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1. Introduction

In the present paper we study the asymptotic stability of the Carathéodory
scalar linear delay differential equation

(1) X))+ a(O)x(t) + b(D)x(t — 7) = 0.

Our goal is to establish sufficient and “easily verifiable” conditions for such a
stability. Throughout the paper we assume that xe R, a(¢) >0 and b(z) > 0
are measurable functions and 7 > 0 is a constant delay.

Note that conditions for the stability in the case of constant coefficients
a(t) = a,b(¢t) = b > 0 are well known [5]. In particular, if @ = 0 the inequality
bt < /2 is necessary and sufficient for the asymptotic stability of equation (1).
In the nonautonomous case a close to the latter sufficient condition in the form
SUp,c g fttﬂb(s)ds < 3/2 is known as the 3/2-condition of Myshkis-Yorke [16]
(see also [3, 5, 6, 7, 14, 15]). The following sharpest form of this result (for
linear equations) was derived in [10] as an immediate consequence of Yorke
theorem [16] by using an appropriate change of variables:

Theorem. Let b(t) = 0 be locally integrable and © = 1(t) = 0 be Lebesgue
measurable, te R,.. Assume that IR+ b(u)du = +oo and denote by C(t,s) the
Cauchy operator

xi(p,a) = C(t,a)p : [a,+0) — C = C[~1,0]
of the initial value problem
(2) X’(l) + b(t)x(t - T) = 07 xa(¢7 a)(u) = gp(u), ue [_T’ 0]

Then there exist constants N > 0,y > 0 depending on b(t) only such that

t
|C(¢,8)| < Nexp{—yJ b(s)ds} for all t>s5>0,

s

provided
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t 1
(3) lim supj b(s)ds < % and lim inf J b(s)ds > 0.

=t () 240 Jra(y)

Moreover, if sign < in the first inequality of (3) is replaced by < and b(t) > 0 then
the Cauchy operator of equation (2) is bounded.

Note that a large number of previously known results about the asymptotic
stability of equations (1) and (2) are proved by constructing appropriate
Lyapunov functionals (see, for example, [3, 5] and further references therein).
Some other methods were proposed in [1, 7, 17].

A new approach to the stability problem of equation (1) proposed in [4]
is based on the use of methods of topological dynamics and exponential
dichotomies for linear skew-product systems by Sacker and Sell [11, 12, 13].
In [4] a problem was posed to obtain sufficient conditions for the stability of
equation (1) by applying the mentioned techniques. The present paper
establishes new results in this direction some of which generalize the 3/2-
condition.

2. Preliminaries

2.1 Weak hyperbolicity of linear evolutionary systems
For the reader’s convenience we present in this subsection some basic

definitions and facts adapted from [9, 12].

Let & = H x X be given where X is a fixed Banach space (the state space)

and H is a compact Hausdorff space. Assume that 8’4 =h -t is a flow on H;

that is, the mapping (h,¢) — h-t is continuous, £-0=~h, and one has

h-(s+t)=(h-s)-tforall s,te R. A linear evolutionary system n = (0, ®d) on

& is a mapping 7'(G,x) = (G- 1,P(G, t)x), defined for ¢ > 0, with the following

properties:

(1) &(G,0) =1, the identity operator, for all G e H.

(2) lim,, 1o P(G,t)x =x, and this limit is uniform in G. This means that
for every xe X and every ¢>0 there is a J =4J(x,¢) >0 such that
|®(G, t)x — x| < ¢, for all Ge H whenever 0 <1 <4.

(3) &(G,r) is a bounded linear mapping from X to X such that for all
GeH, 0<s,t one has O(G,s+ ) = D(G - 1,5)D(G, 1).

(4) For each >0 the mapping of & into X given by (G,x) — &(G,1)x is
continuous.

The measure «(4) of noncompactness of a bounded set 4 in a Banach
space X is defined by

a(A) =inf{d : A has a finite covering with open sets of diameter d}.
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A linear evolutionary system = is said to be uniformly a-contracting if for
every bounded set B= {x € X : |x| < M} there is a function k with k(¢) — 0 as
t — oo and such that a(®(G,)B) < k(t)a(B),Ge H.

The following definition of the negative continuation generalizes the
concept of a full trajectory for semidynamical system.

