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1. Introduction

This paper is concerned with the small data scattering and blow-up for the
wave equation with a cubic convolution

(1.1) Pu—Au+ (VyxuP)u=0  in R".

Here u is a real-valued unknown function, ¥, = A|x|™”, Ae R, 0 <y < n and *
denotes the convolution in the space variables.

In the nonlinear scattering theory the asymptotic behavior for large time is
studied from the point of view of the existence of asymptotically free solutions.
The existence of an asymptotically free solution means that the wave keeps
on going to spatial infinity, its local energy decays to zero and the effect of a
nonlinear term is negligible for sufficiently large time. Under some situations,
however, it is possible that the effect of a nonlinear interaction term causes
waves which blow up in a finite time (see [26]—[27]). Thus it is quite interesting
to determine sharp conditions which guarantees that all solutions under con-
sideration are asymptotically free as £ — +oo. In this paper we study the small
data scattering and blow-up problem for the equation (1.1). Our main
theorems show that, in the case of n =3, the scattering operator is defined
in a neighborhood of zero in the Hilbert space X x Y (defined below) for
2<y<2+1/2, and there exist blow-up solutions even for small data for
0<y<?2and A<0.

Here we shall refer to the previous results on the scattering and blow-up
for (1.1). Mochizuki [17] studied the low energy scattering and showed by
employing the space-time mixed norm estimate due to Pecher [19] that the
scattering operator can be defined as a mapping from a neighborhood of zero in
H' x L? into H' x L? for the case y =4 < n. When the requirement that the
data be arbitrary within a neighborhood of zero in H' x L? is dispensable,
Mochizuki and Motai [18] proved by making use of the classical L” — L4 time
decay estimate of Strichartz [29] that the allowed values of y are extended to



560 Kunio HipaNo

2+4+2/3(n—1) <y <n One of the main purposes of this paper is to show that
the allowed values of y can be reduced to two (limit excluded) when n =3. As
for the blow-up, when A < 0, the nonexistence of global solutions was shown by
Perla Menzala and Strauss [16] for some large data. The key point of our
blow-up theorem is that, in the case of =3, A < 0 and 0 < y < 2, there exists a
case where the nonexistence of global solutions occurs even for small data.

Our method of the proof of scattering is to solve the associated integral
equation by the contraction mapping principle. For the purpose we make use
of a variant of the classical L? — L7 estimate of Strichartz (3.9), the generalized
Strichartz estimates and the infinitesimal generators of the Lorentz group and
the dilation operator. We also employ the Li—Zhou inequality (3.13) to estimate
the convolution ¥, * u*(= Co~""u? @ = v/—4). The Li-Zhou inequality has
an advantage over the Hardy-Littlewood-Sobolev inequality in the respect
that we can take into account the difference of behaviors of solutions near the
characteristic cone and away from it.

As for the proof of our blow-up theorem, we analyze non-negative, radial
solutions. After taking into account the basic fact that, for radial solution ,
V, = u* is reduced to the special form (see (6.6)), we shall be on the same lines as
in [8], [6], [22] and [21] to show the blow-up. As far as the author knows, this
theorem is the first one showing the blow-up of solutions for small data to the
equation (1.1).

Finally, we give three comments. First, in a similar (in fact, slightly easier)
way, it is possible to prove that, in all higher space dimensions n >4, the
scattering operator is defined in a neighborhood of zero in a suitable Hilbert
space when 2 < y < 3. This is an improvement of the above-mentioned result
of Mochizuki and Motai. However, such a result would be out of propor-
tion to the present interest because our blow-up theorem is limited to the three
space dimensional case. Thus, in the present paper we refrain from considering
the scattering problem in higher space dimensions. Secondly, the low energy
scattering for the Klein—Gordon equation with a cubic convolution was studied
in [16], [17], [18], [25]. Finally, the three space dimensional nonlinear wave
equation with a negative potential [Ju+ A(1 + |x|*)™/%u = |lul” 'u (A <0) has
been studied in [28] in detail. The critical number of / dividing the global
existence and blow-up for small data is two.

This paper is organized as follows: In the next section we give the
notation used in this paper and then state our main results concerning scat-
tering. In Section 3 some fundamental lemmas and key estimates are proved.
In Section 4 we prove the result concerning the initial value problem with data
given at 1 = 0 and investigate the asymptotic behavior of solutions. In Section
5 we discuss the solvability of the final value problem with data given at
t= too. In the final section the blow-up theorem is proved.
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2. Scattering

Following Klainerman [11]-[12], we introduce several partial differen-
tial operators as follows: dy = 0/0t, 0; =0/0x; L; = td; +x;0t (j=1,...,n),
Qu=x:0—x10r 1 <k<l<n), Ly=1t0t+x0;+ -+ x,0,. These oper-
ators 0g,...,0n, Li1,..., Ly, Q12,...,2,_1, and Lo are denoted by Io,..., T,
in this order, where v = (n?>+3n-+2)/2. For a multi-index o= (x,...,a)
we denote I')°...I'? by I'*. It is also necessary to define the norm for 1 < p,
g< o

(2.1) o)l pne = NGO D) oo pogsry

o r/q 1/p
= (J (J |v(rC)|qu¢> r”_ldr> ,
0 \Jsm1

where r = |x|, { € S""!. It is clear that the L”¢ norm coincides with the usual
L? norm when p=¢g. We also define

[0 re = 10O Pl Loge poogsmmyy  for 1<p < oo,
1/q
(2.2) 0(-)|| fo.s = SUP <J |v(rC)|qug> for 1 <g< o,
>0 Sn-1

[0 o = TG -

In [13] Li and Yu utilized effectively these types of norms for the existence
theory of solutions to fully nonlinear wave equations. Let N be a non-negative
integer and ¥ be a characteristic function of a set of R™!. We define the
norm

(2.3) Nty M, prgw = D NPTt )]y (1 <pog < o0)
juf <N

for any function u(¢,x) for which the above right-hand side is finite for every
t. When ¥ =1 in (2.3), we omit the sub-index ¥. When p = ¢, we omit g.
When N =0, we omit I" and N. In sum, the notation of the norm in (2.3) is
abbreviated to

||u(t")||F,N7p,q7 lf WE 17
(2.4) Nt N n, pgw = Nu(t, )ir N, pw: if p=gq,
[t Ml p, g, w0 if N=0.

According to the rule, we denote by [[u(¢,-)||, the usual L? norm.
For a positive integer k, we mean by H¥ = H*(R") the usual Sobolev
space of functions whose derivatives up to order k belong to L2. We shall work
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‘with the homogeneous Sobolev space H'= H’(R") (seR,1<r < ). The
space HZS will be simply denoted by H®. For a comprehensible description of
the definition of the homogeneous Sobolev space and fundamental properties such
as completeness and the embedding theorem, refer to the appendix of [1],
[4]. For any interval I and any Banach space B we denote by C(I;B) (resp.
BC(I; B)) the space of continuous (resp. bounded continuous) functions from I
to B. We denote by a(p) the variable defined by «(p) =1/2—1/p. The
variables f(p), 7(p) and é(p) are also defined by

2 1

25) A7) = 2 Bp) = L5 7(0) = 0(0).

