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1. Introduction

We study the following nonlinear Schrédinger equation in one space di-
mension:

(L.1) iug(t,x) = (=1/2)0%u(t, x) + f (u(t, x)),
u(0, x) = up(x).

Here (t,x) e Rx R, 8 = 8/0x and f(u) = fi(u) + fo(u) = i |u|” " u+ Aolu|”'u
with 4,4, e R and 1 <p; <p;. The aim of this paper is to study the
asymptotic behavior of the solution as ¢t — oo, especially to obtain the second
term of the asymptotic expansion of the solution in the case p; = 3.

There is a large literature on the equation (1.1); see [1, 3-9, 11, 13-23]
and references therein. The well-posedness of the Cauchy Problem (1.1) has
been extensively studied, and the results already obtained are satisfactory for
our study of the asymptotic behavior of the solution. To put it briefly, if
1 <p1 <p» <5, the equation (1.1) is (conditionally) well-posed in L2, and
moreover U(—fu(t) € L>* if ug € L>* with 0 < s < p;.  Here U(t) = exp(itd*/2)
is the free propagator and L?* denotes the weighted L2-space of order s; more
precisely, see Proposition 2.4 below. In what follows, we simply call the solu-
tion obtained by Proposition 2.4 “the solution to (1.1).”

The asymptotic behavior of the solution to (1.1) is usually explained in
terms of the scattering theory. When ¢ — oo, the solution is expected to decay
by the dispersive effect of the Laplacian. Hence we can expect that the non-
linearity in the equation decays rapidly enough and loses its effect as ¢t — oo.
Thus the expected profile of the solution to (1.1) is of the form U(¢)¢, which is
a solution to the free Schrodinger equation; here ¢ is a suitable function called
the scattering state of the solution. This observation is, however, correct only
in case 3 < p; < p,, namely the short-range case (on the other hand, the non-
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linear term with p; < 3 is called of long-range). Indeed, the following are well

known [1, 12, 23].

(1) If 41,42 =0, 3<p; <py <5 and uy e L>!, then there exists a function
¢ € L? satisfying

(1.2) tim [lu(t) — U()ll, = 0,

where u(¢) is the solution to (1.1).
(I1) If3<p; <pr<S5, upe L>! and ||lug||;: is sufficiently small, then there
exists a function ¢ e L?! satisfying

(1.3) lim (| U(~2)u(z) — ¢l 2. =0,

where u(f) is the solution to (1.1).
On the other hand, we have
(I) If 4y #0, p; <3 and up € L>'\{0}, then there does not exist a function
¢ € L? satisfying (1.2) for the solution u(f) to (1.1).
From the results above, the critical exponent for the existence of the scattering
state is p; = 3. In this case there does not exist usual scattering state, but if
we introduce the modified free dynamics of the form U(¢) exp(—iS(z,—id))d,
the situation is improved, where S(z,&) = A1|¢(&)|? log ¢ is the modifier of the
Dollard type. Indeed, the following is known '[11].
(IV) If 3=p; <p2 <5, up e L** for some s > 1/2, and ||up]|;2 is sufficiently
small, then there exists a function ¢ e L>NL® satisfying

(1.4) lim [lu(c) — U (1) exp(~iS(t, ~id))], = 0,

where u(r) is the solution to (1.1) and S(z,&) is defined as above.
These results give us the asymptotic profile of the solution to (1.1). Our
concern is now to know the behavior of the difference of the nonlinear solu-
tion and the asymptotic profile. In the short-range case, the following has been
proved [15]:
(V) Let 3<py<py<35, upe L>! and |upl|;2: is sufficiently small. Then
there exists a function ¢ e L>! satisfying

(1.5)  u(t,x) = U@)(x) = 20" (p1 = 3)7 €7/ exp(ilx|*/20) £i (§) (x/1)
+ o(£2 712

uniformly in R as ¢ — oo, where u(?) is the solution to (1.1).
The nonlinear effect explicitly appears in the right-hand side. Proof of (1.5) is
based on the method of stationary phase.

