to set your environment variables correctly. Assuming AUTO
is installed in your home directory, the following commands set your environment variables
so that you will be able to run the AUTO commands, and may be placed into your .login,
.profile, or .cshrc file, as appropriate. If you are using a sh compatible shell, such as sh,
bash, ksh, or ash enter the command source $HOME/auto/07p/cmds/auto.env.sh. On the
other hand, if you are using a csh compatible shell, such as csh or tcsh, enter the command
source $HOME/auto/07p/cmds/auto.env.

The Graphical User Interface (GUI94) requires the X-Window system and Motif or LessTif.
Note that the GUI is not strictly necessary, since AUTO can be run very effectively using the
Unix Command Language User Interface (CLUI). Moreover, long or complicated sequences of
AUTO calculations can be programmed using the alternative Python CLUI. The GUI is not
compiled by default. To compile AUTO with the GUI, type ./configure --enable-gui and
then make in the directory auto/07p.

To use the Python CLUI and the “@pp” PyPLAUT 2D plotter it is strongly recommended
to install NumPy (http://numpy.scipy.org), Tkinter, and Matplotlib (http://matplotlib.
sourceforge.net/). For enhanced interactive use of the Python CLUT it is also worth installing
[Python (http://ipython.scipy.org).

11



The graphic tool for 3D AUTO data visualization, PLAUTO04, is compiled by default, but
depends on a few libraries that may not be in a standard installation of a typical Unix-like
system. These libraries may be available as optional packages, though. In order of preference
these are:

1. Coin3D (version 2.2 or higher), SoQt (1.1.0 or higher), and simage (1.6 or higher).

2. Coin3D with the SoXt library, which interfaces with (Open)Motif or LessTif (version 2.0
or higher) instead of Qt. The user interface has a few problems with LessTif though, in
particular it is likely to crash on 64-bit machines, so the Qt version or (Open)Motif is
recommended.

3. One can download SGI’s implementation of the Open Inventor libraries from: ftp://oss.
sgi.com/projects/inventor/download/ Because SGI’s implementation for Linux can-
not show text correctly, we recommend that Coin is used instead of SGI’s implementation.

The configure script checks for these libraries and outputs a warning if any of these libraries
cannot be found. It first checks for SoQt, and then for SoXt, unless you pass -—disable-plaut04-qt
as an option to configure. If the libraries are not available you can still compile all other com-
ponents of AUTO using make.

The Fortran code uses several routines that were not standardardized prior to the Fortran
2003 standard, for timing, flushing output, and accessing command-line arguments. The con-
figure script first looks if the F2003 routines are supported (src/f2003.f90), then checks for a set
of routines that are widely implemented across Unix compilers (src/unix.f90), and if that fails
too, uses a set of dummy replacement routines (src/compat.f90), which could be edited for some
obscure installations.

The PostScript conversion command @ps is compiled by default. Alternatively you can
type make in the directory auto/07p/tek2ps. To generate the on-line manual, type make in
auto/07p/doc, which depends on the presence of xfig’s (transfig) fig2dev utility.

To prepare AUTO for transfer to another machine, type make superclean in the directory
auto/07p before creating the tar-file. This will remove all executable, object, and other non-
essential files, and thereby reduce the size of the package.

Some LAPACK routines used by AUTO for computing eigenvalues and Floquet multipliers
are included in the package (Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz,
Greenbaum, Hammarling, McKenney & Sorensen (1999)). The Python CLUT includes a slightly
modified version of the Pointset and Point classes from PyDSTool by R. Clewley, M.D. LaMar,
and E. Sherwood (http://pydstool.sourceforge.net)

1.1.1 Installation on Linux/Unix

A free Fortran 95 compiler, Gfortran, is shipped with most recent Linux distributions, or can
be obtained at http://gcc.gnu.org/wiki/Gfortran. The following packages (and their de-
pendencies) are recommended for Fedora:

e Python: python-matplotlib-tk and ipython.

e PLAUTO04: SoQt-devel. To see pictures of stars, the earth and the moon instead of white
blobs, compile simage from source (see www.coin3d.org; needs libjpeg-devel).
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e PLAUT: xterm.
o GUI94: lesstif-devel or openmotif-devel.

e manual: KTEX(tetex or texlive) and transfig.

and the following for Ubuntu and Debian:

Python: python-matplotlib and ipython.

PLAUTO04: SoQt (libsogt-dev or libsoqt4-dev) and libsimage-dev.

PLAUT: xterm
GUI9: lesstif2-dev or libmotif-dev.

manual: ETEX (tetex or texlive) and transfig.

Other distributions may have packages with similar names.

If you need to compile and install one of the above PLAUTO04 libraries from the source code
available at the above web site, and you find that, after that, PLAUTO04 still does not work then
you might need to adjust the environment variable LD_.LIBRARY PATH to include the location of
these libraries, for instance /usr/local/lib.

1.1.2 Imnstallation on Mac OS X

AUTO runs on Mac OS X using the above instructions provided that you have the development
tools installed. You do not need to start an X server to run AUTO. Furthermore, the following
packages are recommended:

e Gfortran: See r.research.att.com/tools/.

e Python: You can install Python, Matplotlib, NumPy, Python-dateutil, and pytz from
http://pythonmac.org/packages/py26-fat/index.html. The default Python in Mac
OS X may be too old for Matplotlib and NumPy, and we found that these packages work
better than the Fink packages. There are other alternatives, for instance the Enthought
Python Distribution at www.enthought.com.

To be able to plot in the Python CLUI in some versions of OS X, AUTO uses pythonw
instead of python. This should happen automatically.

e PLAUTO04: Get aQt .dmg from trolltech.com/downloads/opensource/appdev/mac-os-cpp.
Similarly, you can get a binary Coin package from coin3d.org. After that you can compile
SoQt and simage from the source code at coin3d.org. Try to make sure that the native
(Aqua) Qt is used by setting $QTDIR, if you also have fink installed.

e PLAUT: In pre-Leopard OS X it appears that you do not see fonts. To solve this issue
you need to obtain a different version of xterm; see http://sourceforge.net/project/
showfiles.php?group_id=21781.

e GUI94: Perhaps possible using Fink but not attempted.

e manual: KTEXand transfig (comes with xfig).
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1.1.3 Installation on Windows

A native, light-weight solution for running AUTO on Windows is to use GFortran, MSYS
(see http://www.mingw.org), combined with a native Win32 version of Python, obtained at
http://www.python.org. To install this setup:

e Install Python (as of this writing, version 2.5, not 2.6 or 3.0!) from www.python.org,
NumPy from numpy . scipy.org, and Matplotlib from matplotlib.sf.net, which all come
with installers.

e Install the minimal Unix-like environment MSYS from http://www.mingw.org. You do
not need to install MinGW itself.

e Install GFortran from http://gcc.gnu.org/wiki/GFortran.

e Start MSYS by clicking on its desktop icon, which puts you in a home directory, where
you can unpack AUTO using gunzip and tar, as described above.

e Make sure that the gfortran and python binaries are in your PATH, and that their direc-
tories are at the front of it. You can do this, for instance, using the shell command export
PATH="/c/Python25:/bin:/c/Program Files/gfortran/bin:$PATH" . You can also in-
spect, edit and then source the file auto/07p/cmds/auto.env.sh to achieve this.

e Now you should be able to run configure and make to compile AUTO as shown above.

You can use AUTO using shell commands from the default MSY'S shell environment; however
the Python CLUI does not cooperate well with it. To work around that, you can start the CLUI
by double clicking on the file auto.py in the python folder of AUTO in Windows Explorer, or by
creating a shortcut to it.

Or you can start MSYS inside CMD.EXE: create a copy of the MSYS desktop icon and add —
norxvt to the “Target” field. If its behaviour does not change, then replace C:\msys \ 1.0 \msys.bat
by the file at http://mingw.cvs.sourceforge.net/mingw/msys/dvlpr/bin/msys.bat.

Alternatively, AUTO runs on Windows as above using the Unix-like environment Cygwin
(see http://www.cygwin.com), but the non-Cygwin setup is more responsive and is much easier
to setup for Matplotlib. You can however use its X server and lesstif to compile and run the old
PLAUT and GUI94, if you so desire.

With some effort it is possible to compile PLAUT04 on Windows (without an X server) using
Coin, SoQt, and Qt. You can also find precompiled PLAUT04 binaries at http://sourceforge.
net/project/showfiles.php?group_id=21781.

1.2 Restrictions on Problem Size.
There are no size restrictions in the file auto/07p/include/auto.h any more. This file now contains
the default effective number of equation parameters NPAR, set to 36 upon installation. It can

be overridden in constant files. See also Section 11.1. The default can be changed by editing
auto.h. This must be followed by recompilation by typing make in the directory auto/07p/src.
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Note that in certain cases the effective dimension may be greater than the user dimension.
For example, for the continuation of folds, the effective dimension is 2NDIM+1 for algebraic equa-
tions, and 2NDIM for ordinary differential equations, respectively. Similarly, for the continuation
of Hopf bifurcations, the effective dimension is 3NDIM+-2.

1.3 Compatibility with Earlier Versions.

Unlike earlier versions, AUTO can no longer be compiled using a pure Fortran 77 compiler, but
you need at least a Fortran 90 compiler. A free Fortran 95 compiler, GFortran, is shipped with
most recent Linux distributions, or can be obtained at http://gcc.gnu.org/wiki/GFortran,
which contains binaries for Linux, Mac OS X and Windows. AUTO was also tested with the
free compiler g95, and there exist various commercial Fortran 9x compilers as well.

The AUTO input files are now called c.xxx (the constants file), and h.xxx (the HomCont
constants file, only used with HomCont); the output files are called b.xxx (the bifurcation-
diagram-file), s.xxx (the solution-file), and d.xxx (the diagnostics-file). The command @rn
can be used to rename all these files from their old names. There are also minor changes in the
formatting of these files compared to recent versions of AUTO, such as AUTO97 and AUTO2000.
The main change compared to AUTO97 is that there is now a programmable Python CLUI. The
constants file can be written using a completely new, more flexible syntax, but the old syntax
is still accepted, and files can be converted using the command @cnvc (see Section 5).

Due to the replacement of EISPACK routines by LAPACK routines for the computation
of eigenvalues and eigenvectors, the sign of the eigenvectors may have flipped sometimes with
respect to earlier versions. This affects the sign of some HomCont test functions and the initial
direction when using the homotopy method (you may have to flip the sign of the starting distance
in the routine STPNT). Eigenvectors are now normalized to avoid future problems and improve
consistency.

When upgrading from AUTO2000, you can continue to use equations-files written in C.
However, there is now a strict difference between indexing of the array par[] in the C file
and the references to it using PAR() in constants files and output, using par [i]=PAR(I+1). In
practise this means that you do not have to change the C file, but need to add 1 to all parameter
indices in the constant files, namely ICP, THL, and UZR. For example, the period is referenced
by par[10] in the C file, but by PAR(11) in the constants file. Equation files written in C are
used in the homoclinic branch switching demo in Chapter 27.