The Holder conjugate exponent of p is denoted by p: 1/p+1/p'=1. We
denote by I the closure of an interval 7 in RU{+o0}.

Put w :=+v—A4. The initial data will be taken in the space X x Y defined
by

(2.6) X = {feLz(R3)ﬂH1(R3)|

1 = S o2+ 3 IKowetf|2 < oo},

lt] <2 o] <2

(2.7) Y {geHl(R3)ﬂL2(R3)|

lolf = - 12o7'al} + 3 kol < o,
laf <2 ja <2

Here Q" =QQ32 Q1 for a multi-index o= (a2,003,013) and <{x) =

(1+[x/)"2 X xY is the Hilbert space with the norm defined by

I D3y = IIFI +1lgl3. Now we can state our main theorems.

Theorem 1. Suppose that n =3 and 2 <y <2+ 1/2. There exists a con-
stant 0 > 0 depending only on y and A with the following property: For any
(f,9) e X x Y with |(f,9)|lxxy <O the integral equation

"sinw(r — 1)

(28) ult) = u0(0) - | (¥, 5 (@) u(2)dz

0 w
(up(f) = (coswi)f + (w~!sinwt)g) has a unique solution u(t,x) satisfying
(2.9) (Ir*Q%u, QP w='0,u) € BC(R; L* x L?), (Jo| < 1,|8] <2).

Moreover, there exists a unique pair of functions (f*,g7), (f,97)eX xY
satisfying
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(2.10) (" 95)lxxy < Cll(/.Dllxxy  for some constant Cy >0,

Q11) (I QPu(t,) — I*QPu* (1,-), Q0™ du(t, ) — QP 0™ (1,) || 12,2
— 0 (t — +o0)

for any |a| <1 and |B| <2. Here u*(f) = (coswi)f* + (0 'sinwt)g™.

The next theorem is concerned with the final value problem with data given
at 1t = —o0.

Theorem 2. Suppose that n=73 and 2 <y <2+ 1/2. There exists a
constant 6 > 0 depending only on y and A with the following property: For any
(fo,9-) e X x Y with ||(f_,9-)|lxxy <O the integral equation

(2.12) u(t) = u_(1) - Jiw SNOU=T) ) 2 yu(e)de

)

(u_(t) = (coswt)f- + (o' sinwt)g_) has a unique solution u(t,x) satisfying

(2.13)  (I'*QPu, QPw '0u) € BC((—o0,0); L* x L),  (lof < 1,|8] <2),

(2.14)  |[(F*QPu(t, ) — T*QPu_(t,-), QP ou(t, ) — QP 0 (1,))|| 22
—0 (t — —o0)

for any |o| < 1, || <2. Moreover, this solution u satisfies

(2.15) | (0, -), 0e(0, Nllxxy < G/~ 9-Nlxxy
for some constant Cy > 0.

Remark. Let B, mean an open ball of X x Y centered at the origin with
radius » > 0. By Theorem 2 we know the existence of the wave operator for
negative time as a mapping from Bs into Bc,s. Theorem 1 together with
Theorem 2 implies the existence of the scattering operator as a mapping from B;
into B¢, ¢, for sufficiently small J > 0.

3. Preliminaries

In this section we prove a number of lemmas and propositions which play
central roles in the proof of our theorems. Let y; = x;(¢,x) be the charac-
teristic function of the set {(z,x)eR™|[|x| < (1+])/2} and put y,:=
1 —y,. Moreover, let ¢,=¢,(x) be the characteristic function of the set
{xeR"||x| <a} (a>0). Those three characteristic functions will be fre-
quently used throughout this paper.
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Lemma 3.1. For any 0 R the following commutation relations hold:

(3.1) L, 0% = 009720;0,,  j=1,...,m,
(3.2) [Qu,@’]=0, 1<k<l<n,
(3.3) [Lo, 0’ = —00°.

Proof. They all can be easily verified with the help of the Fourier
transform. Thus we omit the details. O

Lemma 3.2. (1) Let n>2. The following inequalities hold for any
function for which the norm on the right-hand side is finite:

(3.4) lu(t, My, < CO+ 1) Pt Y7y

(3.5) A+ 1]+ - D)™, ), < Cliute, o0
where 2<p < oo for n=2,2<p<2n/(n—2) for n=3,
(3.6) I<le = |- DVt My, I<Ie = [+ Doet, )y < Cliut, )l 7 1,25

where (|t — |x|> =1+ ]¢| —[x]].
(2) Let n>=3. The inequality

(3.7) 1P, < C(lloll, + <oV olly)
holds for 2 <p <2n/(n—2).

Proof. The inequality (3.5) follows from Propositions 3.3 and 3.4 in
Ginibre and Velo [2]. The inequality (3.4) is also an immediate consequence of
the previous propositions in [2] (see also the comment given after the proof
of proposition 3.4 in [2], especially the bottom line of page 247 in [2]). The
inequality (3.4) actually can be derived from the standard Sobelev inequality by
a simple scaling argument. See, e.g., [14] on page 1214-1216 for this matter.
The inequality (3.6) is an elementary result and follows from the fact that the
differential operators d;, d, can be represented as

le + Z Xk(x]-ak - xk(’)j) —x;Lo
k=1

3.8 8 = Ry
( ) J t2~|x|2 ‘

[L() — Z Xij
j=1

2 — |x”

The inequality (3.7) follows directly from the Holder inequality and the Sobolev
embedding H'(R") — L>/"2(R"). O

The classical L? — L9 estimate of Strichartz [29] is successfully injected into
our framework. This is done in the following lemma due to Ginibre and Velo
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[2]. In particular, this lemma is very useful for the estimate for @' 0u(t) in the
L? (p>2) norm (see (4.29) below).

Lemma 3.3. Let I be any interval of R. Letn>2 and 2 <p <2(n+1)/
(n—1). Suppose that I'*ue C(I;L?) for any |o| < 1. Then u(t), ' 0u(t) e
L? and they satisfy the estimate

(39 Nu(t )y, o™ e, ),
< CJt| 7P Ey(u(?), dae(£)) P2 Qo (2, u(t), dua(1)) P2,
If in addition due C(I;H™"), then
(3.10) llo™ aa(t, W, < CCU+ 1) 7Pt M 1,2+ WDt )l o).
Here Ey(u(t), du(t)) = |Vu(t, )5 + |0as,)||3 and
Qol(t, u(t), 0:u(1))
= Zl 1Zu(t, )15 + 1<k2<;< 122z, )13 + (| (Lo + (2 = 1))u(t, )3

Proof. The inequality (3.9) is a direct consequence of [2, (3.17)]. The
inequality (3.10) easily follows from (3.9} and the Sobolev embedding
H'(R") — LP(R"). i

The following estimate (3.13) represents a generalization of the Li-Yu
inequality in [13]. The estimate (3.11) is a variant of (3.12) and indispensable
to our proof (see (4.65) below).