A point (G,x) is said to have a negative continuation if there exists a
continuous function ¢ : (—o0,0] — & such that
(i) ¢é(s)=(G-5,¢™(s)) e {G-s5} x X for each s <0;

(i) ¢(0) = (G,x);
(iii) 7#'(P(s)) =@(s+1) for all s<0, and 0 <7< —s.
The following sets play a basic role in the Sacker-Sell theory:
%(G) = {(G,x) e & there is a negative continuation ¢ of (G, x) such that
I65(1)] — 0 as 1 — —c0);
#~ = {(G,x) € &: there is a negative continuation ¢ of (G,x) such that
sup, < ol#*(1)] < o0};

BT = {(G,x) €& :sup |P(G, 1)x| < oo}.
t>0

Now we are in a position to define the weak hyperbolicity of 7 and to
present theorems necessary for our further exposition.

Definition. The linear evolutionary system 7n'(G,x) = (G -1, ®(G,t)x) is
said to be weakly hyperbolic on & = H x X if # is uniformly a-contracting and
B NB = H x {0}.

The Compatibility Theorem [12]. Let n = (0, P) be a weakly hyperbolic
linear evolutionary system on &. Then 1t admits an exponential dichotomy over
all minimal sets M, in H and dim%(G)=c, is constant over every M,.
Moreover, if dim % (G) assumes the same value on all minimal sets in H, then n
admits an exponential dichotomy over H.

The Roughness Theorem [9]. Assume that linear evolutionary systems
ny = (0, P1),my = (0, D2) are defined over the flow G-t and my has exponential
dichotomy. Then there exists ¢ > 0 such that the inequality

Sup |¢1(G, 1) - QZ(G, 1)lL(X) <é&
GeH :

implies the exponential dichotomy of n;.

2.2 Linear evolutionary system associated with equation (1)

The Cauchy operator w(z,s) :exp(—fs' a(u)du) of equation x' = —a(f)x
will be denoted by w(t,s). The notation w(¢,s,a) will be used if it will be
necessary to explicitly indicate the dependence on a(z).
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ClyA stands for the closure of subset 4 of the topological space X. We
use the notations C, R, in the standard way: R, = [0,+0), C([~7,0],R) = C.

In the sequel, we shall consider the uniform spaces %, = %(R,R.),
1 < g < +oo. Algebraically each Z(R, R, ) coincides with Ly, (R). If 1 <gq
< +4oo then Z(R,R,) is endowed with the topology of weak convergence in
L,(I) on compact intervals / = R (in other words, the generalized sequence
Xy — Xo in % if and only if [, x,(u)z(u)du — [, xo(u)z(u)du for every compact
interval I < R and for each ze L,(I), where p~!+47' =1). %, (R,R,) is
endowed with the weak *-topology in L., (I) = L;(I)* for any compact interval
I. That is x, — xo in %, if and only if [, x,(u)z(u)du — [, xo(u)z(u)du for
each compact interval J c R and for each ze L;(I). Partly the choice of
such spaces is justified by Lemma 1 below.

The following basic “continuity” hypotheses on the coefficients a(z),b(¢) :
R — R, =[0,+00) of equation (1) will be assumed throughout the paper:
(H1) a(2),b(t) € Lyie(R), 1 < g < 400 (that is a(t),b(z) € Ly(I) for any com-

pact interval 7 = R) and there is a positive number ¢ such that

t+1
J (@?(u) + b4 (u))du < ¢  for all reR.
t
(H2) a(1),b(t) € L,(R) with esssupg(a(u) + b(u)) < c.

Note that under these conditions a unique Carathéodory solution
x:(p,a) : [a,+00) — C of the initial value problem

xa(¢’ a)(s) = ¢(S), S € [_Tv O]a pe C([—T7O]7 R) =C

for equation (1) exists for all # > a. To prove this it is sufficient to use step by
step continuation method and the existence and uniqueness theorem for the
Carathéodory ordinary differential equations.

Every solution x;(p,a) is associated with an ordinary solution (which
is absolutely continuous function) x(¢,a,¢):[a,+o0) — R, by the relation
x(t+s,a,0) = x/(p,a)(s),s € [-7,0].

Lemma 1. Let {a(¢),b(2)} satisfy one of the assumptions H1 or H2. Then
the set of shifts {a(t+h),b(t+h), he R} is precompact in %,.

