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§1. Introduction

Let R be the set of real numbers and let I denote an unbounded subset
of R, = (0, c0). By g™ we denote the m-th iterate of the function g: I — I, i.e.

g°W) =1t g" 1) =9g"(®), tel, m=0,1,....

In the whole of this paper upper indices at the sign of a function will denote
iterations. In each instance we have the relation ¢'(f) = g(t). Exponents of
a power of a functions will be written after a bracket containing the whole
expression for the function.

In this paper we are concerned with the oscillatory behavior of solutions
of functional equations of the form

(1) a,(t)x(g* (1)) + a, (£)x(g(t)) + ao(6)x(t) = 0,

where a;: >R (i=0,1,2) and g:I—1I are given functions and x is an
unknown real valued function. In the sequel we assume that

2) g(t)#t and tlll?g g(t) = oo, tel.

By a solution of equation (1) we mean a function x: I — R such that
sup {|x(s)|: sel,, = [ty, 0)nI} >0 for any toeR, and x satisfies (1) on I.

A solution x of equation (1) is called oscillatory if there exists a sequence
of points {t,},, t,el, such that nlgg t,=o and x(t)x(t,,,) <0 for

n=1,2,... Otherwise it is called nonoscillatory.

In contrast with the extensive development of the oscillation theory of
differential equations (for example see [4] and the references contained therein),
the authors are of the opinion that at this time in the literature there are no
known oscillation criteria for functional equations. The purpose of this paper
is to obtain sufficient conditions under which all solutions of (1) are oscillatory.

First let us observe that existence of oscillatory solutions of equation (1)
is connected with the sign of the functions a; (i =0, 1,2) on I. For example,
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it is easy to prove that in each case:
(i) a;(t)>0 [or a;(t)<0] (1=0,1,2), tel,

(ii) ai(t) >0, a;(t) > 0 [or a,t) <0, a;(t) < 0] and
a,(t) is oscillatory, where i #j #k, i, j, ke {0, 1,2} and tel,

equation (1) possesses only oscillatory solutions. However, in the case
(iii) a;(t) >0, a;(t) >0 and a,(t) <0, (i #j # k), on I,

equation (1) can possess both oscillatory and nonoscillatory solutions. For
example, the functional equation

X(t+2m) — (" + Dx(t + n) + e"x(t) = 0, teR,,

possesses an oscillatory solution cos2t and a nonoscillatory solution ¢'. So,
a question arises: In case (iii) holds, under what additional conditions on
the coeflicients a; every solution of (1) will be oscillatory. Some answers to
this question will be presented in this paper.

Further we consider equation (1) with the following assumptions

a,(t)>0, a;(t)<0 and aq(t) >0 for tel.

If we denote

Po)=-"Y>0 and 0= - 2050 for tel,
a,(1) a(t)
then equation (1) takes the form
(L) x(g(®)) = P(t)x(t) + Q(t)x(g*(t).

Now we present a very simple condition under which every solution of
(L) is oscillatory.

Lemma 1. If

@A) lim sup Q(6)P(g(1)) > 1,

then every solution of (L) is oscillatory.

Proof. Suppose that (L) has a nonoscillatory solution x. Since — x is
also a solution of (L), without loss of generality we may assume that x(t) > 0
for tel,, t; >0. Then, in view of (2), there exists a point t,€l, such that
x(g'(t)) >0 (i=1,2) for tel,,. Therefore from (L) we have for tel,,

x(9(1)) = P(t)x(t)
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which gives
4 x(g*(1)) = P(g(0)x(g(t)).
Using now (4) in (L) we obtain for tel,,
x(g(t)) = P(1)x(t) + Q(6)x(g°()) = Q(t) P(9(1))x(9(t)),

which contradicts (3). Thus the proof is complete.

§2. Main results

In this section we will assume that condition (3) is not satisfied, i.e.
Q()P(g(t)) <1 for all sufficiently large tel. Moreover, for convenience, we
will assume that inequalities about values of functions are satisfied eventually
for all large tel

Theorem 1. Assume that
1
®) lim inf Q(r) P(g(1)) > 1

Then every solution of (L) oscillates.

Proof. Assume, for the sake a contradiction, that x is an eventually
positive solution of (L). Then, as in proof of Lemma 1, x satisfies (4). Using
now (4) in (L) we have

x(g(t)) = P(6)x(2) + (1) P(g(1))x(g(2))

and
x(t)
(6) Q()Pg@) <1—P(t) :
x(g())
From (5) it follows that there exists ¢ > 0 such that
1+¢ 1
() Q(1)P(g(1)) = R
Therefore from (6) and (7) we obtain
1+8§1—P(t) x(t)
x(g(t))

which gives

x(t) 1+e¢ | l+e| 1
P(t)x(g(t))sl~ 2 £1+8131>ag((1+8)[1-— ) :l—
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Thus
(1 + &)P(t)x(t) < x(g(r))

and by iteration

) (1 + &) P(g(£))x(g (1)) < x(g*(2))-

By using (8) in (L) and then by repeating the above arguments we find that
[1 +el?P)x(t) < x(9(t))

and

[1+ €]*P(g(6)x(g(®) < x(g*(2)).

Thus, by induction, we have for every k=1, 2,...

) [1 + e]*P(g(1))x(g (1)) < x(g*(2)).
Choose k such that
(10) [14+ ] > 4.

Using now (9) in (L) we obtain
x(g(0) = P@)x() + Q(1)x(g* (1) = [1 + e]*QO) P(g(1)x(9(1))-
Thus
1> [1+ ]Q(t)P(g(t)
which, by (7), gives
4>[1+ e+t
The last inequality contradicts (10) and so the proof is complete.