Lemma 3.4. Let n>2 and assume 1/2 <s<n/2. Set 1/q=1/2+s/n.
Let 6 be arbitrary with 0 <0 <n/2—s. Then the following inequalities hold:

(3.11) I[1x1°0]l s < Ca®llvll,, 5, + Ca "> IFofly 5y,
(3.12) ol -+ < Clloll,, g, + Ca " olly 54y -
Here constants C are independent of a and v. Moreover

(3.13) 1 h(E, s

< C(L+ )2 A(t, My, + CO A+ 1) n(, )] o, -

42

Proof. The proof of (3.12) can be found in Li and Zhou [14]. Their
proof is based on the Sobolev embedding H*(R") — L%(R"), the inequality

(3.14) 10 0,2,1-g, < Ca~ "0l
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(see [14, (2.31)]) and the duality argument. Noting that a stronger inequality
(3.15) 11" 0]l 5 < Cloll

actually follows from the slight modification of Li-Zhou’s proof of (3.14), we
easily obtain (3.11) by repeating the same argument as in the proof of (3.12).
For completeness the proof of (3.15) will be given in Appendix. The inequality
(3.13) is a direct consequence of (3.11). O

We shall need the generalized Strichartz estimates for inhomogeneous wave
equations (see the proof of Proposition 4.7 below).

Lemma 3.5 ([3, Lemma 2.3]). Letn>2. Forany (r1,q) and (ry,q2) with

<00, 0<2/qr=9p(n) <1 and 0<2/qy =y(r) <1, for any toel the
operator

t
h— J eI (1) dr
Io

is bounded from L% (I; Hrﬂ,(rl)) to L%(I; H #")) with norm uniformly bounded
1
with respect to I and t,.

Remark. It has been recently proved that a larger set of the pair (r,q) can
be allowed for n > 4. See [15], [5] and [10].

Proposition 3.1. Assume n=3. For any (f,9)eX XY, u(t):=
(coswt) f + (o 'sinwt)g satisfies

(3.16) r“QPuy, QFw='ouy € BC(R; LA(R®)),  |o| < 1,|p| <2,
(3.17) DI QPuo(t, )+ D 1QP0 duo (1, )L, < CIIS, 9) -
ol <1 1Al <2
1B1<2

Proof. We need the following three equalities:

(3.18) Lug(f) = — S“;‘”’ of — sinod(xs) + cosof)(xg), j=1,2,3
(319) leuo(t) = (COSCO[)(.lef) + sn;cotgklg’ l<k<lI<3
3 sin et 3 sin ot
(3.20) Louo(1) = ) _(cos 1) (x;0;f) — 2 g+ 9j(%9)-
J=1 j=1

These equalities can be easily checked with the help of the Fourier transform.
We also need the commutation relations
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(3.21) [cos wt, Q%] = [sinwt, 2%] =0

for any «. Then Proposition 3.1 is a simple result. We omit the details. []

4. Proof of Theorem 1

For any (f,g) € X x Y let us consider the integral equation (2.8). In what
follows the space dimension is assumed to be three and we consider real-valued
solutions only for simplicity. We introduce the set of functions Zs (6 > 0) as
follows:

Zs = qu=u(t,x)]

I*Qfue C(R; L), (Ja| < 1,|p] <2), QFoue C(R;H™), (Al <2),
u(0,x) = f(x), 0u(0,x) = g(x),

lully =Y sup [7*QPu(z, )|, + Y | sup |QPw " du(t, )|, <6

’D(‘SlteR w‘sz teR

1Bl<2
Zs is nonempty, complete metric space with the metric |u — ||, (u,ve Zs) if
I(f,9)|l y«y 1s sufficiently small relative to 6. From now on we simply denote
1(/,9)lx<y by 4. Tt follows from Proposition 3.1 that uy € Z¢, 4 for a suitable
constant C3 > 1.

In order to prove Theorem 1 we define the mapping

(4.1) M :u— Mu=u(t) — Lul(?)

‘sinoo(t — 7) (V= (0)u()dr,  (ue Zacya).

= u(1) —J

0 w
We shall show the following proposition.

Proposition 4.1. If' A is sufficiently small, then M carries Zyc, 4 into itself
and satisfies

(4.2) 1M — M|, < Fllu—vlz,  (u,0€Zac,)-

Then, as a consequence of the contraction mapping principle, M has a
unique fixed point in Z,¢,4 which is a solution to the integral equation (2.8).
The proof of uniqueness is similar to that of Proposition 4.1. Hence, in the rest
of this section, we shall devote ourself to the proof of Proposition 4.1. We
begin with the following proposition which implies that there exist universal
constants C, C’ such that
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(43) C Y sup Q8T u(t, ), < Y sup|[IQFu(t, ),
|O(|§1 teR \a|sl’€R
1Bl<2 1Al <2

< C' Y sup|Qfru(t, ),
laj<1 7€
1Bl <2

for all ue Zyc, 4.

Proposition 4.2. Let 0y be the Kronecker delta. The following commu-
tation relations hold:

(4.4) [0, Qu] =0, [0, Qu] = o0 — 610k,
(4.5) (L, Qu| = oLy — 0Ly,
(4.6) [Qup, Qut] = Ok (Xa01 — X104) — Op1(XaOk — X10a)

— Oak (X501 — Xx10p) + S0t ( X0k — X1 0s),
(4.7) (Lo, Qu] = 0.
Proof. They can be checked by direct computations. ]

Proposition 4.3. Let ue Z>c,g. There exists a constant C depending on y
such that the following equalities hold:

(48) Ll

= Clo ML) — (3 — ) Clw™ 5 0;8,u)u + Clw U2 Liu,
(4.9)  Qul(V, *uP)u] = C(0 P Quu?)u + C(0~ Cu?)Quu,
(4.10)  Lol(¥, + u?)u]

= Clo ® L) u+ (3 — ) Clo ) u+ Clw C"u?) Lou.

Proof.  Since V, *u? = Co~3"u? with C depending only on y (see [24,
Chapter V]), these three equalities can be checked with the help of the Fourier
transform and Lemma 3.1. We omit the details. O

For a nice function & = h(t,x) we have

(4.11) L thh(r)dr

- w
_sino(t — o)

=S (o) + |

g

el =)y e,
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(4.12) Qu Jt@%h(r)dr = J tm‘—w%‘—f)gk,h(r)dz,
(4.13) Lo Jlfm“’;ﬂh@)dr
= O_sinwi; —9) h(a) + ZJ sinwc(; =) h(t)dt

Combining (4.11)—(4.13) with (4.8)—(4.10), we have the following proposition.

