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1. Introduction

In this paper, we study the long time behavior of a one-dimensional reac-
tion diffusion system appearing in mathematical biology by using the theory of
infinite dimensional dynamical systems.

In 1970 Keller and Segel [9] have presented parabolic systems to describe
the aggregation process of cellular slime mold by the chemical attraction. The
system of a simplified form in the one-dimensional case is written as

2
G- (), wnerxom),
ap *p
(KS) n b—+cu dp, (x,1) e I x (0, 00),
0
g—Zw,oza(ﬂ,n:é(,) Lpn=0,  1c(0,0)
u(x,0) = up(x), p(x,0) = py(x), xel.

Here, I = (a,f) is a bounded open interval. a,b,c and d are positive constants.
The unknown functions u = u(x,¢) and p = p(x,t) denote the concentration of
amoebae and the concentration of chemical substance, respectively, in 7 x (0, ).
The chemotactic term —0d(udy(p)/0x)/0x indicates that the cells are sensitive to
the chemicals and are attracted by them. y(p) called the sensitivity function is
a smooth function of p e (0, o) which describes cell’s perception and response
to the chemical stimulus p. Several normalized forms have been suggested:
p, p* logp, p/(1+p) and p?/(1+p?), etc., see [10] and [17]. In view of
these forms, we will assume in this paper (except in the last section) that:
(x) x(p) is a smooth function of p e (0, c0) and its three derivatives satisfy the
estimates

. Y
|X(’>(p)|sC<p+/—)>, O0<p<oo, i=1,2,3

with some positive constant C and exponent r.
The system (KS) is called the Keller-Segel equations.
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In these years the Keller-Segel equations attracted interests of many mathe-
maticians. The local solutions were studied by the second author [23]. It was
also suggested in [23] that, in the one-dimensional case, (KS) possesses a global
solution and that, in the two-dimensional case, when y(p) = kp (k being a posi-
tive constant) is a linear function, (KS) possesses a global solution for any suffi-
ciently small initial function u,. Afterward Nagai et al. [13] showed more
strongly that the global solution exists if the norm ||ug||;: is smaller than a
specific number which is given from the coefficients of the equations. Recently,
in the same case, Gajewski et al. [6] studied asymptotic behavior of the global
solutions. On the other hand, Herrero et al. [7] showed that, when x(p) is
linear and the domain is a circular disc, there exist radial local solutions which
blow up in a finite time. The blowup of non radial local solutions was
shown recently by Horstmann et al. [8] and Nagai et al. [12]. For the study of
stationary solutions, we refer to Ni et al. [14], Schaaf [17], Senba et al. [18] and
Wiebers [22].

In this paper we are concerned with asymptotic behavior of the global
solutions to the one-dimensinal Keller-Segel equations with a general sensitivity
function satisfying (y), and intend to construct an attractor set. In constructing
the attractor we will use the theory of infinite dimensional dynamical systems
for dissipative evolution equations which was developed in recent years by
Temam [21] and by Eden, Foias, Nicolaenko and Temam [3, 4]. In order to
use their theory, the first step is to formulate (KS) as a semilinear evolution
equation in a suitable Hilbert space. We set the underlying space H as a prod-
uct space of the pairs ‘(u,p) with ue L*(I) and p e H'(I), and will show that
the nonlinear semigroup constructed on H satisfies some sufficient conditions
which imply its crucial property called the squeezing property. As the result,
will be shown existence of a compact set of finite fractal dimension which
attracts solutions exponentially, such an attractor set is called the exponential
attractor. However, we here notice that we can not expect any global compact
attractor, for, since the norm ||u(¢)|| . = ||uol|;: is conserved for every ¢ € [0, 00),
no compact set can attract every solution of (KS). Therefore, for each |ug|, =
¢ >0, we have to consider an underlying space like K; = {"(u,p) € H;u = 0,
Jyudx=~¢,inf 7 p >0} to reset.

In the case where the sensitivity function is linear, y(p) = kp, we know the
existence of a global Lyapunov functional. Thanks to this we can obtain a
result of another type, that is, for any initial data ‘(uo, p,) € K, the o-limit set
of the solution to (KS) contains at least one stationary solution. For other
typical cases of x(p), however, we do not know whether such a Lyapunov
functional exists or not.

This paper is organized as follows. In Section 2, we recall the definition of
the exponential attractor and the existence theorem of exponential attractors in
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the book [4]. We list also some results on the Sobolev spaces which we need in
this paper. In Section 3, the local solutions of (KS) are constructed by apply-
ing the Galerkin method. In Section 4, we establish various a priori estimates
of the local solutions. Section 5 is devoted to estimating the lower bound of p.
By using these estimates, the existence of global solutions is verified. In Section
6, we prove the main theorem of the paper. Finally, Section 7 is devoted to
considering the case where the sensitivity function is linear.

Notations. = (2, f), —o0 < a < f# < co, denotes an open interval in R.
For 1 < p < oo, LP(I) is the L? space of measurable functions in 7, its norm is
denoted by ||-||;,- For m=0,1,2,..., H™(I) is the real Sobolev space of
exponent m, its norm is denoted by | - | gz». More generally, H*(I) is the
fractional Sobolev space which is the interpolation space between H™(I) and
H™ I for m < s <m+1, its norm is also denoted by |- ||z.. €(I) is the
space of all continuous functions on 1.

Let X be a Banach space and let J be an interval in R. L?*(J;X) and
H'(J;X) are X-valued L?> and H' space in J, respectively. %(J;X) and
¢"(J;X) (m=1,2,3,...) denote the space of X-valued centinuous functions
and m-times continuously differentiable functions in J, respectively.

For simplicity, we will use a single notation C to denote various constants
determined by initial constants. C is therefore determined in each occurrence
by I = (p),a,b,¢,d and y in a certain specific way. In a case where C
depends also on some parameter, say &, it will be denoted by C..

2. Preliminary

Consider the Cauchy problem for a semilinear evolution equation

au
— 4+ AU =

(E) dt+ U =F(U), 0<t< o,
U(0) = Uy

in a separable Hilbert space H. Here, A is a positive definite self-adjoint linear
operator in H, the inverse of which is a compact operator on H. F(U) is a
nonlinear operator from 2(A4) to H. Uy is from K, where K denotes the space
of initial data which is a connected subset of H. U = U(¢) is the unknown
function.

