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1. Introduction

We consider the initial boundary value problem for the following nonlinear
hyperbolic equation with strong damping

(1.1) u" — f(\Vul*)du — Au' =0 'in Q x R,
ou

(1.2) 5=O onl' xR,

(1.3) u(0)y =up, v'(0)=wu; inQ.

Here Q is a bounded domain in RY with sufficiently smooth boundary I', v is
the unit outward normal to I" and f(-) a real valued C'([0,c0))-function.

The equation (1.1) has its motivation in the mathematical description of
small amplitude vibrations of an elastic stretched string with strong damping.

The equation (1.1) with Dirichlet condition was studied by several authors
[3], [5], [6] and [7] (to name but a few). In the previous papers, the authors
have shown the existence and uniqueness of global solutions by using the
Galerkin method, the operator —4 with Dirichlet boundary condition has an
infinite sequence of eigenvalues (/1]2) with

0<,lfs,1§s..., A}——»oo asj — oo

and there exists a complete orthonormal system (w;) in L%(Q2), each w; being an
eigenvector to A]?.

To the best of my knowledge, there is no result concerning the global
existence and decay properties in the case of Neumann boundary condition.
The purpose of the present paper is to examine whether there exists a global
solution u to the Neumann problem (1.1)-(1.3) and to study its asymptotic
behavior.

The proof of the global solvability is carried out by a Galerkin method. A
key point of the proof is to obtain a complete orthonormal system (w;) in a
closed subspace of L2, then the equation (1.1) can be solved in the closed
subspace.
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The contents of this paper are as follows, in section 2 we prove the global
in time solvability of (1.1)—(1.3) (theorem 2.2). In the section 3, we study the
asymptotic behavior in the two cases f(x) >my, f'(x) >0Vxe R by using
an integral inequality due to Komornik [2] (theorem 3.1), and when f(x) =
|x|”,» > 0, that is the equation (1.1) is degenerate because f(0) =0, we use a
device due to Nakao [4] (theorem 3.2). Finally in theorem 3.3 we prove that
the polynomial decay rate obtained in theorem 3.2 is optimal by deriving the
decay estimate from below of the solution.

2. Global existence

We define the linear operator 4 in L?(Q) as follows

D(A):{ueHz(Q), %:O onf}

Au = —A4u Yue D(4).

It is well known that A4 is nonnegative selfadjoint operator with compact
resolvent (I + 14)7" for all A > 0.
We have the following lemma

Lemma 2.1. Let H be a real space with inner product (,) and norm
|-|. Let A be a nonnegative selfadjoint operator with domain D(A) and range
R(A) in H. Suppose that (I + A)™" is a compact operator. Then

(@) R(A) is closed and H = N(A4) ® R(A),

(b) (Alg A))_l : R(A) — R(A) is compact, where A|p 4 is the restriction of
A to R(A).

Proof. The outline of a proof of (a) will be found in [1]. So we will show
only (b). Assume that y, € R(A) satisfies |y,| < 1. Let x, € D(4)N R(A) such
that y, = Ax,. Then we have |4x,| <1. We want to show that x, is
bounded. To see this, suppose |x,| — oo as n — oo and set u, = x,,/|x,|. Then
lun| = 1 and Au, — 0 (n — c0). Since we can write u, = (I + A) " (u, + Auy),
it follows from the compactness of (I +4)~' that there is a subsequence of u,
(we denote it by the same symbol) such that u, — u € R(4) and |u| = 1. Since
A is closed, it follows that we D(4) and Au=0. This shows that ue
N(A)NR(A4). So we get u=0. This contradicts to |u] = 1. Therefore x, is
bounded. Since x, and Ax, are bounded, it follows from the compactness of
I+ A)_1 that there is a subsequence of x, (we denote it by the same symbol)
such that (A|g A))_ly,, =Xn — x in R(4). (Alg A))_l is therefore compact.
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By lemma 2.1 we get:
R(4) = {u e L*(Q), J u(x) dx = o} is closed in L2(<),
Q

L*(Q) = N(4) ® R(4) where N(4) = {u(x) = constanta.e. in Q3
(AIR(A))_1 :  R(A) — R(A) is compact.