Proof. For the case H1 H2, see propositions 1V.8.4, V.6.1 (or Corollary
V.4.3, respectively) of [2]. [ -

With equation (1), or formally with the pair F = (a(1),b(t)) € &, x &,, we
can associate the so-called hull [11, 12, 13] H(F) consisting of all systems
G = (u(1),v(1)) € £ x &4, of the form

(4) x'(8) + w()x(2) + v(£)x(t — 7) = 0,
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where, in %,

p(t) = lim a(t+se),  v() = lim b(t+s)

k—+
for some sequence s; of real numbers. The exact expression for the hull is
H(F) = Clyn {0°F = (a(t +5),b(t + 5)), s € R}.

As the following Lemma shows the shift operator 8 generates a continuous flow
on H = H(F).

Lemma 2. Let a(t),b(t) =0 satisfy one of the assumptions H1 or H2.
Then H(F) < %, is a compact set and the map 6°F : R x H(F) — H(F) is
continuous.

Proof. The compactness of H(F) follows from Lemma 1. Proof of the
continuity of #°F in the case H(F) = %, can be found in [13], section IIL.M.
Here we consider in detail the case H(F) c %, ¢ < .

To prove the continuity of #°F it is sufficient to show that on every
compact interval 7 one has

an(u + hy)du — J ao(u)du

(5) supj al(u+ hy)du < oo and J
n JrI I

I

where 4, — 0 and a, is an arbitrary sequence weakly converging in L,(J) to ao
(see |2], chapter IV, exercise 13.24). We shall prove the second part of (5) (the
first inequality in (5) is an straightforward consequence of the hypothesis H1).
We have

J ay(u + hy)du = J w,(Day(w)du = {u,, any,
1 J

where I, =1 — h, = J, u,(u) is the indicator function of I, and {-,-> is a usual
pairing operation in L,(J). Since u, — y in the norm topology of L,(J) and
a, — ag in the weak topology, we obtain that

(6) |<:unaan> - <,u07a0>| < |<tun - ﬂOaan>| + |<dn - aOa:u0>|
= C”/"n - :u0“p + |<Cln - aO’u0>| - Oa
which completes the proof of Lemma 2. [

Now let us consider the direct product & = H(F) x C. In a standard way,
we define the linear semiflow n': H(F) x C — H(F) x C,t = 0 by the formula

nt(G7 ¢) = (0tG, xt(w’ 07 G))7

where G = (u(¢),v(t)) e H(F) and x,(p,0,G) is the solution of equation (4)
satisfying the initial condition xy(p,0, G) = ¢.
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Lemma 3. Let a(t),b(t) satisfy either assumption H1 or assumption H2.
Then the semiflow n' has the following continuity properties:

(@) x:(9,0,G) — ¢ as t — +0 uniformly in G for every ¢;

(b) for each t =0 the mapping x,(9,0,G) : H(F) x C — C is continuous;

() x/(B,0,G) is a compact set for every bounded set B = C, each t > t and
Ge H(F).

Lemma 3 implies, according to the definitions from the previous subsection,
that the linear evolutionary system =z’ is uniformly o-contracting.

Proof of Lemma 3. (a) Let 64(d) be a continuity modulus of ¢(u). By the
definition of x,{¢,0, G)(u) and the variation of constants formula we obtain for
all positive values of ¢t <7z

#(t+u) if ue[ ,—t; otherwise

xt(¢70, G)(u) = {co(t,O /l fO l S ,U ¢(S_ T)

Therefore

1x:(¢,0, G)(u) — $(u)]
a4(t) if uel—1,—1]; otherwise
{%(f + (1,0, 1) — 1/ [¢(0)] + fy (2,5, p)(5)|¢(s — 7)|ds
(
(

)
oy4(t) if uel-1,—1;
os(0) + Bl k()P i ue [~1,0),

where k(c) depends only on the positive constant ¢ from H1 or H2.

(c) Assume ¢ = t,|B|. < c; Then using the variation of constant formula
again we prove the boundness of x.(B,0, G) in C, say by some positive constant
c1. Since |x[(¢,0,G)()| < crp(u) + cav(u) for all g € B we deduce the com-
pactness of x;(B,0,G). The reasoning for 7 > 7 is the same with the use of step
by step continuation method.

