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Introduction

Recently the oscillatory and nonoscillatory behavior of solutions of
functional differential equations with delay has drawn increasing attention. The
main reason is that delay differential equations provide a natural description of
a number of real world problems arising in astrophysics, atomic physics, gas
and fluid mechanics, etc. (see, for example, [14, 15]). Among numerous papers
dealing with the subject we refer in particular to [2, 3, 7, 9, 11, 12, 17, 19, 23,
27, 28], to the monographs [4, 5, 13, 20|, and to the references cited there.

In this paper, we study oscillatory behavior of solutions of the nonlinear
delay differential equation

(1) (@Y (x()x'(1))" + q() f (x(<(2))) = 0,
and the ordinary differential equation
(2) (r(W (x(0)x"(0)" + q(1) f (x(1)) = 0,

where t eI = [ty,®), t) € R = (—o0,+0).

In what follows, we always assume without mentioning that

(A1) r:I— R, =(0,00) is continuously differentiable;

(A2) g:I— R is continuous and ¢(¢) does not eventually vanish; that
means that there exists a sequence {f;} of real numbers, #, — oo as t — oo such
that g(1) # 0;

(A3) ¥ :R— R is continuously differentiable and (x) > 0 for x # 0;

(A4) f:R — R is continuous and xf(x) >0 for x # 0;

(A5) t:1— R is continuously differentiable with z/(z) > 0 for all re1,
7(t) <t for ¢ > 1y, and lim,,, 7(t) = co.
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Let y: [t(%), %] — R be a continuous function. By a solution of Eq. (1),
we mean a twice continuously differentiable function x(z) : [¢(f), o0) — R such
that x(z) = x(t) for t(%) <t < ty, and x(¢) satisfies Eq. (1) for all > ¢#. By a
solution of Eq. (2), we mean a twice continuously differentiable function
x(?) : [to, 0) — R that satisfies Eq. (2) for all ¢ > #.

In what follows, we restrict our attention to proper solutions of Egs. (1),
(2), i.e., to those nonconstant solutions which exist on some ray [T, o), where
T > 1), and satisfy condition sup,. r{|x(#)|} > 0. A proper solution x(¢) of Eq.
(1) (resp., Eq. (2)) is called oscillatory if it has arbitrarily large zeros, otherwise
it is called nonoscillatory. A nonoscillatory solution x(¢) of Eq. (1) (Eq. (2)) is
said to be weakly oscillatory if x'(f) changes sign for arbitrarily large values of
t. Finally, Eq. (1) (resp., Eq. (2)) is called oscillatory if all its proper solutions
are oscillatory.

Very recently, oscillatory behavior of solutions for Egs. (1) and (2) has been
studied by Cecchi and Marini {2]. They have proved, among other results on
asymptotic behavior of solutions of Egs. (1) and (2), the following oscillation
criteria.

Theorem A [2, Theorem 3]. Assume that

(i) ¢:I— R is continuous and q(t) does not eventually vanish;

(i) r:I— Ry is continuously differentiable;

(iii) ¥ : R — R is continuously differentiable and y(x) > 0 for x #0;

(iv) f:R— R is continuous, xf(x) >0 and f'(x) =0 for x #0;

(v) t:1— Ry is continuously differentiable such that v'(t) = 0 for t > 1o,
and lim,_,, 7(t) = oo;

(vi) lim o0 L(t) q(s)ds = +o0;

(vil) lim,_ e ft:)r—ls—)ds=+oo.

Then every solution of Eq. (2) is oscillatory and every solution of Eq. (1) is
either oscillatory or weakly oscillatory.

We point out that Theorem A can be applied not only to functional
differential equations with retarded argument, but to advanced and mixed type
equations as well. The following result is concerned only with delay differential
equations.

Theorem B [2, Corollary 1|. Assume that conditions (1)—(v) of Theorem A
hold, and suppose also that

(viii) z(f) <

(ix) limsup,_ fté q(s)ds = +o0;

(X) the function y(u)/f(u) is locally integrable on (0,c) and (—c,0) for
some ¢ > 0; that is,
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“Y(u) YW,
Lmdu<+oo, J_Cf(u)du> 0;

(xi) limsup,, f}%f; q(r)drds = 400, for any T = 1.

Then every solution of Eq. (2) is oscillatory and every solution of Eq. (1) is
either oscillatory or weakly oscillatory.

The aforementioned results have motivated the present research and the
principal reasons are the following:

a) Theorems A and B depend heavily on the assumption that the function
/ is nondecreasing, and it may be somewhat restrictive for applications. So, as
Wong [30, p. 675] has pointed out, “it will be useful to prove results which do
not require f(x) to be monotone.” We mention here that the monotonicity
condition on f has been also required, for example, by Das [3], Grace, Lalli and
Yeh [12], and Kusano and Onose [19].

b) As it has been stressed by Wong [29, p. 228], condition (vii) in Theorem
A “is not usually satisfied in practical problems.” For example, the Emden-
Fowler equation encountered in astrophysics and the Fermi-Thomas equation in
atomic physics have the following form:

d dx
2 Ay —
(3) 7 <t dt) +t*x? =0, t>0,

where p, A,y are positive constants, and in some cases p > 1. Therefore, it is
important for applications to get rid of the aforementioned assumption. We
note that condition (vii) has been also assumed, for example, by Bradley [1],
Grace [7, 9], Grace, Lalli and Yeh [12], and Philos and Sficas [23].

The purpose of this paper is to establish new oscillation criteria for Egs. (1)
and (2) which complement and extend results in [1, 2, 3, 6, 9, 10, 12, 18, 19, 23,
25, 27, 31]. To that end, we employ the integral averaging technique similar
to that exploited by Grace [6, 7, 8], Grace and Lalli [10, 11], Kirane and
Rogovchenko [18], Li [21], Philos [22], and Rogovchenko [25, 26, 27].

