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Initial Values for the Navier-Stokes Equations

in Spaces with Weights in Time
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Abstract. We consider the nonstationary Navier-Stokes system in a smooth bounded

domain W � R3 with initial value u0 A L2
sðWÞ. It is an important question to deter-

mine the optimal initial value condition in order to prove the existence of a unique

local strong solution satisfying Serrin’s condition. In this paper, we introduce a

weighted Serrin condition that yields a necessary and su‰cient initial value condition

to guarantee the existence of local strong solutions uð�Þ contained in the weighted

Serrin class
Ð T

0 ðtakuðtÞkqÞ
sdt < y with 2=sþ 3=q ¼ 1� 2a, 0 < a < 1=2. Moreover,

we prove a restricted weak-strong uniqueness theorem in this Serrin class.
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1. Introduction

We consider the initial value problem

qtu� Duþ u � ‘uþ ‘p ¼ f ; div u ¼ 0 in ð0;TÞ �W;ð1:1Þ

ujqW ¼ 0; uð0Þ ¼ u0

in a bounded domain W � R3 with boundary qW of class C2;1 and a time

interval ½0;TÞ, 0 < T ay.

First we recall the definitions of weak and strong solutions to (1.1) and we

define a new type of a strong solution, the ‘‘Ls
aðLqÞ-strong solution’’.

Definition 1.1. Let u0 A L2
sðWÞ be an initial value and let f ¼ div F with

F ¼ ðFijÞ3i; j¼1 A L2ð0;T ;L2ðWÞÞ be an external force. A vector field

u A Lyð0;T ;L2
sðWÞÞ \ L2ð0;T ;W 1;2

0 ðWÞÞð1:2Þ

is called a weak solution (in the sense of Leray-Hopf ) of the Navier-Stokes

system (1.1) with data u0, f , if the relation

�hu;wtiW;T þ h‘u;‘wiW;T � huu;‘wiW;T ¼ hu0;wð0ÞiW � hF ;‘wiW;Tð1:3Þ



holds for each test function w A Cy
0 ð½0;TÞ;Cy

0;sðWÞÞ, and if the energy inequality

1

2
kuðtÞk22 þ

ð t

0

k‘uk22dta
1

2
ku0k22 �

ð t

0

ðF ;‘uÞdtð1:4Þ

is satisfied for 0a t < T .

A weak solution u of (1.1) is called an Ls
aðLqÞ-strong solution with

exponents 2 < s < y, 3 < q < y and weight ta in time, 0 < a < 1=2, where

2=sþ 3=q ¼ 1� 2a such that additionally the weighted Serrin condition

u A Ls
að0;T ;LqðWÞÞ; i:e:;

ðT

0

ðtakuðtÞkqÞ
sdt < yð1:5Þ

is satisfied. If in (1.5) a ¼ 0 and 2=sþ 3=q ¼ 1, then u is called a strong

solution (LsðLqÞ-strong solution).

In this definition we use the usual Lebesgue and Sobolev spaces, LqðWÞ
with norm k � kLqðWÞ ¼ k � kq and Wk;qðWÞ with norm k � kW k; qðWÞ ¼ k � kk;q, re-

spectively for 1 < q < y and k A N . Let Lsð0;T ;LqðWÞÞ ¼ LsðLqÞ, 1 < q; s <

y, with norm k � kLsð0;T ;LqðWÞÞ ¼ k � kq; s;T ¼ ð
Ð T

0 k � ks
qdtÞ

1=s denote the classical

Bochner spaces. Similarly, for 1 < q; s < y and ab 0 we define the weighted

(in time) Bochner spaces Ls
að0;T ;LqðWÞÞ ¼ Ls

aðLqÞ with norm

k � kLs
að0;T ;LqðWÞÞ ¼ k � kLs

aðLqÞ ¼
ðT

0

ðtak � kqÞ
sdt

� �1=s
:

The expression h� ; �iW ¼ h� ; �i denotes the pairing of functions on W, and

h� ; �iW;T means the corresponding pairing on ½0;TÞ �W. Furthermore, to deal

with solenoidal vector fields we use the smooth function spaces Cy
0 ðWÞ and

Cy
0;sðWÞ ¼ fv A Cy

0 ðWÞ : div v ¼ 0g, and the spaces

Lq
sðWÞ ¼ Cy

0;sðWÞk�kq ; W
1;q
0 ðWÞ ¼ Cy

0 ðWÞk�k1; q ; W
1;q
0;s ðWÞ ¼ Cy

0;sðWÞk�k1; q :

Throughout this paper, A ¼ A2 denotes the Stokes operator in L2
sðWÞ. More

general, Aq, 1 < q < y, means the Stokes operator in Lq
sðWÞ, and e�tAq , tb 0,

is the semigroup generated by Aq in Lq
sðWÞ. Note that, with x ¼ ðx1; x2; x3Þ A

W � R3, for F ¼ ðFijÞ3i; j¼1, u ¼ ðu1; u2; u3Þ we let div F ¼ ð
P3

i¼1 qiFijÞ3j¼1, u � ‘u ¼
ðu � ‘Þu ¼ ðu1q1 þ u2q2 þ u3q3Þu, so that u � ‘u ¼ divðuuÞ, uu ¼ ðuiujÞ3i; j¼1 if u is

solenoidal.

For properties of weak and strong solutions to (1.1) we refer to [2, 3, 18,

19, 21, 24, 27]. We may assume in the following, without loss of generality,

that each weak solution of (1.1)

u : ½0;TÞ ! L2
sðWÞ is weakly continuousð1:6Þ
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(see [26, V. Theorem 1.3.1]). Therefore uð0Þ ¼ u0 is well-defined. Moreover,

for a weak solution u, there exists a distribution p in ð0;TÞ �W, the associated

pressure, such that qtu� Duþ u � ‘uþ ‘p ¼ f holds in the sense of distributions

[26, V. 1.7]. Assume that u is a strong solution of (1.1), that qW is of class Cy

and F A Cyðð0;TÞ �WÞ. Then Serrin’s condition (1.5) with a ¼ 0 yields the

regularity property

u A Cyðð0;TÞ �WÞ; p A Cyðð0;TÞ �WÞ;ð1:7Þ

and uniqueness within the class of weak solutions satisfying the energy in-

equality, see [26, V. Theorem 1.8.2, Theorem 1.5.1].

The existence of at least one weak solution u of (1.1) is well-known since

the pioneering work of [19, 24]. The existence of a strong solution u of

(1.1) could be shown up to now at least in a su‰ciently small interval ½0;TÞ,
0 < T ay, and under additional smoothness conditions on the initial data

u0 and the external force f . The first su‰cient condition on the initial data

for a bounded domain seems to be due to [21], yielding a solution class of so-

called local strong solutions. Since then many results on su‰cient initial value

conditions for the existence of local strong solutions have been developed, see

[2, 10, 13, 14, 18, 20, 22, 25, 26, 27]. Recent results in [8, 9] yield su‰cient

and necessary conditions, also written in terms of (solenoidal) Besov spaces

B�2=s
q; s ðWÞ ¼ B�1þ3=q

q; s ðWÞ where 2=sþ 3=q ¼ 1. See Section 4 for a definition of

solenoidal Besov spaces; for a review of these results we refer to [5].

In this paper, we are interested in a weighted Serrin condition with respect

to time and Ls
aðLqÞ-strong solutions. Our result yields a su‰cient condition on

initial data and external force to guarantee the existence of local Ls
aðLqÞ-strong

solutions. The motivation for this approach is an extension of the results in

[8, 9] where 2=sþ 3=q ¼ 1 to the case u0 B B�1þ3=q
q; s ðWÞ, i.e.,

e�tAu0 B Lsð0;T ;LqðWÞÞ; but

ðT

0

ðtake�tAu0kqÞ
sdt < y;