1.4 Parallel Version.

AUTO contains code which allows it to run in on parallel computers. Namely, it can use either
OpenMP to run most of its code in parallel on shared-memory multi-processors, or the MPI
message passing library. When the configure script is run it will try to detect if the Fortran
compiler supports OpenMP; examples are Gfortran 4.2 or later and the Intel Fortran Compiler.
If it is successful the necessary compiler flags are used to enable OpenMP in AUTO. To force
the configure script not to use OpenMP, one may type ./configure --without-openmp, and
then type make. On the other hand, unless there is some particular difficulty, we recommend

15



that that the configure script be used without arguments, since the parallel version of AUTO
may easily be controlled, and even run in a serial mode, through the use of the environment
variable OMP_NUM_THREADS.

For example, to run the AUTO executable auto.exe in serial mode you just type export
OMP_NUM_THREADS=1. To run the same command in parallel on 4 processors you type export
OMP_NUM_THREADS=4. Without any OMP_NUM_THREADS set the number of processors that AUTO
will use can be equal to the actual number of processors on the system, or can be equal to one;
this is system-dependent.

The MPI message passing library is not used by default. You can enable it by typing
./configure --with-mpi. If OpenMP and MPI are both used then AUTO uses mixed mode,
with MPI parallelisation occurring at the top level.

Running the MPI version is somewhat more complex because of the fact that MPI normally
uses some external program for starting the computational processes. The exact name and
command line options of this external program depends on your MPI installation. A common
name for this MPI external program is mpirun, and a common command line option which
defines the number of computational processes is -np. Accordingly, if you wanted to run the
MPT version of AUTO on four processors, with the above external program, you would type
mpirun -np 4 file.exe. Please see your local MPI documentation for more detail.

16



Chapter 2

Overview of Capabilities.

2.1  Summary.

AUTO can do a limited bifurcation analysis of algebraic systems

f(u,p) =0, f(,),ueR™ (2.1)

The main algorithms in AUTO, however, are aimed at the continuation of solutions of systems
of ordinary differential equation (ODEs) of the form

u'(t) = f(ult),p),  f(),u(-) €RY, (2.2)

subject to boundary (including initial) conditions and integral constraints. Above, p denotes
one or more free parameters.

These boundary value algorithms also allow AUTO to do certain stationary solution and
wave calculations for the partial differential equation (PDE)

up = Dug, + f(uap)v f(’ ')7 u() € R", (23>

where D denotes a diagonal matrix of diffusion constants.
The basic algorithms used in AUTO, as well as related algorithms, can be found in Keller
(1977), Keller (1986), Doedel, Keller & Kernévez (1991a), Doedel, Keller & Kernévez (1991b).
Below, the basic capabilities of AUTO are specified in more detail. Some representative
demos are also indicated.

2.2  Algebraic Systems.

Specifically, for (2.1) AUTO can :

- Compute solution families.
(Demo ab; Run 2.)

- Locate branch points, continue these in two or three parameters, and automatically com-
pute bifurcating families.
(Demos pp2; Run 1, and apbp.)
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- Locate Hopf bifurcation points and continue these in two parameters.
(Demo pp3.)

Locate folds (limit points) and continue these in two parameters.

- Do each of the above for fixed points of the discrete dynamical system u**+" = f(u®) p)
(Demo dd2.)

Find extrema of an objective function along solution families and successively continue
such extrema in more parameters.
(Demo opt.)

2.3 Ordinary Differential Equations.
For the ODE (2.2) the program can :

- Compute families of stable and unstable periodic solutions and compute the Floquet mul-
tipliers, that determine stability, along these families. Starting data for the computation
of periodic orbits are generated automatically at Hopf bifurcation points.

(Demo ab; Run 2.)

- Locate folds, branch points, period doubling bifurcations, and bifurcations to tori, along
families of periodic solutions. Branch switching is possible at branch points and at period
doubling bifurcations.

(Demos tor, lor.)

- Continue folds, period-doubling bifurcations, and bifurcations to tori, in two parameters.
(Demos plp, pp3, tor.)

The continuation of orbits of fixed period is also possible. This is the simplest way to
compute curves of homoclinic orbits, if the period is sufficiently large.
(Demo pp2.)

The continuation of branch points in two parameters is only possible in non-generic prob-
lems, characterized by problem-specific symmetries.
(Demo 1cbp, Run 2.)

Generically, in non-symmetric problems, branch points are continued in three parameters.
(Demos 1cbp, Run 3, and abcb.)

- Do each of the above for rotations, i.e., when some of the solution components are periodic
modulo a phase gain of a multiple of 27.
(Demo pen.)

- Follow curves of homoclinic orbits and detect and continue various codimension-2 bifur-
cations, using the HomCont algorithms of Champneys & Kuznetsov (1994), Champneys,
Kuznetsov & Sandstede (1996).

(Demos san, mnt, kpr, cir, she, rev.)
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- Locate extrema of an integral objective functional along a family of periodic solutions and
successively continue such extrema in more parameters.
(Demo ops.)

- Compute curves of solutions to (2.2) on [0, 1], subject to general nonlinear boundary and
integral conditions. The boundary conditions need not be separated, i.e., they may involve
both «(0) and w(1) simultaneously. The side conditions may also depend on parameters.
The number of boundary conditions plus the number of integral conditions need not equal
the dimension of the ODE, provided there is a corresponding number of additional param-
eter variables.

(Demos exp, int.)

- Determine folds and branch points along solution families to the above boundary value
problem. Branch switching is possible at branch points. Curves of folds and branch points
can be computed.

(Demos bvp, int, sspg.)

2.4 Parabolic PDEs.

For (2.3) the program can :

- Trace out families of spatially homogeneous solutions. This amounts to a bifurcation
analysis of the algebraic system (2.1). However, AUTO uses a related system instead, in
order to enable the detection of bifurcations to wave train solutions of given wave speed.
More precisely, bifurcations to wave trains are detected as Hopf bifurcations along fixed
point families of the related ODE

u'(z) = v(z),
V'(z) = =D e v(z) + f(u(z),p)], (2.4)

where z =z — ¢t , with the wave speed ¢ specified by the user.
(Demo wav; Run 2.)

- Trace out families of periodic wave solutions to (2.3) that emanate from a Hopf bifurcation
point of Equation 2.4. The wave speed c is fixed along such a family, but the wave length
L, i.e., the period of periodic solutions to (2.4), will normally vary. If the wave length
L becomes large, i.e., if a homoclinic orbit of Equation 2.4 is approached, then the wave
tends to a solitary wave solution of (2.3).

(Demo wav; Run 3.)

- Trace out families of waves of fixed wave length L in two parameters. The wave speed ¢
may be chosen as one of these parameters. If L is large then such a continuation gives a
family of approximate solitary wave solutions to (2.3).

(Demo wav; Run 4.)
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- Do time evolution calculations for (2.3), given periodic initial data on the interval [0, L].
The initial data must be specified on [0, 1] and L must be set separately because of internal
scaling. The initial data may be given analytically or obtained from a previous computa-
tion of wave trains, solitary waves, or from a previous evolution calculation. Conversely, if
an evolution calculation results in a stationary wave then this wave can be used as starting
data for a wave continuation calculation.

(Demo wav; Run 5.)

- Do time evolution calculations for (2.3) subject to user-specified boundary conditions. As
above, the initial data must be specified on [0, 1] and the space interval length L must
be specified separately. Time evolution computations of (2.3) are adaptive in space and
in time. Discretization in time is not very accurate : only implicit Euler. Indeed, time
integration of (2.3) has only been included as a convenience and it is not very efficient.
(Demos pd1, pd2.)

- Compute curves of stationary solutions to (2.3) subject to user-specified boundary con-
ditions. The initial data may be given analytically, obtained from a previous stationary
solution computation, or from a time evolution calculation.

(Demos pd1, pd2.)

In connection with periodic waves, note that (2.4) is just a special case of (2.2) and that its
fixed point analysis is a special case of (2.1). One advantage of the built-in capacity of AUTO
to deal with problem (2.3) is that the user need only specify f, D, and ¢. Another advantage
is the compatibility of output data for restart purposes. This allows switching back and forth
between evolution calculations and wave computations.

2.5 Discretization.

AUTO discretizes ODE boundary value problems (which includes periodic solutions) by the
method of orthogonal collocation using piecewise polynomials with 2-7 collocation points per
mesh interval (de Boor & Swartz (1973)). The mesh automatically adapts to the solution to
equidistribute the local discretization error (Russell & Christiansen (1978)). The number of
mesh intervals and the number of collocation points remain constant during any given run,
although they may be changed at restart points. The implementation is AUTO-specific. In
particular, the choice of local polynomial basis and the algorithm for solving the linearized
collocation systems were specifically designed for use in numerical bifurcation analysis.
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Chapter 3

User-Supplied Files.

The user must prepare the two files described below. This can be done with the GUI described
in Chapter 9, or independently.

3.1 The Equations-File xxx.f90, or xxx.f, or xxx.c

A source file xxx.£90 containing the Fortran routines FUNC, STPNT, BCND, ICND, FOPT, and PVLS.
Here xxx stands for a user-selected name. If any of these routines is irrelevant to the prob-
lem then its body need not be completed. Examples are in auto/07p/demos, where, e.g., the
file ab/ab.f90 defines a two-dimensional dynamical system, and the file exp/exp.f defines a
boundary value problem. The simplest way to create a new equations-file is to copy an appro-
priate demo file. For a fully documented equations-file see auto/07p/demos/cusp/cusp.£90
or auto/07p/gui/aut.f. In GUI mode, this file can be directly loaded with the GUI-button
FEquations/New; see Section 9.2.

The equations-file can either be written in fixed-form (old-style) Fortran (.f), free-form For-
tran (.f90) or in C (.c).

3.2 The Constants-File c.xxx

AUTO-constants for xxx.{f,£90,c} are normally expected in a corresponding file c.xxx. Spe-
cific examples include ab/c.ab and exp/c.exp in auto/07p/demos. See Chapter 10 for the
significance of each constant.
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3.3 User-Supplied Routines.

The purpose of each of the user-supplied routines in the file xxx.{£90,f} is described below.

FUNC : defines the function f(u,p) in (2.1), (2.2), or (2.3).

- STPNT : This routine is called only if IRS=0 (see Section 10.8.10 for IRS), which typically
is the case for the first run, or when a system is manually extended. A system is extended
if NDIM (see Section 10.2.1) increases between runs. It defines a starting solution (u,p) of
(2.1) or (2.2). The starting solution should not be a branch point.

(Demos ab, exp, frc, lor.)
It extends an existing solution into higher dimensions in the demos p2c and c2c.

- BCND : A routine BCND that defines the boundary conditions.
(Demo exp, kar.)

- ICND : A routine ICND that defines the integral conditions.
(Demos int, 1in.)

- FOPT : A routine FOPT that defines the objective functional.
(Demos opt, ops.)

- PVLS : A routine PVLS for defining “solution measures”.
(Demo pvl.)

In a C language equation file, these routines are written using lowercase letters; with Fortran
you can use any case.