The paper is organized as follows. In the next section, we present three
new sets of sufficient conditions which guarantee oscillation of all proper
solutions of the nonlinear delay differential equation (1). Corresponding
theorems for the nonlinear ordinary differential equation (2) are presented in
Section 2. Though the form of the theorems as well as the proofs are very
similar for each set of results, the nature of the assumptions on the functions f
and y is different. Thus our results apply to wide classes of equations which
may be overlapping but definitely distinct. We discuss a number of carefully
chosen examples which clarify the relevance of our results. It is well known
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that theorems which guarantee the existence of oscillatory solutions are not
available for most nonlinear differential equations (see, for instance, [4, 5, 13,
20]). Therefore, as opposed to the existing papers on oscillation, which provide
mostly illustrative examples to the theorems proved without showing the
existence of proper-oscillatory solutions, our examples have been intentionally
selected so that each nonlinear differential equation with or without retarded
argument has an exact oscillatory solution. Finally, in the last section we
compare our results to those known in the literature.

1. Oscillation of delay differential equation

We begin with the following proposition, providing also for the convenience
of the reader the elegant original proof.

Lemma 1 ([2, Theorem 2 (b)]). If q(¢) = 0 for all large t, then Eq. (1) has
no weakly oscillatory solutions.

Proof. Let x(f) be a weakly oscillatory solution of Eq. (1). Without loss
of generality, we assume that there exists a #; > #y such that, for all 1 > ¢;, we
have x(7) > 0 and x(z(#)) > 0. Define the function F as follows:

F () = r(y (x(2))x'(0).

Then, for ¢ > t;, we have that

F'(1) = —q(0)f (x(z(1))) <0,

and hence F is nonincreasing, which contradicts to the fact that F is an
oscillatory function. []

Since throughout this section we always suppose that assumption (6) given
below holds, our results are concerned only with oscillatory proper solutions of
Eq. (1).

Following Philos [22], we introduce a class of functions 2. Let
Dy={(t,s):t>s=t} and D={(t,5): i =s5= K}

The function H € C(D;R) is said to belong to the class £ if

(Hi) H(t,t)=0 for 1> 1, H(t,s) >0 on Dy;

(Hz) H has a continuous and nonpositive partial derivative on Dy with
respect to the second variable.

Theorem 1. Assume that for x #0
(4) f'(x) =K,
(5) Y(x) < L7,



On Oscillation of a Delay Differential Equatiank 5

where K and L are positive constants, and suppose that

(6) q(1) >0

for all t > T,, where T, =ty is a real number. Let hyH: D — R be continuous
Sfunctions such that H belongs to the class # and

(7) —aa—il(t, s) = h(t,s)\/H(t,s)  for all (t,5) € Dy.

Assume also that there exists a continuously differentiable function p:I — R,
such that

®  timswp s | [10,90(6)a05) - [ rn 00,9 s = o,

where

O(t,s) = h(t,s) — ’/’7 '((5)) H,s).

Then Eq. (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1) and let Ty > # be
such that x(#) #0, for all 1 > T,. Without loss of generality, we may assume
that, for all # > Ty, one has x(¢) > 0 and x(z(¢)) > 0 since the similar argument
holds also for the case when x(¢) is eventually negative. Then, by (A4), (6),
and (1), we conclude that

9) (r(OY(x(1)x'(1)) <0, for t > T = max{Ty, T}

Let us define the function w(z) as follows

o 0
(10) (1) = OOV (3(0) T
Differentiating (10) and making use of Eq. (1), we obtain
win =P _ ST (2 (0)7' (1)
(11) (I) - p(t) W(t) p(t)q(t) (X(T(l))) W(t)'

By (9) and (AS5), we have
r(e(O) (x(2(0))x"((2)) = r(B)y(x(1)x' (),
and, consequently, by (4), (5), and (11), for ¢ > T;, we obtain that

KL7'(1)
r(z(1))p(1)

(12) w(1) < 2 w(t) — ple)a(r) - w2(0).
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Hence, by (1) and (12), for all ¢t > T > Ty, we have

JT H(, )p(s)g(s)ds

2
- 1 T - [ | e 5 %Q(m)} s
‘ H(z(s)p(s)
+JT 4KLTI(S) Qz(t7s)ds.

Thereby, for all t > T > T}, we conclude that

1) | [Ha9pe - i,ﬁg’ (())Qﬂ( >]dsSH<r,T>w<T>

KLH s) I r(s)
- J p s KLT t s ds.
By virtue of (13) and (H,), for every ¢ > T}, we obtain
(14) J, [Htoniate) - 02 0219 as
< H(t, Ty)w(Th)| < H(1, 1) |w(T1)]-
Thus, by (14) and (H»), we have
(15) J| [tesia0) - ) 0245 s

< H(t,1) [ | " oa(s)ds + |w<T1>|} .

o

Inequality (15) yields
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r(z(s))p(s)

2
4KLo(s) 2 (9]

lim sup ﬁ Jto [H(f, s)p(s)q(s) —

t—0o0
T
< J p(5)q(s)ds + w(T1)]| < +oo,
14}

and the latter inequality contradicts assumption (8) of the theorem. Hence,
Eq. (1) is oscillatory. [

Corollary 1. Assume that the assumptions of Theorem 1 hold with (8)
replaced by

{—o0

lim supﬁ Jto H(t,5)p(s)q(s)ds = oo

lim su ! Jt s Q*(t,s)ds <
PHG0)), o) S

t—o0
Then Eq. (1) is oscillatory.

Remark 1. We note that corollaries similar to Corollary 1 can be easily
deduced also from Theorems 2 and 3 stated below.

With the appropriate choice of functions H and 4, it is possible to derive
from Theorem 1 a number of oscillation criteria for Eq. (1). Defining, for
example, for some integer n > 2, the function H(t,s) by

(16) H(t,5)=(t=5)"", (1,5 eD,
we can easily check that H € . Furthermore, the function
(17) ht,s)=m-1(t-5"2  (1,5)eD

is continuous and satisfies condition (7). Therefore, as a consequence of
Theorem 1, we obtain the following oscillation criterion.

Corollary 2. Let assumptions (4), (5), and (6) hold. Assume also that there
exists a continuously differentiable function p : I — R such that, for some integer
n>2,

limsup ¢~ $)q(s)

10)/IC PNV PN
O ( =S Jae= o

Then Eq. (1) is oscillatory.
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Remark 2. We point out that we can deduce corollaries similar to
Corollary 2 from Theorems 2 and 3 as well. Of course, we are not limited only
to the choice of functions H and / defined, respectively, by (16) and (17), which
has become standard and goes back to the well-known paper by Kamenev [16].
With a different choice of these functions it is possible to derive from any
theorem presented in this paper other sets of corollaries. In fact, another
possibility is to choose the functions H and 4 as follows:

(18) H(ts) = (ln é) , t>5 = to,

n { n/2-1
(19) h(t,s) :E<ln —) , t>s=t.