Remark 1.1. The scattering theory for (1.1), especially the existence and
the completeness of wave operators, has been studied in various function spaces;
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for short-range case, see [4, 6, 8, 9, 16-18, 20, 21] and long-range case [5, 19].
In the preceding, we have mentioned only the results directly related to this
paper.

The purpose of this paper is to treat the case p; = 3. The equation (1.1)
with p; =3 appears various fields of mathematical physics, and hence it is
considered to be important. Since this case is of long-range, mathematical
treatment is more difficult than short-range case. Now we state our theorem.

Theorem. Let 3=p; <py <5. Let uge L>* with s > 5/2 and let ||up|; 2.
“be sufficiently small. Let u(t) be the solution to (1.1). Then there exists a
function ¢ e L>2NFTHL® satisfying
(1.6) =o(™h).
2

1
U(—t)u(z) — exp(—iS(t, —id)) <¢ +11 (log r)%,,-)
j=0

as t — oo. Here

(1.7) b1 = —ilL F (2 (141D)|6°9),
(1.8) o= T (§06) + 20104 + §6°6) + 4.1,
and

(1.9) 8(6,&) = MIB(&) 2 Tog 1 — at (F(E)h1.0(E) + (E)h1.0(8)
= 2hp(pa = 3) 7 A2 (g P
Furthermore,
(1.10) u(t, x) = (ir)""* exp(i|x| /2t — iS(1, x/ 1))
2
x (&(xm +11) (log t)fwl,,(x/r)) +o(173/?)
j=0

as t — oo uniformly in R. Here

(1.11) ¥y, = (=id]/2)(0141)%4,
(1.12) i1 = (=21/2)((1)d — 41(01617)0¢ + b, 1,
(1.13) Yio= (_i/2)52¢A+¢§1,0-

Remark 1.2. The restriction p, < 5 is necessary only to guarantee the
existence of L>*-solution. If we assume uy € H', and if we assume, in addition,
the smallness of ||lug||: in case A, or Ay is negative, we can remove this re-
striction.
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This paper is organized as follows. In section 2, we give several basic
estimates and introduce a result on the well-posedness of (1.1). In section 3, we
prove key Proposition 3.2. The expansion formulae given in Proposition 3.2
(and Theorem) are so complicated that we sketch the formal derivation of them
at the beginning of the proof. Our main theorem easily follows from this
proposition.

In the previous paper [24], one of the authors showed an analogous re-
sult for the Hartree equation which includes the nonlinearity like f(u) =
(Jx|™" % |u|*)u. The treatment of (1.1) is more difficult than that of the Hartree
equation by the following reason. While the nonlinear term in the Hartree
equation can be differentiated as many times as we like, the short-range non-
linear perturbation f>(u) in (1.1) is differentiable at most p,-times because of the
singularity at u = 0. Thus, in case p; is close to 3, we can differentiate the
phase S only p, —1~2 times, which is not sufficient to prove the theorem
as long as we rely on H°-theory; indeed, we would need s > 5/2 and hence
p2>17/2. To avoid this difficulty and prove the theorem for p, > 3, we state
Proposition 3.2 in terms of the Besov space BY, with o~2, r> 1, which is
continuously embedded in H?>*,

We shall conclude this introduction by giving the notation used in this
paper: (&) = (Fy)(¢) = (2n) 2 J% ., e ™y (x)dx is the Fourier transform of
¥, and F 1y its inverse. For 1 <p < oo, ||- |, means the usual L?-norm;
L2 = {p e F";||dll2s = (1 + |x|*)?4||l, < co} denotes the weighted Lebesgue
space; HS" ={pe L";||dllyer = (1 —0*)*?g||, < 0} denotes the Sobolev
space, H*? is abbreviated to H*; B}, denotes the Besov space (see section 2).

U(t) = exp(itd®/2), M(t) = exp(ix?/21), [D(D)g)(x) = (it) /24 (x/1).