Let P: L*(Q) — R(A) be an orthogonal projection of L2(£2) onto R(A),

then we get the explicit representation as follows
1
Pu(x) = u(x) — 2] J u(x)dx =u(x) —a for allu e L*(Q),
Q

where [Q| is the volume of Q and # the mean value of u.

Moreover we know that D(4'/2) = H'(Q) and |4/ 2|,2}(9) = |Vu|iz(9) for all
ue H'(Q).

Note that ¥ = H'(Q) N R(4) and H = L*(2) N R(A) are the Hilbert spaces
with norms [lw|, = |Vw|;. and |v|4 = |v|;» respectively.

In L? we consider the following problem

2.1) { u"(1) + £ (14" Pu()P) du(e) + Al () = 0,
u(0) =up o'(0) = u,

where

(2:2) feCY([0,0)) with f(x)=0, Vx=0.

The equation (2.1) is an abstract model of (1.1)—(1.3).
If u(?) is a solution to (2.1), then by lemma 2.1 we get u(f) = u;(¢) + up(£),
where u;(f) € N(4) and u,(t) € D(A) N R(A4) furthermore we have

ul (¢) + w3 (2) + £ (|4 Pun () |*) Aua (2) + Auj(2) = 0,

u(0) = u1(0) + u2(0) = uo1 + uey,

u'(0) = u1(0) + u5(0) = w1y + uyz,
where we have used the fact that

Au(t) = Aup(t), A (t) = Aub(t) and|AVu(t)* = |4 %u, (1),
then we get the equation in each of N(4) and R(4):
u/(£)=0 in N(4),

(2.3) u1(0) = ug1,

u{(O) = Uj].
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1y (1) + £ (|4 Pu(0)*) Aua (8) + Aui(£) = O in R(4),
(2.4) u2(0) = Up2,
u5(0) = upa.

If we can solve (2.3) and (2.4), we will get the solution u(z) = u;(¢) + u2(¢) to
(1.1)—(1.3), so we have to solve (2.3) and (2.4).
For (2.3), we get the following explicit solution:

ui (f) = uo1 + unt.

Now we will consider the solvability of (2.4) which is considered as an equation
in the closed subspace R(A) as follows:

u"(8) + £ (|45 u()P) dou(t) + Aot (1) = 0 in R(4),
(2~5) u(O) =Uy € V,
W0)=wu eH,

where Ao = A|g4)-
The main result of this section is the following:

Theorem 2.2. Under the hypothesis (2.2), if up € H'(Q) and u; € L*(Q) then
there exists a unique function u:[0,T] — L? in the class

ue L°(0,T; H')
{ u' e L*(0, T; LY N L*(0, T; HY)
and satisfies
u" +f(|AVu)Au+ A =0 in L2(O,. T;(H'Y),
{ u(0) = up, '(0)=uy.

Proof. As it sufficies to solve (2.5), we shall denote in the sequel 4y by 4
for simplicity.

Let (uok)pen and (u1e)rcny be sequences in D(4)NR(A) and D(4'/2)N
R(A) respectively, such that

(2.6) uor — tp strongly in V,
and
2.7 wy — u; strongly in H.

For each k € N, let u; be the solution of the problem (2.5) with initial data uox
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and uy;. Then u; satisfies (see [5])

u € L (0, T; D(A) N R(A)),
u, € L*(0,T; V)N L?*(0, T; D(4) N R(A4)),
ull e L*(0, T; R(4)),
(2.8) ul + (1A |*) A, + A}, =0 in L*(0, T; R(4)),

ur(0) = uor,  u,(0) = ur.

Taking the inner product of the equation (2.8) with 2u}(f) we obtain

d ) |Al/2uk|2 ” )
= | ()] +L f(5)ds | + 2|42 (1)* = 0.
Integrating from 0 to ¢ < T we have

4" 2 (1)

t A gy
f(s)ds+2 Jo |42 (5))* ds = Juse]* + Jo f(s)ds.

o + |
0

By hypothesis (2.2) and the convergences (2.6)—(2.7) it follows that:

(2.9) (u}) is bounded in  L™(0, T; R(4)) N L*(0, T; V),

and then

(2.10) (ug) is bounded in  L*(0,T; V). .