Proposition 4.4. Let ue Zyc,q and let C be the same constant as in
Proposition 4.3. The following equalities hold:

(4.14)  Lil[ul(r)

sin @t

= (X [ O )

+C Jz sino(f - 7) (0~ O L (2))u(x))dx
0 %)

sin wt

(™G, f]

+C(3—7)

—C(3-y) Jtcosw(t — D)[(0” 0> (7))u(z)|dr
0

+C3B-y) Jo sm—a)c(:——_‘cz [(af(sfy) Ojuz(r))afu(r)]dr

o] =D (o 020y Lu(elas
0 w

(4.15) Qullu) (1) = CJ; W%_—Tl (0~ C Qi (2))u(7)]dx

+ cjtw (™72 (1)) Quau(v)]dx,
0 w

@16) Lol = ¢ | 2D (0 0N L (o

0 w

LBy jﬂ"b (o D2 ()u()ldr

0 w

+ CLW (=B () Lou(z)]dx.
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Proof. Tt is enough to prove (4.14) because the others are easier to
show. In view of (4.8) and (4.11) we notice that it suffices to show how to deal
with the resulting term involving @~ "9;0.u%. Carrying out integration by
parts with respect to the time variable, we see that

(417) J;W[(w_(s_y)6j6,u2(1))u(r)]d1’
_ S sy ) 4 J cos ot — o) (E)ulD)lde
w 0
_ J;ﬂ“g:ﬂ (0 61002 (2))dwu(x))dr.
Combining (4.8), (4.11) with (4.17), we have (4.14). U

Acting Qf (|f| <2) on (4.14)—(4.16), we finally have the following three
equalities by (3.2), (3.21):

(4.18) QPLiI[u)(?)

sin wt
=C

P CRT)

J;WKW<3mﬂ’Ljuz<f>>9ﬁ‘ﬁ'“<f>]d’

e ( 5 ) (Cul S s
B<p

- C(3-v) (,[f/) J; Coéw(t - T)[(w_(S‘y).Qﬂ/ajuz(f))Qﬂ“ﬂ/u(r)]dr
B'<p
+C(B—7) ( 5) JIW (0~ C QP 3.2 (1)) QP o,u(7)]dr
"<B 0

JZ W [(w~(3—y)Qﬁ'u2(T))Qﬂ*ﬂ/Lju(r)]dT,
(4.19)  QPQuL[u)(0)

) Cﬂ’éﬁ<£,> J;ggg;r) (0 C QP Qi (1)) F u(v)d
B

J Sl =) 0008 2 2)) 25 Qugu(a)dr,
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(4.20) QP Lou)(1)

p "sinw(t — 1)
+C(5_”ﬂgﬂ<&>h (29 o000 2 ()) 2 (o)
+c2(ﬁ/)J =0 o 08 ()0 Lol
B'<p p 0 ¢

where

() =G () G

and the summation is taken over all the multi-indices f' = (1,55, ;) such
that [)’]f <p; for j=1,2,3. Now we are in a position to estimate I*Q* Mu
(l«) <1,|p] <2). Recalling (4.3), we start with the estimate for QFL;l[u].
First, we estimate the fifth term on the right-hand side of (4.18) in the
L®(R;L?) norm. We find that our task is to show

(4.21) (@08 0,2 (1)) 2P d,u(7)|| - eL'(R).
By duality we see that

(4.22)  sup|((w C QP 02 (1)) 2P d.u(t), )|

= sup

2
(@707 902(0)0. 2 0 o 0 )
3 ! !
< 3 supl(o ol C 0 Q" 3 (1))¢), @5 ™ du(v))|
k=1
+Zsup| T ol(w O dud (1) g, 28 F w0 o.u(2)|

3
Z sup| (073, QF 6 (2)) ™' 6, 2PF w0 6,u (), )

=~

3
+ 3 sup| (@~ C QP g (1)) 6,25 w7 0.u(), 0u)|
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3
< Y o 007 gt (1) %2 o (7)o
k=1

3
+ 3 @ 60 4 (1) 028 F o 0.u(x) ),
k=1

where by (-,-) we mean the L? inner product and the supremum is taken over
all ¢ € H' with ||¢; H'|| = 1. Further, thanks to (4.4), we find that the proof of
(4.21) is reduced to that of

(4.23) (=G 8,0,2F 1 (1)) 0 2P w ' o.u(z)|| g € L' (R),
(4.24) (@~ C0,2F 12 (1)) 027 P w ' 0:u(7)||, € L' (R)
for 1 <k, [ <3. First we show (4.23).

Proposition 4.5. Assume that 2 <y <5/2. (1) It is possible to choose
s > 0 satisfying

13 5
(4.25) ~3y+7<s<—y+§.

(2) The norm in (4.23) is estimated from above as

(4.26) --- < C(1 + [¢f) 0 73/2HEHIA)

x| D219 M | Y (190G Y 2+ 19270 G, L)
1B1<2 1Bl1<2
for s satisfying (4.25).

Remark. The condition —3y+13/2<s 1is equivalent to y—3/2+
(s+1)/3> 1.

Proof. The proof of (1} is easy. Thus we omit it. Let us choose s
satisfying (4.25) and put 1/py=1/2—-5/3, 1/p1+1/pp=1/2+1/3, 1/2=
1/ps — (3 —y—1s)/3. Employing the Hardy—Littlewood—Sobolev inequality first
and then the Holder inequality, we see that the norm in (4.23) is estimated as

(4.27) e <L CH(w*(s'”akalQﬂ/uz(r))w‘l5kQﬁ"ﬂlw*181u(r)||6/5
< Clo 802" (1)), llo ™' 027 o~ du(7)]|,,-

Using the embedding H® < L?' first and then (3.13) with § =0, we get
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(428) o 302" (D)), < Clo QA

< CllQF (D), , + C(L+ )TNl 2 (),

P3, X1

< C(1 + |g]) /2B Z 1|Qﬂ”(f)||12“,1,2-
1Bl <2

At the second inequality, the inequality (3.13) was applicable because 1/2 <
3 —y—s5<3/2 holds now. At the last inequality we were able to employ the
inequality (3.4) with p = 2p3. We also used the fact that the Sobolev space on
the sphere W>2(S?) (L? type of order 2) forms an algebra.

Let us turn our attention to the estimate for the second norm on the last
line in (4.27). Since 1/p,=(1+s)/3 and 0 <s< —y+5/2<1/2, we find
2 < p, < 3. Hence, employing the well-known multiplier theorem (see, e.g.,
[23] on page 15) first and then (3.10), we obtain

429) | o’ o ou(x)|,, < Clo~'0.2%F u(x)

sz ||172

< C(1+ [2)) 7P (|7 u(t) |l 7. + I1QFF dcu() ) o).

