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Euler,—Cauchy Polygons an(l the Local
Existence of Solutions to Abstract
Ordinary Differential Equations

By J.M.Bownps* and J.B.Diaz

(University of Arizona and Rensselder Polytechnic Institute)

Abstract: A local existéricé theorem, of Péino type, is proved for the
initial-value probléi for the ortl‘iriary differential equation y=F '@, ), wheré
F is continiious as a fiinetion of (x, P, and ha§ values in a compact subset of
a réal Banach space B. Thé proof émploys Euler—Cauchy polygeéns in B. Thé
proof does nét require any prévious knowlédge of any theory of definite integra=
tioni of Banath-valiied funetions of & réal variable.

I. Introduction
The local existence theory for “solutions to the initial-value problem y'=
F(x, y), y(x0) =Yo, where F has values in an arbltrary real Banach space B,
4Hd i§ definéd in a nelghborhood of the ifiitial point (ao, yo), where % and %o
ate real, dlﬂers fundamentally, accordmg {6 whather the space B in questmn is
finite dimen

'1onal or not In the classxcal 486, that 1s when B is 4 finite
dlmensxonal Edclideat space the theorem of Pedno [1] assures the ejtistence of

at ledst onhe solutlon whén F i 1s 2

sumed to bé continuous m a nelghborhood
of (g, yo) However, wheti B i$ infinité dlmuns onal, thé (strong) continuity.
of F does not giarantée the existenée of a $0litidn, as has beéen shown by
Dleudonné [2 P 287 ex. 5], see also Yorke [3] for an example when B is a

p0551l)le 6 prove {he éxistencé of i unlque ol tlon For resilts along t'
lines, see Browder [4], Kato [5], Hille and Phlllip‘s [6 p 67], dnd Lustermk and
Sobolev [7 322] However, tlle mam concern of the present paper 1s w1th

2y Ty

y polygons in the g‘ ven B 'ach -‘pace, whlch is analogous
to _the_proce dure or1g1nally followed by Peand in Hid: classical paper In thé

employs Edlet-Cai

* J‘he Work of thlS author was supported by the Albert Emstem Chalr of Sc1ence at
Rénsselaer Polytechmc Institute.
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present paper, when B is an -arbitrary real Banach space, the proof of the
convergence of the Euler-Cauchy polygons presents the diﬁiculty that the unit
sphere in B may contain a sequence of vectors without a converegent subse-
quence. This particular difficulty will be circumvented here by an application
of a theorem of Mazur [8].

The basic additional assumption made here on F is that its range be compact;
see the precise statement of the theorem below. Krasnoselskii and Krein [9]
state, but do not prove, a more general existence theorem; they only mention,
in passing, that “the proof follows by usual methods” (presumably, the authors
have in mind fixed-point methods). Corduneanu [10] also proved an existence
theorem, using fixed point methods on an equivalent integral operator. However,
in so doing, the additional assumption that F be uniformly continuous was
requn’ed in the proof. Thxs particular addmonal ,assumption also occurs. in
,;Dieudonné [2, p.287]. It appears that the assumption of uniform continuity
is unavoidable when one employs the Schauder-Tychonoff fixed point theorem
for the corresponding integral operator T, defined by

Tf(a)=yo+ j F(s, f(s))ds,

in the case when B is mﬁmte dimensional. In passmg, it is also noted here
that the existence of a solutlon to the mltxal-value problem may be proved by
assummg that F is merely continuous and bounded, provided there exists a
certain posmve deﬁmte contmuously (Frechet) dlfferentlable auxxllary function,
which, in, con)unctxon with F, satlsﬁes rather restrlctlve propertles, see Murakaml
[11] or Lakshmikantham and Leela [12 p- 237] Also, Chow and Schuur [13]
have proved the existence of a weakly differentiable solution when the space B
is reflexive.