We assume that the problem (E) is well posed in K, that is, for each
U € K, there exists a unique global solution

U € %(]0, 00); K) N€"((0, 0); H) N €((0, 00); Z(A)),

and the solution is continuous with respect to the initial value in the sense that,



444 Koichi Osakl and Atsushi YAGI

if Uy, — Up in K then the solution U,(r) converges to U(¢) in K for each fixed
te(0,00). This then allows us to construct a continuous semigroup {S()},-,
on K such that, for # > 0, S(¢) maps K into 2(4)NK. Furthermore, we as-
sume that there exists a compact absorbing set # = 2(A4) N K for the semigroup
{S()},5¢, that is, # is a compact subset of H and, for every bounded subset
B = K, there is a time f which may depend on B such that |, WSOB < A.
Then, according to Temam [21, Theorem 1.1], the w-limit set .o/ of & is a global
attractor for {S(7)},.,. We now consider the set

Xr= 1) S()#

(23]

with fixed # such that (J,,, S(t)# = 8. It is casily observed that Z is a
compact subset of H such that o/ c & <« # and & is absorbing and invari-
ant for {S(¢)},5,. Therefore, ({S(¢)},5(, %) defines a subdynamical system of

({S(l)}tzov K)'

The exponential attractor is defined as follows, see Eden et al. [4].

Definition. A subset .# < & is called the exponential attractor for
{S(D} 150, %) if: 1) o « M = X 1i) M is a compact subset of H and is an
invariant set for S(¢); iii) .# has finite fractal dimension dp(.#); and iv)
h(S(OZ, M) < coexp (—cit) for ¢ >0 with some constants cg,c; > 0, where

h(Bo, B1) = sup inf ||U~V]gx

=S
UeBy VeB

denotes the Hausdorff pseudodistance of two sets By and Bj.
By virtue of [4, Theorem 3.1] we have the following theorem.

Theorem 2.1. Let F(U) satisfy the Lipschitz condition
(F) IF(U) = F(V)llg < ClA">U=V)|y, U, Ve,

and let the mapping G(t,Uy) = S()Uy from [0,T] x & into X satisfy the
Lipschitz condition

(G) 1G(2, Uo) — G(s, Vo)l < Cr{lt = s + || Uo — Voll},
t,s€[0, 7], Uy VoeX,
Jor each T > 0. Then, there exists an exponential attractor M for ({S(0)},50,%).

By the Lipschitz condition (G) the proof of the theorem is reduced to
constructing a similar exponential attractor for a discrete dynamical system
({SI'}s0: %), where S, = S(z,) with a suitable time 7, > 0. For the discrete
dynamical system, some condition on S, called the squeezing property plays an
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important role: for some J € (0, 1/4), there exists an orthogonal projection P of
finite rank N such that, for each pair U,V € Z, either

|S.U = SV ||y <o|lU - Vg
or
I = P)(S:U = SHV)|g < [|1P(S:U = SV -

In the case when the dynamical system is determined by a semilinear evolution
equation like (E), this property can be verified from the Lipschitz condition (F),
see [4, Proposition 3.1]. In fact the existence of an exponential attractor ./,
for ({S7},50,%) is concluded, as well the dimension is estimated by

log(2L/6 + 1)}

(2.1) dp(M,) < Nmax{l, Tog(1/40)

where L is a Lipschitz constant of the mapping S, from % into itself. The
fractal dimension of .# is then estimated by dp(.#) < dp(M,) + 1.

Our goal is then apply Theorem 2.1 after formulating (KS) as an abstract
equation of the form (E) in a suitable Hilbert space.

We list also some well-known theorems on the Sobolev spaces (cf. e.g. [2, 5,
11, 20})). Still 7 denotes an interval (o, f), —o0 < a < ff < 0.

For 0 <so <s<s1 <o, HI} coincides with the interpolation space
[H>(I),H*"(I)]4, s =(1—0)so+ Os1, between H*(I) and H* (I), and the es-
timate

-0 4
(2.2) - Wgre < Cl e |- e

holds.
When s > 1/2, H*(I) = €(I) with

(2.3) I-lle < Gl - Mlgsy s> 1/2.
In particular, H'(I) = L1(I) with
(2.4) I llze < Cogll - NIl ||Ey7 l<p<g< oo,

where y=(1/p—1/q)/(1/p+1/2). As usual we take the identification of
L?(I) and its dual L?(I)" and consider that H'(I) = L>(I) < H'(I)'. Then,
(2.3) implies that, for any s > 1/2, L'(I) = H*(I)' with

(2.5) I ey < Goll - llpy s> 172,

We shall use the following estimates for the product of functions. In view
of (2.3), it is true that

(2.6) ol < Clllgalllgms w0 € HP(I), m=1,2.
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If ue H'Y(I) and y € H*(I) with (dy/dx)(a) = (dy/dx)(f) =0, then

<i{u@},u> :—(uﬂ,ﬁ]—l{> , ve H\(I).
dx | dx (HY xH! dx’dx);,

Therefore, by (2.3),
d | dy
w7

H3y(I) = {ue H*(I); (dufdx)(2) = (du/dx)(B) = 0}, s> 3/2,
H3 (1) = {u e H(D); (du/dx) (o) = (du/dx)(B) = 0,
(d3u/dx)(0) = (dPu/dx*)(B) =0},  s>7/2.

Cllull oo 12|

(2.7) dy|| » weH'I), yxeHx(I),
=8

' <
(HY)' C||”“L2

where

By using (2.6) it is also verified that

d (| d
ey R <l werm, zen,
L
d [ d
e Sl <, werrn, remn,
H

Let y(-) be a smooth function defined in (—o0,00). Then, for each
m=1,2,3, y(p) defines a bounded and continuous mapping from H™(I) into
itself. Moreover, the following estimates are true:

(2.10) o)l <plplm),  peH'(D);

@11 x(P)lgn < pUlplgn-)Uplgs + 1), pe H™(I), m=2,3;

(2.12)  |lx(p) — 2@l zrm < PNl ggm + Ol gr)llp = &l grms '
poe H(I), m=1,2,3;

where p(-) denotes some continuous increasing function determined from x(-).
Consider the sesquilinear form

du dv 1
a(u,v)—aljlaadXvLaoLuvdx, u,ve H (I),

where ag,a; > 0 are positive constants. By means of the formula a(u,v) =
{Aou, )y, U € H'(I), a bounded linear operator Ay from H'(I) to H'(I)’
is defined. A is the second order differential operator —a;d?/dx? + ag equipped
with the Neumann boundary conditions at x = o, 5, (see Lions and Magenes



Finite Dimensional Attractor 447

[11]). With the identification L2(I) = L*(I)’, the part Ay = Ay|;» of Ay in
L*(I) is defined. A is shown to be a self-adjoint operator of L?(I) with the
domain %(A4o) = H%(I). Obviously, A is positive definite and 4! is a com-
pact operator. For 6 >0, we denote the fractional power of Ay by A4J. It is
known that

HY(I), 0<6<3/4,
(2.13) 2(48) = H¥(), 3/4<0<17/4,
HX(I), 71/4<6<2.