Since —3/24+ (3 —y—s) —y(py) =—y+3/2—-(s+1)/3, we obtain (4.26) by
(4.27)—(4.29). 0

The estimate for the norm in (4.24) is given in the next proposition.
Proposition 4.6. Assume 2 <y<11/4. (1) It is possible to choose

s > 3/4 satisfying

15 7
(4.30) —3y+7<s<—y+§.

(2) The norm in (4.24) is estimated from above as

(431) ---<C(1+ l.[|)—(1’—3/2+s/3)

X (Z ”‘QBM(T)HIZ",I,Z) Y QPu@)ip 1,2 + 197 0™ du(n)]))

1Al<2 IA1<2
Jor s satisfying (4.30).
Remark. The condition —3y + 15/2 < s is equivalent to y — 3/2 +s/3 > 1.

Proof. (1) is obvious. Let us take s> 3/4 satisfying (4.30) and put
1/py=1/2—-s/3, 1/2=1/p; +1/py, 1/2=1/p3 — (4—y—s)/3. Employing
the Holder inequality first and then the embedding H® — L?',| we see that the
norm in (4.24) is estimated as
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(4.32) - < o 0P W (2|, o 0P 0 () |,

< ClIQP W2 (1) || gy 0™ 02 7 Dt (7)

Since 1/2 <4 —y—s5<3/2, we can employ (3.13) with § =0 in showing
(433) Q720 feoors

< CIQF (D), ,, + C(L+|e) PP D82 (@)

P3, 21

< C(1 + [y B2 tr=) Z ||Qﬂ“(‘f)”12“,1,2
1Bl<2

as we did in (4.28). On the other hand, since p, > 2 by the conditions y > 2
and s < —y + 7/2 and the condition s > 3/4 implies p, < 4, we can use (3.10) to
show

4.34) o ' P ol ou)|,, < Clo'0.28 " u(z)

sz ”Pz

< C(1+ [e) 7P (15 w(@) 1 2 + 1977 0cu(D) ).
Since —3/2+ (4 —y—s)—y(py) = —y+3/2—15/3, we have shown (4.31). [J

Combining Propositions 4.5 and 4.6, we have shown (4.21). Let us turn
our attention to the last term on the right-hand side of (4.18). In order to
estimate it the generalized Strichartz estimate plays a crucial role.

Proposition 4.7. Assume that 2 <y <5/2. The L*(R;L*) norm of the
last term on the right-hand side of (4.18) is estimated as

(4.35) <Y swpl|QPu)r | Y supllL@Pu(0)]),.
‘MSZIER 1<j<3 teR
e

Proof. For any y with 2 < y < 5/2 choose and fix a small number ¢ such
that 0 <& < 5/2—y. Then we choose and fix (r,q) as follows: 1/r=15/2—
y—e¢ 2/q=7(r). Observe that 0 <2/g=y(r) <1 for 2 <y <5/2. Thus we
may employ Lemma 3.5 with (r1,q1) = (r,q), (r2,42) = (2,00) and we find that
our task is to estimate

(4.36) (e QP u?) QP Ly L (R LT

Define py,p, and s as follows: 1/r' =1/p, — (1 —(r))/3, 1/p,=1/2+1/p,
and s=1/r. Observe that p, >1 by the conditions 1/r=5/2—y—¢,
¢ < 5/2 —y and that the equality 1/p, =1/2 —s/3 holds. By the embeddings
A A" and H® — L7 we see that
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(4.37) (B0 w2 ()P Liu(z); HIO |
< Cll( B w2 ()PP Lu(v)),

< Cllo C QP2 (z)|,, 197 L),

< Cllo™ 7908 w2 (7) |, |2 Liu(z)|l,-

Taking account of the condition 1/r=5/2 -y —¢, we can easily verify that
1/2<3—y—s<3/2. Thus we may employ (3.13) with § =0 to show

(4.38) lo™ 7002 (x)]

/ I 1 3—-y—s
< CHQﬂ Uz(r)“m,)(l <§ :]7_3_ _5—)

+ C(1L+ |2y T2 (D)

< C+ )27 N QFu)} 5
1pl<2

At the last inequality we have used the inequality (3.4) with p = 2p,. Finally it
is easy to check that (14 |z|)7***? e L¥(R) thanks to the condition y > 2.
Thus we have completed the estimate for the norm in (4.36). [

Next we shall estimate the second term on the right-hand side of (4.18).
Our task is to show

(4.39) I (w_(3_V)QﬂILjuz(r))Qﬁ”ﬂ/u(T)]|H71 e LY(R).

Proposition 4.8. Assume that 2 <y < 5/2. (1) It is possible to choose
s > 0 satisfying

13 5
(4.40) —3y—|—7<s<—y+-2-.

(2) The norm in (4.39) is estimated from above as

‘MSZ teR

(4.41) o < C(L o) PO (Z sup”Qﬁu(T)H%“,l,z>

x Y sup | LiQPu(x)|,
1<k<3!eR
1B1<2

for s satisfying (4.40).



576 Kunio Hipano

Remark. It follows from the condition —3y+ 13/2 < s that s/3 +y—
7/6 > 1.

Proof. The proof of (1) is easy. To show (2) we choose p;,p, and
py as follows: 1/p,=1/2—5s/3, 1/py+1/p,=1/2+1/3, 1/2=1/p;—
(3 —y—s)/3. Employing the Sobolev embedding and the Holder inequality,
we see that the norm in (4.39) is estimated as

(4.42) - < Cll (@ BN L ()PP u(7) |65
< Cllo M9 Lyl (7)]|, 197 F u(x)|,-

Moreover, making use of the embedding H*® — L” first and then (3.13) with
0=0, we get

443)  |lo QP Lyl (o), < Cllo~C79QF L (7)||,

< C|QF Lut (1)), ,, + C(L+ o) > C7 NP Lui (7)), ,

P3, 21

= C(Z 1927 u(z (Oll3/3-9-9), xl) Z 1Lk QP u()]l
1

1Bl=<2

pl<2 1<k<3
Bl<2

c<1+1r|>—<y“‘3/”(2ufzﬂuu)nz) S ILeku()|),

C(1+ ) A (Z HQﬁ ||r1z) Z ”LkQﬂ“(T)Hz

1Bl<2 1<k<3
1B1<2

At the last inequality we have used (3.4). Finally we employ (3.5) to show
(4.44) 19 u(@)l,, < CA+ 1) PN U@,y o

Since (y +s—3/2) +7(p,) =s/3+y—7/6, (4.41) follows from (4.42)-(4.44).
O

As for the fourth term on the right-hand side of (4.18), we can prove for
2<y<3

(4.45) (P 0y QF P u; LY(R; L2)|| < Cllull},

by repeating essentially the same argument as in the proof of Proposition
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4.6." The only difference is in the use of (3.5) instead of (3.10). We omit the
proof of (4.45).