One may also choose the more general forms for the functions H and k:

(20) H(t,s) = <JZ%> 1>5> 1,
(21) h(t,s) = -9—%) (K%)WH, t>5> 1,

where n > 1 is an integer, and 6: [fp, o) — R, is a continuous function sat-
isfying condition

t
(22) lim J u__ 00

It is a simple matter to check that in both cases assumptions (H;) and (H,) are
verified, as well as condition (7), which has been evidently used to determine the
function A(t,s).

Remark 3. For the sake of simplicity, in all the examples we tacitly define
the functions H(¢t,s) and A(t,s) by (16) and (17) letting n = 3:

(23) H(t,s) = (t—5)%,  h(t,5)=2, t=>s>1.

Example 1. Consider the nonlinear delay differential equation

1 !
24 1 +sin’ 2z ———x’t>+——xt—n 1+x%(t—n)) =0,
@) (0480 20 e () ) (= ) (14 20 )
where ¢ > 1. Assumptions (Al)-(AS5), (4), and (5) are easily verified, and we
can apply Corollary 2 letting, for example, p(f) = ¢2, to show that Eq. (24) is

oscillatory. In fact, x(f) =sin2¢ is an oscillatory solution of Eq. (24).
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It may happen that either assumption (4) or assumption (5) in Theorem 1
and Corollaries 1 and 2 fails to hold. Consequently, the aforementioned results
do not apply, for example, to equations with f(x) nonmonotonous or ¥(x)
unbounded. Furthermore, for some equations both (4) and (5) may fail to hold
simultaneously. The following result gives the possibility to consider new
classes of equations under the unique assumption on f and .

Theorem 2. Let h,H be as in Theorem 1, the function q satisfy (6), and
suppose that for x # 0 and for some positive constant y

!
25) f'(x)

W (x)
Furthermore, assume that there exists a continuously differentiable function
p: I — R, such that

> 7.

o) timsup i | [(1)p(01a) - DA 02,5y = o

Then Eq. (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1). As in Theorem 1,
without loss of generality, we may assume that, for all ¢ > T}, one has x(z) > 0
and x(z(z)) > 0, so that (9) holds. Defining again the function w(¢) by (10),
after differentiation we obtain (11). By (9) and (25), for ¢ > T}, we conclude
from (11) that

1y < PO (1)
(27) w'(t) < 200 w(t) — p(t)q(1) — sz(t),
Hence, by (1) and (27), for all t > T > T, we have

r(z(s)p(s)
4yt'(s)

2
T e 1 e
H @l " 2\ e Q(”s)] “

The rest of the proof runs as in Theorem 1. [

(28) J; [H(t, $)p(8)q(s) — 0%, s)] ds < H(t, T)w(T)

Example 2. Consider the nonlinear delay differential equation

(29) (H-#lco.m (1+ 5x4(t))x'(t)) +mx(1 =2m)(1+x*(—2n)) =0,

where t > 1. Clearly, assumptions (Al)-(A5), (6), and (25) hold, so we can
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apply Theorem 2 with p(f) = #* to check that Eq. (29) is oscillatory. Observe
that x(f) = cost is an oscillatory solution of this equation.

In the following theorem, we do not require the function f to satisfy the
assumption (4), so it is not necessarily monotonous on R. This enables us to
apply the result to new classes of equations which are not covered by the known
theorems.

Theorem 3. Let assumptions (5) and (6) hold, h, H be as in Theorem 1, and
suppose that for x # 0 and for some positive constant K

" 1, g

Assume also that there exists a continuously differentiable function p:1 — R,
such that

o) timsp g [ kG006 - G2 0201 ds = oo
Then Eq. (1) is oscillatory.

Proof. Let x(f) be a nonoscillatory solution of Eq. (I). As before,
without loss of generality, we may assume that, for all # > T, we have x(f) > 0
and x(z(z)) > 0. Therefore, (9) holds. We define the function w(¢) letting

* ()

x(x(0)”

Differentiating (32) and making use of Eq. (1), we obtain

() x'(=@)'(0)
x(z(2)) x(z(2))

By (9), (25), and (5), for ¢t > T, we conclude from (33) that

(32) w(t) = p()r(O (x(2))

@) v =20 - )

w(e).

/ p'(t) L7'(1)
(34) w'(1) < o0 w(t) — Kp(1)q(1) — sz(t)-
Hence, by (1) and (34), for all ¢t > T > Ty, we obtain
(55) J”hﬂ@@ﬂ)ﬂw (éﬁf)g<>}h<HaT>uv
LH(1,5)'(s)
p(s) s Q(t,s)| ds.

The rest of the proof follows the same lines as that of Theorem 1. [J
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Example 3. Consider the nonlinear delay differential equation

o 24 x%(0) '
2 ’
(36) ((1 + sin“ ¢) 1520 xz(t)x (1)
27sin* (1 + sin” ) (i — 2m) <1+ ) o
10 + sin? ¢ 9 1+4+x*(t—2n))

where ¢ > 1. Since conditions (A1)—(A5), (5), (6), and (30) are verified easily,
we can apply Theorem 3 with p(z) = 1 to conclude that Eq. (36) is oscillatory.
In fact, x(¢) =sin¢ is an oscillatory solution of this equation.

Theorem 4. Let H and h be as in Theorem 1, f,  and q satisfy (4), (5),
and (6), respectively, and assume that

(t,5)
(37) 0< sxg{) {hgglfH( ) <

Suppose also that there exist two functions pe C'([ty,0);(0,0)) and
¢ € C([tg, 0); (—00, 00)) such that, for all t > ty and for any T = 1,

(38) lim sup H(tl tO)J (ST',’E;( D 02(t,8)ds < oo,

p(s)r(z(s)

Lo, (09| ds = 4T,

09  timsupa [ H(s)p(oa00 -
R
(40) lim sup L) ms—))ds = oo,

t—00

where ¢, (t) = max(¢(t),0). Then Eq. (1) is oscillatory.