2

s
þ 3

q
¼ 1� 2a

with some a > 0. More precisely, for the case a ¼ 0 (classical Serrin class),

the condition e�tAu0 A Lsðq;0Þð0;T ;LqðWÞÞ with 2=sðq; 0Þ þ 3=q ¼ 1 is equivalent

to u0 A B
�1þ3=q
q; sðq;0Þ ðWÞ, whereas for a with 0 < a < 1=2 (weighted Serrin class) the

condition e�tAu0 A L
sðq;aÞ
a ð0;T ;LqðWÞÞ with 2=sðq; aÞ þ 3=q ¼ 1� 2a is equi-

valent to u0 A B
�1þ3=q
q; sðq;aÞ ðWÞ. Since sðq; aÞ > sðq; 0Þ, by embedding theorems we

know B
�1þ3=q
q; sðq;0Þ ðWÞ � B

�1þ3=q
q; sðq;aÞ ðWÞ. Therefore, the spaces to yield strong solutions

are larger than the classical Serrin class discussed in the literature, and the

theory of [8, 9] is extended to the scale of Besov spaces B
�1þ3=q
q; sðq;aÞ ðWÞ filling the

gap between B
�1þ3=q
q; sðq;0Þ ðWÞ and B�1þ3=q

q;y ðWÞ.
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We mention that there are also some results using weighted Serrin’s

conditions related to Kato’s approach of construction of mild and strong

solutions, see [17, 23].

We state our main result in a more precise way as follows.

Theorem 1.2. Let W � R3 be a bounded domain with boundary qW

of class C2;1, and let 0 < T ay, 2 < s < y, 3 < q < y, 0 < a < 1=2 with

2=sþ 3=q ¼ 1� 2a be given. Consider the Navier-Stokes equation with initial

value u0 A L2
sðWÞ and an external force f ¼ div F where F A L2ð0;T ;L2ðWÞÞ \

L
s=2
2a ð0;T ;Lq=2ðWÞÞ. Then there exists a constant �� ¼ ��ðq; s; a;WÞ > 0 with the

following property: If

ke�tAu0kLs
að0;T ;LqÞ þ kFk

L
s=2

2a
ðLq=2Þ a ��;ð1:8Þ

then the Navier-Stokes system (1.1) has a unique Ls
aðLqÞ-strong solution with

data u0, f on the interval ½0;TÞ.

Theorem 1.3. Let W be as in Theorem 1.2, let 2 < s < y, 3 < q < y,

0 < a < 1=2 with 2=sþ 3=q ¼ 1� 2a be given, and let u0 A L2
sðWÞ and an external

force f ¼ div F where F A L2ð0;y;L2ðWÞÞ \ L
s=2
2a ð0;y;Lq=2ðWÞÞ.

(1) The condition ðy
0

ðtake�tAu0kqÞ
sdt < yð1:9Þ

is su‰cient and necessary for the existence of a unique Ls
aðLqÞ-strong solution

u A Ls
að0;T ;LqÞ of the Navier-Stokes system (1.1), with data u0, f in some

interval ½0;TÞ, 0 < T ay.

(2) Let u be a weak solution of the system (1.1) in ½0;yÞ �W with data

u0, f , and let ðy
0

ðtake�tAu0kqÞ
sdt ¼ y:ð1:10Þ

Then the weighted Serrin’s condition u A Ls
að0;T ;LqðWÞÞ does not hold for each

0 < T ay. Moreover, the system (1.1) does not have a Ls
aðLqÞ-strong solution

with data u0, f and weighted Serrin exponents s, q, a in any interval ½0;TÞ,
0 < T ay.

A weak-strong uniqueness theorem in the sense of the classical Serrin

Uniqueness Theorem seems to be out of reach for Ls
aðLqÞ-strong solutions

within the full class of weak solutions satisfying the energy inequality. The

reason is based on the algebraic identities and sharp use of norms and Hölder

estimates in the proof of Serrin’s Theorem, cf. [26, Ch. V, Sect. 1.5]. However,
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we prove uniqueness within the subclass of well-chosen weak solutions describing

weak solutions constructed by concrete approximation procedures. We refer to

Assumptions 5.1, 5.4 and Remarks 5.2, 5.3 for precise definitions.

Theorem 1.4. Let W � R3 be a bounded domain with boundary of class C2;1

and let 2 < s < y, 3 < q < y, 0 < a < 1=2 with 2=sþ 3=q ¼ 1� 2a be given.