It is also easy to prove by the standard argument that the L*(R; L?) norm
of the third term on the right-hand side of (4.18) is estimated from above by

ClL/1lx-
As far as (4.18) is concerned, only the first term on the right remains to be

estimated. Observing

(446) (gl CN )= ( f

)l et ),
B'<p

we need to bound the H~! norm of (a)‘“‘y)Q/’”fz).Qﬁ_ﬁ,(xjf). Let p, be the
number defined by 2/3 =1/p, — (3—v)/3. Then we see that p; > 1 for y > 2
and 1/2p; > 1/6 for y < 3. Hence we get by using the Sobolev embedding and
the Holder inequality

(447)  |[(0 CDQF QP (x|
< Cll(w CQF QP (x,£)llgs

< Cllo~C 8 £2{13,197 7 (1)l

<C > (ﬁ,,)HQ”’”fnzmuQﬂ’-ﬂ”fuzplnszf"’"(xjf)us < C|flly-
pr<p

At the last inequality we have used (3.7) to estimate [|Q°# ,(xj ll¢- Hence the
estimate for the first term on the right-hand side of (4.18) is complete and we
have shown

(4.48) > sup | Lik[u](0)ll, < CIf Iy + Cllullz
1<j<3!eR
1B1=<2
for u € Zyc,4, providing that 2 <y < 5/2.
Let us turn our attention to the estimate for QQuI[u] and Q*Loly[u).
In view of (4.19)-(4.20) we get for 2 <y < 5/2

(449) > sup [ Quil(Dll, + D sup Q7 Lok lul (1), < Cllul
o =2 1R

by repeating the same argument as in the proof of Propositions 4.7-4.8.
We omit the proof of (4.49).
It remains to.show
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(4.50) > supl|QPaulolul(n)ll, < Cllul},
0<a<3!cR
1Al <2
(4.51) Z sup [P0~ 10,05 [u](1)]], < C||u||%
pi=<2 ek

Following the proof of Proposition 4.8, we can easily show (4.51). The proof
of (4.50) is easy. Thus we omit it. Hence it has been shown that

(4.52) 1Mull; < [luollz + 1hofudl| 7 < Cs4 + ClIf Iy + Cllull

for ue Zyc, 4. 1t follows from (4.52) that M carries Zc,, into itself, provided
that 4 is sufficiently small. Repeating the same argument as above, we can
show that M satisfies (4.2) and hence is the contraction mapping. Thus we
have completed the proof of Proposition 4.1.

Our next task is to prove (2.10)—(2.11). Define u* () by

(4.53) u () = u(t) — J[ioo sino(t — 7) (V; 4 (2))u(t)de

W

for the solution u to (2.8). The second term on the right-hand side of (4.53) is
well-defined in BC(R; H'). We prove the following proposition.

Proposition 4.9. Let C be the same constant as in Proposition 4.3. Then
ut defined in (4.53) satisfy

(4.54) (reQfu* QFw'ou*) e BC(R; L* x L?),  (lo] < 1,|8| <2).
Moreover, the following equalities hold in BC(R; L?):
(4.55) QPLu* (1)

= 9 Liu(1)

sine(t — 1)

_c </’1> m—[( *(S—V)Qﬂ’LjLﬂ(T)),Qﬂ*/}/u(r)]dr
B'<8 B

(¢}

B'<p B

C3-yp) Z

w
/Sﬂ

e ( ﬂ’) cos(t = 7)[(w Q" 0u (2)) 2P u(v)ldz
¥

/3) TSl 1) sor, 1 (1)) Q5P 9 .u(7)]de

B
~CZ<§,) [ 00 0220 F Lyt

B'<p
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-CcY’ <//:/> JiwMl__f)[(CO'@_V)QFleuz(T))QﬂAﬁ’“(T)]dT

1‘ w

—cY ( ; ) J IO = D) 00 2(2)) @ Qo)

¢ w

IO g 00 00 L) e

' w

—C(5-7y) (ﬁ’) J7 sino(r - 7) [(w—<3-y)gﬂ’u2(T))Qﬁfﬁ’u(f)]dr
B<p

—cY ( , ) J el =) 508 2 (1)) Lou(o)dr.

t w

Proof. We begin with the proof of (4.55). In view of (4.11), (4.14) and
(4.18) we have only to show

(4.58) SN =) 1 (0 B (o) ()] | — 0,
@ 2
(4.59) W[(w*<5*mﬂ’ajuz(a))gﬂvﬁ’u(a)] ;0

as 0 — too. First we prove (4.58). Since [Qy,xj] = xxdy — xi0p, it suffices
to show for 1 <k <3, p'+B" <P

(4.60) Ixe (@ C NP 2 (o) QF u(a)| g0 — 0, (6 — o).

Since 2 <y < 5/2, we can pick n; (0 <#; <1) sufficiently close to 1 such
that n, >y —3/2, #,>5—-2y and 0<1—#y, <2(y—2). Put g,:=1—-pn,.
Recalling ¥, * (2% u?) = CoB37Q% 42, we easily see that the norm in (4.60)
is estimated as
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(4.61) - < O Xl CRP W (0)) 2" (o) )5
< Cll(@ 717w ()| 2" u(o) g5
+ Cll (@™ (xR u (0)])) 1% 2 u(0) | 5-

To estimate the first term on the last line in (4.61) we put s:=1/2 — 34,/2 and
pick pi,p> such that 1/p; =1/2—5/3, 1/p1 +1/p, =5/6. Since the equality
#; =2(1/2 —1/ps) holds, we have

(4.62) (™ C=+11QF 42 (0) )15 22 u(o) | 5

< ||w*(3*1’+'71)|gﬁ'u2(0) I |x|2(1/2—1/pz>gﬁ”u(0.)[|

i,

< Cllo~ G m=910012(6)| ||, |12 (@) || .1 »-

D2

At the last inequality we were able to use (3.5). Moreover, since the inequality
1/2<3—y+mn —s<3/2is true, we apply the inequality (3.13) with § = 0 to
get

(4.63) o= C=41=1QF 12 (5)] |

: I 1 3—y49y -5
< clef @), , (5 - %)

+C(1+ ial)‘”““’””"”IIQﬂ’uz(cﬁlll,z

2)-ny)/2
C(1 + [of) G2 N Qo) 17, .
Bi<2

At the last inequality we were able to use (3.4). Since 2(y —2) —#, >0, it
follows from (4.62)—(4.63) that the first term on the last line in (4.61) converges
to zero as o — Foo.