2. Preliminaries

We first summarize basic properties of the Besov space (for more details,
see [2]). Let s>0 and 1 <r,¢g< . We put

- 1/q
Jull g, = (j (N1 sup ||aNaz"unfdr>
' 0 || <1t

if ¢ < oo and put
[lull g:, = sup (tN‘S sup II@N5Z”ullr)~
’ te(0, 00) |h| <t

m

Here 67/u=S" (" )(=1)"7u(- +jh), and N,m are nonnegative integers
h j=0 J



Sharp Asympiotic Behavior 57

satisfying N <s <N +m. The space B} 6 =B} (R) is the Banach space
equipped with the norm

el = el 4l g
Let 0<0<1 and 1/r=0/I + (1 —6)/L. Then a special case of the
Gagliardo-Nirenberg type interpolation inequality ||u|| o - C [|u||§lx [luell 112_0 im-
r.q, i
mediately follows from the definition above. Using this inequallity and the

identity 6, (uv) = Zj’fo(n,q>5}{u(' +jh)d;" v, we have the Leibniz-rule-like in-
" equality

(2.1) vl g, < Clllg, ol + Clal ol

with 1/r=1/py +1/py = 1/p3 +1/ps.

It is well-known that B; ,=H® as Banach spaces. Besov spaces are
related to Sobolev spaces by the real interpolation as (H*' H S/”)g’ 0=
B where 0<6<1 and s#s. We have continuous inclusions
B, < Bf,:q, if g<q',r<r' and l/r—s<1/r'—s'; B] < H" if r < and
1/r—s<1/r —s'. The inequality

(22) 10ull g5, < Cllull gy

follows from the latter inclusion and the definition of Besov spaces.
We proceed to estimates of the B; gshorm of composite functions.

Definition 2.1. Let p>1. We say that a function g: C — C belongs
to the class A(p) if ge C”(R* R*) for any nonnegative integer m < p, if
g(0) = g'(0) = --- = g™ (0) = 0, and if

. —m—1
19" (z1) — 4 (z2)] < C{ R B

|z1 — 2", p—l<m<p.

Remark 2.1. (i) g(z) = |z|""'ze A(p) for p>1; (ii) if g(z) € A(p) with
p =2, then g(z)/ze A(p — 1).

Lemma 2.1. Let p>1, geA(p), 0<s<p, and 1 <r,q< 0. Then
-1
(23) gl < CllullZ ™l

with 1 < py,p, < o0 such that 1/r=(p—1)/p; +1/p,.  Moreover, let p > 2 and
O<s<p—1. Then

(24)  llgw) = g(®)llg, < Clull,, + oll,)" " lu—vll5,

p—2
o+ Clull, + el )2l + ol Mol
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with 1 < p3,ps,ps <00 such that 1/r=(p—2)/ps+1/py+1/ps. Further-
more, let k be a positive integer. Then in case g(z) = |z|*z (p =2k +1) or
g(z) = |z|* (p = 2k), the inequalities (2.3), (2.4) hold valid without the restriction
s <p.

Proof. Tn case g(z) = |z|%z or g(z) = |z|*, we can prove (2.3) directly
from (2.1) and Hélder’s inequality. For the proof of (2.3) for general g € A(p),
see [6, 10]. So we prove only the inequality (2.4). Since

1
o) = 9(0) = | 9'(0u+ (1 = )~ v}t

and since g’ € A(p — 1), we have

1
o) = g(6) 5, = € | Q0w+ (1 =00l fu ol
00+ (1= 02 2 0u + (1 — Ol 1w~ o], .

Here we have used the inequalities (2.1) and (2.3). Thus we obtain (2.4). []

In the proof of the main theorem, functions of type exp(ig) repeatedly
appear. To treat these factors, we need the following lemma.

Lemma 2.2. Let 1 <r, g< oo, s >0, and let ¢ be a real-valued function.
Then

(2.5) lexp(id)llg;, < C(1+ [18110)" 1657,
where [s| means the integral part of s.
Proof. See [24]. O

From this lemma and the inequality (2.1), we obtain the following in-
equality:

(2.6) lexp(ig)ulls;, < C1L+116ll0) gl 55 lul,, + Cllulz,
with 1/r=1/p; + 1/p,.

Lemma 2.3. Let s>0,1<r< o and 0<a<1l Then for any t # 0 we
have the estimates

(2.7) 1 (M (1) = )F 5, < Cle|™ (1 /1l
and

@8)  IFMW) ~1 = GE20)F Sy, < CU™ | o
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Moreover, if r =2, (and therefore B5 , = H’) we have
(2.9) 17 (M (2) = DFfllgs < ClA| |1/ | osae
for any 0 <a<1.