(b) Let ¢, —> ¢y in C and G, — Gy in H(F). Then, similarly to the
arguments in part (c) above, we conclude that the set x,(¢,,0, G,) is compact in
C for every fixed 1 > 0 (if < t we use the condition ¢, — ¢, to prove uniform
convergence on [—7,f —7]). Next, by using the variation of constant formula,
we easily obtain, by employing the Lebesgue dominated convergence theorem
and relations analogous to (6), that the sequence x,(¢,,0,G,)(u),te[—7,0]
converges pointwise to x,(¢dy, 0, Go){u). Taking into account the compactness
of this sequence we conclude that the convergence must be uniform on [—7,0].
Lemma 3 is proved. [



Weak Hyperbolicity of Delay Differential Equations 45

3. Main results: Case a(t) =0

We shall demonstrate first how our idea works in a simpler case of
a(t)=0. By 17(s) €[0,7] we denote the smallest real number r such that
J,b(u)du =1 if such a number exists and we set 7(s) =t otherwise.

Theorem 1. Let b(t) = 0 satisfy either condition H1 or condition H2 and
0¢ H(b). If additionally

seR

JerT_T(S)b(u)du—l-rH b(u)du JS b(a)da} <1,

(7) £= sup{
s s+1—1(s) u—1

then equation (2) is uniformly exponentially stable. FEquation (2) shares this

property with all equations from H(b).

Proof. Clearly the inequality (7) holds for each ce H(b) with b(u)
replaced by c(u). We claim that the corresponding equation

(8) X' () + e(t)x(t—1) =0,

does not have bounded nontrivial solutions for any ¢ e H(b).
Indeed, let z(#) : R — R be a bounded nonzero solution of equation (8) and
((u) =z(t+u),ue[—7,0. Then it follows from H1, H2 that

A =Cl(0',C),te R} < H(b) x C

is a compact invariant set. Thus there exist w € H(b) and some ¢ € C such that

(np)e A, 0<M=1p(0)|=llglc=max{|[y|lc: (e,y) € A" for some e}.

Let, for example, w=w(s),x*(t) =x(t,7,9), x*(r)=p(0) >0. Since
0 ¢ H(b), we conclude that x*(r)# M. Therefore we can assume that x*(¢) is
not a constant on each of the intervals [t —v,7],v > 0.

We claim that without loss of generality we can set x*(0) = 0. Indeed,
integrating the equation x’'(¢) + w(#)x(r — t) =0, we obtain

t
x*(t)=M — J w(s)x*(s — 1)ds.
If x*(0) >0, we have x*(1) > M for small <7, a contradiction. Let us
assume now that x*(0) < 0 and 7, € [0, 7] is such that x*(r) < 0 for all € [0,7;)
and x*(r;) =0. Then necessarily w(s) =0 almost everywhere on [r,7+ 7]
and, consequently, x*(#) = M on [r,7+ 7;]. Finally, taking the pair (wy, ;) =
(07d, x;,(p)) instead of (w,p) we obtain x, (p)(0) = x*(z;) = 0.
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Thus we end up with

w(s)x*(s—1)ds  and x*(s—1)= JO w(u)x*(u — t)du.

S—T

© M=
T

Next we are going to estimate x*(s — 1) for s€(0,7] in terms of M and
obtain a contradiction with the assumption M > 0. The simplest way is to use
the inequality |x*(s — 7)| < M in (9), which immediately leads to a contradiction

0
(10) J w(s)ds < 1 implies M = 0.

T

However, when s is close to 7 and |x*(s — 7)| is close to 0, we can obtain a more
precise upper bound. Indeed, by the definition of 7(0), we deduce from (9) that

x*(s—1)| < JO w(u)duM <M  for all se [t —(0),7].

§—T
Therefore, combining the last two inequalities with (9) we obtain

7—7(0)

(11) M < JOT w(s)|x*(s — 1)|ds < L w(s)|x*(s — 7)|ds

+ J w(s)|x* (s — 7)lds

7—7(0)
S {

a necessary contradiction.