We turn our attention to the second term on the last line in (4.61). Recall
that 7, has been picked sufficiently close to one such that n; >y —3/2, 5, >
5—-2y and 0 <1—#; <2(y—2). Moreover, we have set #, :=1—17#,. Now
we take s as s:= —y+3/2+#, and pick pi,ps such that 1/p; =1/2 —s/3,
1/py+1/p» =5/6. Since the inequalities 20(p,) —7, >0 and 1/6 < 1/ps <
1/2 are satisfied, it follows from the inequality (3.5)

(4.64)  [|( B (x| Q71 (0)])) 1|27 u(o) |5
< [l G (x| Q5w (@), | || u(a)l,,

< C(1+ o)) 2P| B0 (1] 11QF w? () ), 127 w(a) | 1 -
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Observe that the inequality 1/2 <3 -—y—s<3/2 and the equality 7 =
3/2—(3—y—ys) hold. Employing the inequality (3.13) with d=1#,, we
continue the estimate as

(4.65) o (x| 1% (o))l

P

< Cllo~C779(1x] QP u? (o))l

; 1 1 3—y—s
Tl @), ( ——)

< C(1+ [o)"|@% 4 (o)) 3=~

P31

<C Z I|Qﬂu(<7)||12“,1,2'
Bl<2

At the last inequality we have employed (3.4) with p = 2p;. Combining (4.64)—
(4.65), we have shown that the second term on the last line in (4.61) also
converges to zero as ¢ — +oo. Therefore the proof of (4.58) is complete.
Next we need to show (4.59). However the proof of (4.59) is much easier than
that of (4.58). Indeed we have only to repeat essentially the same argument as
in the proof of Propositions 4.5-4.8. Thus the proof of (4.59) is omitted and
we have finished the proof of (4.55). The proof (4.56)—(4.57) is much easier,
therefore we omit it. Further the proof of the fact 9,Q%u*, QPw'oue
BC(R;L?) (a=0,...,3,|f] <2) is trivial. Hence it is also omitted. We have
finished the proof of Proposition 4.9. O

Now we are ready to show (2.10). It follows from the definition of (4.53)
that for re R

(4.66) 1(Q%u* (1), 2P0 (D)) oz < €4, (IBl < 2).
Moreover, it also follows from (3.6) and Proposition 4.9 that for e R, |f] <2
(4.67) <[t} = - PVRLuE (D)5, [IKItl = |- [PRP o™ (1)1

< C||Q%u* (1)1, < CA

In particular, taking r =0, we get (2.10). (2.11) is an immediate consequence
of (4.53), (4.55)—(4.57). Therefore the proof of Theorem 1 is complete. []

5. Proof of Theorem 2

The proof of Theorem 2 is quite similar to that of Theorem 1. Thus we
only sketch the proof. For any (f_,g_) e X x Y let us consider the integral
equation (2.12). The set Ws (0 > 0) of functions defined in (—o0,0] x R* is
introduced as follows:
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Wy = { u=u(t,x) | T*@Pu e C((~o0,0; L), (o] < 1, || < 2),

Qo e C((—o0, 05 HY), (B < 2),

el = Z sup TR u(t, )|, + Z sup 18w du(t, )|, <6
o <11€R lp<2'€
1ol <2

W5 is nonempty, complete metric space with the metric |ju —v||, (u,ve Wj).
Denoting ||(f_,g-)|lyxy by 4, we easily see from Proposition 3.1 that
u_ e We,4 for a suitable constant Cs. For the proof of Theorem 2 we define
the mapping

(5.01) M s u— Mu=u_ () — Lo ul(f)

=u (1) — Jt —S—IE% (V, % uz(‘c))u(r)d‘t, (u e Wacya)-

As in the proof of Theorem 1, it can be shown that the mapping M carries
Wyc,4 into itself and is the contraction mapping. Therefore it has a unique
fixed point u in Wyc, 4 which is a solution to the integral equation (2.12).
Following the argument in (4.66)—(4.67), we can easily prove (2.15).

It remains to prove the required uniqueness. We shall be on the same lines
as in Reed [20] (see [20] on page 75). Let u and v be the solutions to the
integral equation (2.12) verifying (2.13)-(2.14). By modifying the contraction
argument slightly, we can take 7 < 0 with |T| large such that

(5.2) (sup ., W QPu(t) — T*QFu(t), QPo~ 1 0u(t) — QP 00(0)|| 2, 1> = 0.
te(—oo0,

Therefore v =v on (—o0, T]. Next we need to extend this uniqueness to the
whole interval (—c0,0]. Note that u is a solution to the integral equation

sinw(t—T)

(5.3) u(vt) = (cosw(t — TYHv(T) + p

ow(T)

"sinw(t — 1) 5 . 3

— | —————=(V,*xu’(0))u(r)dr  in (T,0) x R°.
T w

Since v is also a solution to (5.3), it is possible to extend the uniqueness to the

whole interval (—oo,0] by the standard argument. Hence we have finished the

proof of Theorem 2. O
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6. Blow up

In this section we use the following result concerning the local solutions to
the Cauchy problem

(6.1) Pu—Mu+(V,xuPu=0, te(0,T), xeR
(6'2) u(oax) :f(x)a 8,u(07x) = g(X),
where V,(x) = x| 7 as before.

Proposition 6.1. Let 0 <y <3 and (f,g9)e H' x L.
(1) There exists a maximal interval 1 =(0,T,) and a unique solution
(u,0,u) € C(I; H' x L?) to the problem (6.1)-(6.2). If T, < oo, then

(6.3) lu@ll gy + 10D}l = 00 (1= T4).

(2) If initial data (f,g) is spherically symmetric, then u(t,-) is also
spherically symmetric as long as it exists.

(3) If suppfUsuppg <= {|x| < R} for some R >0, then suppu(t,-)c
{|x| < R+1t} for any t < T,.

(4) Let k be a non-negative integer. If (f,g)e H**' x H* then the
solution given by (1) satisfies

(6.4) (u, 0., 8%u) e C(I; H' x H* x HF 1),

(5) Let 2<0 and f=0. If ge H* and g >0, then u(t,x) >0 for all
(t,x)e I x R*.

Proof. The results of (1), (3)-(4) are proved in Menzala—Strauss [16] (see
Theorems 1, 3 and 4 in [16]). The statement (5) follows from (6.4) and Keller’s
comparison theorem for classical solutions [9). Finally, the statement (2) is an
immediate consequence of (1) and the invariance of the equation (6.1) under
rotation. ]

We need the following lemma.

Lemma 6.1 ([22, Lemma 4]). Suppose that F(t) e C*[a,b) and that
F() = Gi(t+1), F'(1) = Co(t + 1) 1F(0)?

for t € [a,b), where Cy,C, are positive constants. If p>1,r>1and (p — )r >
q —2, then b must be finite.
The second purpose of this paper is to prove the following theorem.

Theorem 6.1. Suppose that 0 <y <2, A<0 and f =0. Let ge H* and
g >0 (£0). Moreover, assume that g is spherically symmetric and suppg c
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{|x| < R} for some R > 0. Then the maximal existence time T given by (1) of
Proposition 6.1 must be finite.