Proof. By Mihlin’s multiplier theorem (see [2]), the Fourier multiplier with
symbol

1+ &) (M(1,8) — 1)
is uniformly bounded on L”. So we have
|7 (M (1) = )F Sl grer < ClA ™ N f v

Thus the real interpolation method implies (2.7). The estimate (2.8) is proved
similarly. The estimate (2.9) is clear. [

On the well-posedness of the equation (1.1), the following is known. Here
we state the result in more general form than that we need in later section.

Proposition 24. Let 1<p <py <5 and f(u)=filu)+fo(u) with
fieA(p), j=1,2. Let f; be gauge invariant, namely f;(e®u) = ef;(u). Then
the equation (1.1) has a unique solution in

2
C(R;L*)N {m L;}(cijrl)/(pj—l)(R; ij+l)}
j=1

for any uye L>. Moreover,
(i) uelLl (R;L") for any (q,r) satisfying 0 <2/q=1/2—1/r <1/2;

(ii) if uoe L>S, 0 < s < py, then U lue C(R; L*>*);

(i) if luollpas is sufficiently small, then supy i |U(=t)u(t)||2s < 2lluollz2s:
(iv)

iv) |u(@)ll, = lluoll, for all teR.

Proof. See [3, 6, 7, 13, 14, 22]. 0

Remark 2.2. The uniqueness of the solution to (1.1) belonging to
C(R;L?) does not follow from the proposition above, unless assuming
ue ﬂjzzl e R pp+ly 8o we say that the Cauchy problem (1.1) is
“conditionally” well-posed in L2. On the other hand, it is well-known that

(1.1) is (unconditionally) well-posed in H'.

3. Proof of the theorem

This section is devoted to the proof of the main theorem in this paper.
Throughout this section, we assume p; = 3. So in what follows, we abbreviate
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P> to p for simplicity. In this section we treat the case ¢ > 1, since we consider
the asymptotic behavior of the solution as t — oo. First we introduce a decay
estimate of the small solution to (1.1) obtained by Hayashi-Naumkin [11].

Proposition 3.1. Let uge L>* with s > 1/2 and let ||luo|;2, be sufficiently
small.  Then the solution u(t) to (1.1) satisfies

(3.1) Sup 2 u(®)ll, < Clluollp2..

t>1
The main theorem follows from the proposition below.
Proposition 3.2. Let 5/2<s<p, 2<o<min(s—1/2;p—1) and let
luol| 2. be sufficiently small. Let u(t) be the solution to (1.1) and put

&(1) = Jlt{./hr”[fU(—r)u(rﬂz + /121“(1’*1)/2]37U(—‘:)u(r)]p_l}dr.

Then there exist a complex-valued function ¢ and a real-valued function @
belonging to F ’IB;TZ for any 2 <r < o0, and satisfying the estimates below:

(32) |(t) — Do, — Ai[4]” log tl| g, < €L7%,

(33) lexp(idb(1) — iPo) 7 U(=1)ult) — fl| o < Cr7,

(34) |7 U(—t)u() — exp(—ili|g|* log f)¢3||3;§2 <Cr,

and
1

(3.5)  ||exp(id(t) — i) FU(—yu(t) — g — > (log 1)y ;|| < '
- B3’

Here ¢ is some positive number and ¢, ; (j = 0,1) are defined by (1.7) and (1.8).

Remark 3.1. (i) The size of ||lug||;.. depends on p, A1, A, s and o. (ii) If
we take r in Proposition 3.2 sufficiently large so that B, = H* 2% then we find
¢ e H>*. On the other hand, if we take r = 2, then we find § e H2. Hence
$peL*?>NF'H> and ¢, ;e # (L*NL*), j=0,1. (jii) In order to prove
only (3.2)—(3.4), we can relax the assumption for s as 1/2 <s <p. The as-
sumption s > 5/2 is used to prove (3.5).