The proof in the present paper requires neither the umform contmuxty of
F, nor the existence of any auxiliary function. Also, this proof does not reqmre
previous knowledge of any theory of definite integration of Banach-valued
luhctions of a real 'va'riable Whereas some such theory is indispensable for any
proof based on an integral operator. L

(Added May 29, 1972 After thxs paper was completed Professor R S.

Phxlllps kindly drew our attentxon to hlS paper [14], Where as an appllcatlon of
his general theory. of mtegratwn he obtamed a “Caratheodory, almost every-
where, type" theorem [15, p. 672], for the mmal value problem y F(x, y),
y(xo) yo, in a sequentlally complete, lmear, convex topological space satlsfymg
the first countablhty axiom. The existence of a solution of the initial value
problem, considered in the present paper, could be deduced from the result of
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Phillips, but not (without an additional argument) the uniform convergence of
the Euler-Cauchy polygons, which is the main purpose in the present paper,
simply bacause neither Carathéodory (see [15, p.667]) nor Phillips (see [14, p.
1391) makes use of “strict” Euler-Cauchy polygons as their approximating func-
tions in the case of a general “non-autonomous” F. [However, it must be
admitted that the case of a non-autonomous F(x,y), which “actually depends on
both x and y”, can be “reduced” to that of an autonomous F(x, ), that is to say
to that of an F which does not depend at all upon %, but only on y, merely by
increasing the dimension of the Banach space by one, namely, by considering
the “new” Banach space of all pairs (x, v), ‘where x is a real number .and y is
an element of the original, or “old”, Banach space. B.] The direct l_,:proof in
the present paper, which does. not require any previous theory of integration,
is still of independent interest. It is remarkable that the authors, mentioned
earlier in this introduction, seem to have been entirely unaware of the general
“Carathéodory type” existence theorem of Phillips, of 1940, while these authosr,
never theless, were directly concerned with the abstract initial value problem
Y=F, ), y(@d=vo)

II. An Existence Theorem for the Initial Value Problem
The main purpose of this section is the proof of the following theorem.
" Theorem. Hypotheses: ' i
1. xyis a real number and y, is an element of a real Banach space B; R is an
open rectangle, centered at (%, %), and contained in the cross product of
the real numbers with B; that is, there exist positive real numbers q, b such
that - v ; ‘ '
’ R={(x,y): |z—m|<a and |ly—ydll<?},
where x is real, y is in B, and ||:|| denotes the norm for B;
2. F is a function defined on R with values in B, thatis, F: R—B. The range
"F(R) is compact in the strong topology for B, that is to say, every sequence
- of vectors in F(R) contains a subsequence which converges strongly to some
vector in B; consequently, there is an M >0 such that [|[F(x, y)||<M for all
(z,%) in R. ' -
8.° F is (strongly) continuous on-R; that is, given any (x, ¥y) in R, and any
£>0, there exists §=08(e, 23, ¥,)>0 such that,” whenever (x,y) is in R, and
=2 <d and |ly—uill<9,
then o
[1F(x, y)—F(xy, ypllI<e;
4. 7 satisfies the inequality
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0<r<min<a, 1%)

Conclusion: There exists a strongly differentiable function £ (x?,—r, o+
r)—B such that

F1@)=F(x, f(x)), for |x-=x,|<r,
and
S(Z) =1,
Moreover, this fanction f is constructed as the uniform lirit of Seqlietice of
piecewise linear, continitous functions, defined on (®;=r,z3f7) t6 B (these
functions are “Eulér-Cauchy polygons”, which are described précisely in parts
A and B of the prodf below). ’

The proof of this theorem requires the following modification 6f the Ascoli
lemria, see, for example, Royden [16, Theorem on p.155]; hotice that in the
statement of that théotem, the word “compact” means what was previously
referred to here as compact, plus closed. This convergence lemma will be stated
precisely in the form needed here.