3. Local solutions

We shall show the existence of local solutions to (KS) by using the
Galerkin method. Since we have to use the method three times, it seems con-
venient to announce the result in a general form.

Let # be a separable Hilbert space, and ¥~ be another separable Hilbert
space such that 7° is a dense subspace of s with compact embedding.
Identifying # and its dual #', we have: ¥ <« # < v,

Consider the Cauchy problem in ¥’

au .
3.1) E+MU-J(U), 0<t< oo,
U(0) = U.

Here, o7 is the bounded linear operator from ¥ to ¥ defined by a symmetric
sesquilinear form a(-,-) on ¥". Z(.) is a continuous mapping from ¥~ to ¥
Uy € # is an initial value. U = U(r) is the unknown function.

We assume the following conditions:

(3.2) {'“(U? < MUV, U Ve,

a(U,U) 29|U|);, Uey
with some constants M and y > 0;
(3.3) 7 (U)lyr < ellUlly +pe(Ull),  Ue?”

with an arbitrary constant ¢ > 0 and some continuous increasing function p,(-)
depending on ¢&;

G4 NF W) = FPV)lly <ellU =V, + Ul + VI, +1)
Xpe(lUlle IV NU = Vg, U Ve

with an arbitrary constant ¢ > 0 and some continuous increasing function p,(-)
depending on e.
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By the standard argument we can prove the following proposition. For
the detailed proof, see [16, Theorem 2.1].

Proposition 3.1. Assume the conditions (3.2), (3.3) and (3.4). For any
Uy e H#, there exists a unique local solution to (3.1) such that

UeH' 0, Ty; v )NE([0, Ty,]; #) N L0, Ty,; ¥,

where Ty, is a positive number which is determined by U,. Let B, =
{Uo € ;|| Uyl <7}, ¥>0, denote an open ball. In B, Ty, can be taken
uniformly as Ty, > T, > 0, Uy € B,. Moreover, for each t € [0, T,], the mapping:
Uy — U(t) is continuous from B, to H.

Let 6 > 0 be fixed arbitrarily. In order to apply Proposition 3.1 we in-
troduce an auxiliary functions y;(p) which coincides with x(p) in (KS) for every
peld/2,0) and is a smooth function defined for every p e (—co, o).

We first set the spaces as

H =L I)x H'(I), v =H'(I)x HX(I).

Then, ¥’ is identified with ¥*' = H'(I)' x L*(I) and the dual product between
"' and ¥ is given by

<<pr)’ <Z>>‘V'x4{/ =S Wy + (& A2p) 2, (é) eV’ <Z> e,

where A, = ~bd?/dx* +d is a self-adjoint operator of L?(I) with the domain
D(4) = H{(I).
The operator .« is defined by

)
0 A
where A, = —ad?/dx* + 1 equipped with the Neumann boundary conditions is

a bounded operator from H!(I) to H'(I)'. Obviously, .« is determined by the
sesquilinear form

du dv
a(U, V) aJ,dxdxdx+J,uvdx+(A2p’ 20) 12, U Vev,
where U = (u,p), V = (v,0).
On the other hand, in view of (2.7), the nonlinear mapping # (U) is defined
by ‘

(3.5) F(U) = (—(d/dX)(u(d/dX)(x(s(p)))+u>’ U— (z) v

cu

Then we verify the following result.
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Theorem 3.2. Let Uy = '(up,py) € L>(I) x H'(I). Then there exists a
unique local soluion U = '(u,p) to (3.1) on an interval [0,T,, ,] such that
u€ H' (0, Tuy,py; H' (D)) N[0, Tog 5 LAD) N LA(O, T 3 H' (1),
p & H' (0, Ty p0; LA(1)) NE([0, Ty pyJs H' (1)) N L0, Ty p; Hiy (1),
where Ty, ,, is determined by the sum of norms ||up| ;> + | poll g1

Proof. It is sufficient to observe that (3.3) and (3.4) are fulfilled.
By (2.7), (2.4) and (2.10) we have:

d d 12 11172
e lean | = Ml bl = I 1)

< éllull v + Cellull L2p(llpll 1)

with an arbitrary ¢ > 0. Therefore, (3.3) holds. Similarly, by (2.7), (2.11) and
(2.12) we have:

2L ysip) = 0L o)
dx \“ax VT a8 |

< Clllu = vl zallxs() sz + ol g 25 (p) = x5(0) ]
< Clllu = vl zp(lpl ) Ul gz + 1) + ol guplpllen + ol z)lle = ollg]
< (IUlly- +Vlly- + DeUlLy + IVINU = Vi, U, Ve,

where U = (u,p), V = '(v,0). Therefore, (3.4) holds also.
Let us next set the spaces as

H =H'I)x HY(I), v =Hi(I) x Hy(I).
Then, ¥"' = L?(I) x H'(I) with the dual product

((E) ()., = 0 e

A 0 .
! >, where A4, is regarded as a
0 A4

bounded operator from H3(I) to H'(I). s is determined by the sesquilinear
form

The operator ./ is given by o/ = <

a(U, V):(A]U,AIU)LZ+<A§/2p,A§/ZG’)L2, U, Ve,

where U = “(u,p), V ="(v,0). In view of (2.8), the nonlinear mapping # (U)
is defined as before by (3.5).
In this setting we verify the following result.
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Theorem 3.3. Let Uy = '(ug,py) € H'(I) x H:(I). Then there exists a
unique local soluion to (3.1) on an interval [0, Ty, , ) such that

ue H'(0, Ty, p; LX) NE([0, Ty, o J; HH(I)) N L0, Ty s Ho (1)),
pPE HI(O: Tuo,p0§ HI(I)) n (g([(), Tu(),f)o]; H]%I(I)) N LZ(O’ Tuo,p(); Hi,([)),
where T, ,, is determined by ||uo|l g1 + ||poll zr2-

Proof. As before we observe that (3.3) and (3.4) are fulfilled. By (2.8)
and (2.11) we have:

(3.6)

g0} < oo v, (1) e

Therefore, (3.3) holds. Similarly, by (2.8),

(3.7) “% {ua%)(a(/)) - v%ma)}

< Clllu = oll grillxs(P) Lz + ol g llxs(p) — ss (@) | 2]

L2

This shows that (3.4) is also valid.
We finally set the spaces as

H = HY(I) x HY(I), " = Hy(I) x Hy(I),

the dual space 7"’ being identified with ¥~ = H(I) x HX(I).
Then as before the following result is verified.