Proof. As above, we assume that there exists a solution x(#) of Eq. (1)
such that, for some Ty > #, we have x(f) >0 and x(z(¢)) >0 on [Tp, ).
Defining w(z) by (10), we obtain (13), which, for any T > T, yields

r(z(s))p(s)

4KL7'(s) AC S)} ds <w(T)

lim supﬁ—(—;’?) J; [H(t, s)p(s)q(s) —

{— 0
2

KLH(t,5)t'(s ) , r(z(s))p(s) )p(s) o, s)} ds.

t
(29)p0) )+ 31 s “KL(s)

. 1
i,

\_/

y (39), for any T > T;, we conclude from the latter inequality that
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KLH(¢,s)7'(s)

1
v= ¢§)+h@gﬁH077J[ EEO) OIS
r(z(s))p(s) 2
+2 KLo'(5) o(t, )J ds.
Consequently, we have
(41) w(T) = ¢(T),
and
KLH(t, s)r
h?—{glle T) JT, [ r(e(s))p(s) (S)
-;/ ]2 <M < oo,
where
(42) M E w(Th) - §(T).

The latter inequality yields

1 (" [ [KLH(t,5)7'(s) 1 Jr(z(s))p(s) 2
@) om0 R 0]
1 " TKLH(t,5)7'(s)
>llggfo(t Tl)J [ EERD) w2(s) + H(t,S)Q(t,s)w(s)] ds

= liminf[a(z) + B(¢)],

—a0

where o(7) and f(¢) are defined by

1 " KLH(t,5)7'(s) , 3
“@‘Hunﬂ‘ i) " O

ﬁ(t)—-H(t B J VH(t,5)0(t,5)w
Suppose now that |

 Ws)(s)
PO S =

Assumption (37) implies that there exists a positive constant # such that

(44) |
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. H(t,s
(45) inf |liminf ——= (t,5) >n>0.
s210 | =0 H(t 1)

On the other hand, by (44), for any constant x4 > 0, there is a T > T} such that

C wd(s)r(s)
mewm»dz

Thus, after integration by parts, for all 1 > T,, we obtain that

for all ¢t > T5.

==

w0 0= g ke[| Tl

a0 b e

(
= < et

w 1 J’ [ 0H(t, s)] KLuH(t, T,)
> = ds =
ﬂH(t,Tl) Y H t, Tl)

It follows from (45) that

.. H(ts)
f .
11&1(1%1 Ht,10) > 0

Hence, there exists a 75 > T, such that

H(lv T2) >,
H(l, l())

for all ¢t > T3.

Thus, by (46) and (H,), we have that
a(t) = KLy, for all ¢ > T3.
Since u is an arbitrary positive constant, we conclude that

(47) lim a(z) = 0.

t—0

Let us consider a sequence of real numbers {z,},-, € (T1,0) such that
lim,_, t, = o0 and

im [1(t) + (2)] = lim inflo(t) + B(0)).

By (43), there exists a natural number N such that

(48) a(ts) + B(t) < M, for all n> N,
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where the constant M is defined by (42). It follows from (47) and (48) that
(49) lim f(¢,) = —oo0.

n—0

Thus, by (48) and (49), for n large enough, we conclude that

B(tn)
+1<eg
(1)
where e (0,1) is a constant. By he latter inequality an (49),
- (ln)

On the other hand, application of the Schwarz inequality implies that, for
any natural number n,

B(e) = ﬁﬁajf[j V50t 5w ]2

1 " KLH (ty, )t (s)w?(s) ’
S{Humn>L~ P()r((s)) ]
)

[Hminyhliiggf (”””q

1 " p(s)r(z(s))
< a(tn) [H(t,,, ) JTI KL7'(s)

X

0* (5|

It follows from (H;) and from the latter inequality that, for sufficiently large
values of n,

Plo) 11 [*pr(e(s)

i) = nH (tnato)J Koy 2 (ns)ds
By (50), we obtain
(51) kﬁH@@J"@ﬁ$»¢W@¢=w

Consequently,

lim sup (1 ™) L) pls r(s)( s)) Q%(t,5)ds = ©

1—00 Tl(

but the latter equality contradicts assumption (38) of the theorem. Therefore,
(44) fails to hold, and we conclude that
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ds < 0.

© . 2S
52) [ 2ot

7, P(8)r(z(s))
It follows from (41) and (52) that

© f’(s)qﬁ (s) © r’(s)w2(s)
meww“<hmwwm@<w

but this contradicts assumption (40) of the theorem. Hence, we conclude that
Eq. (1) is oscillatory. [

(53)

Corollary 3. Assume that (4)-(6) hold. Suppose also that there exist
Sunctions p e C'([ty, 0); (0,00)) and ¢ e C([ty, 0); (=00, 0)) such that

p 2
liltlling(tl fO)J (S;E;( ))( -5 (n -1 _/;(s) (t —s)> ds < o0,

lm sup 7 JT 4KL7 (5)
p'(s) 1
><<n——l—p(s)(t—s)>]s>¢( ),

and '(40) holds. Then Eq. (1) is oscillatory.

Proof- The proof is evident since

for any s> ¢. O

Remark 4. We note that it is straightforward to deduce from Theorems
5-9 corollaries similar to Corollary 3.

Example 4. Consider the nonlinear delay differential equation

!
1 +exp2ssin®z 2 + x2(1)
54 x'(t) | +2exp(n/2)x(t —n/2) =0,
(54 Q+“ﬁmﬁ”+ﬂm (0] + 2exp(n/2)x(1 ~ 712

where ¢ > 1. It is not difficult to check that conditions (A1)—(A5), (4), and (5)
are satisfied. Hence, we can apply Corollary 3 choosing, for example,
p(t) =12 A straightforward calculation verifies assumptions (38)—(39), and
we conclude that Eq. (54) is oscillatory. Indeed, x(¢) =expi¢sins is an os-
cillatory solution of Eq. (54).
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Theorem 5. Let H and h be as in Theorem 1, f,  and q satisfy (25) and
(6), respectively, and suppose that (37) holds. Assume also that there exist
functions p e C'([ty, 0);(0,00)) and ¢ € C([ty, 0);(—00,0)) such that, for all
t>ty and for any T > 1,

55 timswp s | [H09p00a6) - 29D 0200 as = g,

and conditions (38) and (40) are satisfied. Then Eq. (1) is oscillatory.