Lemma. Hypotheses

1. { fm}m 1 is a sequence of functions, deﬁned on the finite closed interval
[@, B], with values in a real Banach space B; that 1s for each positive
1nteger m and each x satisfying e<xz<p, thé vector fm(x) is an element
of B, o

2. { fm}m =1 is an equally umformly continuous sequence of functrons on [a.', Bl
that is, given >0, there exists a §=0(e)>0, mdependent of m, such that
whenever lxz—$1|<3 thh Xy, Xy in [a:, A1, then Hfm(xz)—-fm(xl)||<e for
every posmve 1nteger m;

é; the sequence of functions { fm}m 1 is pomthse compact on [e, B], that is;
for each z& [ae, B], the sequence of vectors { fm(x)}m 1 contains a convergent

subsequence { fk(m)(x)}m 1, where k is a strictly increasing function, from
the posmve integers to the positive 1ntegers.

€onclusion: The sequence of functions {f,}m=1 contains a subseqitence
{Ffomtm=1, whick converges uniformly t6 a contintious funétion -f on [a, 81;
that is, there is a continuous function f: [a, BJ—B, and a strictly increasing
function p, from the positive integérs to the positive integers, such that

”h_{g 1 b () — f(2D]1 =0,

uniformly for x in [a, £1.
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Proof of the theorem:

The existence proof will be given for the interval [x,, xo-+7], rather than
[xo—7, o+7], because the extension to [xy—r, x,] is obvious. For convenience,
the proof will be divided into several steps.

A. The Sequence of Partitions of [Xo, Xo-+7].

Lét ¢ be a function from the positive integers to the positive integers, and,
for each positive integer m, let [x,, Zy+7] be partitioned into ¢(m) subintervals,
2= (0, 1) < (1, m) <x(2, MY <+ K (P(m) ~1, m) <x(P(m), m) =X+
B. Definition of the Seqiléncé of Euler-Cauchy Polygons {fm};—l

In terms of the given sequence of partitions of [, Zo+71, the sequence of

“polygons { fm}m =11is defined 1nduct1ve1y, on the interval [, xo-l—r], as follows.
Let m be a positive integer, and define

Sm(@)=ys+F (x5, yo) (x—20) for me=a<a(l, m).
Clearly, (@; f(2)) is in R for x;5x=Zx(1, m), because
[ (2D — Yol =1 F (X0, Yo) (2 —x)|| S M(x—x0) <b.

In particular, (x(1, m), f,(x(1,m))) is in R. If x(1l, m)<xy+r, one may then
define f,.(x), on the next subinterval [x(1, m), (2, m)], by

Jm(X)=yo+F (2o, y6)(x(1, m) — %)+ F(x(L, m), fn(x(1, m)))(w z(1, m)),
for x(1, m)<x<x(2, m). Notice that
(1 £ (@) —yoll =ML (x(1, m) —20) + (x—2x(1, m))]=M[x— 2.1 Mr<b.

Hence, for x(1, m)Sx<x(2 m), it is true that (x fm(:x:)) is in R.

Using mathematical 1nductlon, suppose that Fm(2) has beéen defined, by this
stepwise procedure, for %,<x=<x(j, m), where 1<j<¢(m), and that (x, f,,(2))
isin R for allsuchx. In partlcular, (x( 7 m) Ji(x(d, m))) is in R. Therefore,
one may then define fm(x), on the next subinterval [x(j,m), 2(j+1,m)], by

I =yt 32 FCah=1,m), fu(@Ch~1, mI)>(a ks m)— k=1, m))

® +F(x(j, m), fulx(G, m))Cx=2(j, m)),
for x(j, m)<x<x(j+1,m). As before, notice that

i . . .,
)~ vl S M| 33 ol m)=aCh=1; m))+2 () |
=M[x=x,1<Mr<b. _ :
Hence, by this last inequaiity, %SEEiher with the induction hypothesis, it follows,

for xy<Zx<x(j+1, m); thit (&, £,(x)) is in R. This means that f,,(x) is well
defined by this stepwise procedure, and is given by (P) for j=1; actually, (P)
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0
also holds for j=0, with the understanding that the sum Zl -.-is taken to be
b=

equal to zero.
Since,

| fm(2) — 3l <b

for every positive integer m, ‘the sequence {f,(x)}m=1 is equally bounded on
ExOy x0+7':|. ) ’