Now we are interested in the convergence of the nonlinear term. Let

Mi(2) = |4 Pu ()))?, te]o,T].
Multiplying the equation (2.8) by Auk(f) we have

F {% |Aun (1) + (4220, Al/zuku))} < |4"2u (0"

(note that f > 0) and hence we have
1
3 | due () + (. (1), Awe (1))
< J |42, ()2 azs+%|Auk(0)|2 + (u4(0), Aug (0)) < C < o,
0

which together with the uniform boundedness of |u;(f)| implies

l4u (1)) < € < 0.
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Since [ [A"2u(7)|*dt < C < oo (or |u}(r)] < C < 00) and 47! is compact, by
Ascoli-Arzela’s lemma (or Aubin’s lemma) we have

(2.11) A (1) — AYu(¢) in L? uniformly on [0, T]

for any T > 0. By (2.9)—(2.10), there exists a subsequence of u, still denoted
w; such that

(2.12) up — u weakly-star in L*(0, T; V),
2.13 u, — u' weakly-star in L®(0, T; R(4)),
%
2.14 u, —u' weakly in L*(0, T; V).
%

By (2.8), (2.11) and (2.12)—(2.14), we obtain that
u" + f(|AVu(t)|))Au+ 4d’ =0 in L2(0, T; V'),
u(0) = up, u'(0) =uy,

and the theorem is now proved. Note that in this proof the assumption f € C!
is relaxed as f e C.

The uniqueness is obtained in the standard way so we will omit the proof
here. Of course, for the uniqueness, the Lipshitz continuity of f is required.

3. Asymptotic behavior
We define the energy of the solution of (1.1)—(1.3) by:

1 Vuf?
E(u(t)) =~ J WP+ J F(s)ds | dx,
2J)o 0
A simple computation gives:
E't)= —J Vi dx < 0,
Q
then the energy is non-increasing, and
t
E() + J Wil (5) ds = E(0).
0
We will study the asymptotic behavior of the solution to (1.1)-(1.3) in the two

cases:
case 1:

(3.1) f(x)=mp>0 and f'(x)>0 VxeR,,
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case 2:
(3.2) f(x) =x" withy>0.

In the case 2, the equation is degenerate because f(0) = 0.
From now on we denote by v the term u — @, where u is the solution of
(1.1)~(1.3) and # its mean value that is @(z) = (1/|Q|) [, udx.

3.1. The non degenerate case
The main result of this subsection is
Theorem 3.1. Under the hypothesis (3.1), we have
E(v(r)) < E(0)e'~"7®  vr > 0.
¢() is a constant which depends only of Q.
Proof. We multiply (1.1) with v, we have then

0= JTJ v(v" — f(|Vo|*)dv — 40') dx dt
0 Jo

After integration by parts, we obtain

2 J: E(f)dt=— UQ vv'} T+2 JT L(v’)2 dxds — JT L} VoV dxds

L L

for all 0 < T < +c0.
By hypothesis (3.1) we have then,

lev|2f(s) ds) dxds — LT Jgf(lvvlz)lvvlz dxds,

0

T T T T
ZJ E(f)dt < - U vv’] +2J J v'zdxds—j VoV dx ds.
0 e lo Jole 0
Using the Sobolev imbedding H'(Q) < L*(Q), the definition of E, the hy-
pothesis (3.1) and the Cauchy-Schwarz inequality we have
I o' dx| < cE,
Jo

and

T
J v?dxds < cE,
0 Jo
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here and in the sequel we denote by ¢ positive constants which may be different
at different occurencies.
Using these estimates, we conclude that

2 JT E(?) dtks cE — JT

J VoV’ dx ds.
0 0 Jo

As
T my T 2 T
J J VvVv'dxds’s—J J [Vv|2dxds+—J j \Vo/|* dx ds
0 Jo 2 JoJo mo Jo Jo .
T
SJ E(f)dt+ cE,
0
then
T T
2J E(t)dtScE+J E(t) dr.
0 0
That is

T
J_mancE
0

By a general result of Komornik [2] (th 8.1), we conclude that

E(u(f)) < E(0)e' /@),

3.2. The degenerate case
The main results of this subsection are

Theorem 3.2. Under the hypothesis (3.2), wé have

c

E(v(r) < W

Vi>0, ify#0

and
E@w(t) <ce® V>0 ify=0,

¢ and o are positive constants.
Theorem 3.3. In addition to the assumption (3.2), suppose that the initial
energy

1 2 1 2(y+1)
E(0) == I
| (0) zlvllL2+2(y+1) !VUO'LZ «1
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and
A(0) := |VU()|22 +2(v1,v5) > 0,
then

E(v()) 2 for t 2 Ty,

¢
(147
¢ Iis a positive constant.