Theorem 3.4. Let Uy = '(up,py) € Ho(I) x Hy(I). Then there exists a
unique local soluion to (3.1) on an interval [0, Ty, , ] such that

ue HI(O’ Tuo,/)o; HI(I)) ﬂ‘g([O, Tuo;ﬂo]; H]%T(I)) N L2(07 T“07,00; H]%’(I))a
p € H' (0, Tug,ps Hy (D) NE([0, T, o} Hy (1)) NL2(0, Ty 3 Hyo (1),

where T,, ,, is determined by |lug|| g2 + || 0ol g

Proof. Essential thing is to verify (3.3) and (3.4) in the spaces #, ¥~ and
7" announced above. But, as before, these are readily verified by using (2.9),
(2.11) and (2.12).

We are now in a position to state the main theorem of this section.

Theorem 3.5. Let 0 <uge L*(I) and pye H'(I) with infierpy >0 > 0.
Then, there exists a unique local solution to (KS) on an interval [0,T,, ,,] such
that
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ue H'(0, Ty pp; H' (1)) NG([0, T p,J; L)) VL0, T o H' (1)),
p e H'(0, Ty pp; LX(D)NE([0, Toy poJs H' (1) N L0, Ty Hy (1))
and that
(3.8) u(t)=0 and  p(H)y =,  0<t< Ty,
Here, T,, ,, is determined by the sum of norms |uo| ;> + ||poll;n and the constant
o. Let
B5 = {"(u0,po) € L*(1) x H'(I); lluoll 2 + |pollgn < 7,110 = 0,inf e p = 0},
then the mapping: *(uo, po) — t(u(t),p(t)) is continuous from B, s to L*(I) x H\(I)

for each te (0, T,s], where inf, , Ty , > Trg > 0.

Proof. Let u, p be the solution obtained in Theorem 3.2. In order to
complete the proof of the theorem it suffices to verify (3.8). In fact, if u and p
satisfy (3.8) for 0 <1< Ty 4, then u, p is obviously a unique local solution to
(KS) for 0 <t < T, ,, where T, , =min{T, ,, (log2)/d}.

Consider first the case when ug € H%(I) and p, € Hy(I). In this case (3.8)
is verified by the truncation method (cf. [23, Theorem 2.1]). In fact, let H(u)
be a decreasing % function defined for ue(—o0,c0) such that H(u) >0
for u <0 and H(u) =0 for u>0. Moreover, let H(u) satisfy the following
conditions:

0 < H(u) < Cu?, ue(—oo, ),
0 < H'(wu < CH(u), ue(—o0,w),
0 < H"(u)u? < CH(u), ue(—oo, ),

d(H"'?

W)~ ] < @), we(-e0,00)
with some constant C. (H(u) is for example constructed by H(u) = [;' Hi(u)du,
Hi(u fo Hy(u)du, where Hy(u) is some decreasing contmuous functlon in

(—o0 oo) such that Hoy(u) =1 for u < —1, Hy(u) = u* for —1/2 <u <0, and
Hy(u) =0 for u>0.)
We consider the function

o(t) = J Hu(x,0)dx, 0<1< Ty p.
I

Clearly, ¢(f) is a nonnegative %' function with the derivative

o= —al 5o (24Y J u Oy
o'(f) = aJIH (u)<0x dx + IH (u)uax o dx.
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Moreover, it is easily seen that ¢'(f) < C, , ¢(f) with some constant C,, ,,0
Since ¢(0) =0, it follows that ¢(z) = 0 for every 7€ [0, T, ,,], that is, u(z) >
for every 1€ 0,7y, ,)- By comparison theorem this implies that p(f) > e~
for 1€ [0, Ty, p,)-

For general initial functions 0 < up e L*(I) and 6 < p, € H'(I), we take
sequences {uo,} and {p,,} such that 0 <uy,e Hy(I) and 6 < p, , € H}(I)
which converge to uy in L?(I) and to p, in H'(I), respectively. We already
know that, for each initial data up », py ,, there exists a solution u,, p, to (KS)
with the estimate (3.8) on some interval [0, 7, uOn ponl- Since Ty, 5 is deter-
mined by ||uo l|;2 + |29 4l 1 and J, we have: =inf, Ty, ,, > 0. On the
other hand, the solution is continuous with respect to the initial data. There-
fore, as n— o0, u, —u in 6([0, Tol; L*(I)) and p, — p in (|0, Tol; H'(I)).
Hence, u and p satisfy (3.8) for 0 < ¢ < T;. But, by the uniqueness of local

solution, (3.8) is verified for every ¢ € [0, Ty p,)-

Remark 3.6.  Let u, p be a local solution of (KS) on an interval [0, T,, ,) for
initial functions up € L*(I) and py € H'(I) with 1y > 0 and inf,c; po(x) =6 >0
which has the regularity

ue H'(0,T,,; H' (1)) N%(0, T,,); LX) N L*(0, Ty, s H'(T)),

p e H'(0, T, LX) NG(0, T, ); H' (1) N L0, T, H3 (D).

Then, by the similar argument as in the proof of Theorem 3.5, it is proved that
(3.8) is valid for every 1€ 0,7, ,).

4. A priori estimates and global solutions

In this section, we shall establish a priori estimates of the local solutlons
and obtain the existence of global solutions.

Proposition 4.1. Let 0 <upe H}(I) and pye H3(I) with inf.cr py > 0.
Let u, p be a local solution of (KS) on an interval [0,T, ,) such that

0<ueH'0,T,,; H'(I))NG([0, T, ,); H:(I)) N L*(0, T, ,; H3(I)),
0<peH"(0,T,,; Hy(I)NE(0, T, ,); Hy(I)) N L*(0, T, »; Hy- (1)),
and let

(4.1) }Créfl p(t)y=06>0  for every 0 <t<T,,.

Then, with some increasing continuous function ps(-) dependent on & but inde-
pendent of T, ,, the estimate
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lu@llgz + lpDllgs < Ps(llwollaz + NIpoll), 0=t < Ty

is true.

Proof. The proof will consist of several steps. Throughout the proof we
denote by C, p(-) and # some constants, some increasing functions and some
positive exponents respectively, which are determined by the initial constants
and are independent of individual solutions with the exception that they may
depend on 6.