Proof. We first sketch how we formally obtain the expansion formulae
in the proposition above. We note that the free propagator is decomposed
as U(t) = M(t)D()FM({), and hence FM(t)U(—t) =D '()yM~'({). Put
v(t) = U(—t)u(z). Then by the decomposition of U(z) above, # satisfies

(3.6) it = FM(—0)F e fi(Mu(0)) + 0= V26(Mu(1))}.
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By the expansion FM(+1)# ! ~1 F id?/2t and the Taylor expansions of A
and f;, the right-hand side of (3.6) is expanded as
(1+i0%/20{ ' f1(6 — (i/20)0%0) + rP=V2f (5 — (i/26)0%)}
~ 7 i(0) + - PVRh(0) + (i/20){0%1(5) - £ (8)2%6}.

Therefore, by transposing ¢~'f;(8) + r~(?~D/2£,(5) into the left-hand side of (3.6)
and multiplying e’®, we have

(3.7) i(e'), ~ (1/26%)e®{3* A (b) — 1] (8)2*5}.

Since the right-hand side is time integrable on [1,c0), we obtain (3.3). We
substitute this profile of ¢ into the definition of @ and get (3.2). The estimate
(3.4) immediately follows from (3.2) and (3.3). Substituting the profiles of
and @ into the right-hand side of (3.7) and integrating with respect to ¢, we
obtain the sharp asymptotics (3.5).

In our proof, P(y) denotes various polynomials of #. We use this
notation as follows: if we write f(¢) < P(log¢), this inequality implies that
there exists some polynomial of logs dominating f(f). We let a=
min(s —og—1/2;p —3;1)/2 and 0 <v <a/2. We proceed in several steps.

Step 1. We prove the estimates of v(z), A/J\v(t) and Mu(1) — v(t) in several
function spaces. Let |lug]|;.. be sufficiently small so that Proposition 3.1 holds.
Then

(3.8) | Mo, = DM ul|, < Cllug| .-

We estimate ||6(2)]| . = ||A/4\v(t)||H.,. By Lemma 2.1 and (3.8), the H*-norm of
the right-hand side of (3.6) is dominated by

CrY| AMO) | g + C P2 15 (M) | .
< C{ M\ Mo||2, + PO M) 2 W6l e < Y fuo 18] -
Hence by the equation (3.6) and the estimates above,

ld, . I D =

S 80N = I(FM () F (i () + 021 (W), i)
< Cr M luol| 72180 | -

If Cllug|;s < v, then Gronwall’s inequality yields

(39) 18(2)| = < Ct".
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Combining Lemma 2.3, estimates (3.8), (3.9) and Sobolev’s inequality, we have
(3.10) 1M0(2) = (1) | -2 < CEYf3(D)]| g < C,

(3.11)  1Mo(t) = 8(1)l oo < | Mo(1) = 8(8) | oz < CEM[o(1) o < CEH,

and

(3.12) (6Dl < | Mo()], + | Mo(t) — 5(2)||,, < C+ Cr < C.

Step 2. 1In this step, we prove (3.2)—(3.4). We rewrite the equation (3.6)
as

(3.13) ity =1+ L+ fi(0) + P V285(5),
where
L= F(M(=1) = )F ' fi(Mo) + P70 (M)},
L= (i(Mo) = £1(8)) + V2 (M) - f5(8)).
By multiplying ¢’® to both sides of (3.13), we have
(3.14) i0;(e™9) = '?(I + I).

Once we prove that the B/,-norm of the right-hand side of (3.14) is integrable
in time as f — oo, it follows that s-lim, ., ¢’®9 exists in B?,. By Lemma 2.1
and the estimates obtained in Step 1,

121l < C(1+log 1),

and

191y, < € [ (NI 15y, + 2210012 60, ) < €
Note that, to obtain the above inequality, we used H*~* = Bj* < BY, with
1/2-s+2a <1/r—0g. Therefore Lemma 2.2 yields
lexp(i®)|| 3., < #"P(log 7).
Hence by Lemmas 2.1 and 2.3,
11150, < CllTillgromze < C“lit7 ' fi (M) + 727Dy (R0) 7

a1 A2 AT —(p— T T
< Cr (¢ || Mol || Mo g + 27072 Mo|| 2 || Mo )

< Ct~1—a+v.
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Similarly, we can show that
_ o ~ 20 ~
1115, < CrH{ Ml o, + [18llo) | M — 0| -2

+ C(l[ M|, + 11l o0)19]] =20 | Mo — 8] ., }
+ Cr DR (| Mo, + 18]100) ]
< (Ct—l—a+v + Ct72+2v + Ct—(p—l)/2+v) < thlfa‘f'\/.