3.4  User-Supplied Derivatives.

If AUTO-constant JAC equals 0 then derivatives need not be specified in FUNC, BCND, ICND, and
FOPT; see Section 10.2.5. If JAC=1 then derivatives must be given. This may be necessary for
sensitive problems, and is recommended for computations in which AUTO generates an extended
system. Derivatives are specified as follows, where zero entries may be omitted:

FUNC  — Derivatives with respect to phase space variables are specified in DFDU(1:NDIM,
1:NDIM).

— Parameter derivatives go into DFDP(1:NDIM, 1:NPAR).

BCND  — Derivatives with respect to the two boundary conditions are specified in DBC(1:NBC,
1:NBC) and DBC(1:NBC, NBC+1:2*NBC), respectively.
— Parameter derivatives go into DBC(1:NBC, 2xNBC+1:2*NBC+NPAR).
ICND  — Derivatives with respect to the integral conditions are specified in DINT(1:NINT,

1:NINT).
— Parameter derivatives go into DINT(1:NINT, NINT+1:NINT+NPAR).

Examples of user-supplied derivatives can be found in demos dd2, int, plp, opt, and ops.
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Chapter 4

Running AUTO using Python
Commands.

4.1 Typographical Conventions

This chapter uses the following conventions. All code examples will be in in the following font.

AUTO> copydemo("ab")
Copying demo ab ... done

To distinguish commands which are typed to the Unix shell from those which are typed to
the AUTO command line user interface (CLUI) we will use the following two prompts.
> Commands which follow this prompt are for the Unix shell.
AUTO> | Commands which follow this prompt are for the AUTO CLUI

4.2 General Overview.

The AUTO command line user interface (CLUI) is similar to the command language described in
Section 5 in that it facilitates the interactive creating and editing of equations-files and constants-
files. It differs from the other command language in that it is based on the object-oriented
scripting language Python (see Lutz (1996)) and provides extensive programming capabilities.
This chapter will provide documentation for the AUTO CLUI commands, but is not intended
as a tutorial for the Python language. We will attempt to make this chapter self contained
by describing all Python constructs that we use in the examples, but for more extensive docu-
mentation on the Python language, including tutorials and pointers to further documentation,
please see Lutz (1996) or the web page http://www.python.org which contains an excellent
tutorial at http://www.python.org/doc/current/tut/tut.html.

To use the CLUI for a new equation, change to an empty directory. For an existing equations-
file, change to its directory. (Do not activate the CLUI in the directory auto/07p or in any of
its subdirectories.) Then type

auto.
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> auto
Python 2.5.2 (r252:60911, Nov 14 2008, 19:46:32)
[GCC 4.3.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.
(AUTOInteractiveConsole)
AUTO>

Figure 4.1: Typing auto at the Unix shell prompt starts the AUTO CLUI.

If your command search path has been correctly set (see Section 1.1), this command will
start the AUTO CLUTI interactive interpretor and provide you with the AUTO CLUI prompt.

If you have IPython installed (http://ipython.scipy.org), then you can get a friendlier
interface using the command auto -i, enabling TAB completion, persistent command-line his-
tory and other features.

In addition to the examples in the following sections there are several example scripts which
can be found in auto/07p/demos/python and are listed in Table 4.1. These scripts are fully
annotated and provide good examples of how AUTO CLUI scripts are written. The scripts in
auto/07p/demos/python/n-body are especially lucid examples and preform various related parts
of a calculation involving the gravitional N-body problem. Scripts which end in the suffix .auto
are called “basic” scripts and can be run by typing auto scriptname.auto. The scripts shown
in Section 4.3 and Section 4.5 are examples of basic scripts. Scripts which end in the suffix
xauto are called “expert” scripts and can be run by typing autox scriptname.xauto. More
information on expert scripts can be found in Section 4.6. See the README file in that directory
for more information.

4.3 First Example

We begin with a simple example of the AUTO CLUI In this example we copy the ab demo
from the AUTO installation directory and run it. For more information on the ab demo see
Section 12.8. The commands listed in Table 4.2 will copy the demo files to your work directory
and run the first part of the demo. The results of running these commands are shown in
Figure 4.2.

Let us examine more closely what action each of the commands performs. First, demo(’ab’)
(Section 4.13.6 in the reference) copies the files in $AUTO_DIR /demo/ab into the work directory.

Next, ab = load(equation=’ab’) (Section 4.13.1 in the reference) informs the AUTO CLUI
that the name of the user defined function file is ab.f90. The commands load, and the closely
related run, are two of the most commonly used commands in the AUTO CLUI, since they read
and parse the user files which are manipulated by other commands. The AUTO CLUI stores
this setting in the variable ab until it is changed by a command, such as another 1load command.
The idea of storing information is one of the ideas that sets the CLUI apart from the command
language described in Section 5.

Next, ab = load(ab, constants=’ab.1’) parses the AUTO constants file c.ab.1 and reads
it into memory. Note that changes to the file c.ab.1 after it has been loaded in will not be used
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Script

Description

demol.auto

The demo script from Section 4.3.

demo2.auto, demo3.auto, and demo4.auto

The demo scripts from Section 4.5.

userScript.xauto

The expert demo script from Figure 4.14.

userScript.py

The loadable expert demo script from Fig-
ure 4.15.

fullTest.auto

A script which uses the entire AUTO com-
mand set, except for the plotting com-
mands.

plotter.auto

A demonstration of some of the plotting
capabilities of AUTO.

tutorial.auto

A script which implements the tutorial
from Section 12.8.

n-body/compute_lagrange_points_family.auto

A basic script which computes and plots all
of the “Lagrange points” as a function of
the ratio of the masses of the two planets.

n-body /compute_lagrange_points_0.5.auto

A basic script which computes all of the
“Lagrange points” for the case where the
masses of the two planets are equal, and
saves the data.

n-body /compute_periodic_family.xauto

An expert script which starts at a
“Lagrange point” computed by com-
pute_lagrange_points_0.5.auto and contin-
ues in the ratio of the masses until a spec-
ified mass ratio is reached. It then com-
putes a family of periodic orbits for each
pair of purely complex eigenvalues.

n-body /to_matlab.xauto

A script which takes a set of AUTO data
files and creates a set of files formatted for
importing into Matlab for either plotting
or further calculations.

Table 4.1: The various demonstration scripts for the AUTO CLUI
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Unix-COMMAND ACTION

auto start the AUTO CLUI

AUTO CLUI COMMAND ACTION

demo(’ab’) copy the demo files to the work directory

ab = load(equation=’ab’) load the filename ab.f90 into the variable ab

ab = load(ab, constants=’ab.1’) | load the contents of the file c.ab.1 into the variable ab
run(ab) run AUTO with the current set of files

Table 4.2: Running the demo ab files.

> auto

Python 2.5.2 (r252:60911, Nov 14 2008, 19:46:32)

[GCC 4.3.2] on linux2

Type "help", "copyright", '"credits" or "license" for more information.
(AUTOInteractiveConsole)

AUTO> demo(’ab’)
Copying demo ab ...
Runner configured
AUTO> ab = load(equation=’ab’)

Runner configured

AUTO> ab = load(ab,constants=’ab.1’)

Runner configured

AUTO> run(ab)

gfortran -fopenmp -0 -c ab.f90 -o ab.o

gfortran -fopenmp -0 ab.o -o ab.exe /home/bart/auto/07p/lib/*.o0
Starting ab ...

done

BR PT TY LAB PAR(2) L2-NORM U(1) U(2)

1 1 EP 1 8.00000E+00  0.00000E+00  0.00000E+00  0.00000E+00
1 31 UZ 2 1.40000E+01  0.00000E+00  0.00000E+00  0.00000E+00
1 36 Uz 3 1.50000E+01  0.000OOE+00  0.00000E+00  0.0O0OOOE+00
1 41 UZ 4 1.60000E+01  0.00000E+00  0.00000E+00  0.00000E+00
1 46 UZ 5 1.70000E+01  0.0000OE+00  0.00000E+00  0.0O0OOOE+00
1 51 UZ 6 1.80000E+01  0.00000E+00  0.00000E+00  0.00000E+00

Total Time 0.181E-01

ab ... done

<_=bifDiag instance at 0x0972198c>

AUTO>

Figure 4.2: Typing auto at the Unix shell prompt starts the AUTO CLUI. The rest of the

commands are interpreted by the AUTO CLUI.
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by AUTO wunless it is loaded in again after the changes are made.

Finally, run(ab) (Section 4.13.1 in the reference) uses the user defined functions loaded by
the load(equation=’ab’) command, and the AUTO constants loaded by the load (constants
= ’ab.1’) to run AUTO.

The run command returns a bifurcation diagram structure. It can be referenced using the
special _ variable in interactive sessions, or assigned as result=run(ab). The result can then
be referred to in further calculations, plotted, and saved.

Figure 4.2 showed two of the file types that the load command can read into memory,
namely the user defined function file and the AUTO constants file (Section 3). There are two
other files types that can be read in using the load command, and they are the restart solution
file (Section 6) and the HomCont parameter file (Section 20.2). The load command can also
directly load AUTO constants.

Note that the name given to the load command is not the same as the filename which is read
in, for example load(constants=’ab.1’) reads in the file c.ab.1. This difference is a result
of the automatic transformation of the filenames by the AUTO CLUI into the standard names
used by AUTO. The standard filename transformations are show in Table 4.3.

Long name Short name | Name entered | Transformed file name
equation e foo foo0.£90/foo.f/foo.c
constants ¢ foo c.foo

solution s foo s.foo
bifurcationDiagram | b foo b.foo

diagnostics d foo d.foo

homcont h foo h.foo

Table 4.3: This table shows the standard AUTO CLUI filename translations. In load and run
commands either the long name or the short name may be used for loading the appropriate files.

Since the load command is so common, there are various shorthand versions of it. First, there
are short versions of the various arguments as shown in Table 4.3. For example, the command
load(constants=’ab.1’) can be shortened to load(c=’ab.1’). Next, several different files
may be loaded at once using the same load command. For example, the two commands in
Figure 4.3 have the same effect as the single command in Figure 4.4. Last, you can bypass the
load command, unless the intermediate result is needed, and use the run command directly on
the load arguments, as in Figure 4.5.

AUTO> ab = load(e=’ab’)
Runner configured

AUTO> ab = load(ab,c=’ab.1)
Runner configured

Figure 4.3: Loading two files individually.
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AUTO> ab = load(e=’ab’,c=’ab.1’)
Runner configured

Figure 4.4: Loading two files at the same time.

AUTO> runabl = run(e=’ab’,c=’ab.1’)
Runner configured

Figure 4.5: Loading two files at the same time and run using them.

Also, since it is common that several files will be loaded that have the same base name
load(’ab’) performs the same action as load(e=’ab’, c=’ab’, s=’ab’, h=’ab’). Note, for
the command load(’ab’) it is not required that all of the files exist. Information from all
existing files is used only if they exist, and no error message will be given for non-existing files.
However, later run commands may cause AUTO to err with incomplete information.