Step 1. Integrating the first equation of (KS) in x yields that

d
EJI udx=0.
Therefore, since u(t) > 0,
(4.2) lu@llr = Nl 0 <1< Tup

Step 2. Let us regard p(f) as a solution of the equation

dp

dr
in the space H'(I), where A, = —b(6%/0x%) +d equipped with the Neu-
mann boundary conditions is a bounded operator from H!(I) to H'(I).
—ffzjs the generator of an analytic semigroup on H'(I)' with the estimate
le=2 |l aryy < Ce*, 0 <t < o0. By the theory of semigroups, p(f) is writ-
ten in the form

+Ayp=cu(t), 0<t<T,,

" t "
p(t) = e “2py + cJ e~ (=942 (5)ds,
0

so that

. r L
Ayp(t) = e 2 Aypy + cJ A;/gev(’_s)AzAzl/su(s)ds.
0
We here note a fact that
~1/8
DAYy = H' (1), H' (D)}, )5 = H(1)'.
Then, from (2.5) and (4.2),

t
| A2p(Ol g1y < € e_dt”AZpOH(H‘)’ + Jo(t_ 5) e M Ids|ug)| 1|

Therefore we obtain that

(4-3) Pl < Cle®lpolla + Nuollp],  0< 1< Tup.
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Step 3. Multiply the first equation in (KS) by u and integrate the product
in x. Then,

1df(f , ou\? B ou Oy
EEJ;H dx+aJI(a> dx = J axaxd

a ou\? 1 2 1, ~2[0p 2
<30, (50) 2 e 0 ()

Similarly, multiplying the second equation in (KS) by azp/ 0x? and integrating
the product in x yield that

2
1d{ (dp ?p op p
L () +bJ<ax2)dx+djl(ax dem e[ T2 ax
b( (&% A,
Szj <6 )dx+%Lu dx.

Here, from (4.1) and (x) and with the use of (2.3) and (2.4),

6p2

[ w0 (2 v < ol + |2

< CHu”m“u”L‘||/’||1/2(||p||H1 I 1)2r+3/2

< e(llullzr + pl2) + Callull i (ol g0 +1)

with an arbitrary ¢ > 0. Similarly,

8r+6

J W dx < Cllul 23 u) 22 < ellul b + Collull?.
I

Therefore, we observe that

il (e {240 o
; j{z +d(§§)2}dx < p(lluls + l10).

Therefore, solving this in ||ul|7. + ||dp/dx]||7>, we conclude that

(44) )]s < c[e"%uuoniz lollz)

t
T L eI p(us) s + Pl )ds|,  0<t< Ty,
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@3) [ () + o))

t
< C[Huolliz + llpollz + Ll)(llu(S)IIL1 +lp()lgn)ds|,  0<1<Ty,.

From (4.2) and (4.3),
(4.6) lu®ll> <p(luollzz + llpollar)s 0 <2< Top,

(4.7) L(Hu(S)Ilfqn + [1p()l|72)els

< Cllluollz2 + ool 7 + (ol + ool ), 0 <1< T
Step 4. Multiplying the first equation in (KS) by ézu/ 0x? and integrating
the product in x, we obtain that

il (e (5] o
_J {ax< gﬁ)}gz
<3 (B [ { T () o (25 o

Here we observe that
TN A Y
2 =X (p) <_ax> +1'(P) 33

Furthermore from (4.1) and (y),

“3) J,{x«pf(g)z (Z) + e (%)2 () }dx

< e(llullz + lollz) + Cp(lull 2 + 1ol )
holds with an arbitrary & > 0. For example, by (2.3) and (2.4),

70 (22 (2 e < |2

< Clluilélllpllm(llpllm +1

2
(Ilpllm + 1)

)2r+1

1/2 7
< Cllullge el 2 ol 2 ol e + 12

< e(llullz + lplize) + Cellullza 1ol e + D™,
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It is the same for other integrals.
On the other hand, we obtain from the second equation in (KS) the energy
inequality

1 d ([ (3 2\ 2\
4.9) EEJ (a 2>d +bL<ax>d +dj <6x2> dx
2
ou 8%p b (& ou
__"J xS 2J <6x3) dxt bJ( )dx
Here,

ou\
JI (&) dx < 6|lu||f{z + CSHuHiL

Therefore, (4.9) jointed with (4.8) yields that

d ou\? *p 4 62u2 b (3 2
4 () Yo [0 -4 2
+ J{ (%)2 +d (21 ) }dx < p(lls + ).

Solving this differential inequality and noting (4.3) and (4.4), we conclude
that

4.10)  [u®l7 + lp®)lz

< C[e_m(HHOH%{l T lollZe) + Nl
[+ o], 051 < T
]
(4.11) L(nu(s)nip (o)1) ds

< c[uuou%p ol + | o1}, + HP(S)HHl)dS]v 0<i<T,,

From (4.3) and (4.6), we conclude also that

4.12)  |uOllgr +lpDllge < pUluollgr +llpolle2), 0 <1< Tup,
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(4.13) JO(Ilu(S)sz{z + [1p(s)l|)ds

2 2 .
< Cllluollzz + lpollzz + tplluoll 2 + llpoll )],

We first notice from the assumption that the formula

Step 5.

o*u *u
0tox 0x3

d

de )\ ox?

[ (@2u>2dx o

holds (cf. [19, Chap. 5, Lemma 5.1]).
(KS) operated by d/0x and 0°u/dx>, and
using the formula above, we Verify that
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0<1t<Ty

dx, ae te(0,T,,)

Take the product of the first equation of

integrate the product in x. Then,

2
1d a2 63
_ J AN
) ) ox? “ox) (ox?
o*u 1 0? o

ox3

<5 (5 )dx+

Here, by a direct calculation, we observe

? [ oy 1\ [10%u
W(“aﬂ < C(/’*z) @’
»p ?%p

i ( P W‘

From (4.1) it is then easy to see that

I

with an arbitrary & > 0.

62
ox?

2]

ax2\" o

e x)}zdx-

from (y) that

| |oul(|0%0] , |oof
Ox ox2 Ox
), loof

O0x Ox '

2
ox
<”&> } dx < e(|lullyys + ll7s) + Cop(llull 1 + 1ol g72)

On the other hand, we introduce another energy inequality

(4.15) %f,ij (a >2d +bJ (2; )2d
] L(

*u 0*p
0x2 oxt

b

-2

o

ox

3

+dJ <‘3/’

Ox3

o
I

2 0%u

ox?