Proof. Starting with the inequality (28), we proceed as in the proof of
Theorem 4. [

Example 5. Consider the nonlinear delay differential equation

(56) (;2 1+ 3x2(t))x’(t)>l+ x(t—2m) (1 + x*(t — 2m)) =0,

1+ 3sin”¢ 1 +sin?¢
where 1 > 1. Clearly, conditions (Al)—(AS), (6), and (25) are satisfied, so we
can apply Theorem 5. With the same choice of p(¢) as in Example 4, after a
routine computation we conclude that Eq. (56) is oscillatory. Tt is not difficult
to check that x(¢#) =sin¢ is an oscillatory solution of this equation.

Theorem 6. Let H and h be as in Theorem 1, f .\ and q satisfy (30), (5),
and (6), respectively, and assume that (37) holds. Suppose also that there exist
functions p e C'([ty, 0);(0,00)) and ¢ € C([ty, 0);(—00,0)) such that, for all
t>ty and for any T > 1,

(57) lim sup#r [KH(I, )p($)g(s) — M Q%(t,s5)|ds = ¢(T),

1m0 H(,T) )r 4L7'(s)
and conditions (38) and (40) are satisfied. Then Eq. (1) is oscillatory.

Proof. The proof follows the same lines as that of Theorem 4 with the
only difference that we start with the inequality (35). O

Example 6. Consider the nonlinear delay differential equation

7
1+sin?r2+x2(1)
58 t
(58) <2+sin2t1+x2(t)x()

1 +sin?¢ ( 12 )
+—x(t=2n){1+—— ) =0,
13 +sin’ ¢ ( ) 1+ x2(¢t — 2m)

where ¢ > 1. Assumptions (A1)—(AS5), (5), (6), and (30) are easily verified, and
we can apply Theorem 6 with p(7) = t2 to show that Eq. (58) is oscillatory.
Observe that x(f) =sin? is an oscillatory solution of this equation.
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Theorem 7. Let H and h be as in Theorem 1, f, Y and q satisfy (4), (5),
and (6), respectively, and assume that (37) holds. Suppose also that there exist
functions p e C'([ty, 0);(0,00)) and ¢ € C([ty, 00); (—o0, 0)) such that, for all
t >ty and for any T = 1,

(59) llltl_l)glfH(l )Jto H(t,5)p(s)q(s)ds < o0,

o) it [ [ 6000 - ) 0| sz ),

and (40) holds. Then Eq. (1) is oscillatory.

Proof. As above, we assume that there exists a solution x(f) of Eq. (1)
such that, for some Ty >fy, we have x(¢) >0 and x(z(¢)) >0 on [Ty, ).
Defining w(¢) by (10), we obtain (13), which, in turn, yields

r(z(s))p(s)

1 t
llgglf HeT) JT {H(t, )p(s)q(s) — UKL (s) Qz(t,s)} ds < w(T)

2
. KLH(t,5)t'(s) 1 [r(z(s))p(s)
~ limSup e 7 [ @) T2 ‘Wg“s] "S’

for any T > T;. It follows from (60) and from the latter inequality that

KLH((1,5)7'(s)

e

w(T) = ¢(T )—l—hmsupH(t1 T)J {

t— 00

L Jr(z(s)p(s) ’
-|—§ —K—L—‘E’(WQ(I’S)} ds.

Consequently, for any T > T}, the inequality (41) holds. Hence,

2
. KLH((2,5)7'(s) 1 r(z(s))p(s)
hrtrii}glp p(s) R KL7'(s) Q(t,s]
<M < o,

where the constant M is defined by (42). By the latter inequality,

KLH(t,5)t'(s)
r(z(s))p(s)

(61)  limsupa(z) + f(1)] < limsup H(tlTl)J; [

t— 0 {— 0

w(s)

L oo ., 1
+§ WQ(I,S):I ds< M,
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where «(¢) and f(¢) are defined in the proof of Theorem 4. By (60), we have

@) 4 < i el [ {900 -5 020
< lim glfﬁ-(;}—l) J ; H(t, $)p(s)q(s)ds
~liminf o J; plf;()li(rr((fv))) Q°(t,5)ds.
Inequalities (59) and (62) yield
(63)’ lim inf — (: A J ;1 ”ﬁgz(;((?)) 0%(t,5)ds < 0.

By (63), there exists a sequence of real numbers {#,},”; € (To, o) such that
lim,_,o ¢, = oo and

. L ("p@)rE(s)
(64) o T) JT 2KLo(s) 2 U S)ds < 0.

To complete the proof, we assume that (44) holds. Using the same ar-
gument as in the proof of Theorem 4, we can verify condition (47). It follows
from (61) that there exists a natural number N such that (48) is satisfied.
Proceeding as in the proof of Theorem 4, we arrive at (51) which contradicts
inequality (64). Hence, (44) fails to hold. It follows from (41) and (52) that
(53) holds, but this contradicts assumption (40) of the theorem. Thus, we
conclude that Eq. (1) is oscillatory. [

Example 7. Consider the nonlinear delay differential equation

(65) 2+ exp2tsin® 1 3 + x%(2)
3+ exp2¢sin® ¢ 2 + x2(2)

x’(t)) +2exp(n/2)x(t — n/2) =0,

where ¢t > 1. It is easy to check that conditions (Al)-(AS), (4), and (5) are
satisfied. Therefore, with p(¢) = t72, we can check that assumptions (38)—(39)
hold, and Eq. (65) is oscillatory by Theorem 7. Observe that x(¢) = exp¢sint is
an oscillatory solution of Eq. (65).

Theorem 8. Let H and h be as in Theorem 1, f, ¥ and q satisfy (25) and
(6), respectively, and assume that (37) holds. Suppose also that there exist
functions p e C'([ty, 0); (0,0)) and ¢ € C([tp, 00); (—00, 0)) such that, for all
t >ty and for any T = 1y,
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sl [H(t, (o) ~ 2P 02(1,5) s> ()

and conditions (40) and (59) hold. Then Eq. (1) is oscillatory.