" Collecting these estimates and using (2.6) together with the boundedness of
embedding By, = L*, we get

le™ (1 + D)l g, < """ P(log 1).
Hence, there exists a function W e By, satisfying
(3.15) lle™®d(z) — WHB;72 < " P(log 1).
This also yields the boundedness of ||e’®(z)|| Br, By (3.15), we can refine the

estimate of ||| e, and get

nmmbsCK&4w@mww@Wﬂmﬁ+f“*mwum5wd%@mwgw
< C(1 +log1).
By (2.6), (3.10) and Lemma 2.2, we also get
181152, < Clle™ 40, lle™Bll o, + Clle™sll e, < Pllog 1),

”MU”B:Z < C||Mv - ﬁllE:2 + ||ﬁ||13:2 < P(log t).

We put S(t,&) = 4|W(&)|* logt. Then, there exists a function @, =
s-lim,, o (@(2) — S(7)) in BY,, since we can show that
Py ity 2 Y iy i®
[, e WPy < € [ el + W gy Ve — Wil e
t ’ I3 ' ! !
< 7 P(log 1)

by (2.1) and the embedding By, = L®. We put ¢ = F ("= W), which is the
function as in Proposition 3.2. We remark that S(z,¢) = A1|6(&)* log ¢ since
|¢| = |W|. Clearly we have

165 ~ Pl < 7+ P(log 1),
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and
12 (6) = S(1) g0, < " P(log 1),

where we put ¥(1) = &(f) — &,,. Thus we obtain (3.2) and (3.3). Again by
(2.1) and (2.6), we have

16— e Gle, < C(L+ e l30 ) {l1€" — e,
+ (L1 = S11.,) 7N~ Sl I 650, }
< P(log 1),
which means (3.4). We can also show that
||m - e_isﬂf’;”)z;g2 = “M\U - ﬁ”B;jz + 19— e_iS¢§||B;jz < 7' P(log 1).
Step 3. In this step we prove (3.5). We put
Ji = (i/20)0%i(e759),
Ty = (i1 /20) (214 3 (e759) - (75)°0(e54)},

and estimate the differences I —Jx (k=1,2) in B;’Ez. We start with the
estimate of I} — J; by writing

5 —Jy =1 \F(M(=t) = 1 + (i£%)20)F ', (Mp)
+ (i/22)0{ fi(Mv) — fi(e74)}
+ P2 F (M(—1) — 1)F (M)
= I; + II; + III;.

The estimates of Ij, II; and III; can be achieved as follows. By Lemmas 2.1,
2.3 and the embedding H*® < By}*,

MWle2 < COP A (300) o < Cr2\ S| | B 7. < C2o%,
1M es < CO2A (VD) — fi(e ),
< Cr2(| 8], + 161l,) 2N o — 5
< Cr2 (|, + 911.) 15 — 5 5.
+ Cr (M0l + 191 ) U0 e, + e~ Bl e NI Mo — 5],

< Ct 27" P(log 1),
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L |5 2 < Co P02 fo(M0) 5, < Co= 02 ]| 50| Mo,
< (P2 p(log 1).
Collecting these estimates, we get
1 = Ji[ o < CE274" 2 P(log 1),
We proceed to the estimate of I, —J,. We write
(3.16) b —Jy = {fi(Mv) — fi(5 — (i/20)0%)}
+ 7 (6 — (i/20)0%0) — £i(B) — M{(—i/)|8* 0% + (i/21)5%0%3)]
+ (—idi J22){2]8]20% — 8%0%0 — 2|¢|* 0% (e ™S §)
+ (€755} + VR £ (M) — f3(5))
=1, + Il + 1L, + IV,.