<
2b

2 2
4> dx + ) dx.
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It is clear that

5 2
L (%) dx < el|ull3s + Collull i

Therefore, (4.15) jointed with (4.14) yields that

d o\ aszd aa3u2b64p2d
al(G) (&) e 43 (6) +3 (&) o
o*u ’ 83,17 ’
+L (W) +d($§> dx < p(llull g + llplla2)-

Hence, we conclude that

4.16)  [lu(@)llz= + o)1 7

< c[ewnuonzz +lpollZa) + ol

t
+ j e p((lu(s) g1 + ltp(s)HHz)ds], 0<1<T,,

(4.17) j0<uu<s>||za Pl )ds

< c[uuon%n ool + J;P(llu(s)llm " “P(S)“m)ds]a 0<i<T,,

From (4.12) and (4.13), we conclude also that

@18)  [u@llye + 10Ol < p(ollme + loollis) 0 1< Tups
(4.19) L(Hu(s)llfp T (o) Ze)ds

< Cllluollzz + pollzs + tp(luollzrs + lpollg=)l, 0 << Tup.
Thus we have accomplished the proof of Proposition 4.1.

Thanks to Proposition 4.1, we obtain the global existence of solutions. Let
us first verify the following result.

Theorem 4.2. Let 0<uye H]%,(I) and pye HY(I) with infyer py > 0.
Then, (KS) possesses a unique global solution such that
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0 <ue%'([0,00); L*(1)) NG([0, 00); Hy(I)),
0 < pe€'([0,0); H'(I)) NB([0, 00); Hy(I)).

Proof. Let 0 =inf p,, and let T € (0, o0) be an arbitrary finite time. From
Remark 3.6, if there exists a local solution u,p on an interval 0,7, ,), then

p(t) = e T for every 0 <t < min{T,,, T}.

By Theorems 3.4 and 3.5, there exists a unique local solution u, p on an interval
[0,7]. Assuming that 77 < T, we will prove that u,p can be extended as a
local solution at least on the interval [0,7]. Since ue HY(0,T1; H'(I))N
L*(0, Ty; Hy(I)) and pe H'(0,Ty; H3(I)) N L*(0, Ty; HY,(I)), it is seen that
the limits lim,.7, u(f) = w; and lim,7, p(¢) = p, exist in H*(I) and H3(I),
respectively (cf. [19, Chap. 5, Lemma 5.1]). Moreover, Proposition 4.1 shows
that ||ui|| g2 + ||p1|| s s estimated by |Juol| 2 + llogllz3-  We can then use again
Theorems 3.4 and 3.5 to conclude that u, p is extended as a local solution on an
interval [0, T} + 1), here 7 > 0 is determined by |ju;||4 + ||p1]/5: and hence by
a2 + llppll 2 alone.

Repeating this procedure, we can extend u, p over the interval [0, 7]. Since
T is arbitrary, the global existence is proved.

Theorem 4.2 jointed with Theorems 3.3 and 3.4 then yields the final
existence result.

Theorem 4.3. Ler 0<ugeL?(I) and pye H'(I) with inf.c;p, > 0.
Then, (KS) possesses a unique global solution such that

0 <ue®([0,00); LA1)) N %" ((0, 00); LA(1)) NE((0, 00); Hy(I)),
0 < pe([0,00); H'(I)) N ((0,00); H'(1)) N%((0, 0); Hy (I)).

Proof. By Theorem 3.2, there exists a local solution u,p on an interval
[0, Ty, pp). In addition, there is a time #; < T, ,, arbitrary small such that
up = u(ty) € H'(I) and p; = p(t;) € H3(I). Then, from Theorem 3.3, it follows
that we L?(ty, Ty, s H3(I)) and p e L% (1, Ty, p; Hy(I)); so that, with some
13 < Ty, p, arbitrary small, u, = u(t,) € H3(I) and p, = p(t,) € H3(I). As shown
above, there exists a unique global solution for the initial functions uy,p,.
Hence we have verified that the desired global solution exists for the initial
functions uy, py.

Finally we establish estimates of the norms ||u(?)||4. and ||p(?)||s in terms
of the initial functions ug, p;.

Theorem 4.4. Let 0 < uge L*(I) and py e H'(I) with inf,c; py > 0. Let
u,p be the global solution to (KS) as in Theorem 4.3, and assume that p satisfies
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(4.20) p(t)y =8  for every 0 <t < ©

with some 6 > 0. Then, with some continuous increasing function ps(-) dependent
on & but independent of the norms of up,py, the estimate

1
@+ 100l < (7 + ool + ol ). 0< e <0
is true.

Proof We use the estimates estabilshed in the proof of Proposition 4.1.
Let 0 <s<t and consider (KS) on an interval [s,7] with initial functions
u(s),p(s). Then, with the aid of (4.3) and (4.6), we observe from (4.10) that

Ol + ()7
< Clllu@liz + oz +pUluollz2 + lpollz)l,  0<s <t
Integrating in s € (0,¢) yields that
1(|[u(®) |7 + (D7) < CL(Hu(S)qun + lo(s)lI32)ds + p(luoll 2 + llpoll -
Therefore it follows from (4.7) that

Nz + IOl < (1/1+ Dplluoll 2 + llpollr), 0 <2< o0,

t . .
Let now 7<s< t. In a similar way, we can verify from (4.16) and (4.12)
that

(@172 + e (D 75

< c[nu(s)nip ()2 +p(

@G

. . t .
Integrating in s e (5,1?) then yields that

ﬂ, t/2<s<t.
H?

(t/2)(lu(@)llz2 + (D7)

< Cjt (L)1 722 + () |7r2)ds + tp(lee/2) g1 + (/) 2)-

Gl kG,

<p(1/t+ fluollL2 +llpollen), 0 <t <00

Therefore, from (4.13),

b+ ()2 < (12 + 1>p(
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5. Estimates from below

In this section, we shall establish a uniform estimate of p from below.
This will then show that (4.20) is actually fulfilled.
We first consider an auxiliary linear problem

op *p
E:b@_dp+f(xat)a (X,[)GIX(0,00),

(5.1) op
F_9
ox
p(an)ZPO(x)7 xel

in 1. Here, b,d >0 are two positive constants, 0 < f € €([0, 00); L2(I)) is a

given function such that

x=of 0<t< o0,

J fx,dx =/ (a constant),
I

and 0 < p, € L?(I) is an initial function.
Proposition 5.1. Let p be a solution of (5.1) such that
0 < p e ([0, 0); LA(1)) N ((0, 0); LA(1)) N%((0, 00); HE (D).