Moreover, suppose that u0 A L2
sðWÞ \ B�1þ3=q

q; s and an external force f ¼ div F

where F A L2ð0;y;L2ðWÞÞ \ L
s=2
2a ð0;y;Lq=2ðWÞÞ are given. Then the unique

Ls
aðLqÞ-strong solution u A Ls

að0;T ;LqðWÞÞ is unique on a time interval ½0;T 0Þ,
T 0 > 0, in the class of all well-chosen weak solutions.

The plan of this paper is as follows. In Section 2, to prepare the proof

we recall some well-known properties of Stokes operators and some important

estimates. In Section 3 we first prove Theorem 1.2 by admitting Lemma 3.1,

Lemma 3.2 and Lemma 3.3. Then we prove these Lemmata and finally we

give a proof to Theorem 1.3. In Section 4 we discuss these results in terms of

Besov spaces, and the final section contains the proof of Theorem 1.4.

2. Preliminaries

For the reader’s convenience, we first explain some well-known properties

of the Stokes operator. Let W be as in Theorem 1.2, let ½0;TÞ; 0 < T ay,

be a time interval and let 1 < q < y. Then Pq : L
qðWÞ ! Lq

sðWÞ denotes the

Helmholtz projection, and the Stokes operator Aq ¼ �PqD : DðAqÞ ! Lq
sðWÞ is

defined with domain DðAqÞ ¼ W 2;qðWÞ \W
1;q
0 ðWÞ \ Lq

sðWÞ and range RðAqÞ ¼
Lq
sðWÞ. Since Pqv ¼ Pgv for v A LqðWÞ \ LgðWÞ and Aqv ¼ Agv for v A DðAqÞ \

DðAgÞ, 1 < g < y, we sometimes write Aq ¼ A to simplify the notation if

there is no misunderstanding. In particular, if q ¼ 2, we always write P ¼ P2

and A ¼ A2. Furthermore, let Aa
q : DðAa

q Þ ! Lq
sðWÞ, �1a aa 1, denote the

fractional powers of Aq. It holds DðAqÞ � DðAa
q Þ � Lq

sðWÞ, RðAa
q Þ ¼ Lq

sðWÞ
if 0a aa 1. We note that ðAa

q Þ
�1 ¼ ðA�a

q Þ and ðAqÞ0 ¼ Aq 0 where 1=qþ
1=q 0 ¼ 1.

Now we recall the embedding estimate

kvkq a ckAa
g vkg; v A DðAa

g Þ; 1 < ga q; 2aþ 3

q
¼ 3

g
; 0a aa 1;ð2:1Þ

and the estimate

kAa
q e

�tAqvk
q
a ct�ae�dtkvkq; v A Lq

sðWÞ; 0a aa 1; t > 0;ð2:2Þ

with constants c ¼ cðW; qÞ > 0, d ¼ dðW; qÞ > 0, see [1, 7, 11, 12, 15, 27, 31].
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By using the estimates (2.1), (2.2) with 0 < b < 3=4, 2b þ 3=q ¼ 3=2 and

constants c, d > 0 not depending on t, we obtain for u0 A L2
sðWÞ that A�bu0 A

Lq
sðWÞ and that

ke�tAu0kq ¼ kAbe�tAA�bu0kq ¼ kAb
q e

�tAqA�bu0kq

a ct�be�dtkA�bu0kq a ct�be�dtku0k2

for t > 0. So ke�tAu0kq with u0 A L2
sðWÞ is well-defined at least for t > 0,

and
Ðy
h
ðtake�tAu0kqÞ

sdt < y for any h > 0 and a > 0. In particular, the

assumptions (1.9), (1.10) in Theorem 1.3 may be replaced by the assump-

tion
Ð h

0 ðtake�tAu0kqÞ
sdt < y or

Ð h

0 ðtake�tAu0kqÞ
sdt ¼ y, respectively, for any

h > 0.