Remark 1. It is worth noticing that the constant on the right-hand side
of (5) cannot be improved, i.e. condition (5) connot be replaced by the weaker
condition

1—
(11) lim inf Q(£) P(9(¢)) > TE
for some e€(0, 1]. For example, we consider the functional equation
2x(g(6) = (1 + AL]"x(0) + (1 — A[E]7*"x(g(1)),

where meR, g(t) = [t]*, teR, and A€(0,1). Let £€(0, 1]. Then condition
(11) is fulfilled for all A€ (0, \/&) since
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lim inf Q(£) P(g(t)) =
1+4 1-4% 1-
_hmlnf A tt4 y =y 48'

However, the equation has a nonoscillatory solution [¢]™.
Theorem 2. Suppose that for some integer m > 0 the following condition
is satisfied

(12) lim sup (QP((0) + 3 H @ @O)P 20} > L

Then every solution of (L) is oscillatory.

Proof. Assume that x is an eventually positive solution of (L). Then,
as in the proof of Lemma 1, we have

x(g'®))>0 for i>1.
Then from (L) we obtain the following inequalities
(13) x(g(t)) = Q(1)x(g*(t))

and

x(g(t)) = P(t)x(1).

Using the last inequality one can prove by induction the formula
i—1

(14) x(g'®) = x(t) [T P@@®), (=12..).
Jj=0

Replacing in (L) ¢ by g(t}) we obtain

(15) x(g*(1) = P(g(0)x(g(1)) + Q(g(1)x(g* (1))

Induction yields

(16)  x(¢""H () = P@'O)x(g'®) + Q (¢'®)x(g" (@)  for ie{2,3,..}.

Using now (16) with i =2 and next i = 3 in (15) we have

x(g*(1)) = P(g(6))x(g(t)) + Q(g(1)) P(g*(1))x(g* (1))
+ Q(9(1)2(g° (1) x(g*(2))
= P(g(0))x(g() + Q@) P(g*(£)x(g°())
+ 012> (M) Pg*(1)x(g> (1))
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+ 06000161206 ) (g ()
= PlgO)xa0) + 3 Pl 0)xtg20) )1 00
#x(¢°0) 1 01",
Then induction gives for m > 1

X(@*(0) = PGUOG0) + 5. PG20)x*20) [] 06" ()

m+1

+ x(g" "4 (1)) IJO Q(g’ 1 (1)).

From the above equality, in view of (13), (14) and positivity of x(g'(t)), we
derive

m i

x(g%(t)) = Q) P(g(t))x(g*(t)) + Z H (@' () P(g" 2 (1))

Dividing now both sides of the above inequality by x(g?(t)) we obtain a
contradiction with (12). Thus the proof is complete.

§3. Applications

In this section we show an application of our results to difference and
recurrence equations. First, let us consider a difference equation of the form

(DE) 4px(t) = Q(O)x(t + 2h),

where 4,x(t) denotes the difference of the function x with the span h > 0, i.e.
A, x(t) = x(t + h) — x(t) and Q: R, - R, is continuous function. From results
of Section 2 follows a criterion for oscillation of solutions of difference equation
(DE)

Theorem 3. Al solutions of (DE) are oscillatory if one of the following
conditions is fulfilled

o 1
11¥r_1> (}Onf o) > 1
or for some m >0

lirggoup {0@) + i ]j Qt+(j+Dh} > 1.
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Consider now a recurrence equation of the form
(RE) bm)x(n + 1) = a(m)x(n) + cm)x(n +2), neN={1,2,..)},

where a, b, c: N—> R,. A nontrivial solution of (RE) is called oscillatory if
for every n;eN there exists n>mn; such that x(mx(n+1)<0. If one
nontrivial solution of (RE) is oscillatory then all nontrivial solutions are
oscillatory (see [1]). So (RE) may be classified as oscillatory or nonoscillatory.
Now we apply Theorems 1 and 2 to equation (RE) to obtain the following
result.

Theorem 4. Each one of the following conditions

(17) lim inf 40 De0) 1
o pmbn+1) 4

or. for some m >0

{a(n+1 ili[ a(n +2 +j)c (”+1+j)}>1
(n)b(n+1) i=oj=ob(n + 14+ j)b(n+2 +j)

(18) lim su

n—oo

implies that equation (RE) is oscillatory.

Remark 2. If in equation (RE) we take a(n)=c(m — 1), then, from
condition (17) we get Theorem 5 of [3]. Moreover, condition (18) with m = 0
gives Theorem 2.3 of [2].

References

[1] Fort, T., Finite differences and difference equations in the real domain, Oxford University
Press, London, 1948.

[2] Hooker, J. W., Kwong, M. K. and Patula, W. T., Oscillatory second order linear difference
equations and Riccati equations, SIAM J. Math. Anal. 18 (1987), 54-63.

[3] Hooker,J. W. and Patula, W. T., Riccati type transformations for second-order linear
difference equations, J. Math. Anal. Appl. 82 (1981), 451-462.

[4] Ladde, G.S., Lakshmikanthan, V. and Zhang, B. G., Oscillation theory of differential
equations with deviating arguments, Marcel Dekker, Inc., New York, 1987.

nuna adreso:

Institute of Mathematics
Technical University of Poznan
ul, Piotrowo 3A

60-965 Poznan

Poland

(Ricevita la 28-an de januaro, 1992)
(Reviziita la 10-an de decembro, 1992)