4.4  Scripting

Section 4.3 showed commands being interactively entered at the AUTO CLUI prompt, but since
the AUTO CLUI is based on Python one has the ability to write scripts for performing sequences
of commands automatically. A Python script is very similar to the interactive mode shown in
Section 4.3 except that the commands are placed in a file and read all at once. For example,
if the commands from Figure 4.2 where placed into the file demol.auto, in the format shown
in Figure 4.6, then the commands could be run all at once by typing auto demol.auto. See
Figure 4.7 for the full output.

demo(’ab’)

ab = load(equation=’ab’)

ab = load(ab, constants=’ab.1’)
run(ab)

Figure 4.6: The commands from Figure 4.2 and they would appear in a AUTO CLUTI script file.
The source for this script can be found in $AUTO_DIR/demos/python/demol.auto.

4.5 Second Example

In Section 4.3 we showed a very simple AUTO CLUI script, in this Section we will describe
a more complex example, which introduces several new AUTO CLUI commands as well as a
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> cat demol.auto

demo(’ab’)

ab = load(equation=’ab’)

ab = load(ab, constants=’ab.1’)
run(ab)

> auto demol.auto

Copying demo ab ... done

Runner configured

Runner configured

Runner configured

gfortran -fopenmp -0 -c ab.f90 -o ab.o

gfortran -fopenmp -0 ab.o -o ab.exe /home/bart/auto/07p/lib/*.o
Starting ab ...

BR PT TY LAB PAR(2) L2-NORM U(1) U(2)
1 1 EP 1 8.00000E+00  0.0000QCE+00  0.00000E+00  0.00000E+00
1 31 UZ 2 1.40000E+01 0.00000E+00  0.00000E+00  0.00000E+00
1 36 UZ 3 1.50000E+01 0.00000E+00  0.00000E+00  0.00000E+00
1 41 UZ 4 1.60000E+01 0.00000E+00  0.00000E+00  0.00000E+00
1 46 UZ 5 1.70000E+01 0.00000E+00  0.00000E+00  0.00000E+00
1 51 EP 6 1.80000E+01 0.00000E+00  0.00000E+00  0.00000E+00

Total Time 0.193E-01
ab ... done
>

Figure 4.7: This Figure starts by listing the contents of the demol.auto file using the Unix cat
command. The file is then run through the AUTO CLUI by typing auto demol.auto and the
output is shown.

basic Python construct for looping. We will not provide an exhaustive reference for the Python
language, but only the very basics. For more extensive documentation we refer the reader to
Lutz (1996) or the web page http://www.python.org. In this section we will describe each line
of the script in detail, and the full text of the script is in Figure 4.8.

The script begins with a section, extracted into Figure 4.9, which performs a task identical
to that shown in Figure 4.2 except that the shorthand discussed in Section 4.3 is used for the
run command.

Up to this point all of the commands presented have had analogs in the command language
discussed in Section 5, and the AUTO CLUI has been designed in this way to make it easy
for users to migrate from the old command language to the AUTO CLUI The next section
of the script extracted into Figure 4.9, introduces a new command, namely branchpoints =
bvp ("BP"), which is the first command which has no analog in the old command language. The
command bvp ("BP"), given the output variable bvp from the first run, returns a Python object
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demo (’bvp’)

bvp = run(’bvp’)
branchpoints = bvp("BP")
for solution in branchpoints:
bp = load(solution, ISW=-1, NTST=50)
# Compute forwards
print "Solution label", bp["LAB"], "forwards"
fw = run(bp)
# Compute backwards
print "Solution label", bp["LAB"], "backwards"
bw = run(bp,DS=’-")
both = fw + bw
merged = merge(both)
bvp = bvp + merged

bvp=relabel (bvp)
save(bvp, ’bvp’)
plot (bvp)

wait ()

Figure 4.8: This Figure shows a more complex AUTO CLUI script. The source for this script
can be found in $AUTO_DIR/demos/python/demo2.auto.

demo (’bvp’)

bvp = run(’bvp’)

Figure 4.9: The first part of the complex AUTO CLUI script.
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which represents a list of all branchpoint solutions. Accordingly, this list is stored in the Python
variable branchpoints. Note, variables in Python are different from those in languages such as
C in that their type does not have to be declared before they are created.

branchpoints = bvp("BP")
for solution in branchpoints:
bp = load(solution, ISW=-1, NTST=50)
# Compute forwards
print "Solution label", bp["LAB"], "forwards"
fw = run(bp)
# Compute backwards
print "Solution label", bp["LAB"], "backwards"
bw = run(bp,DS=’-")
both = fw + bw
merged = merge(both)
bvp = bvp + merged

Figure 4.10: The second part of the complex AUTO CLUI script.

The next command, for solution in branchpoints: is the Python syntax for loops. The
branchpoints object is a list of the branch point solutions from the first run. The command for
solution in branchpoints: is used to loop over all solutions in the branchpoints variable by
setting the variable solution to be one of the solutions in branchpoints and then calling the
rest of the code in the block.

Python differs from most other computer languages in that blocks of code are not defined
by some delimiter, such as END DO in Fortran, but by indentation. In Figure 4.8 the commands
starting with bvp=relabel (bvp) are not part of the loop, because they are indented differently.
This can be confusing first time users of Python, but it has the advantage that the code is forced
to have a consistent indentation style.

The next command in the script, bp = load(solution, ISW=-1, NTST=50) loads a solution
with modified AUTO constants. All other constants are the same as they were in the first run.
The ISW value is changed to -1 (see Section 10.8.4), so that a branch switch is performed, and
the NTST value is changed to 50 (see Section 10.3.1). Only ‘in memory” version of the AUTO
constants are modified; the original file c.bvp is not modified.

Some diagnostics are then printed to the screen using a standard Pythonprint command:
the label number of the branch point that we switch at can be found by using bp["LAB"]. In
addition, as can be seen in Figure 4.10, the # character is the Python comment character. When
the Python interpretor encounters a # character it ignores everything from that character to the
end of the line.

We then use a fw=run(bp) command to perform the calculation of the bifurcating branch
from solution bp. We print additional information and use the command bw = run(bp,DS=’-")
to change the AUTO initial step size from positive to negative, which causes AUTO to compute
the bifurcating branch in the other direction (see Section 10.5.1). This output is appended to
the existing output in the Python variable bvp after some more processing. First the command
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both = fw + bw concatenates, using standard Python list syntax, the forwards and backwards
branches. Subsequently merged = merge(both) merges the two branches into one continuous
branch where, the backwards branch is flipped. Finally, the command bvp = bvp + merged
appends the merged branch to the existing results.

bvp=relabel (bvp)
save (bvp, ’bvp’)
plot (bvp)

wait()

Figure 4.11: The third part of the complex AUTO CLUI script.

The last section of the script, extracted into Figure 4.11, does some postprocessing and
plotting. First, the command bvp=relabel (bvp) relabels so all solutions in the bvp object have
unique labels starting at 1. The command save (bvp,’bvp’) (Section 4.13.1 in the reference)
saves the results of the AUTO runs into files using the base name bvp and the filename extensions
in Table 4.3. For example, in this case the bifurcation diagram will be saved as b.bvp, the solution
will be saved as s.bvp, and the diagnostics will be saved as d.bvp.

Now that the section of script shown in Figure 4.11 has finished computing the bifurcation
diagram, the command plot (bvp) brings up a plotting window (Section 4.13.2 in the reference),
and the command wait() causes the AUTO CLUI to wait for input. You may now exit the
AUTO CLUI by pressing any key in the window in which you started the AUTO CLUI.

For convenience, some of these commands have shorter forms. For instance, the load, run,
merge, relabel, save, and plot commands have the shorter forms 1d, r, mb, rl, sv, and
pl, respectively. All algebraic and functional expressions can be combined in the usual way.
Combining these techniques, a shorter version of the complex AUTO CLUI script is given in
Figure 4.12.

Even shorter forms are possible to save you typing using features borrowed from ipython,
both in auto -i and in plain auto. Those forms use auto-parentheses and auto-quotes: for a
command that does not assign to a variable you can skip the parentheses, and by using a “”
on the first character of a line you force all parameters to be quoted. For example, you can just
type pl bvp to plot the bifurcation diagram and solutions in the object bvp. Beware that these
extra short forms are only possible in normal auto scripts and at the AUTO CLUI prompt,
and only if they start in the first column, but not in the “expert” scripts described in the next
section. The even shorter version of the complex AUTO CLUI script is given in Figure 4.13. It
should be clear that these super-short forms save you typing at the command prompt but do
not help readability in scripts.

4.6 Extending the AUTO CLUI

The code in Figure 4.8 performed a very useful and common procedure, it started an AUTO
calculation and performed additional continuations at every point which AUTO detected as a
bifurcation. Unfortunately, the script as written can only be used for the bvp demo. In this
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demo (’bvp’)

bvp=r(’bvp’)

for solution in bvp(’BP’):
bp = ld(solution,NTST=50,ISW=-1)
# Compute forwards and backwards
bvp = bvp + mb(r(bp)+r(bp,DS="-"))

bvp=rl(bvp)
pl(bvp)
sv(bvp, ’bvp?’)
wait ()

Figure 4.12: This Figure shows a shorter version of the more complex AUTO CLUI script given
above. The source for this script can be found in $AUTO_DIR/demos/python/demo3.auto.

,demo bvp

bvp=r (’bvp’)

for solution in bvp(’BP’):
bp = 1d(solution,NTST=50,ISW=-1)
# Compute forwards and backwards
bvp = bvp + mb(r(bp)+r(bp,DS="-"))

bvp=rl (bvp)
pl bvp

sv bvp, ’bvp’
wait

Figure 4.13: This Figure shows an even shorter version of the more complex AUTO CLUI script
given above. The source for this script can be found in $AUTO_DIR/demos/python/demo4.auto.
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section we will generalize the script in Figure 4.8 for use with any demo, and demonstrate how it
can be imported back into the interactive mode to create a new command for the AUTO CLUL
Several examples of such “expert” scripts can be found in auto/07p/demos/python/n-body.

