class INTI_EXT |
---|
checkDivZ(a0,b0,p:INTI):BOOL |
---|
**** | true if exist "k" s.t. (b+k*prime)|a in Z |
extended_gcd(a:ARRAY{INTI}, out factor:ARRAY{INTI}):INTI |
---|
**** | multi GCD. return GCD g. g = a . factor |
extended_gcd(i,j:INTI, out f1: INTI, out f2:INTI):INTI |
---|
**** | gcd = i*f1 + j*f2 x:SAME:=one; y:SAME:=zero; u:SAME:=zero; v:SAME:=one; |
factorize(n:INTI):ARRAY{INTI} |
---|
**** | return array of factors with duplication |
gcd(a:ARRAY{INTI}):INTI |
---|
**** | multi GCD. return GCD of elements of a[]. |
gcd(i,j:INTI):INTI |
---|
getDivisors(n:INTI):ARRAY{INTI} |
---|
**** | get all divisors of n |
inv(p,g:INTI):INTI |
---|
**** | inverse of g as finite field Zp. i.e. p:prime. g*inv(p,g)=1 (mod p). |
is_fpsp(x,a:INTI):BOOL |
---|
**** | is prime or Fermat's pseudo prime of base "a"? return (a^(x-1.inti)%x=1.inti); |
is_prime(x:INTI):BOOL |
---|
**** | Is __x__ prime? |
is_spsp(x,a:INTI):BOOL |
---|
**** | is prime or strong pseudo prime of base "a"? |
next_prime(n:INTI):INTI |
---|
**** | prime next to n. (minimum prime >n) |
getDivisorsS(i:CARD, divisor:INTI,factors:ARRAY{INTI}, factord:ARRAY{CARD}):ARRAY{INTI} |
---|