We see that the condition ¢ < 1 is sufficient for the nonexistence of bounded
solutions z(f) : R — R to any system from the hull of equation (2). In view of
Lemma 3 this signifies the weak hyperbolicity of 7, and in view of the first part
of the compatibility theorem—the dichotomy of = over all minimal subsets in
H(F). Since our proof is valid for any b,(¢) =t~ +¢eb(1),e€[0,1], where
0 <J < (1 —¢)3/2, by applying the roughness theorem we obtain the same type
of the dichotomy over every minimal set M, in H(F) for ¢ = 1 and ¢ = 0, that is
the exponential stability with dim %(G) = 0 for all G € M,. By the second part
of the compatibility theorem this implies the exponential stability of the linear
evolutionary system 7z associated with (2). This completes the proof of
Theorem 1. [J

JT_T(O) w(u)du + JT w(u)du JO w(a)dG}M <M,

0 7—1(0) u—7t

It should be noted that Theorem 1 can be stated in the following form
which do not make use of function (s):
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Theorem 1'. Let b(t) = 0 satisfy either condition H1 or condition H2 and
0¢ H(b). If additionally

s+y s+7T s

(12) sup min {J b(u)du—l—J b(u)duJ b(a)da} <1,
seR ye[0,7 LJg s+y u—T1

then equation (2) is uniformly exponentially stable together with any other

equation from H(b).

Theorem 1’ shows that in (7) it is possible to replace the function z(s)
with any (not necessary measurable) function y(s) : R — [0,7]. However, the
sharpest estimate is reached when y(s) = z(s).

Application of our results in the form of Theorem 1’ gives the following
corollary.

Corollary 1. Let the nonzero T-periodic function b(t) >0 satisfy either
condition H1 or condition H2. Then the inequality

(13) max min {sz b(u)du + JHT b(u)du JS b(a)da} <1,

se[0,T] ye(0,7] L Js s+y U~-1
implies the uniform exponential stability of equation (2).

The following result shows that, in general, condition (7) is sharper than the
3/2-condition.

Corollary 2. Let b(f) = 0 satisfy either condition H1 or condition H2.
Then the zero solution of equation (2} is uniformly exponentially stable whenever

1 t
(14) supj b(s)ds < 3 and ian b(s)ds >0  for some L > 0.
teR Jt—1 2 teR —L )
Proof. Obviously the second inequality in (14), which is also valid for all
ce H(b), is equivalent to the condition 0 ¢ H(b).
Let 4> 0 be such that

t
supJ b(s)ds = A.

teR Jt—1

Firstly, we consider the case when, for some fixed s e R, Ls_f b(uydu=pu<1,
and therefore 7(s) =t. In this case, integrating by parts and taking into
account the relation

Ju b(v)dv + r b(v)dv < 1

s u—1

which is valid for all ¥ —7 <s < u, we obtain that
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T -

< [Tbo-an-] borvide
[0 s
U b [ s =it <

o—T

:/lu—kj

S o—

is true for every ue[0,1] if and only if A < 3/2.
Next we assume that [ b(u)du =1 for some nonnegative r = t(s) <.
We have

s+T—r S+T s
i=| bwdut | b J b(o)do
Js JS+T—r u—1
s+T—r S+T s u
[ b+ J b(a)dodJ b(o)do
Js Js+1—r Ju—1 S+T—r
S+T—r s+t u
= J b(u)du + bu—r1) J b(a)dadu.
s Js+T—-r s+T—r
Since
u S+T—F
J b(o)do + J blo)do < A
s+Tt—r u—1

for all ue|s+7—r,s+ 1], we find that

JS+T_rb(u)du + Jm {x - J HH b(a)do-}b(u — 7)du

s s+T—r u—7T

IA

i
S+T—1

s+t S+T—1 s+1—r
= b(u)du + 2+ J J b(a)dadj b(a)do

Js s+1—r Ju—71 u—T

I b(u)du + 2 + % { (LHH b(u)du>2— (Jj:_r b(”)du)z}

" a4 1JH b(u)du{rﬂ— b(uw)du + JHH b(u)du}

s 2 s S S—r

1
= —zti<1
2+ <
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whenever 4 < 1.5. Summing up, we obtain that (7) holds if

t
A= supJ b(s)ds < %

teRJt—1
which proves Corollary 2. []
In some cases the following version of Corollary 2 can be useful:

Corollary 2'. Let b(t) > 0 satisfy either condition H1 or condition H2 on
R.. The zero solution of equation (2) is asymptotically stable provided

t
(15) lim supJ b(s)ds < 3 and

t—--00 —T 2

t
lim infj b(s)ds > 0 for some L > 0.
t—+00 —I

Theorem 2. Let b(t) > 0 satisfy either condition H1 or condition H2 and
0¢ H(b). If additionally

JZT+S b(u)du} <2,

s

(16) sup{

seER

then equation (2) is uniformly exponentially stable. It shares this property with
all equations from H(b).