C. Equal Uniform Continuity of the Sequence of Functions {fm}m=1.

Let &, and £, be numbers in [x,, x0+r], Where, without loss, it is assumed
that 2,6, <6, %0+7. There are two cases to consider, for each positive integer
m: (1) §1 and &, are in the same subinterval of the m'® partition; (ii) & and
&, are in different subintervals. ‘

(i) Suppose x(j,m)<£=6,<x(j+1l,m), for some j with 0Lj<P(m).
Then, using the definition, (P), of the “polygonal” function f,,, one has

1 fm(E2) —FnEQN=IF(x(f, m), fin(2(F, m)))(E—EDIIS M(&,—E)).

(ii) Suppose

(i m)<ESx(G+1, m)Sa(+2, m)<-Zx(f+L m) S6:Zx(+HI+1,m),
for some j with 0<j<p(m), where the positive integer I satisfies =1 and
0<j+I+1=Z¢p(m). The proof, in this case (ii), consists of a repeated application
of the inequality already obtained in case (i). First, from case (i), it follows
that

Ilfm(Ez)—fm(x(J-l-l m)IISM(E—2(j+1, m));.
Hfm(x(k M))—fm(x(k L m)OI = M(x(k, m)—z(k—1,m)),

fork ]+2 j+3, -, j+1; and
fmCeCi+E, m))—fﬁ(§1)ll,§M(x(j+1, m)—§p).

Next, since

Fn D) = FE) = Fon(E) — Fon(aCi+1, m)
"
+ 3 L fonCaCl m)) = FaCl—1, m))]
k=1-§-2 )
(@1, 7)) —Fm(ED,
it follows, from the triangle inequality, that-
. J+1
1D ~fnEDISM| amaCitl, D+ 31 (ol m)—aGh—1, m)

QG+, m)—so]=M<ez—§o.
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Thus, it has been shown that if & and &, are numbers in [%,, Xo+7], then, for
any positive integer m, one has

| FnEo) —FmEDI S MIEs—E4l,

which proves the equal uniform continuity of the sequence of functions {f,,} m=1
on [xg, Xo+r]. o
. D. Pointwise Compactness of the Sequence of Functions {fm}m=1.

Let x be in [xg, %p+7]. It will be shown that.the sequence of vectors
{fm(x)}m=1 is compact; that is, it contains a convergent subsequence. If x=ux,,
then f,.(%o) =y, for every m, and there is nothing to prove. Therefore, it will
be supposed that x,<x<xo+r. '

- For each positive integer m, there is a unlque, nonnegatlve integer j(m)=
j(m, x), with 0<j(m)<¢(m), such that :

2(j(m), m) Sz <z (j(m)+1,m).
Consider the sequence of vectors

{fm(x)—yo }°° .
m=1

X~

In view of the definition (P) of the polygdnal function f,,, one has that

Jn(®)—Yo <2F<x(k 1, m), fm(m(k -1, ))) (x(k, m)—x(k—1, m))

x—xo o (x—xp)

+ FCaC jCm), m), fn(2(i(m), m))) - Z=2I ), m))
(x—2,)

Notice that, letting

P x(k,m)—x(k—1,m) , for k=1,2,--,j(m);

X—Xy
s — x—x(j(m), m) .
Flm) +1 £—2, ’
and
yk?—'ch(k—l, m)’fm(x(k—lym)))y for k=1: 21 "';j(m)'l'l,
one has

fn® =y, S
S Y0 2N Aeyns
X—Xp kgl kY

. i : .
where 0<1,<1 and kZ}I Ax=1. That is,. for each positive integer m, : the vector,
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fm(x) Jm %)~ Yq

TXx—xy

y

is a convex combination of vectors lying in the range of F. Thus, the sequence
{ Jm(X)—Yo }m
=%y " rm=1
lies in the smallest convex set which contains F(R). Since F(R) is compact,
it follows, by a theorem of Mazur (8}, that the smallest convex set which contains
F(R) is also compact. Consequently, the sequence of vectors

{fm(x) Y }
=1

=2y
contams a convergent subsequence, and this means that the sequence of vectors
{fm(2)}m=1 also contains a convergent subsequence. hlS completes the proof
that the sequence of functions { fm}m =1 is pomtw1se compact on [%, Zo+7].