Just as loops and conditionals can be used in Python, one can also define functions. For
example, Figure 4.14 is a functional version of script from Figure 4.8. The changes are actually
quite minor. The first line, from auto import *, includes the definitions of the AUTO CLUI
commands, and must be included in all AUTO CLUI scripts which define functions. The next
line, def myRun(demoname) :, begins the function definition, and creates a function named myRun
which takes one argument demoname. The rest of the script is the same except that it has been
indented to indicate that it is part of the function definition, all occurrences of string *bvp’ have
been replaced with the variable demoname, and the variable bvp was replaced by the variable r.
Finally we have added a line myRun(’bvp’) which actually calls the function we have created
and runs the same computation as the original script.

from auto import *
def myRun(demoname) :
demo (demoname)

r = run(demoname)
branchpoints = r("BP")
for solution in branchpoints:
bp = load(solution, ISW=-1, NTST=50)
# Compute forwards
print "Solution label", bp["LAB"], "forwards"
fw = run(bp)
# Compute backwards
print "Solution label", bp["LAB"], "backwards"
bw = run(bp,DS=’-’)
both = fw + bw
merged = merge (both)
r = r + merged

r=relabel (r)
save(r, demoname)
plot(r)

wait ()

myRun (’bvp’)

Figure 4.14: This Figure shows a complex AUTO CLUTI script written as a function. The source
for this script can be found in $AUTO_DIR/demos/python /userScript.xauto.
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While the script in Figure 4.14 is only slightly different then the one showed in Figure 4.8 it
is much more powerful. Not only can it be used as a script for running any demo by modifying
the last line, it can be read back into the interactive mode of the AUTO CLUI and used to create
a new command, as in Figure 4.15. First, we create a file called userScript.py which contains
the script from Figure 4.14, with one minor modification. We want the function only to run
when we use it interactively, not when the file userScript.py is read in, so we remove the last
line where the function is called. We start the AUTO CLUI with the Unix command auto, and
once the AUTO CLUI is running we use the command from userScript import *, to import
the file userScript.py into the AUTO CLUI. The import command makes all functions in that
file available for our use (in this case myRun is the only one). It is important to note that from
userScript import * does not use the .py extension on the file name. After importing our
new function, we may use it just like any other function in the AUTO CLUI, for example by
typing myRun(’bvp’).

4.7  Bifurcation Diagram Objects

The run and loadbd commands (see Section 4.13.1 in the reference for details) return a Python
structure which we refer to as a bifurcation diagram object. It represents the information that is
also stored in AUTO’s output files (fort.7, fort.8, and fort.9, or b.* s.* and d.*), and in AUTO’s
constant files. For example, the command loadbd(’ab’) returns an object corresponding to the
files b.ab, s.ab, and d.ab. (if you are using the standard filename translations from Table 4.3).
The command run(’ab’) returns an object corresponding to the output of the run.

The bifurcation diagram object encapsulates all this information in an easy to use form.
This object is a list of all of the branches in the appropriate bifurcation diagram file, and each
branch behaves like an array (a PyDSTool Pointset subclass, to be precise). This array can be
viewed as a list of all of the points in the appropriate bifurcation diagram file, and each point is
a Python dictionary with entries for each piece of data for the point. For example, the sequence
of commands in Figure 4.16, prints out the label of the first point of a branch in a bifurcation
diagram. The query-able parts of the object are listed in Table 4.4.

The individual elements of the array may be accessed in a number of ways: by index of the
point using the [] syntax, a column using [’columnname’] syntax, or by label number or type
name plus one-based index using the () syntax. For example, assume that the parsed object is
contained in a variable data, and the first branch is in a variable br=data[0]. The first point
may then be accessed using the command br [0], while the column with label PAR(1) may be
accessed using the command br [’PAR(1)’]. The point with label 57 may be accessed using
the command br(57), and the second Hopf bifurcation point using the command br (’HB2’)
Using the () syntax you can also obtain new lists of points: br(’HB’) gives a list of all Hopf
bifurcation points, br ([1,4]) gives the points with labels 1 and 4, and br([’UZ’,4]) gives all
user defined points and label 4.

The [’columnname’] syntax is especially useful for plotting, as is illustrated in Figure 4.17.
Here the Python package matplotlib is directly used to plot a branch. Of course, the command
plot may also be used, but sometimes more control may be needed.
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> cp \$AUTO\_DIR/python/demo/userScript.py .

> 1s

userScript.py

> cat userScript.py

# This is an example script for the AUTOO7p command line user

# interface. See the "Command Line User Interface" chapter in the
# manual for more details.

from auto import *

def myRun(demoname) :
demo (demoname)

r = run(demoname)
branchpoints = r("BP")
for solution in branchpoints:
bp = load(solution, ISW=-1, NTST=50)
# Compute forwards
print "Solution label", bp["LAB"], "forwards"
fw = run(bp)
# Compute backwards
print "Solution label", bp["LAB"], "backwards"
bw = run(bp,DS=’-’)
both = fw + bw
merged = merge(both)
r = r + merged

r=relabel (r)
save(r, demoname)
plot(r)

wait ()

> auto

Python 2.5.2 (r252:60911, Nov 14 2008, 19:46:32)

[GCC 4.3.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.
(AUTOInteractiveConsole)

AUTO> from userScript import *

AUT0> myRun(’bvp’)

Figure 4.15: This Figure shows the functional version of the AUTO CLUI from Figure 4.14
being used as an extension to the AUTO CLUI. The source code for this script can be found in
$AUTO_DIR/python/demo/userScript.py
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AUTO> demo(’1lrz’)

Copying demo 1lrz ...

Runner configured

AUTO> data=run(’lrz’)

done

gfortran -fopenmp -0 -c 1lrz.f -o 1lrz.o

gfortran -fopenmp -0 lrz.o -o lrz.exe /home/bart/auto/07p/lib/*.o

Starting lrz ...

C...

1rz ...

done
AUTO> print data

BR PT TY LAB PAR(1) L2-NORM U(1) U(2)
1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
1 BP 2 1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
1 13 EP 3 3.16000E+01 0.00000E+00 0.00000E+00 0.00000E+00
BR PT TY LAB PAR(1) L2-NORM U(1) U(2)
2 42 HB 4 2.47368E+01 2.62685E+01 7.95602E+00 7.95602E+00
2 45 EP 5 3.26008E+01 3.41635E+01 9.17980E+00 9.17980E+00
BR PT TY LAB PAR(1) L2-NORM U(1) U(2)
2 42 HB 6 2.47368E+01 2.62685E+01 -7.95602E+00 -7.95602E+00
2 45 EP 7 3.26008E+01 3.41635E+01 -9.17980E+00 -9.17980E+00
AUTO> br=datal[1]
AUTO> print br
BR PT TY LAB PAR(1) L2-NORM U(1) U(2)
2 42 HB 4 2.47368E+01 2.62685E+01 7 .95602E+00 7.95602E+00
2 45 EP 5 3.26008E+01 3.41635E+01 9.17980E+00 9.17980E+00
AUTO> print br[0]
{’>TY number’: 0, ’PT’: -1, ’index’: 0, ’section’: ’LAB’ : ’BR’: 2,
’data’: [0.99999994000000003, 0.0, 0.0, 0.0, 0.0], ’TY name’: ’No Label’}
AUTO> print br[’PAR(1)’]
[ 0.99999994 1.001875 1.00747645 1.01786791 1.03426011
1.05801491 1.08738983 1.12195713 1.16544975 1.21923418

(..

22.638856621
AUTO> print br(4)

{’TY number’: 3,

’data’:

7.9560197197999996, 23.736843667999999],

'PT?: 42,

13.69994168 15.15715248 16.76398367
24.73684367 27.10974373

’index’:

41,

18.53533839
29.72303281

’section’:

0, ’LAB’:

20.48761501
32.60076345]

'BR’: 2,

[24.736843667999999, 26.268502943000001, 7.9560197197999996,

’TY name’:

7HB!}

o

U(3)

.00000E+00
.00000E+00
.00000E+00

U(3)

.37368E+01
.16008E+01

U(3)

.37368E+01
.16008E+01

U(3)

.37368E+01
.16008E+01

Figure 4.16: This figure shows an example of parsing a bifurcation diagram. First the demo
involving the Lorenz equations named ’lrz’ is copied and we perform its first run. We then

print the result, its second branch, the first point on this branch, the column corresponding to
'PAR(1)’, and the point with label 4 on this branch.
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AUTO> import pylab

AUTO> pylab.plot (br[’PAR(1)’],br[’U(1)’]1)
[<matplotlib.lines.Line2D object at 0x9b1356c>]
AUTO> pylab.show()

Figure 4.17: Following the example in Figure 4.16 we can plot a subset of the bifurcation
diagram, that is, the second branch, directly using matplotlib.

Query string | Meaning
TY name The short name for the solution type (see Table 4.5).
TY number | The number of the solution type (see Table 4.5).

BR The branch number.

PT The point number.

LAB The solution label, if any:.

section A unique identifier for each branch in a file with multiple branches.
data An array which contains the AUTO output.

Table 4.4: This table shows the strings that can be used to query a bifurcation diagram object
and their meanings.

Type Short Name | Number
No Label No Label
Branch point (algebraic problem) BP 1
Fold (algebraic problem) LP 2
Hopf bifurcation (algebraic problem) | HB 3
Regular point (every NPR steps) RG 4
User requested point UZ -4
Fold (ODE) LP 5
Bifurcation point (ODE) BP 6
Period doubling bifurcation (ODE) | PD 7
Bifurcation to invarient torus (ODE) | TR 8
Normal begin or end EP 9
Abnormal termination MX -9

Table 4.5: This table shows the various types of points that can be in solution and bifurcation
diagram files, with their short names and numbers.
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4.7.1

You can also obtain solutions from a bifurcation diagram structure, by using the () syntax
directly on the diagram instead of on individual branches. For example, in the above example
the command s=data() returns an object which encapsulates all solutions in a easy to use form.
The object returned in this way is a list of all of the solutions in the appropriate bifurcation
solution file, and each solution is a Python dictionary with entries for each piece of data for the
solution. For example, the sequence of commands in Figure 4.18, prints out the label of the first
solution in a bifurcation solution. The query-able parts of the object are listed in Table 4.6.

Solutions

Query string | Meaning
An array which contains the AUTO output. Each array
entry is a Python dictionary with a scalar entry 't denot-

data ing time, and sub-arrays for the solution vector 'u’ and
the solution direction vector "u dot’.
Other syntax: s[0], s[’t’], s[’U(1)"].

BR The number of the branch to which the solution belongs.

ISW The ISW value used to start the calculation. See Sec-
tion 10.8.4.

LAB The label of the solution.

NCOL The number of collocation points used to compute the
solution. See Section 10.3.2.

NTST The number of mesh intervals used to compute the solu-
tion. See Section 10.3.1.

Parameters | The value of all of the parameters for the solution.

parameters 'p’ and 'parameters’ are aliases.

p Other syntax: s.PAR(1), s[’PAR(1)"’]

PT The number of the point in the given branch.

TY A short string which describes the type of the solution
(see Table 4.5).

TY number A number which describes the type of the solution (see
Table 4.5).

Active ICP The values of the (one-based) indices of the free param-
eters.

rldot The values of the parameter direction vector.

Table 4.6: This table shows the strings that can be used to query a solution object and their
meanings.

The individual elements of the array may, again, be accessed in two ways, either by the index
of the solution using the [] syntax or by label number or type name using the () syntax. For
example, assume that the parsed object is contained in a variable s=data(). The first solution
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AUT0> s=data()
AUTO> sol=s[3] #or s(4), data(4), s(’HB1’), or data(’HB1’)
AUTO> print sol
BR PT TY LAB ISW NTST NCOL
2 42 HB 4 1 1 0
Pointset lrz (parameterized)
Independent variable:
t: [0.]
Coordinates:
U(1): [ 7.95601972]
U(2): [ 7.95601972]
U(3): [ 23.73684367]
Labels by index: Empty
Active ICP: [1]
rldot: [0.69738311435]
udotps: Pointset lrz (non-parameterized)
Coordinates:
UDOT(1): [ 0.11686228]
UDOT(2): [ 0.11686228]
UDOT(3): [ 0.69738311]
Labels by index: Empty

PAR(1:5): 2.4736843668E+01 2.6666666667E+00 1.0000000000E+01
PAR(6:10): 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
PAR(11:15): 6.5283032822E-01 0.0000000000E+00 0.0000000000E+00
...