Proof. Our arguments repeat those in the proof of Theorem 1 except the
part of deriving a contradiction between formulas (9) and (11). Indeed, let us
use

T

(17) M—N:J

0
b(s)(—x*(s — 17))ds + J b(u)(—x"(u — 1))du,
0 -

where —( € [—7,0] is a point where the solution x*(¢) attains its minimal value
on [—7,0]. Obviously x*(—{) =N = —M. Therefore, by (17)

M < —(—N)+J

b(s)(—N)ds + Jo b(u) Mdu,
0 €

and

M(l - J:b(u)du> < <J;b(s)ds— 1>(—N).

Now, since M > 0 we conclude that [ b(s)ds > 1 due to (10). Therefore,
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M(l - J:b(u)du> < (L b(s)ds — 1>(~N) < (JO b(s)ds — 1>M,

a contradiction to (16). [

Remark 1. Theorem 2 improves Proposition 1.2.6 from [3] by relaxing
the condition of the continuity of b(r) together with the requirement that
inf,50b(¢) > 0.

The following example shows the exact nature of the sufficient condition of
Theorem 1. The aim of this example is to demonstrate that, in general, the
inequality (12) is sharper than the 3/2-condition and, moreover, the bounds in
Theorems 1 and 2 are the best possible. The latter means that violations of the
strict inequalities in (7) or (16) can result in existence of solutions not con-
verging to 0.

Example 1. Consider equation (2) where 7 =1 and b(r) is a 2-periodic
piecewise constant function defined by

b(t)y=0 for te[0,1) and
b(r) =¢ for 1€1,2) for some ¢ e [1.5,2).

Corollary 2 fails to apply because sup,.x ftt_r b(s)ds =& > 1.5 in this case.
Nevertheless, the conditions of Theorem 1 are satisfied, which shows the
exponential stability of equation (2). Obviously, 0 ¢ H(b) = {b{t + h),h € R}.
Let us evaluate

a+r—(a) a+t a
6(a) = J b(u)du + J b(w)du J b(o)do.
a a+1—1(a) a—t
By the periodicity of b(¢) it is sufficient to choose a from [0,2]. We have:
(1) Ifael0,1—-1/¢&] then r=1{(a)=a+1/¢ and

a+1 a

b(u)duJ b(o)da = 0.

u—1

e(a) = Jl_l/éb(s)ds +J

a

1-1/¢
(2) If aefl —=1/&,1] then r=1(a) =1 and
a+1 a
gla) = L b(u)du Lq b(o)do = 0.
(3) If ae[l,1+1/£] then also r=1{a}) =1 and
o(a) = r b(u)du rb(a)da —20-a)a-1) < %2 <1

a 1
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(4) Ifaell+1/&2] then r=1(a) =1/¢ and

atl-1/¢
e(a):J bw)du= (2 —a)é < (1— 1)) =¢—1< 1.

Therefore ¢ = maxe(a) < 1.

The same result is straightforward from Theorem 2.

Finally, it should be noted that for £ =2 the equation has a 4-periodic
piecewise linear solution x(¢) defined by

1 if te0,1],
3-2t  ifrefl,2],
D=9 it 1€ [2,3],
2t -1 if 1€ [3,4].

Therefore the right-hand side bounds in (7) or (16) can not be decreased.
Example 2. The delay differential equation
(18) x'(t) + p(2 + cos)x(t —27) = 0

was studied in [8] where its asymptotic stability was proved for p e (0,0.125).
This stability interval for p is the best possible since equation (18) is reducible,
via the change of variables y(s) = x(¢), s= pjol (2 4 cosu)du, to the following
equation with constant coefficients

y'(s) +y(s —4pn) = 0.