Then, there exist a time ty > 0 and a constant dy > 0 which are independent of
f(t) and py such that

p(t)y =00l  for every t = ty.

Proof. Denote by L the differential operator L = —b(8%/0x?) in L2(I)
equipped with the Neumann boundary conditions at x = «,8, L being a non-
negative self-adjoint operator of L?(I). Using L, it is written as

t
p(t) = LD +J eI+ £ () .
0

Let #o > 4 be arbitrarily fixed. For every ¢ > fg,

1=t/

plt) = J 26“"”<L+d>{f<s> + fou(5) s,

0
where f =f +f, is the orthogonal decomposition of f e L2(I) such that
f="f,fdx and [ f,dx=0. Since f(f)=f=/|I]"" and e'-f =7, it
follows that

t—10/2 _ 1—1o/2
e?=0F ds + J e (=LAl g (5)ds
0

plt) = JO

e-—dto/Z B t—t/2
{1 _ e—dto/2}f +J e—(tfs)Led(sft)fm(s)ds‘

0

Y
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Let L2(I) = {f e L*(I); [,f dx =0}, and let L,, be the part of L in L2(I).
Since L2(I) is the orthogonal complement of the eigen space of the eigen
value 0, there exists some Ao > 0 such that L,, > 3. Then, using the fact that
eler(L2(I),¢(I))NF(L)(I),L*(I)), we can estimate the integral term as

t—19/2
e—L J e—(l—s—Z)Lm ed(SAt)efom (S)dS
0

¢
L el (s—)(do-+d) || ,~L
S ] R

eHog—toliatd)/2 ~
W”e L||:£(L2,(g)”e L||$(L1,L2)2/-

Therefore, we obtain that

e—dto/Z/ _ —
p(t) = S {1 — e 241 [l g
d|I
X ||€_L||$<L1,L2)e(240/2)/10}’ L=t

This shows that, if £, is sufficiently large, then the desired estimate holds
certainly.
Using this proposition we verify a uniform lower bound of p.

Theorem 5.2. Let 0 < ug € L*(I) and p, € H'(I) with inf e py > 0, and let
u, p be the global solution to (KS) constructed in Theorem 4.3. Then, there exist
a time ty and a constant oy > 0 independent of uy,p, such that

(5.2) p(t) = doluoll1 Sfor every t = 1.

Proof. Since ||u(t)||;1 = |luo]|: identically, it suffices to apply Proposition
5.1 with f(¢) = cu(?).

6. Construction of attractor set

Let H=L*(I) x H'(I). In H we consider the Cauchy problem

du
—+ AU =F

6.1) 7 (U, 0<t< o0,
U(0) = U,.

Here, A is a positive definite self-adjoint operator of H given by

a=(7 L) e =mm < Hw,
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where 4; = —a(0%/0x*) + 1 and Ay = —b(8*/0x?) + d.
F(U) is defined for U e 2(4)NK,; by

F(U) — (—(a/axxu(a/cix)(x(p))) +u>’ o (,,) C HUNK,

where K, =« H denotes a set of initial functions.
In fact, taking a constant 7 > 0, we set K, as

K, = {’(u,p)eH;uZO,J udx={,inf p>0}.
1 xel

Up is then taken from Kj.
By Theorems 3.5 and 4.3 we already know that (6.1) is well posed in the set
K,, that is, for each Uj € K,, there exists a unique global solution

U € ([0, 0); K,) N ((0, 0); H) N 6((0, 0); 2(4))

(see also Remark 3.6, (4.2) and (5.2)). Therefore, (6.1) defines a continuous
semigroup {S()},5, acting on K.

Let “(u(1),p(t)) = S(t) Uy with Uy e K,. As proved in Theorem 5.2, there
exists a time #, and a constant 6y > 0 such that

p(t) = oot for every ¢ > 1,

to and Jy being independent of Uy € K,. Using this time #;, we will reset the
subset K, as

IZ/ = S(lo)K/ < K.

Obviously, S(f) maps K, into itself. Hence, ({S(f)},5q,K;) defines a
dynamical system in H. Furthermore, by definition, “(u(r),p(?)) = S(¢) U,
Uy € K;, satisfies

p(t) =dof  for every > 0.

Our goal is then to construct an exponential attractor for ({S(t)}tzmk/)-
We begin with verifying the following proposition.

Proposition 6.1. With some universal constant C;, which may depend on ¢,
the following statement is true. For each bounded ball B, = {Uy € Ks; || Up||; <7},
there exists a time t, depending on B, such that
(6.2) sup sup [IS(1)Usllgqy < Co-

t>t, UyeB,

Proof. Let Uy = '(ug,p,) € B, and S(t)Uy = “(u(?),p(t)). By Theorem

44, S(\Uy e 9(A) = HE(I) x H3(I) for every t> 0 with the estimate
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(6.3)  N1UDlgeay = 1uOllgz + o <pe(l/t+71),  0<1< 0.

The desired estimates will then be established step by step as in the proof of

Proposition 4.1. Throughout the proof, C, and ¢, denote some constant and

some time, respectively, which may depend on r but is uniform for Uj € B,.
From (4.3), we have:

()l < Clepollggs +41 < Clre 4], 0 <1< o0,
Therefore there exist a universal constant C, and a time ¢, > 0 such that
Ol < Cr for every t > ¢.

Next, let us apply (4.4) to u,p on the interval [t,,00). Then, from (6.3),

t

()72 < C[E””("’”(llu(lr)lliz + ()l 7) +J e Ips(llp(S)l g +£)ds

tr
t

< C[Cre"”’ +p/(C/)J e 1(=9) ds}, t<t< 0.

tr
This then shows that there exists a universal constant C, and a time ¢, > 0 such
that

lu(t)||;. < C,  for every t>1t,.

We repeat the same argument using (4.10) and (4.16) with the aid of (6.3).
Then the desired result is obtained.

Proposition 6.1 then shows that the set # = {U, € Ky; [ Uollgay < Ce}s
where C, denotes the constant in (6.2), is an absorbing set of S(f) which is
obviously a compact set of H. Hence, by virtue of [21, Chap. I, Theorem 1.1,
there exists a global attractor o/ < K;, </ being a compact and connected subset
of H.

Weset 2=, ., S(1)%, where 15 denotes a time such that S(¢)#% < # for
every t > ty. Then, & is a compact subset of H with &/ — ¥ < 4, and is an
absorbing and invariant set for ({S(#)},.¢, Kz). In order to construct an expo-
nential attractor for S(¢) it is now sufficient to apply the Theorem 2.1.