(66) 112 glf

Proof. Starting with the inequality (28), we proceed as in the proof of
Theorem 7. [J

Example 8. Consider the nonlinear delay differential equation

1 + 5cos*4¢

16 T 4 T
+mx(f‘§><”x (’7))—0’

where ¢ > 1. Clearly, assumptions (Al)-(AS), (6), and {25) hold, so we can
apply Theorem 8 choosing p(¢) as in the previous example. A straightforward
verification of conditions of this criterion yields the oscillatory character of
Eq. (67). Indeed, x(¢) =sint is an oscillatory solution of this equation.

(67) (; 1+ 5x4(t))x’(t))/

Theorem 9. Let H and h be as in Theorem 1, f,  and q satisfy (30), (5),
and (6), respectively, and assume that (37) holds. Suppose also that there exist
functions p e C'([ty,0);(0,00)) and ¢ e C([ty, 0);(—00, 0)) such that, for all
t>ty and for any T > 1,

p($)r(z(s))

4L‘c’(s) Qz(za S) ds > ¢(T),

(68) Hﬂglfﬁ J; [KH(t, )p(s)q(s) —

and assumptions (40) and (59) hold. Then Eq. (1) is oscillatory.

Proof. The starting point for the proof is the inequality (35). The rest of
the proof resembles that of Theorem 7. []

Example 9. Consider the nonlinear delay differential equation

4+cos22t 1+ x2(t) , .\
(69) (1 Fcos221 4+ x2(1) (t))

4(4 + cos? 21 36
40 + cos? 2t Xt - n)(l +4—&-x2(t—— n)) =0,

where ¢t > 1. It is not difficult to verify the assumptions (Al)-(AS5), (5), (6),
and (30). Therefore, we can apply Theorem 9 with the same choice of p(7) as
in Example 7 to demonstrate that Eq. (69) is oscillatory by Theorem 9. 1In fact,
x(#) =cos2t is an oscillatory solution of this equation.
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2. Oscillation of ordinary differential equation

In this section, we present oscillation criteria for Eq. (2) which may be
viewed as a particular case of Eq. (1). Thus some results which require as-
sumption (6) (namely, Theorems 12, 15, 18 and eventual corollaries) for the
former equation can be obtained directly from the corresponding theorems for
the latter one. We stress that we do not need this assumption for other results
presented in this section. Finally, we note that throughout this section we do
not require condition (AS5) related only to the delay differential equation (1)
while assumptions (Al)-(A4) are tacitly supposed to hold.

3

Theorem 10. Assume that assumptions (4) and (5) hold, and let h,H be as
above. Assume that there exists a continuously differentiable function p : I — R,
such that

r(s)p(s)

10)  timsp s [! #0610 - "5 07, )|ds = e

Then Egq. (2) is oscillatory.
Proof. Let x() be a nonoscillatory solution of Eq. (2) and let Ty > 1y be
such that x(z) # 0, for all 1 > Ty,. Without loss of generality, we may assume

that, for all ¢ > T;, we have x() > 0 since the similar argument holds also for
the case when x(f) is eventually negative. Define the function w(¢) by

) () = POTOW0) 7

Differentiating (71) and making use of Eq. (2), we obtain
! /
P (t) f (x(t)) Wz(t).

(12) W) =0 M0 P40~ S )
By (4), (5), and (72), for ¢ > Ty, we conclude that
(73) w(1) < 2Dty pya(t) - X520

r(®)p(?)

The remainder of the proof proceeds as that of Theorem 1. []

Corollary 4. Assume that the assumptions of Theorem 10 hold with (70)
replaced by

. 1
llrtg P 7o) Jto H(t,5)p(s)q(s)ds = oo,

t
lirzriillpﬁ(_tl,a L) r(s)p(s)Q*(t,5)ds < .

Then Eq. (2) is oscillatory.
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Remark 5. We note that it is straightforward to deduce corollaries similar
to Corollary 4 from Theorems 11 and 12 stated below.

Corollary 5 ([6, Theorem 2|. Let assumptions (4) and (5) hold. Assume
that there exists a continuously differentiable function p: I — R, such that for
some integer n > 2

1—00

/ 2
- r(j)I?I(,S) (1—s)" (n -1 —[;)((5)) (t— s)) ]ds = 0.

limsup ¢1=" Jt [(t — )" p(s)q(s)

Then Egq. (2) is oscillatory.
Example 10. Choosing p(r) =1, it is not difficult to check that the
nonlinear differential equation

(74) ((1 +2sin? 1) 1+x2(t)) x'(t)>,+(3 sin?r— Dx(f) =0, > 1.

1+ 2x2(¢
is oscillatory by Corollary 5. In fact, x(#) = sin¢ is an oscillatory solution of
Eq. (74).

Theorem 11 (cf. [8, Theorem 1], [12, Theorem 4]). Let h,H be as in
Theorem 1, and suppose that (25) holds. Assume also that there exists a
continuously differentiable function p: I — R, such that

[ [resmsra) - "L 029t = .

4}

1
75 lim su
(75) ,_,OOpH(t, fo)

Then Eq. (2) is oscillatory.

Proof. Let x(t) be a nonoscillatory sotution of Eq. (2). As in Theorem
10, without loss of generality, we may assume that, for all 1 > T, we have
x(t) > 0. Define again the function w(z) by (71), obtaining in the same manner
(72). By (25), we conclude from (72) that

(76) w'(1) <

for t > Ty. The rest of the proof runs as in Theorem 10. [

Example 11.  With the same choice of p(¢) as in the previous example, the
nonlinear differential equation
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(77) <1—1i17§m—2€ 1+ 3x2(t))x’(t)) +% (23 — 35sin” £)x(2) (1 + x%(2)) = 0,

where ¢ > 1, is oscillatory by Theorem 11. Observe that x(¢f) =sin¢ is an
oscillatory solution of this equation.