Proof. Without loss of generality we may take R=1 and 4 = —1. Note
that the corresponding solution is non-negative and suppu(z,-) < {|x| < ¢+ 1}
for any 1 < T,. Assume T, = co. Then the function [ps u(f,x)dx must be in
the C?-class for all time. However we shall get the contradiction.

Our proof is divided into two cases: the cases 0 <y <1 and 1 <y <2.
We begin with the former. Since u vanishes outside {|x| < 7+ 1}, we get by
integrating (6.1) over R’

(6.5) 5—;JR3 u(t, x)dx = —J

(V; * u?) (2, x)u(t, x)dx.
R3

Since u(t,-) is spherically symmetric, we may write u(z,x) as v(t,r) (r = |x]).
Then the right-hand side of (6.5) can be written as

bl o pr+y
66 =] ] i mdpantinas

R T Jo Jir—y

1 it 1+
:Snzj J nv%t,n)(;J pl_ydp>dnv(t,r)r2dr

0 r n—r

+8n2 t+1 pr ) 1 r+n lfyd P )
not(tm)\ | pdp |dnu(t, ryrdr.

0 0 r—y
Since y < 1, we easily get
n+r 1 r+n 2
(6.7) lj p dp =20 1), —J P dp = (r—y)' .
N - r)iy r
We therefore obtain from (6.5)—(6.7)

d2 C t+1 pr+l - - 5
6.8 e —_— —n| .
69 | wtndr= [T T ol

By an elementary computation we see

+1 |
(6.9) j Ir— g1y

t+1
(r—n) "ydy + J (n—r)""yPdy

r

r

r/2
[
0 r/2

< C(t+1)*7.
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Hence we get by the Holder inequality and (6.9)

+1 2

t+1
CUNE| n2v2<t,n>|r—nil“’dnzc<t+1>‘<2+”(J n2v<z,n>dn>.

0 0
Inserting (6.10) into (6.8), we finally obtain for all >0

(6.11) ;Z_tzzj u(t,x)dx > C(t + 1)*(3*‘)’) (J
R3

R?

u(t, x)dx>3.

Set F(r) = [ps u(t,x)dx. Since F"(t) >0 for all 1 >0, we get F(f) > t||g]|,: by
integrating F”(¢) twice. Thus these exists T} > 0 such that the inequalities

F(t)>C(t+1), F"(t)=C(t+1)CVF@p)3

hold for all r € [T, 00). However this contradicts Lemma 6.1 because of y < 1
and hence the maximal existence time 77 is finite. We have completed the
proof of the blow-up for the case 0 <y < 1.

Next we prove the blow-up for the case 1 <y < 2. Our first task is to
modify the inequalities in (6.7)—(6.8). Since 1 —y <0, we get

1 ntr 2 1 r+y 2
(6.12) ~J plldp = ———, —J p'7dp = —Jm
rdyr (n+7) "y r(r+1)

Inserting (6.12) into (6.6) and noting r,n < ¢+ 1, we have

(6.13) WJRz u(t, x)dx > WLS u(t,x)dx JR3 u(t, x)dx.

Next it is necessary to show |ju(z, )|, = C >0 for all r>1. We follow the
argument in [6], [22] (see [22] on page 383). Since u is non-negative and the
fundamental solution is positive, the inequality u(z, x) > uy(t, x)(= (0! sinwt)g)
is true for all (¢,x) e I x R®>. Hence we have by the Hélder inequality for 7 > 1

(6.14) uo(t, x)dx < J u(t, x)dx < C(t+ 1)||u(z, )|l

Jz—lg;x\stﬂ t—1<|x[ <+l

On the other hand, we get
dZ
(6.15) WJR.% up(t,x)dx =0

by integrating [Juo = 0 over R®. Integrating (6.15) twice, we have

(6.16) La uo(t, x)dx = IJR3 g(x)dx.



586 Kunio Hipano

Since suppuy(t,-) = {t—1 < |x| <t+ 1} by the Huygens principle, it follows
from (6.14) and (6.16) that
Ct

(6.17) lutt, )l > 5 >

SlRe

for t > 1. .
Therefore we have shown by (6.13) and (6.17) that for ¢ > 1

(6.18) F'(t) > C(t+1)7F(o),

‘where F(1) = Jrs u(t,x)dx as before. Since F'(0) = [g(x)dx >0 and F"(¢) >
0, we see F'(f) =0 for all > 0. Thus, multiplying (6.18) by F'(), we see
(F'()%) = C((t+ 1) 7F(t)>)’ for t > 1. Integrating this inequality from 1 to
t, we get

(6.19) F'()? = C(t+1)7F(1)* + F'(1)> = C277F(1)%.

Since y < 2 and

F(1) = J

o up(t, x)dx = lJ g(x)dx,

R3
we see that the right-hand side of (6.19) is estimated from below by
(C/2)(t+1)7F(1)* for large t. Hence the inequality

(6.20) F'(t) > C(t+ 1)"*F(1)
holds for large ¢. This implies
(6.21) F(f) > exp[C(r + 1) 7772

for large 7. Inserting (6.21) into (6.13), we get
2

(622) =

J u(t, x)dx > C(t + 1) exp[C(t + 1)1—V/2]J u?(t, x)dx
R3

|x| <t+1
> C(t+ 1) 7 explC(r + 1) 72 F (1)

for large ¢. At the last inequality we have used the Holder inequality. Since
1—9/2>0 for y <2, we have F"(1) > CF(1)* for large r. As before, this
implies F'(¢) = CF(1) 32 for large t. However, F (#) must become infinity in a
finite time. This is a contradiction. Thus the maximal interval (0, 7,) must
be finite. Therefore we have completed the proof of the blow-up. O
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Appendix

Here we prove the inequality (3.15). It is convenient to use the spherically
symmetric Paley-Littlewood dyadic decompositions which are defined in the
following way. Let e C°(R") be spherically symmetric with 0 <y <1,
Y(x) =1 for |x| <1 and Y(x) =0 for |x| > 2. Define radial functions g(x) =
Y(x) — ¥(2x) and ¢;(x) = @p(27x) for j=+1,42,.... Then it is easily seen
that suppg; = {xe R"|2/7! <|x[ <2/*}, ¢; <1 and

o0
(%) Z p;(x) =1 for |x| > 0.
Jj=—w
In this sum there are at most two nonvanishing terms for every |x|. It is easy
to observe that we get for j = +1, +2,...

Y 1 n

22V gl o < Clloll e, 5<5<3
by proceeding in the same way that the inequality (2.45) in Li-Zhou [14]
is obtained. In this inequality the constant C is completely independent of
j. Recall that in the sum of (%) there are at most two nonvanishing
terms. Thus for every r >0 we can choose j such that r{esuppgp; and
9,(r) > 1/2 for all { e S"7'. Since 27! < |x| < 2/*! on supp ¢;, the inequality
r”/2‘5f|u(r-)||L2(S,,,,) < Cllv|l. holds with the constant C independent of r.
This immediately implies (3.15). O
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