PAR(36:36): 0.0000000000E+00

AUTO> print sol[’LAB’]

4

AUT0> sol1[0]

{’u’: [7.9560197197999996, 7.9560197197999996, 23.736843667999999],
’t’: 0.0, ’u dot’: [0.11686227712, 0.11686227712, 0.69738311435]}

AUTO> sol[’t’]

array([ 0.1)

AUTO> sol[°U(1)°’]

array ([ 7.95601972])

AUTO> sol.PAR(1) # or sol[’PAR(1)’]

24.736843667999999

AUTO> pylab.plot(sol[’U(1)’],s01[’U(2)°]1,’+’)

[<matplotlib.lines.Line2D object at 0x9c3348c>]

AUTO> pylab.show()

o

o
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Figure 4.18: This figure shows an example of parsing solutions. The first command, s=data(),
extracts a list of all solutions stored in the bifurcation diagram object data from the ’lrz’ demo in
Figure 4.16 and puts it into the variable s. The command sol=s[3] obtains the fourth solution.
Next, print sol displays it. The last commands illustrate how to extract components from
this fourth solution: its label, its first point, its time array, its first coordinate array, its first
parameter, and a plot of the first two coordinates.




may be accessed using the command s[0], while the solution with label 57 may be accessed
using the command s(57).

Individual solutions can be also be obtained directly from the bifurcation diagram object
data in the same way as for individual points above, by using s=data(label). For example,
the solution with label 57 may be accessed using the command data(57), and the second Hopf
bifurcation solution using the command data(’HB2’). All individual solutions can then be used
as a starting point for a new run.

Similarly, using the () syntax you can also obtain new lists of solutions: data(’HB’) gives
a list of all Hopf bifurcation solutions, data([1,4]) gives the solutions with labels 1 and 4, and
data([’UZ’,4]) gives all user defined solutions and label 4. A for loop can then iterate through
the list and provide new starting solutions.

4.7.2 Summary and reference

We have defined the following objects:
Bifurcation diagram object : bd=run(...), bd=loadbd(...).
Branch : bd[0], bd[1], bd[2],

Branch AUTO constants : bd[0].c, bd[1].c, bd[2].c,
bd.c refers to bd[0] .c.

Branch column : bd[’PAR(1’)], bd[0] [’PAR(1)’], bd[1] [’L2-NORM’],
Here bd[’PAR(1)’] is a shortcut for bd[0] [’PAR(1) ’].

Point : bd[0] [0], bd[1]1(5), bd[1](°UZ1’),

Point list : bd[0] ("UZ’), bd[0]([1,2]), bd[0]([’UZ’,’HB1’,7]),

Solution : bd(5), bd(’UZ1’), bd() [0],

Solution list : s=bd(), s(°UZ’), bd(’UZ’), bd([1,2]), bd([’UZ’,’HB1’,7]),
Solution column : bd(°UZ1’) [’t’], bd(’UZ1’) [’U(1)’],

Solution point : bd(’UZ1°) (0), bd(’UZ1’) [0],
Here the bd(’UZ1’) (t) notation gives the point at time t.

Solution AUTO constants : bd(5).c, bd(’UZ1’).c, bd() [0].c,
These constants are copied from the corresponding branch constants, removing the con-
stants IRS, PAR, U, sv, s, and dat, because those constants need to change between runs.
The AUTO constant IRS is automatically set to the solution label.
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4.8 Exporting output data for use by Python or external
visualization tools.

The bifurcation and solution file classes have three methods that are particularily useful for
creating data which can be used in other programs. First, there is a method called toArray which
takes a bifurcation diagram or solution and returns a Python array (a list of lists). Second, the
method toarray returns a Numerical Python (numpy) array, which works for branches, points
and solutions (but not for lists of branches). Third, there is a method called writeRawFilename
which will create a standard ASCII file which contains the bifurcation diagram or the solution.
In the solution ASCII file, the first element of each row will be the ’t’ value and the following
elements will be the values of the components at that 't’ value. Such ASCII files can be readily
parsed and plotted by external tools such as Gnuplot and MATLAB.

For example, we assume that a bifurcation diagram object is contained in a variable bd, for
instance, using bd=loadbd (’ab’). If one wanted to have the bifurcation diagram returned as a
Python list one would type bd.toArray (). Similarily, if one wanted to write out the bifurcation
diagram to the file outputfile one would type bd.writeRawFilename (’outputfile’).

To get the solution with label 57 returned as a numpy array one would type bd (57) . toarray ().
Similarily, if one wanted to write out the solution to the file outputfile one would type
bd(57) .writeRawFilename (’outputfile’).

4.9 The .autorc or autorc File

Much of the default behavior of the AUTO CLUI can be controlled by the .autorc file. The
.autorc file can exist in either the main AUTO directory, the users home directory, or the current
directory. In the current directory it can also have the name autorc, that is, without the dot.
For any option which is defined in more then one file, the .autorc file in the current directory (if
it exists) takes precedence, followed by the .autorc file in the users home directory (if it exists),
and then the .autorc file in the main AUTO directory. Hence, options may be defined on either
a per directory, per user, or global basis.

The first section of the .autorc file begins with the line [AUTO_command aliases] and this
section defines short names, or aliases, for the AUTO CLUI commands. Each line thereafter
is a definition of a command, similiar to branchPoint =commandQueryBranchPoint. The right
hand side of the assignment is the internal AUTO CLUI name for the command, while the left
hand side is the desired alias. Aliases and internal names may be used interchangably, but the
intention is that the aliases will be more commonly used. A default set of aliases is provided,
and these aliases will be used in the examples in the rest of this Chapter. The default aliases
are listed in the reference in Section 4.13.

NOTE: Defaults for the plotting tool may be included in the .autorc file as well.

4.10 Two Dimensional Plotting Tool

The two dimensional plotting tool can be run by using the command plot(bd) to plot a bi-
furcation diagram object bd after a calculation has been run, or using the command plot() to
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plot the files fort.7 and fort.8, or using the command plot(’foo’) to plote the data in the files
s.foo and b.foo.

The menu bar provides two buttons. The File button brings up a menu which allows the
user to save the current plot as a Postscript file or to quit the plotter. The Options button
allows the plotter configuration options to be modified. The available options are decribed in
Table 4.7. In addition, the options can be set from within the CLUI. For example, the set of
commands in Figure 4.19 shows how to create a plotter and change its background color to
black. The demo script auto/07p/demo/python/plotter.py contains several examples of changing
options in plotters.

If you are using matplotlib, then you will find seven icons that allow you to use various zoom
functions: a home button to go back to the original plot, back and forward buttons to go back
and forwards between zooms, a button to select pan/zoom mode, a button to select rectangular
zoom mode, a button to which brings up sliders that adjust margins, and a floppy disk button
that you can use to save the plot to a file. In “zoom to rect” mode, the left mouse button may
be held down to create a box in the plot. When the left button is released the plot will zoom
to the selected portion of the diagram. Similarly, the right mouse button can be used to zoom
out. In “pan/zoom” mode, dragging with the left mouse button pressed pans (shifts) the graph,
whereas dragging with the right mouse button zooms in and out.

If you are not using matplotlib, then pressing the right mouse button in the plotting window
brings up a menu of buttons which control several aspects of the plotting window. The top two
toggle buttons control what function the left button performs. The print value button causes
the left button to print out the numerical value underneath the pointer when it is clicked. When
zoom button is checked the left mouse button may be held down to create a box in the plot.
When the left button is released the plot will zoom to the selected portion of the diagram. The
unzoom button returns the diagram to the default zoom. The Postscript button allows the
user to save the plot as a Postscript file. The Configure... button brings up the dialog for
setting configuration options.

AUTO> plot=pl()

Created plotter

AUTO> plot.config(bg="black")
AUTO>

Figure 4.19: This example shows how a plotter is created, and how the background color may be
changed to black. All other configuration options are set similarily. Note, the above commands
assume that the files fort.7 and fort.8 exist in the current directory.

Query string Meaning

background The background color of the plot.
bifurcation_column_defaults | A set of bifurcation columns the user is likely to use.
bifurcation_coordnames Names to use instead of PAR(1),... for bifurcation diagrams.
bifurcation_diagram A parsed bifurcation diagram file to plot.
bifurcation_diagram_filename | The filename of the bifurcation diagram to plot.
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bifurcation_symbol

The symbol to use for bifurcation points.

bifurcation_x

The column to plot along the X-axis for bifurcation diagrams.

bifurcation_y

The column to plot along the Y-axis for bifurcation diagrams.

bottom_margin

The margin between the graph and the bottom edge.

color _list A list of colors to use for multiple plots.

do, d1, d2, d3, d4 Redefine d0, d1, d2, etc. setting to use with PyPLAUT (@pp).
dashes List of dash, no-dash lengths for dashed lines.

decorations Turn on or off the axis, tick marks, etc.

default_option

Default d0, d1, d2, etc. setting to use with PyPLAUT (@pp).

error_symbol

The symbol to use for error points.

even_tick_length

The length of the even tick marks.

foreground The background color of the plot.

grid Turn on or off the grid.

height Height of the graph.

hopf_symbol The symbol to use for Hopf bifurcation points.
index An array of indices to plot.

label An array of labels to plot.

label_defaults

A set of labels that the user is likely to use.

left_margin

The margin between the graph and the left edge.

limit_point_symbol

The symbol to use for limit points.

line_width Width to use for lines and curves.

mark_t The t value to marker with a small ball.
maxx The upper bound for the x-axis of the plot.
maxy The upper bound for the y-axis of the plot.
minx The lower bound for the x-axis of the plot.
miny The lower bound for the y-axis of the plot.

odd_tick_length

The length of the odd tick marks.

period_doubling_symbol

The symbol to use for period doubling bifurcation points.

ps_colormode

The PostScript output mode: ’color’, 'gray’ or 'monochrome’.

right_margin

The margin between the graph and the left edge.

runner

The runner object from which to get data.

smart_label

Whether to use a smart but slower label placement algorithm.

special_point_colors

An array of colors used to mark special points.

special_point_radius

The radius of the spheres used to mark special points.

solution

A parsed solution file to plot.

solution_column_defaults

A set of solution columns the user is likely to use.

solution_coordnames

Variable names to use instead of U(1),... for solutions.

solution_filename

The filename of the solution to plot.

solution_indepvarname

Variable name to use instead of ’t’ for solutions.

solution_x

The column to plot along the X-axis for solutions.

solution_y

The column to plot along the Y-axis for solutions.

stability

Turn on or off stability information using dashed curves.
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symbol_font

The font to use for marker symbols.

symbol _color

The color to use for the marker symbols.

tick_label_template

A string which defines the format of the tick labels.

tick_length

The length of the tick marks.

top_margin

The margin between the graph and the top edge.

top_title

The label for the top title.

top_title_fontsize

The font size for the top title.

torus_symbol

The symbol to use for torus bifurcation points.

type

The type of the plot, either “solution” or “bifurcation”.

use_labels

Whether or not to display label numbers in the graph.

use_symbols

Whether or not to display bifurcation symbols in the graph.

user_point_symbol

The symbol to use for user defined output points.

width Width of the graph.

xlabel The label for the x-axis.
xlabel_fontsize The font size for the x-axis label.
xticks The number of ticks on the x-axis.
ylabel The label for the y-axis.

ylabel fontsize The font size for the y-axis label.
yticks The number of ticks on the y-axis.