From (3.7), we have:

IF(U) = F(W)lly < pi(l 42Ul + A2V )42 (U = V)l

< Cy||[AYHU = V)|, UVeX.

Therefore, the condition (F) is fulfilled.
For Uy, Voe &, let W(r) = S(6)Uy — S(t)Vy, 0 <t < co. Obviously W ()
is a solution to the problem
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aw
il - _F

(6.4) o HAW = F(S@Uy) ~ F(S()Vs), 0 <1<,
W(0) = Uy — V.

Therefore,

1d

37 Wl + 14" W[5 = (F(S()) Vo) = F(S())Vo), W)y < Ca | AWl | W 1.
Hence, |W(1)||y < e“*'||Wy||p; this shows that S(¢)Uy is Lipschitz continuous
in UpeZ.

Let UpeX; since ¥ =B, ||[AUplly < Cs; then, by Proposition 4.1,
|4S(0)Up|ly < Co for every r>0. On the other hand, from (3.6),
|IF(S(t)Up)||y < Cx for every t = 0. Therefore, we observe that

Z—It](f) dt < Cqg(t—y), 0<s<t<o0.

IS0~ 6 Lol = | |G 0| dr=

Thus the condition (G) is also fulfilled.
Hence, we have derived the main result of this paper.

Theorem 6.2. The dynamical system ({S(f)},50, &) determined by (KS)
admits an exponential attractor M in K, < H.

7. Global Lyapunov function

Throughtout this section we assume that

(7.1) x(p)=kp, p>0

with some constant & > 0. In this case a global Lyapunov functional will be
constructed in the same manner as in Nagai, Senba and Yoshida [13] (cf. also
Biler, Hebisch and Nadzieja [1], Gajewski and Zacharias [6]). Thanks to the
functional, it can be shown that every w-limit set w(Up) of the solution to (6.1)
contains a stationary solution.

Let Up = (uo, po) € H'(I) x H'(I) be the initial data with infyec; up(x) > 0
and inf,c; po(x) > 0. Let S(¢)Up = “(u(z),p(r)) be the global solution to (6.1).
If we continue obtaining the existence results as in Section 3 in Sobolev spaces
of higher exponents, it is possible to prove that

ue %' ((0,00); H' (1)) NG([0, 00); H'(I)) NE((0, 00); HY (1)),
p e €' ((0,00); Hy(I)) N%([0, 00); H' (1)) N6 ((0, 00); Hyx (1))

From (2.3), it follows that
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ue %' ((0,00);%(I) NE([0,20); 6(T)) NE((0, 00 ); 63 (T)),
p e ((0,0); 6" (1) N%([0,0); 6(I)) NE((0, 00); 63(T)),
where

G (I) = {u e *(I); (du/dx) (o) = (dujdx)(p) = 0},
Cra(I) = {ue € (I); (dufdx) () = (du/dx)(f) = 0,
(du/dx’)(@) = (d’u/dx*)(f) = O}.

Hence u,p is a classical solution. We can then apply the maximal princi-
ple of parabolic equations (cf. Protter and Weinberger [15]) to obtain that
infycyu(z) > 0 for every ¢ > 0.

We are ready to introduce the Lyapunov functional. Multplying a log u
—kp to the first equation of (KS) and integrating the product in x, we obtain
that

ou , - 0 ' 2
Jla(a log u — kp)dx = -J1u{a(a logu—kp)} dx

On the other hand, from the second equation of (KS),

op p ap\
LE< ba 24—ah)—c‘u>a’x— —JI<E> dx.

Therefore,

d bk (3p\' dk
(7.2) Ejl{ac(u logu—u)+7($> —i—?p -ckup}dx

B G ap\
~—cJIu{a(alogu“kp)} dx — kJ <0t> dx, 0<t<o0.

Hence, the functional

2
®(U) = Jl{ac(u log u — u) +b7k <g—§> —f—% - ckup}dx

is a global Lyapunov functional of the problem (6.1). But, since

JI up dx < 8||p|]§{1 + Ce””“il

with an arbitrary ¢ > 0, there exists some universal constant C such that
D(S(t)Uy) = —C for every > 0.
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Let @(Up) = (),50{S(r)Up; 7 > 1} denote the w-limit set of the solution
S()Up. Then we verify the following result.

Theorem 7.1. Let Uye H'(I) x H'(I) with infieup(x) >0 and
infrerpo(x) > 0. In the case of (7.1), the w-limit set of S(t)Uy contains at least
one stationary solution. In particular, S({)Uy is never a periodic solution.

Proof. As verified above, ®(S(f)Up) is a decreasing function bounded
from below. Therefore, there must exist some increasing sequence {#,}, f, — oo,
for which (d/dt)®(S(t)Uo)|,_,, is convergent to 0. In other words, as n — o,

i g alogu(t) —kp(n) | =0 in L2

2
bz—x’;(zn) +eu(ty) —dp(ty) — 0 in L2(1),
where ‘(u(tn), p(tn)) = S(2,) Up.
On the other hand, from Proposition 6.1, we can assume that S(z,)Up
converges to a limit U = (i, p) strongly in H'(I) x H*(I) and weakly in
H?(I) x H3(I). 1In view of the formula

2
(7.3) a%(zn) - k% {u(t,,)g—’i(tn)}

we conclude that U is a stationary solution to (6.1). By definition, U € w(Uj).

The second assertion then follows from the fact that w(U,) =
{S(t)Up;0 <t <p} if S(1)Uy is a periodic solution, where p > 0 denotes its
period.

Remark 72. It S(t)Uy = "(u(z),p(r)) satisfies a uniform estimate
inf,cru(t) > 6 for every ¢t > 0 with some constant § > 0, then we shall verify a
stronger result. In this case it is seen from (7.2) that

d2

ﬁqs(s(t) Uo)

<ps([ullms + oDl ge),  0<t< o0

with some continuous increasing function ps(-). On the other hand, if we
continue estimating higher norms of the solution S(f)U, as in the proof of
Proposition 4.1, it is possible to prove that [u()||gs + ||p(¢)|| g« remains
bounded as ¢t — co. Hence, (d?/dt*)®(S(t)Up) is a bounded function. As a
consequence, lim,_,o.(d/dt)®(S(t)Uy) = 0. Let a sequence S(¢,)Uy converge to
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U in L*(I) x H'(I). Then, by the same argument as above, we conclude that
U must be a stationary solution to (6.1). This means that the w-limit set w(Up)
consists of stationary solutions only.

Furthermore, if the set of stationary solutions of (6.1) is observed to be
discrete, then every w-limit set must be a singleton.
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