E. Application of the Convergence Lemma.

In view of what has already been shown, the convergence lemma may now
be applied to the sequence of functiq_nsg {fm} ;fl on [x, o+7]. Therefore, there
is a subsequence of functions { fp(m)};g w,hich converges uniformly to a con-
tinuous function f on [do, dg+71; that is

Fa)=lim from(@),

the conv.ergence being uniform on [z, 2y+7].

F. Ecxistence of a Solution to the Initial Value Problem.

F.0. In this section, it will be shown that if the sequence of partitions of
[%g, xo+7] is sufficiently “fine” (in the precise sense specified in F.4 below),
then the function f, which was obtained as the limit of the subsequence

{fsem}m=1 of polygonal functions, is indeed a solution to the initial value
problem.

To avoid complicating the notation further, the subsequence {fpim}m=1 will

be written simply {f,,}m=1, as if it were the original sequence. Thus, one has

= lim fu(@),

the convergence being uniform on [, xo+7].

The function f, being the uniform limit of a sequence of continuous func-
tions, is also continuous. It is novvgvv to be shown that the (strong) derivative
f'(x) exists for each x in [x,, 2o+7), and, in fact, equals F(x, f(x)). (Clearly,

the initial condition f(x,)=y, is satisfied.) This will follow from the estimate
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for

E—x
with £+x, which is obtained in F.4 belows. In sections F.1, F.2, and F.3,
which are preliminary to F.4, éiven £>0, three positive numbers (4,h,N) are
chosen. The argument is divided into two cases, first xo<<x<xo+r, and then
x=1xq. : o ‘ o ’

F.1. Consider x such that xy<x<x%o+7 (the case 'x;ago will be considered
in F.7). Let 'e>0. The function F is continuous at (=, f(:i))..k 'Therefore,
there exists ¢ =6(8_, a;)_>Q so small thgt both

—F(x,f(x)_)

Tyl X —0<ax<Lx+ < 2o+ 7

and
<=1 f (@) —wll
hold. Further, § is such that, whenever
x—0<E<x44,
and
ly—FDII<3,
hold, then 7'

NWFCE, 9D —F(ax, fla)di <2
Notice that, if (£,9) satisfies
[§—x|<d and |ly—f()|I<0, »
then (&, %) is in R, the domaig of Qieﬁn_itio‘g qf» ghg f_unction F, because
2o<E< X+,
and, by the t}"iangle ineqqality,
= vl Sl I ~ gl <3+ L) —wll<b.

F.2. The function f is gqr;fc_imx_oug at . T};e,refore, given 6/2>0 (this
positive number § was determined in F.1), there exists h=h(e, x)>0 such that
h<J, and, whenever

|E—x|<h<$,
then

IF®-f@lI<2.
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F.3. The sequence of functions {f,,}m=1 converges uniformly to f on the
interval [xg, £o+7]. Therefore, by the uniform convergence, given §/2>0, there
exists a positive integer N=N(¢) such that

FRGE G

for every £ satisfying z,<£<x¢+r, and every integer m>N.
Hence, in particular, for |§—x| <A, where k is the positive number deter-
mined in F.2, it will be true, using the triangle inequality, that

1 ® IS = AOIHIAO~F DI <5 2+,

for m>N. Therefore, from Section F.1, it follows that, whenever

|§—%|<h<é and m>N,
one has that

IECE, fm(ED)—F(x, fGDI| <e.

