
Contents

1 Classes 2
1.1 poly.univar � univariate polynomial 2

1.1.1 PolynomialInterface � base class for all univariate polyno-

mials . 3

1.1.1.1 di�erentiate � formal di�erentiation 4

1.1.1.2 downshift_degree � decreased degree polynomial 4

1.1.1.3 upshift_degree � increased degree polynomial . 4

1.1.1.4 ring_mul � multiplication in the ring 4

1.1.1.5 scalar_mul � multiplication with a scalar 4

1.1.1.6 term_mul � multiplication with a term 4

1.1.1.7 square � multiplication with itself 5

1.1.2 BasicPolynomial � basic implementation of polynomial . . 5

1.1.3 SortedPolynomial � polynomial keeping terms sorted . . . 5

1.1.3.1 degree � degree 6

1.1.3.2 leading_coe�cient � the leading coe�cient . . . 6

1.1.3.3 leading_term � the leading term 6

1.1.3.4 †ring_mul_karatsuba � the leading term 6

1

Chapter 1

Classes

1.1 poly.univar � univariate polynomial

• Classes

� †PolynomialInterface

� †BasicPolynomial

� SortedPolynomial

This poly.univar using following type:

polynomial :

polynomial is an instance of some descendant class of PolynomialIn-
terface in this context.

2

1.1.1 PolynomialInterface � base class for all univariate
polynomials

Initialize (Constructor)

Since the interface is an abstract class, do not instantiate.

The class is derived from FormalSumContainerInterface.

Operations

operator explanation

f * g multiplication1

f ** i powering

3

Methods

1.1.1.1 di�erentiate � formal di�erentiation

di�erentiate(self) → polynomial

Return the formal di�erentiation of this polynomial.

1.1.1.2 downshift_degree � decreased degree polynomial

downshift_degree(self, slide: integer) → polynomial

Return the polynomial obtained by shifting downward all terms with degrees

of slide.

Be careful that if the least degree term has the degree less than slide then

the result is not mathematically a polynomial. Even in such a case, the method

does not raise an exception.

†f.downshift_degree(slide) is equivalent to f.upshift_degree(-slide).

1.1.1.3 upshift_degree � increased degree polynomial

upshift_degree(self, slide: integer) → polynomial

Return the polynomial obtained by shifting upward all terms with degrees of

slide.

†f.upshift_degree(slide) is equivalent to f.term_mul((slide, 1)).

1.1.1.4 ring_mul � multiplication in the ring

ring_mul(self, other: polynomial) → polynomial

Return the result of multiplication with the other polynomial.

1.1.1.5 scalar_mul � multiplication with a scalar

scalar_mul(self, scale: scalar) → polynomial

Return the result of multiplication by scalar scale.

1.1.1.6 term_mul � multiplication with a term

term_mul(self, term: term) → polynomial

Return the result of multiplication with the given term. The term can be given

as a tuple (degree, coeff) or as a polynomial.

4

1.1.1.7 square � multiplication with itself

square(self) → polynomial

Return the square of this polynomial.

1.1.2 BasicPolynomial � basic implementation of polyno-
mial

Basic polynomial data type. There are no concept such as variable name and

ring.

Initialize (Constructor)

BasicPolynomial(coefficients: terminit, **keywords: dict)
→ BasicPolynomial

This class inherits and implements PolynomialInterface.
The type of the coefficients is terminit.

1.1.3 SortedPolynomial � polynomial keeping terms sorted

Initialize (Constructor)

SortedPolynomial(coefficients: terminit, _sorted: bool=False,
**keywords: dict)

→ SortedPolynomial

The class is derived from PolynomialInterface.
The type of the coefficients is terminit. Optionally _sorted can be True

if the coe�cients is an already sorted list of terms.

5

Methods

1.1.3.1 degree � degree

degree(self) → integer

Return the degree of this polynomial. If the polynomial is the zero polynomial,

the degree is −1.

1.1.3.2 leading_coe�cient � the leading coe�cient

leading_coe�cient(self) → object

Return the coe�cient of highest degree term.

1.1.3.3 leading_term � the leading term

leading_term(self) → tuple

Return the leading term as a tuple (degree, coefficient).

1.1.3.4 †ring_mul_karatsuba � the leading term

ring_mul_karatsuba(self, other: polynomial) → polynomial

Multiplication of two polynomials in the same ring. Computation is carried

out by Karatsuba method.

This may run faster when degree is higher than 100 or so. It is o� by default,

if you need to use this, do by yourself.

6

	1 Classes
	1.1 poly.univar – univariate polynomial
	1.1.1 PolynomialInterface – base class for all univariate polynomials
	1.1.1.1 differentiate – formal differentiation
	1.1.1.2 downshift_degree – decreased degree polynomial
	1.1.1.3 upshift_degree – increased degree polynomial
	1.1.1.4 ring_mul – multiplication in the ring
	1.1.1.5 scalar_mul – multiplication with a scalar
	1.1.1.6 term_mul – multiplication with a term
	1.1.1.7 square – multiplication with itself

	1.1.2 BasicPolynomial – basic implementation of polynomial
	1.1.3 SortedPolynomial – polynomial keeping terms sorted
	1.1.3.1 degree – degree
	1.1.3.2 leading_coefficient – the leading coefficient
	1.1.3.3 leading_term – the leading term
	1.1.3.4 ring_mul_karatsuba – the leading term