Theorem 12 (cf. [18, Theorem 2.2]). Let assumptions (5), (6), and (30) hold,
and let h,H be as above. Suppose also that there exists a continuously dif-
ferentiable function p:1 — R, such that

%) timsup [ H(9Kp6)0(0) - "R 0¥ (1) | s = o

Then Eq. (2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (2). Without loss of
generality, we may assume that, for all ¢t > T, we have x(f) > 0. Define the
function w(¢) letting

(79) w(t) = PO 0) 5 -

Differentiating (79) and making use of Eq. (2), we obtain
AU B 1 2

(80) w (Z) - ,D(l) W(t) p(t)q(l) p(t)r(t)lﬁ(x(t)) w (t)

By (5), (6), and (30), for ¢ > T = max{Ty, T.}, we conclude from (80) that

' /7/([) L
(81) w'(t) < mw(t) — Kp(t)q(1) - WW2(1)~

The rest of the proof follows the same lines as that of Theorem 1. [

Example 12. Consider the nonlinear ordinary differential equation

9 L \34R) Y
(82) ((2 + cos? £) (1 + 1504 cos? t> mx (t))

18
2 21)(77 + 295 cos? l+——~)=
+ cos” £)(77 + 295 cos t)x(t)( +2+x2(t)> 0,

+ L (

1894
where ¢ > 1. Assumptions (Al1)-(A4), (5), and (30) are easily verified and Eq.
(82) is oscillatory by Theorem 12 with p(f) = 1. Observe that x(f) = cost is an

oscillatory solution of this equation.

Theorem 13. Let H and h be as in Theorem 1, f and  satisfy (4) and (5),
respectively, and assume that (37) holds. Suppose also that there exist functions
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p e Cl([tg,0); (0, 0)) and ¢ € C([ty, 0);(—0, ©)) such that, for all t > ty and
for any T = 1y,

(83) lim ;pﬁj pls)r(s) 03 (1, s)ds < o,

) msup e | 006 -0 02.9) 4= 6(n)
: Lgi(s)

(83) fizn sup J FOEC

where ¢ (t) = max(¢4(¢),0). Then Eq. (2) is oscillatory.

Proof. As above, we assume that there exists a solution x(z) of Eq. (2)
such that, for some Ty > 9, one has x(¢f) > 0 on [Ty, 00). Defining w(z) by
(71), we obtain inequality (73). Then, for ¢ > T > T, (73) yields

imsop e || (o) - "G00 0% 9)|ds < w()
2
. 1 “| [KLH(t,s) 1 [r(s)p(s)
~ lminf - T)JT opl) "W T2V ke Q(”s)] ds.

The rest of the proof follows the same lines as that of Theorem 4. [J

Example 13. Consider the nonlinear differential equation
1 !
2 2 2 12 . _ .2 _
(86) ((1 +sin” #)“(1 4 cos” 1) T520 xz(t)x (t)) +sin#(7 — 5sin” 7)x(¢) = 0,

where t > 1. Conditions (A1)—(AS5), (4), and (5) are satisfied, and we can apply
Theorem 13 with p(f) =1. A direct computation verifies assumptions (38)—
(39), and Eq. (86) is oscillatory by Theorem 13. We note that x(¢) = sint is an
oscillatory solution of Eq. (86).

Theorem 14 ([8, Theorem 3]). Let H and h be as in Theorem 1, f and
satisfy (25), and suppose that (37) holds. Assume also that there exist functions
p e CY([ty, 0); (0,0)) and ¢ € C([ty, );(—0, 20)) such that, for all t >ty and
for any T > t,

o7 timswp [ (006 -2 020 s = 60,

and assumptions (83) and (85) are satisfied. Then Eq. (2) is oscillatory.
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Proof. We start with the following inequality

r(S)P(S)

imsup L[ [H(r )ats) " Q%0 ds < w(r)

/yH £ s /r(s p(s Q(t

and the proof proceeds as that of Theorem 4. [

— lim inf H(t T

Example 14. Consider the nonlinear differential equation

(88) ((1 +%x2(t)>x'(l)>l+§x(t)(1 +x(t)) =0,

where ¢ > 1. Conditions (Al1)-(A4), and (25) are satisfied and we can apply
Theorem 14 letting p(¢) = ¢ to conclude that Eq. (88) is oscillatory. Indeed,
x(t) =sint is an oscillatory solution of this equation.

Theorem 15. Let H and h be as in Theorem 1, f,  and q satisfy (30), (5),
and (6) respectively, and suppose that (37) holds. Assume also that there exist
functions p e C([ty, 0); (0, 00)) and ¢ e C([ty, ); (=00, 0)) such that, for all
t>ty and for any T = ty,

(89) lim supﬁ J; {KH(t, )p($)q(s) — P—(Z)Lﬂ 01, s)] ds > ¢(T),

{— o0

and (83) and (85) are satisfied. Then Eq. (2) is oscillatory.
Proof. Defining w(f) by (79), we obtain

imsup g7z || |KH(0,5)p6)405) - (T”;Q a0 s>] ds < w(T)

1 LH(z, s
“h?ii?fH( 1, T) JT{\/ r(s Q ]

The rest of the proof follows the same lines as that of Theorem 4. [J

Example 15.  Consider the nonlinear differential equation

1+cos?t2+x2(1) ,,.\  9(1+cos?r) 1 1
(%0) <2 +cos?t 1+ x2(1) ¥ (1) )+ 10 + cos? ¢ x(1) 9711 + xz(z)) =0,

where 1 > 1. Assumptions (A1)-(A4), (5), (6), and (30) are easily verified, and
we can apply Theorem 15 taking p(f) as in the previous example to prove that
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Eq. (90) is oscillatory. Observe that x(f) = cost is an oscillatory solution of
this equation.

Theorem 16. Let H and h be as in Theorem 1, f and  satisfy (4) and (5),
respectively, and assume that (37) holds. Suppose also that there exist functions
pe Cl([ty,©0); (0,0)) and ¢ € C([tg, 0); (—00,0)) such that, for all t >ty and
for any T > 1t,

on  timint [ G600 - D 07 ds = g0,

and assumptions (59) and (85) hold. Then Eq. (2} is oscillatory.