Further note that DðA1=2
q Þ ¼ W

1;q
0 ðWÞ \ Lq

sðWÞ and that the norms

kA1=2
q vk

q
Ak‘vkq; v A DðA1=2

q Þ:ð2:3Þ

are equivalent. In particular, if q ¼ 2, then

kA1=2vk2 ¼ k‘vk2; v A DðA1=2Þ:ð2:4Þ

Another estimate which will be frequently used in Section 3 is as follows.

Let g ¼ div G with G ¼ ðGijÞ3i; j¼1 A LqðWÞ. Then an approximation argument,

see [26, III Lemma 2.6.1], [6, p. 431], shows that A
�1=2
q Pq div G A Lq

sðWÞ is well-
defined by the identity

hA�1=2
q Pq div G; ji ¼ hG;‘A

�1=2
q 0 ji; j A Lq 0

s ðWÞ;

1=qþ 1=q 0 ¼ 1, and that

kA�1=2
q Pq div Gk

q
a ckGkqð2:5Þ

holds with c ¼ cðW; qÞ > 0. The estimate (2.5) was first established in [14,

Lemma 2.1].

Finally, we recall a weighted version of the Hardy-Littlewood-Sobolev

inequality, cf. [28, 29]: For a A R and sb 1 we consider the weighted Ls-space

Ls
aðRÞ ¼ u : kukLs

a
¼

ð
R

ðjtjajuðtÞjÞsdt
� �1=s

< y

( )
:

Lemma 2.1. Let 0 < l < 1, 1 < s1 a s2 < y, �1=s1 < a1 < 1� 1=s1,

�1=s2 < a2 < 1� 1=s2 and 1=s1 þ ðlþ a1 � a2Þ ¼ 1þ 1=s2, a2 a a1. Then the

integral operator

Il f ðtÞ ¼
ð
R

jt� tj�l
f ðtÞdt

is bounded as operator Il : L
s1
a1
ðRÞ ! Ls2

a2
ðRÞ.
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3. Proof of Theorems 1.2 and 1.3

Now we are in the position to prove the main theorem.

Proof of Theorem 1.2. Let u be a weak solution of (1.1) with initial

value u0 A L2
s and external force f ¼ div F where F A L2ðL2Þ \ L

s=2
2a ðLq=2Þ.

Furthermore, let Ef ;u0 denote the solution of the Stokes problem

qtv� Dvþ ‘p ¼ f ; div v ¼ 0

vjqW ¼ 0; vð0Þ ¼ u0;

i.e.,

Ef ;u0ðtÞ ¼ e�tAu0 þ
ð t

0

A1=2e�ðt�tÞAA�1=2P div F ðtÞdt

¼: E0;u0ðtÞ þ Ef ;0ðtÞ:

Assume E0;u0 A Ls
aðLqÞ, i.e.,

Ð t

0 ktae�tAu0k
s

qdt < y. Since u0 A L2
s and F A

L2ðL2Þ, we know that Ef ;u0 A C0ð½0;T �;L2Þ \ L2ðH 1Þ, satisfying the energy

equality. Moreover, by using the estimates (2.1) and (2.2) with 2b þ 3=q ¼
3=ðq=2Þ with q > 3, i.e., b ¼ 3=ð2qÞ < 1=2,

kEf ;0ðtÞkq a c

ð t

0

kA1=2þbe�ðt�tÞAðA�1=2P divÞF ðtÞkq=2dt

a c

ð t

0

ðt� tÞ�b�1=2kF ðtÞkq=2dt:

By applying the weighted Hardy-Littlewood-Sobolev inequality (see Lemma

2.1) with the exponents s2 ¼ s, a2 ¼ a, s1 ¼ s=2, a1 ¼ 2a, l ¼ b þ 1=2 A ð0; 1Þ,
�2=s < 2a < 1� 2=s and �1=s < a < 1� 1=s, we have

kEf ;0kLs
aðLqÞ a ckFk

L
s=2

2a
ðLq=2Þð3:1Þ

provided 2=sþ ð3=ð2qÞ þ 1=2þ 2a� aÞ ¼ 1þ 1=s (which is equivalent to 2=sþ
3=q ¼ 1� 2a). We then set ~uu ¼ u� Ef ;u0 which solves the (Navier-)Stokes

system

qt~uu� D~uuþ u � ‘uþ ‘p ¼ 0; div ~uu ¼ 0

~uujqW ¼ 0; ~uuð0Þ ¼ 0:

So we can write at least formally

~uuðtÞ ¼ �
ð t

0

e�ðt�tÞAP divðun uÞðtÞdtð3:2Þ

¼ �
ð t

0

A1=2e�ðt�tÞAðA�1=2P divÞðun uÞðtÞdt:
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With b ¼ 3=ð2qÞ as above we get

k~uuðtÞkq a c

ð t

0

kA1=2þbe�ðt�tÞAk kA�1=2P divk kðun uÞkq=2dtð3:3Þ

a c

ð t

0

ðt� tÞ�1=2�bkuk2qdt

Then the Hardy-Littlewood-Sobolev inequality as above implies that

k~uuðtÞkLs
aðLqÞ a ckðkuk2qÞkLs=2

2a

¼ ckuk2Ls
aðLqÞ:ð3:4Þ

Since u ¼ ~uuþ Ef ;u0 we have

k~uukLs
að0;T ;LqÞ a cðk~uukLs

að0;T ;LqÞ þ kFk
L

s=2

2a
ð0;T ;Lq=2Þ þ ke�tAu0kLs

að0;T ;LqÞÞ
2:ð3:5Þ

As in [9, p. 99] there exists by Banach’s Fixed Point Theorem an �� ¼
��ðq; s; a;WÞ > 0 such that we get the existence of a unique fixed point

~uu A Ls
að0;T ;LqÞ solving

qt~uu� D~uuþ ð~uuþ Ef ;u0Þ � ‘ð~uuþ Ef ;u0Þ þ ‘p ¼ 0; div ~uu ¼ 0

~uujqW ¼ 0; ~uuð0Þ ¼ 0

provided (1.8) is satisfied, i.e., ke�tAu0kLs
að0;T ;LqÞ þ kFk

L
s=2

2a
ðLq=2Þ a ��: Hence u ¼

~uuþ Ef ;u0 A Ls
að0;T ;LqÞ.

Now we need to prove that this constructed mild solution u is indeed a

weak solution under the following conditions, cf. the assumptions in Theorem

1.2 and some facts already proved:

u; ~uu A Ls
aðLqÞ; u0 A L2

s; e�tAu0 A Ls
aðLqÞ; F A L2ðL2Þ \ L

s=2
2a ðLq=2Þ:

To this aim we need the following lemmata which will be proved later.

Lemma 3.1. The mild solution u constructed in the above procedure satisfies

‘u A L2ð0;T ;L2ðWÞÞ.

Lemma 3.2. Under the assumptions of Lemma 3.1 we have that u A
Ls2ð0;T ;Lq2ðWÞÞ for all 2=s2 þ 3=q2 ¼ 3=2, 2a s2 ay, 2a q2 a 6. Moreover,

k~uuðtÞk2 ! 0 and uðtÞ ! u0 in L2ðWÞ as t ! 0þ.

Lemma 3.3. Under the assumptions of Lemma 3.1 u A L4
a=ð2þ8aÞð0;T ;L4ðWÞÞ.

By Lemma 3.3 we may use that u A L4
a=ð2þ8aÞðL4Þ. Hence u A L4ð�;T ;L4Þ

for all 0 < � < T . So, by [26, IV. Thm. 2.3.1, Lemma 2.4.2] and for a.a.

� A ð0;TÞ, u is the unique weak solution in L4ð�;T ;L4Þ on ð�;TÞ of the linear

Stokes problem
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qtu� Duþ ‘p ¼ div ~FF ; div u ¼ 0

ujqW ¼ 0; ujt¼� ¼ uð�Þ

with external force div ~FF , ~FF ¼ F � un u A L2ð�;T ;L2Þ and initial value uð�Þ A
L4ðWÞ � L2ðWÞ. Therefore, u satisfies the energy equality on ð�;TÞ, i.e.