We estimate the right-hand side of (3.16) term by term. To control I, we need
the following estimates

(3.17) || Mo — b — (1'/2t)62f>||B,,EZ < Crid|| . < Crimet,
(3.18) 1Mo — 5 = (i/200%]|,, < C ol < €

Here we have used (2.2) and Lemma 2.3 together with the Sobolev’s inequality
[0%6]|., < Cl|o||;s. By these estimates and Lemma 2.1,

ILall e < Co (1Mol + 1ol + £ 16%81].0) | Mo — 6 — (/26008 2
+ CN([| Mol + (18] + £Y10%0]],)
X (| Moll gy 2 + 18] g2 + 41078l g2 | Mo — & — (i/20)%%)]
< 727 P(log 1).
By a direct calculation and the estimates (2.1), (2.2),
Il e 2 < CE (8] 1070111070l o2 + 1111502 10%411)
+ Cr4|0%0]12, 1% 2

< 2 P(log £) + 4 P(log 1) < 3P P(log 1).
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To estimate ITl,, we remark that the inequality

3
2
||W1W2a W3||Br";2 < CI I “WjHB;’2
. i \

holds for any wy,wy, w3 € BY, by virtue of (2.1), (2.2) and the embedding
B, < L®NH %' Applying this inequality to III,, we have

“HIZ“BZEZ = Ct_Z(”ﬁ”B;jz + “eiisﬁbA“B;{z)zuﬁ - e_iS¢A“B;jZ < 772 P(log 1).
By Lemmas 2.1 and 2.3, we have
IVall g2 < €OV M|+ 1.0)7 > (1801 gz, + (18] | M0 = 61 5o
< " D2P(log 1) |o] 5,
< P2 p(log £).
Thus we obtain
122 = Jallgo 2 < 2 P(log 1).
Therefore
le™ (I + 1) — €S (J1 + T2 po2 < C(L+ el 2) {1 + B2 = J1 = Joll g2
+ 1 = 1)1+ D) pe2 )}
<72 P(log 1).

Thus, integrating (3.14) with respect to ¢ and using the estimate proved above,
we conclude

<l
B:;z

oo
(3.19) e¥o—¢— iJ eS(Jy + Jr)dr

for some &> 0. By directly calculating the integral in the left-hand side of
(3.19), we obtain Proposition 3.2. []

Proof of Theorem. We recall that v(r) = U(—1t)u(t) and ¥ = @ — D, as
in the proof of Proposition 3.2. We also use the abbreviation vy (f) =
¢+t Zjl:o(log 1)’¢, ;. By Proposition 3.2, we obtain

1P = £ o) + O = £GP + 2 (o + b o) + O(2)
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and
D) = D2 gty (2

in B/32NL® for any 2<r<oo. Therefore ¥(r)=S(:)+0(r"'*) in
By 52NL®. Now we can immediately prove the first part of the theorem,
namely the L? asymptotics. Indeed,

18() = exp(=iS(1)beo (D> < 1™ — duolly + I1¥ = Sll.o e (D, < Cr '~ log .

This means (1.6). To prove the second part of the theorem, namely the L®
asymptotics, we put
I=F(M—1-(&20), T=b-eSp,,
I = —(i/2)8% + (i/21)0* (e S ¢).
Then »
DM u =141 + I+ e Sp,, — (i/20)0%(e75§).

The estimates of I, II and III are achieved as follows. By taking r sufficiently
large so that B;fgz < L* and applying Lemma 2.3 together with Proposition 3.2,

11, < ClUF (M =1 = (i€/20)F 8] o2 < Cr2j8ll gy, < C7' 5
Iy < [le™8 = uoll o + (75 = D)ol

< C”eﬂjf’ - lA’OO”B:;2 + ¥ - Sllwllﬁoolloo

< Cr'*logt

I, < Ce i — (€75 P)lg,, < Cr7' 7

Therefore
DM u= e Sty — (/2000 (e ) + O~ log 1).
By a direct calculation, we have

(e Sg) = {—(8S)* — id> S — 2i0S0¢ + *§}e™™S

in L*®. Thus we obtain (1.10). O
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