Proof of Theorem 3.2. We have
(3.3) V' — |Vo|? dv — 4v' = 0,

we shall derive the decay estimate of the energy E(v(¢)), where we set
1
2 2y+1
E((®) = W (0172 + = 1407

The proof is essentially included in Nakao [4]. For convenience of readers we
reproduce it in our context.
Taking the scalar product of (3.3) with 2v/(¢), we have

E'(0(2)) + 2|4V ()2 = 0.

Integrating it over [0, 7], we obtain
T
E(T) +2 J Vo ()% di = E(0).
0

Integrating from ¢ to £+ 1, we obtain
141
Em—Ea+n+zj Vo (5)2 ds = 0.

t

That is

2 rl Vo (s)% ds = E(t) — E(t + 1) := F(2)?,

t

then there exist t; € [t,1+ 1/4], t; € [t+ 3/4,¢+ 1] such that
Vo' (1:)]3 < 4F(1)* fori=1,2.

Taking the scalar product of (3.3) with 2v and integrating it over [t;,#] we have

]
0= J J o — |Vo[?vdv — vAY dxds,
Q

I3}
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then

[z <[ o] + [[ s

51

+ r L} Vo(s)| 2 IV (5)| 2 dx ds.

L4}

SCPUV+FM sup wqm@k:em{

t<s<t+1
thus we obtain

1 (- )
E(s)ds < cG(t)",

E(h) <
( ) tZ_tl-‘t]

and hence

1 &
sup E(s)""70) < E(h)+2| [VY(s)|z:ds
Jh

t<s<t+1

< cG(t? <c|F(t)> +F(f) sup E(s)l/(z(m))]_

t<s<t+l

Using the Young inequality, we arrive at

sup  E(s)0) < cF(1)? = ¢(E(t) — E(t+1)).

t<s<t+l1

By a general result of Nakao [4], we get the decay estimate of the energy E(v(f))
such that

4

E(w(n) < m

V>0 ify#0,

and
E(w(t)) <ce™™ Vi=0 ify=0.

Proof of Theorem 3.3. Multiplying (3.3) by 2v(#) and integrating over £,
we have

A'() +2B(t) = 0,
where we set
A1) = Vo(9)|72 + 2 (1), v(2)),

B(1) = Vo) 27D — /(1) 3.
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We have B(f) < |Vo(0)|7) — (1/2)|0/(9)[%. Since A(0) >0, it follows that
A(t) > 0 for some ¢t >0. We put

T :=sup{t€[0,00),A4(s) >0 for0<s<t}

then it holds that T; > 0 and A(¢) > 0 for 7 < Tj.
Since for any 0 <k <y and 0 <e«x1

Vol |, )" F < eVl + c(e) Vol 2% 01297 o' 2,

we get
+1 2+ _ J1 o 20+ )+ (=k) | 112
A = Vol —{yw +e¢ max E(0)/0DY0 ’Iv’le}
1
> S |Volgd V) = cEO) V3,
then
1
24()"" — B(t) 2 [Vl 7 — 2B Q) /72 — 7ol + 510/ 22,

> (% - 20E(0)”) W' ()% = 0,

when we have used the assumption E(0) « 1, then we obtain

A1) +44(0)™ > 0,

and hence, we see from A(0) > 0 that
_y 1, ., N\
A > @ 1+ 500740
which conclude T; = co. Then we have

Vo(t)[7. = A(r) = 2('(2), v(1)

> (1+—ct)*/V — et/ (8)] 2 IVo(1)] 2

¢ c
= 0307 (1107
c
> (_1_,_1—)1/7 for t> To,

and then

E(v(t)) = for t > Ty,

c
1+t

thus we have proved Theorem 3.2.
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