It is easy to check that for delay differential equations with constant coefficients
the 3/2-condition and Theorem 1 give the same result. One can expect that
their application to equation (18) will give the same result too. Computations
confirm this giving the same stability domain p € (0, p*), where
p*:%:0.119...: r%irzl max 2 ,
OO £, x) 4 f (5,20 + (s, )

f(s,x) =4n — 2x + sin(s — x) — sins,

g(s,x) = 2xsins — sinssin(s — x) + sin® 5 + 2x?
— 2xsin(s — x) + 0.25cos 2s — 0.25 cos(2s — 2x).
Example 3. The delay differential equation
x'(t)+ p2+cost)x(t—m) =0

was studied in [8] where the uniform asymptotic stability was proved for
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p€(0,0.1207). The 3/2-condition gives p e (0,0.1810) and Theorem 2 is
applicable for p € (0,0.1591). However, by applying Corollary 1 we obtain a
sharper estimate here:

pe(0,p*), where p* =0.1930.. = min max 2 ,

s 00,20 xel0n] oo x)+\/f(57 x)*+4g(s,x)

and
f(s,x) =2n — 2x — sin(s — x) — sin s,
g(s,x) = 2xsins + sin ssin(s — x) — sin’ s + 2x? + 4 coss

—4cos(s — x) + 2xsin(s — x) — 0.25cos 2s + 0.25 cos(2s — 2x).

4. Main results: Case of general a(z) > 0

Theorem 3. Let a(t),b(t) = 0 satisfy either condition H1 or condition H2
and (0,0) ¢ H((a,b)). If additionally

(19) £ = sup min {JHV (s + 7, u)b(u)du

seR vel0,1] s

N

+ JHT o(s+1, u)b(u)duj

s+v u—1

o(u—rt, a)b(a)do} <1,

then equation (1) is uniformly exponentially stable. All equations from the hull
H((a,b)) have the same stability property. In particular the inequality

S+T
(20) lim supJ blu)du < 1
s—=+400 Js
guaranties the exponential stability for every a(t) =0 if for some L >0
t
lim ian (a(s) + b(s))ds > 0.
[ P

Proof. The proof of this more general case goes very closely along main
lines of the proof of Theorem 1. Some modifications, due to a more complex
nature of equation (1), are necessary to add. First, we note that inequality (19)
holds for each (a1,b)) € H((a,b)) with a(u),b(u) replaced by a;(u), by (u). We
claim that the corresponding equation

(21) x'() + a1 (1)x(t) + by (t)x(t — 7) = 0,

does not have bounded nontrivial solutions for every (a;,b1) € H((a,b)).
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Indeed, let z(¢) : R — R be a bounded nonzero solution of equation (21)
and {,(u) = z(t+u),u € [-1,0]. Then it follows from H1, H2 that

A = Cl{(0'ar,0'b1,¢,), te R} = H((a,b)) x C

is a compact invariant set. Thus there exist (v;,v;) € H((a, b)) and some ¢ € C
such that ((v1,v2),0) € A,

0<M=|p0) = llollc = max{[[¥[[c : (e, /)¥) & A for some (e, f)}.

Let, for example, d=d(t),x*(t) =x(t,7,9), x*(z) =¢(0) >0. Since
(0,0) ¢ H((a,b)), we have x*(£) M, and therefore we can assume that x*(¢) is
not a constant on each of the intervals [z — v,1],v > 0.

We claim that there exists 4 € [0,7] such that x*(k) = 0. Indeed, if not
then we get x*(#) > 0 for all ¢ [0,7] implying x*(¢) <0 for all r close to 7.
Since x*(¢)#0 in a left neighborhood of z we get a contradiction to the
assumption of maximality of M. Thus x*(h) =0 for some ke [0,7]. More-
over, by shifting the pair (v1,v2) € H((a,b)) we can set x*(m) = M,x*(0) =0
for some m € [0,1].

Applying the variation of constant formula we obtain

0
M =J w(m, s, v1)v2(s)x" (s — 7)ds,

m

0
x*(s—1) = J (s — t,u,v1)v2 (W) x™(u — 7)du.

ST

By using the latter we derive

m

MSJ

. w(m, s, v)v2(s)|x" (s — 7)|ds < J;n—v o(m,s,v1)va(s)|x*(s — 7)|ds

+ Jm w(m, s, v1)v2(8)|x* (s — 7)|ds < { J:_v (m, s, v1)vy(s)ds

+Jm w(m,s,vl)vz(s)dSJO

m-—v §—1

(s — 1,0, vl)vg(a)da}M <M,

a contradiction.