F.4. So far in the argument, no particular restriction has been placed on
the sequence of partitions of [x,, 2,+r]. However, it will now be further
assumed that as m—>co, the length of the largest subinterval of the mth partition
tends to zero; that is,

lim { max [x(k m)—x(k—1,m)]} =0.

m—oo  1<k<éim

F.5. The purpose of the present section is to show that when 0<|x—§|
Sm(E) —fm(x)
E—x

is sufficiently small, then
will be small for all sufficiently large m.

Suppose, for definiteness, that x<&; the argument is similar lf §<x For
each positive integer m, there are nonnegative integers j(sz) and J(m) such that

—F(x, f(%))

x(J(m), m)Zx<2(J(m)+1, m),
and
2(j(m), m)<E<L<x(j(m)+1, m).

Further, by the additional assumption just made concerning the sequence of
partitions, it follows that

lim x(j(m), m)=x,

m-—rco
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and
lim x(j(m), m)=§.

It is, therefore, possible to choose a positive integer N, greater than the N in
F.3, such that

J(m)<j(m)
for all m>N. Since this last inequality implies that
J(m)+1=Zj(m),
it follows that
z<x(J(m)+1, m)Zx(j(m), m)<E.

It is important, in the following argument, that there should be at least
one partition number between x and £ As a matter of fact, it is precisely
this circumstance which motivated the additional restriction just made on the
sequence of partitions.

Since x<§, it follows that, for all sufficiently large positive integers m,

J(m)<j(m),

so that »
J(m)+1=<j(m);
consequently, the following inequality will hold

r<z(J(m)+1, m)<x(j(m), m)<§.
Notice that, for all m,

2(j(m), m)<E.

It will first be assumed, in the argument, that the strict inequality x(j(m), m)<§&
holds; the special case when x(j(m), m)=§ will be considered in passing.
Consider the interval [x,£]. The starting point of the argument is the
following identity, which expresses a difference quotient over [z, £] as a convex
combination of difference quotients over smaller subintervals. " This identity is

Sl —fn(x) _ { fm(2(J (m)+1, m))— fru(x) )( x(J(m)+1, m)—x )
E—x - 2(J(m)+1,m)—=xa E—x
I fm(x(E, m)) —f(xG—=1,m)) \ .
i=1(2m)+2( x(i,m)—x(Z—1,m) >
fx(G,m)—x(i—1,m)
X( E—x )
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+

SnlE) —fm(x(j(m), m)) >< §—x(j(m), m) )
E—a(j(m), m) §—x
That this identity, indeed, expresses the “large” difference quotient as a
convex combination of “smaller” difference quotients, is clear from the fact that

1_(x(](m)+1,m)—x>+ iGm (x(z ,m)— x(z—l m)>
§—x i=J0m)+2
+< §—x(j(m), m) )
E—x

‘The integer j(m)=J(m)+1; it is understood that, if j(m)=J(m)+1, then Z--,
in the last two equations, is taken to be zero. It is to be noticed that, if x(j(m),
m)=E§, then the above expression for the difference quotient remains valid,
provided that the last term on the right hand side, following the summation, is
replaced by zero.

In view of the recursive definition (P) for the polygonal functions, the
difference quotients for the smaller subintervals may be replaced by suitable"
values of the function F. Thus,

Fm(&) —fm(2)
x

= F(a(T(m), m, fn(a(T (m)+1, m>>>("<"(’”>“’ =)

E— E—x
j(m —
IS Flatio1, m), fuaG, m)))- (’“’ )i 1’”))
i=J(m)+2

‘This equation holds for x(j(m),m)<E. Also, by multiplying the next to the
last equation above by F(x, f(x)), it follows that

F(z, f(x))=F(x,f(x))< 2L m)—s)

E—x

_ x(,m)—x(i—1,m)\
8 R fap(Eemz2i=lm))

+F (x,f(x-))< §— ”(J(m), m) )