Table 4.7: This table shows the options that can be set
for the AUTO CLUI two dimensional plotting window

and their me

anings.

4.11 Three Dimensional Plotting Tool

The AUTO three dimensional plotting tool, PLAUT04, as described in Chapter 8, can be run
from the Python CLUI using the command plot3 or commandPlotter3D, in a similar fashion

to plot. It does not use the options that are used for the two-dimensional plotting window.

4.12 Quick Reference

In this section we have created a

table of all of the AUTO CLUI commands, their abbreviations,
and a one line description of what function they perform. Each command may be entered using

its full name or any of its aliases.

Command, Long name Description

Aliases

append ap commandAppend Append data files.

cat commandCat Print the contents of a file
cd commandCd Change directories.

clean cl commandClean Clean the current directory.
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demo dm commandCopyAndLoadDemo Copy a demo into the current direc-
tory and load it.

copy commandCopyDataFiles Copy data files.

copydemo commandCopyDemo Copy a demo into the current direc-
tory.

save sv commandCopyFortFiles Save data files.

gui commandCreateGUI Show AUTOs graphical user inter-
face.

delete, dl commandDeleteDataFiles Delete data files.

df deletefort commandDeleteFortFiles Clear the current directory of fort
files.

dlb commandDeleteLabels Delete special labels.

dsp commandDeleteSpecial Points Delete special points.

double commandDouble Double a solution.

man commandInteractiveHelp Get help on the AUTO commands.

klb commandKeepLabels Keep special labels.

ksp commandKeepSpecialPoints Keep special points.

Is commandLs List the current directory.

merge mb commandMergeBranches Merge branches in data files.

move commandMoveFiles Move data-files to a new name.

cn constantsget

commandParseConstantsFile

Get the current continuation con-
stants.

bt diagramand-
solutionget

commandParseDiagramAndSolutionFile

Parse both bifurcation diagram and
solution.

dg diagramget

commandParseDiagramkFile

Parse a bifurcation diagram.

sl solutionget

commandParseSolutionFile

Parse solution file:

plot p2 pl

commandPlotter

2D plotting of data.

plot3 p3

commandPlotter3D

3D plotting of data.

branchpoint br
bp

commandQueryBranchPoint

Print the “branch-point function”.

eigenvalue ev
cg

commandQueryEigenvalue

Print eigenvalues of Jacobian (alge-
braic case).

floquet fl

commandQueryFloquet

Print the Floquet multipliers.

hopf hb hp

commandQueryHopf

Print the value of the “Hopf func-
tion”.

1terations it

commandQuerylterations

Print the number of Newton inter-
ations.

limitpoint Im Ip

commandQueryLimitpoint

Print the value of the “limit point
function”.

note nt commandQueryNote Print notes in info file.
secondaryperiod| commandQuerySecondaryPeriod Print value of “secondary-periodic
SC sp bif. fen”.

stepsize ss st

commandQueryStepsize

Print continuation step sizes.
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quit g commandQuit Quit the AUTO CLUL

relabel 1l commandRelabel Relabel data files.

run r rn commandRun Run AUTO.

ch changecon- | commandRunnerConfigFort2 Modify continuation constants.

stant cc

hch commandRunnerConfigFort12 Modify HomCont continuation con-
stants.

load 1d commandRunnerLoadName Load files into the AUTO runner.

printconstant commandRunnerPrintFort2 Print continuation parameters.

pc pr

hpr commandRunnerPrintFort12 Print HomCont continuation pa-
rameters.

shell commandShell Run a shell command.

splabs commandSpecialPointLabels Return special labels.

subtract sb commandSubtractBranches Subtract branches in data files.

triple tr commandTriple Triple a solution.

us userdata commandUserData Covert user-supplied data files.

wait command Wait Wait for the user to enter a key.

auto execfile ex

Execute an AUTO CLUI script.

demofile dmf

Execute an AUTO CLUI script,
line by line (demo mode).

For convenience, you can use

44'?7

to run a shell command. Moreover the common shell com-

mands clear, less, mkdir, rmdir, cp, mv, rm, 1s, cd, and cat, and all AUTO Unix commands
that are described in Chapter 5 and start with an “@”-sign can be entered directly, without the

4('77
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4.13 Reference

4.13.1 Basic commands.

run Run AUTO.

load

Type r=run([s], [options]) to run AUTO from solution s with the given AUTO con-
stants or file keyword options.

The results are stored in the bifurcation diagram r which you can later print with print
r, obtain branches from via r[0], r[1], ..., and obtain solutions from via r(3), r(5), r('LP2’),
where 1 and 5 are label numbers, and 'LP2’ refers to the second LP label.

run(s) runs AUTO in the following way for different types of s:

e A solution: AUTO starts from solution s, with AUTO constants s.c.

e A bifurcation diagram: AUTO start from the solution specified by the AUTO con-
stant IRS, or if IRS is not specified, the last solution in s, s() [-1], with AUTO
constants s() [-1] .c.

e A string: AUTO uses the solution in the file s.s together with the constants in the
files c.s, and h.s. Not all of these files need to be present.
If no solution s is specified, then the global values from the load command (below) are
used instead, where options which are not explicitly set retain their previous value.

Keyword argument options can be AUTO constants, such as DS=0.05, or ISW=-1, or
specify a constant or solution file. These override the constants in s.c, where applicable.
See load:

run(s,options) is equivalent to run(load(s,options))

Example: given a bifurcation diagram bd, with a branch point solution, switch branches
and stop at the first Hopf bifurcation:
hb = run(bd(’BP1’),ISW=-1,SP="HB1’)

Special keyword arguments are sv and ap; sv is also an AUTO constant:
run(bd(’BP1’),ISW=-1,SP="HB1’ ,sv="hb’ ,ap=’all’)
saves to the files b.hb, s.hb and d.hb, and appends to b.all, s.all, and d.all.

Aliases: r rn commandRun

Load files into the AUTO runner or return modified solution data.

Type result=1load([options]) to modify the AUTO runner.
Type result=1load(data, [options]) to return possibly modified solution data.

The type of the result is a solution object.

load(data, [options]) returns a solution in the following way for different types of data:

e A solution: load returns the solution data, with AUTO constants modified by options.
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e A bifurcation diagram or a solution list: returns the solution specified by the AUTO
constant IRS, or if IRS is not specified, the last solution in s.

e A string: AUTO uses the solution in the file ’s.s’ together with the constants in the
files ’c.s’, and ’h.s’. Not all of these files need to be present.

e A Python list array or a numpy array representing a solution, returns a solution with
the given contents. Such an array must be given column-wise, as [[t0, ..., tn], [x0, ...,

xn], [y0, ..., yn, ...].

There are many possible options:

Long name  Short name Description

equation e The equations file

constants ¢ The AUTO constants file

homcont h The Homcont parameter file

solution s The restart solution file
NDIM,IPS,etc AUTO constants.
BR,PT,TY,LAB Solution constants.

If data is not specified or data is a string then options which are not explicitly set retain
their previous value. For example one may type: s=load(e=’ab’,c=’ab.1’) to use ab.c
as the equations file and c.ab.1 as the constants file (if you are using the default filename
templates).

Type s=load(’name’) to load all files with base 'name’. This does the same thing as
running s=load(e=’name’,c=’name,h=’name’,s=’name’).

You can also specify AUTO Constants, e.g., DS=0.05, or IRS=2. Special values for DS are
'+ (forwards) and -’ (backwards).
Example: s = load(s,DS="-’) changes s.c[’DS’] to -s.c[’DS’].

Aliases: 1d commandRunnerLoadName

loadbd Load bifurcation diagram files.
Type b=1loadbd ([options]) to load output files or output data. There are three possible

options:
Long name  Short name Description
bifurcationdiagram b The bifurcation diagram file
solution s The solution file or list of solutions
diagnostics d The diagnostics file

Type loadbd(’name’) to load all files with base 'name’. This does the same thing as
running
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save

loadbd (b=’name’,s=’name,d=’name’).
plot(b) will then plot the 'b” and ’s’ components.

Returns a bifurcation diagram object representing the files in b.

Aliases: bd commandParseOutputFiles

Save data files.

Type save(x, ’xxx’) to save bifurcation diagram x to the files b.xxx, s.xxx, d.xxx. Existing
files with these names will be overwritten. If x is a solution, a list of solutions, or does not
contain any bifurcation diagram or diagnostics data, then only the file s.xxx is saved to.

Type save(’xxx’) to save the output-files fort.7, fort.8, fort.9, to b.xxx, s.xxx, d.xxx (if
you are using the default filename templates). FExisting files with these names will be
overwritten.

Aliases: commandCopyFortFiles

append Append data files.

Type append (x, ’xxx’) to append bifurcation diagram x to the data-files b.xxx, s.xxx, and
d.xxx. This is equivalent to the command
save (x+load (’xxx’),’xxx’)

Type append (’xxx’ ,xxx) to append existing data-files s.xxx, b.xxx, and d.xxx to bifurca-
tion diagram x. This is equivalent to the command
x=load (’xxx’)+x

Type append (’xxx’) to append the output-files fort.7, fort.8, fort.9, to existing data-files
s.xxx, b.xxx, and d.xxx (if you are using the default filename templates).

Type append(’xxx’,’yyy’) to append existing data-files s.xxx, b.xxx, and d.xxx to data-
files s.yyy, b.yyy, and d.yyy (if you are using the default filename templates).

Aliases: ap commandAppend

4.13.2 Plotting commands.

plot

2D plotting of data.

Type plot(x) to run the graphics program PyPLAUT for the graphical inspection of
bifurcation diagram or solution data in x.

Type plot (’xxx’) to run the graphics program PyPLAUT for the graphical inspection
of the data-files b.xxx and s.xxx (if you are using the default filename templates).

Type plot () to run the graphics program for the graphical inspection of the output-files
fort.7 and fort.8.

The return value will be the handle for the graphics window.

Aliases: p2 pl commandPlotter

50



plot3 3D plotting of data.

Type plot3(x) to run the graphics program PLAUTO04 for the graphical inspection of
bifurcation diagram or solution data in x.

Type plot3(’xxx’) to run the graphics program PLAUTO04 for the graphical inspection
of the data-files b.xxx and s.xxx (if you are using the default filename templates).

Type plot3() to run the graphics program PLAUTO04 for the graphical inspection of the
output-files fort.7 and fort.8.

