
Contents

1 Classes 2
1.1 group � algorithms for �nite groups 2

1.1.1 †Group � group structure 3
1.1.1.1 setOperation � change operation 5
1.1.1.2 †createElement � generate a GroupElement in-

stance . 5
1.1.1.3 †identity � identity element 5
1.1.1.4 grouporder � order of the group 5

1.1.2 GroupElement � elements of group structure 7
1.1.2.1 setOperation � change operation 9
1.1.2.2 †getGroup � generate a Group instance 9
1.1.2.3 order � order by factorization method 9
1.1.2.4 t_order � order by baby-step giant-step 9

1.1.3 †GenerateGroup � group structure with generator 11
1.1.4 AbelianGenerate � abelian group structure with generator 12

1.1.4.1 relationLattice � relation between generators . . 12
1.1.4.2 computeStructure � abelian group structure . . 12

1

Chapter 1

Classes

1.1 group � algorithms for �nite groups

• Classes

� Group

� GroupElement

� GenerateGroup

� AbelianGenerate

2

1.1.1 †Group � group structure

Initialize (Constructor)

Group(value: class, operation: int=-1) → Group

Create an object which wraps value (typically a ring or a �eld) only to expose
its group structure.

The instance has methods de�ned for (abstract) group. For example, identity
returns the identity element of the group from wrapped value.

value must be an instance of a class expresses group structure. operation

must be 0 or 1; If operation is 0, value is regarded as the additive group.
On the other hand, if operation is 1, value is considered as the multiplicative
group. The default value of operation is 0.
†You can input an instance of Group itself as value. In this case, the default
value of operation is the attribute operation of the instance.

Attribute

entity :
The wrapped object.

operation :
It expresses the mode of operation; 0 means additive, while 1 means mul-
tiplicative.

Operations

operator explanation
A==B Return whether A and B are equal or not.
A!=B Check whether A and B are not equal.
repr(A) representation
str(A) simple representation

Examples

>>> G1=group.Group(finitefield.FinitePrimeField(37), 1)

>>> print G1

F_37

>>> G2=group.Group(intresidue.IntegerResidueClassRing(6), 0)

3

>>> print G2

Z/6Z

4

Methods

1.1.1.1 setOperation � change operation

setOperation(self, operation: int) → (None)

Change group type to additive (0) or multiplicative (1).

operation must be 0 or 1.

1.1.1.2 †createElement � generate a GroupElement instance

createElement(self, *value) → GroupElement

Return GroupElement object whose group is self, initialized with value.

†This method calls self.entity.createElement.

value must �t the form of argument for self.entity.createElement.

1.1.1.3 †identity � identity element

identity(self) → GroupElement

Return identity element (unit) of group.

Return zero (additive) or one (multiplicative) corresponding to operation.
†This method calls self.entity.identity or entity does not have the attribute
then returns one or zero.

1.1.1.4 grouporder � order of the group

grouporder(self) → long

Return group order (cardinality) of self.

†This method calls self.entity.grouporder, card or __len__.
We assume that the group is �nite, so returned value is expected as some long
integer. If the group is in�nite, we do not de�ne the type of output by the
method.

5

Examples

>>> G1=group.Group(finitefield.FinitePrimeField(37), 1)

>>> G1.grouporder()

36

>>> G1.setOperation(0)

>>> print G1.identity()

FinitePrimeField,0 in F_37

>>> G1.grouporder()

37

6

1.1.2 GroupElement � elements of group structure

Initialize (Constructor)

GroupElement(value: class, operation: int=-1) → GroupElement

Create an object which wraps value (typically a ring element or a �eld ele-
ment) to make it behave as an element of group.

The instance has methods de�ned for an (abstract) element of group. For
example, inverse returns the inverse element of value as the element of group
object.

value must be an instance of a class expresses an element of group structure.
operation must be 0 or 1; If operation is 0, value is regarded as the additive
group. On the other hand, if operation is 1, value is considered as the multi-
plicative group. The default value of operation is 0.
†You can input an instance of GroupElement itself as value. In this case, the
default value of operation is the attribute operation of the instance.

Attribute

entity :
The wrapped object.

set :
It is an instance of Group, which expresses the group to which self

belongs.

operation :
It expresses the mode of operation; 0 means additive, while 1 means mul-
tiplicative.