Again, this equation holds for x(j(m), m)<§.
Subtracting the last two equations, taking the norm of the left hand side,
and using the triangle inequality, gives the keéy inequality:

! Sn(E) = fm(2)
E—x

<IF(x(J (m), m), fn(x(J(m)+1,m)))—F(x, f(x ))Il (

—F(z, f(x))

x(JJ(m)+1,m)—x
E—x >
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j(m
3 IFGG=1,m), fulatiy m))—Fea, S| (EE2 2= )

HIFGCiom, m)—Fes, feapl|(£=ELRm)

This inequality, which was derived under the assumption that x<£, is readily
seen to hold also when £<=x, essentially by interchanging the roles of £ and =x.

Now, let €>0, and choose 8, 2, and N asin F.1, F.2, and F. 3 respectively.
Suppose, again for definiteness, that x<£, the argument being similar for £<x.
Then, for sufficiently large m, it is true that both m=N and J(m)<j(m). For
any such m, it will be true, by F.3, that, whenever 0<£—x<h, each of the
norms on the right hand side of the key inequality may be replaced by ¢, and
still have, a fortiori, a valid inequality. But, if this replacement is made, then
the coefficient of &, on the right hand side of the new inequality, is simply one.
Therefore, for any such sufficiently large m,

I Jn(E) —fu(x)
E—=x
provided 0<£é—x<h. However, the same argument shows that the same inequ-
ality continues to hold for 0<x—&<k. In summary, this inequality holds, for

sufficiently large m, whenever 0<|é—z|<A.

F.6. Now, it only remains to let m—oo in the last inequality, for fixed £
and x. This means that, given x satisfying %,<x<%;+7r, and £>0, there is an
h>0 such that, whenever 2,<£<xy+r and 0<|{é—x|<h<r, then

—F(zx, f(x))||<e,

f(E) @ _p,
that is,
ff(x):legfﬁ)g—f@ F(z, ().

F.7. In the previous argument it was assumed that x,<x<x,+r, and it
was proved that, for such 2z,

f@=F(x, f(x)).
Only slight changes are necessary, in the argument from F.1 to F.6, when

X=xo. In particular, as in F.1, using the continuity of the function F at

(@0, f(20)) = (xp, ¥p), given £>0, the number §=4(¢, 2,) >0 has to be chosen such
that both

xg<xo+3<xo+r

and
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a<b
hold. Further, & is su;:h that, whenever
%o =E< %0+,
and
} ly—ell <3,
hold, then

lF (&, ) —F (o, yoll<e.

As in F.1, the above inequalities-imply that (£, ¥) is in R, the domain of F.
Next, as m F.2, since f is continuous at %, given ¢/2>0 (the same & as
determined above), there exists A=h(e, x;) >0 such that A<, and, whenever

2y =ZE<xo+E< 20+,
then

nfcs>—f<xo>u=ufc5>—y°|x<§.

Also, by the uniform convergence of {f,}m=1 on [x, %,+7], the choice of
N, as in F.3, implies that, for m>N, it is true that

Ilfm(é)—f(é)lK—g—.

Thus, in particular, for x,<&<x,+h (where A was chosen immediately above),
and m>N, it follows that : '

1 (8 —yoll = | f(E) — x| S| £ E) — AN+ F(E) —f 2|
1 1,
<53+-§‘3 =4.
Therefore, as in F.3, whenever
x0§§<xo+h<xo+a and m>N,
one has that

1FCE, fm(E)) —F(xo, )= F(E, fm(£)) — F(xo, Yol <e.
The argument proceeds, now, as in F.5. It only has to be noticed that
J(m) is now zero for every m. Therefore, it follows that, for any sufficiently
large m, '

—F (%0, f(x0))

l Fr®) = Fn20) e

§—x,

‘;“fm_g_)_x‘oﬂ—F(xo, Yo)
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provided x,<&é<x+h. Letting m—oo, as in F.6, it finally follows that

I (%) =F (0, f(%0)),

where f'(x,) is understood to be the right hand derivative at x,.
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