Type plot3(...,r3b=True) to run PLAUTO04 in restricted three body problem mode.
Aliases: p3 commandPlotter3D

4.13.3 File-manipulation.

copy Copy data files.

Type copy(’xxx’,’yyy’) to copy the data-files c.xxx, d.xxx, b.xxx, and h.xxx to c.yyy,
d.yyy, b.yyy, and h.yyy (if you are using the default filename templates).

Aliases: commandCopyDataFiles

move Move data-files to a new name.

Type move (’xxx’,’yyy’) to move the data-files b.xxx, s.xxx, d.xxx, and c.xxx to b.yyy,
s.yyy, d.yyy, and c.yyy (if you are using the default filename templates).

Aliases: commandMoveFiles

df Clear the current directory of fort files.

Type df () to clean the current directory. This command will delete all files of the form
fort.*.

Aliases: deletefort commandDeleteFortFiles

clean Clean the current directory.

Type clean() to clean the current directory. This command will delete all files of the
form fort.*, * *~ * o, and *.exe.

Aliases: cl commandClean

delete Delete data files.

Type delete(’xxx’) to delete the data-files d.xxx, b.xxx, and s.xxx (if you are using the
default filename templates).

Aliases: dl commandDeleteDataFiles
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4.13.4 Diagnostics.

limitpoint Print the value of the “limit point function”.

Type limitpoint (x) to list the value of the “limit point function” in the diagnostics of
the bifurcation diagram object x. This function vanishes at a limit point (fold).

Type limitpoint () to list the value of the “limit point function” in the output-file fort.9.

Type limitpoint (’xxx’) to list the value of the “limit point function” in the info file
d.xxx.

Aliases: Im Ip commandQueryLimitpoint

branchpoint Print the “branch-point function”.

Type branchpoint (x) to list the value of the “branch-point function” in the diagnostics
of the bifurcation diagram object x. This function vanishes at a branch point.

Type branchpoint () to list the value of the “branch-point function” in the output-file
fort.9.

Type branchpoint (’xxx’) to list the value of the “branch-point function” in the info file
d.xxx.

Aliases: br bp commandQueryBranchPoint

hopf Print the value of the “Hopf function”.

Type hopf (x) to list the value of the “Hopf function” in the diagnostics of the bifurcation
diagram object x. This function vanishes at a Hopf bifurcation point.

Type hopf () to list the value of the “Hopf function” in the output-file fort.9.
Type hopf (’xxx’) to list the value of the “Hopf function” in the info file d.xxx.
Aliases: hb hp commandQueryHopf

secondaryperiod Print value of “secondary-periodic bif. fen”.

Type secondaryperiod(x) to list the value of the “secondary-periodic bifurcation func-
tion” in the diagnostics of the bifurcation diagram object x. This function vanishes at
period-doubling and torus bifurcations.

Type secondaryperiod() to list the value of the “secondary-periodic bifurcation function”
in the output-file fort.9.

Type secondaryperiod(’xxx’) to list the value of the “secondary-periodic bifurcation
function” in the info file d.xxx.

Aliases: sc sp commandQuerySecondaryPeriod

iterations Print the number of Newton interations.

Type iterations(x) to list the number of Newton iterations per continuation step in the
diagnostics of the bifurcation diagram object x.

Type iterations () to list the number of Newton iterations per continuation step in fort.9.
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Type iterations(’xxx’) to list the number of Newton iterations per continuation step
in the info file d.xxx.

Aliases: it commandQuerylterations

note Print notes in info file.
Type note(x) to show any notes in the diagnostics of the bifurcation diagram object x.
Type note() to show any notes in the output-file fort.9.
Type note (’xxx’) to show any notes in the info file d.xxx.

Aliases: nt commandQueryNote

stepsize Print continuation step sizes.

Type stepsize(x) to list the continuation step size for each continuation step in the
diagnostics of the bifurcation diagram object x.

Type stepsize() to list the continuation step size for each continuation step in fort.9.

Type stepsize(’xxx’) to list the continuation step size for each continuation step in the
info file d.xxx.

Aliases: ss st commandQueryStepsize

eigenvalue Print eigenvalues of Jacobian (algebraic case).

Type eigenvalue(x) to list the eigenvalues of the Jacobian in the diagnostics of the
bifurcation diagram object x. (Algebraic problems.)

Type eigenvalue() to list the eigenvalues of the Jacobian in fort.9.
Type eigenvalue(’xxx’) to list the eigenvalues of the Jacobian in the info file d.xxx.

Aliases: ev eg commandQueryEigenvalue

floquet Print the Floquet multipliers.

Type floquet(x) to list the Floquet multipliers in the diagnostics of the bifurcation
diagram object x. (Differential equations.)

Type floquet () to list the in the output-file fort.9.
Type floquet (’xxx’) to list the Floquet multipliers in the info file d.xxx.

Aliases: fl commandQueryFloquet

4.13.5 File-maintenance.

relabel Relabel data files.

Type y=relabel (x) to return the python object x, with the solution labels sequentially
relabelled starting at 1, as a new object y.

Type relabel (’xxx’) to relabel s.xxx and b.xxx (if you are using the default filename
templates). Backups of the original files are saved.
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Type relabel (’xxx’,’yyy’) to relabel the existing data-files s.xxx and b.xxx and save
then to s.yyy and b.yyy; d.xxx is copied to d.yyy (if you are using the default filename
templates).

Aliases: rl commandRelabel

double Double a solution.
Type double() to double the solution in fort.8.

Type double(’xxx’) to double the solution in s.xxx (if you are using the default filename
templates).

Aliases: db commandDouble

triple Triple a solution.
Type triple() to triple the solution in fort.8.

Type triple(’xxx’) to triple the solution in s.xxx (if you are using the default filename
templates).

Aliases: tr commandTriple

us Convert user-supplied data files.

Type us(’xxx’) to convert a user-supplied data file 'xxx.dat’ to AUTO format. The
converted file is called ’s.dat’. The original file is left unchanged. AUTO automatically
sets the period in PAR(11). Other parameter values must be set in 'STPNT’. (When
necessary, PAR(11) may also be redefined there.) The constants-file file 'c.xxx’ must be
present, as the AUTO-constants 'NTST’ and 'NCOL’ are used to define the new mesh.

Note: this technique has been obsoleted by the ’dat’ AUTO constant in Section 10.8.7.

Aliases: userdata commandUserData

dlb Delete special labels.

Type d1b(1list,x) to delete the special points in list from the Python object x, which
must be a solution list or a bifurcation diagram.

Type dlb(1list,’xxx’) to delete the special points in list from the data-files b.xxx, and
s.xxx. (if you are using the default filename templates).

Type d1b(list) to delete the special points in list from the data-files fort.7 and fort.8.

Type information is kept in the bifurcation diagram for plotting. list is a label number or
type name code, or a list of those, such as 1, or [2,3]|, or "UZ’ or BP’’LP’], or it can be
None or omitted to mean the special points [BP’’LP’’HB’PD’TR’EP’'MX’|

Alias: commandDeleteLabels

klb Keep special labels.

Type k1b(1list,x) to only keep the special points in list from the Python object x, which
must be a solution list or a bifurcation diagram.
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Type k1b(list, ’xxx’) to only keep the special points in list from the data-files b.xxx,
and s.xxx. (if you are using the default filename templates).

Type k1b(1ist) to only keep the special points in list from the data-files fort.7 and fort.8.

Type information is kept in the bifurcation diagram for plotting. list is a label number or
type name code, or a list of those, such as 1, or [2,3], or 'UZ’ or 'BP’LP’], or it can be
None or omitted to mean [[BP’’LP’HB’PD’’TR’EP’'MX’|, deleting 'UZ’ and regular
points.

Alias: commandKeepLabels

dsp Delete special points.

Type dsp(list,x) to delete the special points in list from the Python object x, which
must be a solution list or a bifurcation diagram.

Type dsp(list, ’xxx’) to delete the special points in list from the data-files b.xxx, and
s.xxx. (if you are using the default filename templates).

Type dsp(list) to delete the special points in list from the data-files fort.7 and fort.8.

list is a label number or type name code, or a list of those, such as 1, or [2,3], or 'UZ’
or 'BP’LP’], or it can be None or omitted to mean the special points [BP’, 'LP’, "HB’,
'PD’, 'TR’, ’EP’, "MX’|

Alias: commandDeleteSpecialPoints
ksp Keep special points.

Type ksp(1ist,x) to only keep the special points in list from the Python object x, which
must be a solution list or a bifurcation diagram.

Type ksp(list,’xxx’) to only keep the special points in list from the data-files b.xxx,
and s.xxx. (if you are using the default filename templates).

Type ksp(1ist) to only keep the special points in list from the data-files fort.7 and fort.8.

list is a label number or type name code, or a list of those, such as 1, or [2,3], or "UZ’ or
'BP’’LP’], or it can be None or omitted to mean BP’’LP’HB’'PD’ TR’ EP’'MX'],
deleting 'UZ’ and regular points.

Alias: commandKeepSpecialPoints

merge Merge branches in data files.

Type y=merge (x) to return the python object x, with its branches merged into continuous
curves, as a new object y.

Type merge(’xxx’) to merge branches in s.xxx, b.xxx, and d.xxx (if you are using the
default filename templates). Backups of the original files are saved.

Type merge (’xxx’,’yyy’) to merge branches in the existing data-files s.xxx, b.xxx, and
d.xxx and save them to s.yyy, b.yyy, and d.yyy (if you are using the default filename tem-
plates).

Aliases: mb commandMergeBranches
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subtract Subtract branches in data files.

Type z=subtract(x,y,ref) to return the python object x, where, using interpolation,
the first branch in y is subtracted from all branches in x, as a new object z. Use ref’
(e.g., 'PAR(1)’) as the reference column in y (only the first monotonically increasing or
decreasing part is used).

Type subtract (’xxx’,’yyy’, ’ref’) to subtract, using interpolation, the first branch in
b.yyy from all branches in b.xxx, and save the result in b.xxx. A Backup of the original file
is saved.

Use optional arguments branch=m, and point=n, to denote the branch and first point on
that branch within y or b.yyy, where m,n are in 1,2,3,....

Aliases: sb commandSubtractBranches

4.13.6 Copying a demo.

demo Copy a demo into the current directory and load it.

Type demo (*xxx’) to copy all files from auto/07p/demos/xxx to the current user directory.

Here 'xxx’ denotes a demo name; e.g., ’abc’. To avoid the overwriting of existing files,

always run demos in a clean work directory. NOTE: This command automatically performs
the load command as well.

Aliases: dm commandCopyAndLoadDemo

copydemo Copy a demo into the current directory.

Type copydemo (’xxx’) to copy all files from auto/07p/demos/xxx to the current user
directory. Here 'xxx’ denotes a demo name; e.g., ’abc’. To avoid the overwriting of
existing files, always run demos in a clean work directory.

Aliases: copydemo commandCopyDemo

4.13.7 Python data structure manipulation functions.

All commands here, except for ‘'man’; ’gui’, and ’wait’ are on