Proof. Again, we assume that there exists a solution x(¢) of Eq. (2) such
that, for some Ty > £, one has x(¢) > 0 on [Ty, o). Defining w(z) by (71), we
obtain (73), which, in turn, yields

imiof 71— j [H(t a(s) - "2 g, s>] ds < w(T)

5
- lil;ll?x‘;lp [’ IKLH (£,5), ( )Q(t s)] ds.

The rest of the proof follows the same lines as that of Theorem 7. [

Example 16. Consider the nonlinear differential equation

(92) ((1 + sin’ 2t)<1 +%sin2 2;) %XZ(OXI(IO‘F?XU)(I +x2(1) =0,

where ¢ > 1. Assumptions (A1)—(A4), (4), and (5) are easily verified. Hence,
we can apply Theorem 16 with p(f) =t to conclude that Eq. (92) is oscil-
latory. In fact, x(¢) =sin2¢ is an oscillatory solution of Eq. (92).

Theorem 17 ([8, Theorem 4]). Let H and h be as in Theorem 1, f and
satisfy (25), and assume that (37) holds. Suppose also that there exist functions
pe Cl([ty,©);(0,0)) and ¢ € C([to, 00); (—0c0, o)) such that, for all t > 1y and
Jor any T = ty,

p(S) ( S) 021, 5)| ds = ¢(T),

1 t
(93)  liminf 0 T)JT[H(t,s)p(S)q()

and (59) and (85) hold. Then Eq. (2) is oscillatory.

Proof. Assume that there exists a solution x(z) of Eq. (2) such that, for
some Ty > fy, one has x(z) > 0 on [Ty, ). Defining w(r) by (71), we obtain
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(73), which yields

imint ;o1 [ [0 -2 02, )] < w(T)

{—0o0 H s
KLH (t"S)'v
o) " \/ ] &

To complete the proof, we proceed as in that of Theorem 7.

— limsu
t—>OOpH(t7 T) T

Example 17. Consider the nonlinear differential equation

(94) 7 <(1 + %xz(t)>x’(t)>/+1—52x(t)(l + x%(1)) =0,

where ¢t > 1. Clearly, assumptions (Al1)—(A4), and (25) hold, so we can apply
Theorem 17 with p(7) = r~2. A straightforward calculation yields that Eq. (94)
is oscillatory by Theorem 17. Indeed, x(f) = cos2t is an oscillatory solution of
this equation.

Theorem 18. Let H and h be as in Theorem 1, f,  and q satisfy (30), (5),
and (6), respectively, and assume that (37) holds. Suppose further that there exist
Sunctions p e C'([ty, 0); (0, 0)) and ¢ € C([ty, 0); (—00,©)) such that, for all
t >ty and for any T > by,

(8)r(z(s))

(95) h?lglf[-[(l LT JT [KH(I, $)p(s)q(s) — P AL

0*(1.9|ds > 4()
and assumptions (59) and (85) hold. Then Eq. (2) is oscillatory.
Proof. Defining w(f) by (79), we obtain

liminf —— ! Jt [KH(I, )p(s)q(s) — r(siL( 9 031, s)] ds < w(T)

—o H(1,T) )7
—limsu 1 J LHts
ZHOOpH( T) T V

The remainder of the proof follows the lines of the proof of Theorem 7. []

ds.

Qts

Example 18. Consider the nonlinear differential equation

06) <l+sinzt2+x2(t)x,(t))+9(1+sinzt)x(t)<l+ 1 ):0,

2 +cos?t 1+ x2(x) 10 + sin® ¢ 9 1+ x2(r)

where > 1. Assumptions (Al)—(A4), (5), (6), and (30) are verified easily.
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Therefore, we can apply Theorem 18 taking, for example, p(f) = =2 to conclude
that Eq. (96) is oscillatory. Observe that x(¢) =sint is an oscillatory solution
of this equation.

3. Discussion

In this paper, we have proposed for Egs. (1) and (2) three sets of criteria,
referred to in the sequel as (A)—(C), which guarantee oscillation of all proper
solutions. For each set, we required one of the following group of assumptions

(A) (4) and (5);

(B) (25);

(C) (30) and (5).

In addition, we required (6) for all criteria concerning Eq. (1) and only for
the set (C) for Eq. (2).

Some our results for the first two sets of assumptions (namely, Theorems
11, 14 and 17 and Corollary 5) for Eq. (2) are closely related to those derived
by Grace [8, 9], Grace, Lalli and Yeh [12], Kirane and Rogovchenko [18], and
Rogovchenko [25] and may be viewed as their natural extension and refinement.
For instance, Theorem 11 generalizes the result by Grace, Lalli and Yeh [12,
Theorem 4]. Furthermore, Theorem 11 improves another theorem due to
Grace [8, Theorem 4] because we do not require f to satisfy

J ©du o
f(u)
On the other hand, we do not require either the reverse condition

© du % du
o7 e | s+
which has been mentioned by Cecchi and Marini [2, p. 1260] as the one imposed
by the majority of authors. We note that condition (x) in Theorem B, which
has been proposed by Cecchi and Marini as an alternative to (97), fails to hold
for Eqgs. (24), (29), (74), and (77).

The third set of sufficient conditions (C) is essentially new. We note that
none of the theorems in [2, 3, 12, 19, 31] applies to Egs. (36), (58), (69), (82),
(90), and (96). 4

We do not require in this paper assumption (vii) of Theorem A.
Therefore, our theorems can be applied to certain classes of equations like, for
instance, Emden-Fowler type equations (3), to which the results due to Bradley
[1], Cecchi and Marini [2], Grace [7, 9], Grace, Lalli and Yeh [12], and Philos
and Sficas [23] fail to apply.

The results presented in this paper are of high degree of generality, which
yields more complicated in comparison to [2] conditions to be verified.
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Nevertheless, application of our results to specific equations requires mainly a
routine computation which can be assisted by symbolic computer languages
like Maple® or Mathematica®. We note that, though being very simple,
assumptions (vi) in Theorem A and (ix) in Theorem B both fail to hold, for
instance, for the differential equation

t

(98) <1x’(t))l+t%x(t) =0, t>0,

while the oscillatory character of this equation can be easily established using
our Theorem 1 with H and % defined by (23) and with p() = #>. One can
check that x(f) = tsin(In¢) is an oscillatory solution of Eq. (98).
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