We see that the condition ¢ <1 is sufficient for the nonexistence of
bounded solutions z(f) : R — R to any equation from the hull generated by
equation (1). By Lemma 3, this gives the weak hyperbolicity of #’, and the
first part of the compatibility theorem implies the existence of dichotomies for 7
over all minimal sets in H(F). To prove that = admits a dichotomy over all
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H(F), we need to homotope # to an elementary system. Here, in contrast to
the proof of Theorem 4, we have to apply such homotopy transformation twice.

Firstly, let us assume (20). Since & < sup,.g [ " b(u)du, for any non-
negative a(f), inequality (20) implies the exponential dichotomy of n over
minimal subsets in H. Moreover, in this case it is not difficult to see the precise
character of the dichotomy, since (20) also holds for all a.(¢) = ea(s);
by(1) =01! +eb(1),e€[0,1], where 0 <6 <1—supg [ “b(u)du. Indeed, by
the roughness theorem, we obtain the same type of the dichotomic behavior
over minimal subsets of H for e =1 and ¢ = 0, that is the exponential stability.
Applying the second part of the compatibility theorem, we conclude that in-
equality (20) implies the exponential stability of =.

Now, we are able to prove that the inequality & < 1 also implies expo-
nential stability of m even if &' =limsup, g [ b(u)du is bigger than 1.
Indeed, since (19) holds for all b.(f) = eb(r), e€ e, 1], we get the weak
hyperbolicity of the corresponding linear evolutionary system =, for every
€ € [ep, 1]. On the other hand, for ¢ = &, the condition (20) is already satisfied
and therefore the system =, is exponentially stable. Now, by roughness
theorem, we get again the exponential stability for all values of & This
completes the proof of Theorem 3. []

. Corollary 3. Let conditions of Theorem 3 be satisfied and the coefficient
a(t)#0 be t-periodic. Then the inequality

t
lim supJ b(s)ds < %

t——+00 -7
is sufficient for the exponential stability of equation (1).

Proof. Note that in formula (19) we have w(s+ 7,u) < 1 and w(s+ 7,u) -
o(u—1,0) =w(s+ 7,0+ 1) < 1 with the latter holds due to the z-periodicity of
a(t). The remaining part of the proof repeats that of Corollary 2. []

Remarks 2.

2.1. As it can easily be seen our main results, Therems 1, 1/, 2, and 3, as
well as the corollaries, remain valid if the equations’ coefficients are defined on
the simiaxis R := {7:7> £} only and the respective conditions (7), (12), (16),
and (19) are satisfied asymptotically as ¢ — +oo, i.e. the “sup,.p” in the
conditions is replaced by the “limsup,_,,”. To carry over the same proof to
this case one has to chose a sufficiently large 7 > # and to appropriately
redefine a(t) and b(t) for + < T as constants.

2.2.  As we can see Corollary 3 supplements condition (20). It would be
interesting to find out whether it is necessary to assume the z-periodicity of a(¢)
there. It is also of interest to compare Corollary 3 with the following stability



Weak Hyperbolicity of Delay Differential Equations 55

condition of A. Myshkis (see [6], p. 104, Example 1.4):
a(f) >0, b)) >0, 7 sup(a(t)+b(0)) < ;

t>0
2.3. If we set v=0 in the statement of Theorem 3 we obtain a gener-
alization of Lemma 3.1 from [4] for the Carathéodory equations (compare also
with [7]), with the following stability condition

sup{
SER

2.4. One possible way to deal with equation (1) is to use the change of
variable x = (#,0,a)y. This transforms equation (1) into equation (2).
Since (t,0,a) <1 for >0 the exponential stability of the transformed
equation will imply the exponential stability of the original one. Unfortunately
this approach (see [10]) gives less sharp estimates since it does not take into
account the stabilizing effect of the coefficient a(f) in equation (1). For ex-
ample, for a(f) = a it gives ([10], Theorem 6)

JHT o(s+, u)b(u)du} < L

s

t
lim supJ b(s)ds < éexp(—m)

t—+0 Ji-1 2

while our Corollary 3 results in

t
lim supJ b(s)ds < é

t—=+oo Jr—1 2
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