Operations

operator explanation
A==B Return whether A and B are equal or not.
A!=B Check whether A and B are not equal.
A.ope(B) Basic operation (additive +, multiplicative ∗)
A.ope2(n) Extended operation (additive ∗, multiplicative ∗∗)
A.inverse() Return the inverse element of self
repr(A) representation
str(A) simple representation

7

Examples

>>> G1=group.GroupElement(finitefield.FinitePrimeFieldElement(18, 37), 1)

>>> print G1

FinitePrimeField,18 in F_37

>>> G2=group.Group(intresidue.IntegerResidueClass(3, 6), 0)

IntegerResidueClass(3, 6)

8

Methods

1.1.2.1 setOperation � change operation

setOperation(self, operation: int) → (None)

Change group type to additive (0) or multiplicative (1).

operation must be 0 or 1.

1.1.2.2 †getGroup � generate a Group instance

getGroup(self) → Group

Return Group object to which self belongs.

†This method calls self.entity.getRing or getGroup.
†In an initialization of GroupElement, the attribute set is set as the value
returned from the method.

1.1.2.3 order � order by factorization method

order(self) → long

Return the order of self.

†This method uses the factorization of order of group.
†We assume that the group is �nite, so returned value is expected as some long
integer. †If the group is in�nite, the method would raise an error or return an
invalid value.

1.1.2.4 t_order � order by baby-step giant-step

t_order(self, v: int=2) → long

Return the order of self.

†This method uses Terr's baby-step giant-step algorithm.
This method does not use the order of group. You can put number of baby-step
to v. †We assume that the group is �nite, so returned value is expected as some

9

long integer. †If the group is in�nite, the method would raise an error or return
an invalid value.

v must be some int integer.

Examples

>>> G1=group.GroupElement(finitefield.FinitePrimeFieldElement(18, 37), 1)

>>> G1.order()

36

>>> G1.t_order()

36

10

1.1.3 †GenerateGroup � group structure with generator

Initialize (Constructor)

GenerateGroup(value: class, operation: int=-1) → GroupElement

Create an object which is generated by value as the element of group struc-
ture.

This initializes a group `including' the group elements, not a group with gen-
erators, now. We do not recommend using this module now. The instance has
methods de�ned for an (abstract) element of group. For example, inverse re-
turns the inverse element of value as the element of group object.
The class inherits the class Group.

value must be a list of generators. Each generator should be an instance of
a class expresses an element of group structure. operation must be 0 or 1; If
operation is 0, value is regarded as the additive group. On the other hand,
if operation is 1, value is considered as the multiplicative group. The default
value of operation is 0.

Examples

>>> G1=group.GenerateGroup([intresidue.IntegerResidueClass(2, 20),

... intresidue.IntegerResidueClass(6, 20)])

>>> G1.identity()

intresidue.IntegerResidueClass(0, 20)

11

1.1.4 AbelianGenerate � abelian group structure with gen-
erator

Initialize (Constructor)

The class inherits the class GenerateGroup.

1.1.4.1 relationLattice � relation between generators

relationLattice(self) → Matrix

Return a list of relation lattice basis as a square matrix each of whose column
vector is a relation basis.

The relation basis, V satis�es that
∏

i generatoriVi = 1.

1.1.4.2 computeStructure � abelian group structure

computeStructure(self) → tuple

Compute �nite abelian group structure.

If self G ≃ ⊕i < hi >, return [(h1, ord(h1)),..(hn, ord(hn))] and
#G, where

< hi > is a cyclic group with the generator hi.

The output is a tuple which has two elements; the �rst element is a list which
elements are a list of hi and its order, on the other hand, the second element is
the order of the group.

Examples

>>> G=AbelianGenerate([intresidue.IntegerResidueClass(2, 20),

... intresidue.IntegerResidueClass(6, 20)])

>>> G.relationLattice()

10 7

0 1

>>> G.computeStructure()

([IntegerResidueClassRing,IntegerResidueClass(2, 20), 10)], 10L)

12

	1 Classes
	1.1 group – algorithms for finite groups
	1.1.1 Group – group structure
	1.1.1.1 setOperation – change operation
	1.1.1.2 createElement – generate a GroupElement instance
	1.1.1.3 identity – identity element
	1.1.1.4 grouporder – order of the group

	1.1.2 GroupElement – elements of group structure
	1.1.2.1 setOperation – change operation
	1.1.2.2 getGroup – generate a Group instance
	1.1.2.3 order – order by factorization method
	1.1.2.4 t_order – order by baby-step giant-step

	1.1.3 GenerateGroup – group structure with generator
	1.1.4 AbelianGenerate – abelian group structure with generator
	1.1.4.1 relationLattice – relation between generators
	1.1.4.2 computeStructure – abelian group structure