1

2
kuðtÞk22 þ

ð t

�

k‘uk22dt ¼
1

2
kuð�Þk22 �

ð t

�

ðF ;‘uÞdt

for all t A ð�;TÞ and a.a. � A ð0;TÞ. Moreover, u A C0ð½�;TÞ;L2Þ and hence

u A C0ðð0;TÞ;L2Þ, see [26, IV 2.1–2.3]. Furthermore, since by Lemma 3.2

u A Lyðð0;TÞ;L2Þ, it also satisfies the energy equality on ½0;TÞ. Hence u is

a weak solution; this completes the proof of Theorem 1.2. r

Now we prove the above Lemmata which are used in the proof of Theorem

1.2.

Proof of Lemma 3.1. We use a modification of the proof described in [9].

Since for the moment we have no di¤erentiability property for the mild solution

u, we apply the Yosida operator Jn ¼ ðI þ n�1A1=2Þ�1, n A N ; to (3.2) and write

JnP div un u in the form JnP divðun ð~uuþ Ef ;u0ÞÞ, ~uu ¼ ðI þ n�1A1=2Þ~uun, where

~uun ¼ Jn~uu. Then we have

JnP div un u ¼ JnPðu � ‘Ef ;u0Þ þ JnPðu � ‘~uunÞ þ
1

n
JnP divðunA1=2~uunÞ

¼ JnPðu � ‘Ef ;u0Þ þ JnPðu � ‘~uunÞ

þ 1

n
A1=2JnðA�1=2P divÞðunA1=2~uunÞ:

We use Hölder’s inequality with 1=g ¼ 1=2þ 1=q to obtain the estimate

kJnP divðun uÞkg a ckukqðk‘Ef ;u0k2 þ k‘~uunk2 þ kA1=2~uunk2Þ

¼ ckukqðk‘Ef ;u0k2 þ 2kA1=2~uunk2Þ

since kJnka c and kn�1A1=2Jnka c uniformly in n A N .

From (3.2) we get that

A1=2~uunðtÞ ¼ �
ð t

0

A1=2e�ðt�tÞAJnP divðun uÞðtÞdt:

By the embedding estimate (2.1) with 2b þ 3=2 ¼ 3=g (i.e. b ¼ 3=ð2qÞ since

1=g ¼ 1=2þ 1=q) we see that

kA1=2~uunðtÞk2 a c

ð t

0

kA1=2þbe�ðt�tÞAk kJnP divðun uÞðtÞkgdt:
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Applying Lemma 2.1 we have for 0 < T1 < T

kA1=2~uunðtÞkL2ð0;T1;L2Þ a c

ðT1

0

ðtakukqðk‘Ef ;u0k2 þ kA1=2~uunk2ÞÞ
s1dt

� �1=s1

where s1 ¼ ð1=2þ 1=sÞ�1, a1 ¼ a, s2 ¼ 2, a2 ¼ 0, and ð1=2þ 1=sÞ þ 3=ð2qÞþ
1=2þ a� 0 ¼ 1þ 1=2, which is equivalent to 2=sþ 3=q ¼ 1� 2a. Thus, by

Hölder’s inequality,

kA1=2~uunkL2ð0;T1;L2Þð3:6Þ

a ckukLs
að0;T1;LqÞðk‘Ef ;u0kL2ð0;T1;L2Þ þ kA1=2~uunkL2ð0;T1;L2ÞÞ:

Assume 0 < T1 < T so small such that ckukLs
að0;T1;LqÞ a 1=2 is satisfied. Then

the absorption argument easily leads from (3.6) to the estimate

kA1=2~uunkL2ð0;T1;L2Þ a 2ckukLs
að0;T1;LqÞk‘Ef ;u0kL2ð0;T1;L2Þ < y

independent of n A N . Consequently, A1=2~uu;‘~uu A L2ð0;T1;L
2Þ and ‘u A

L2ð0;T1;L
2Þ. By the same procedure we obtain a new constant c ¼ cðTÞ > 0,

a new length T2 and consecutive intervals ðT1;T1 þ T2Þ; ðT1 þ T2;T1 þ 2T2Þ; . . . ,
that ‘~uu A L2ðT1;T1 þ T2;L

2Þ; . . . , and consequently that ‘~uu;‘u A L2ð0;T ;L2Þ.
This completes the proof. r

Proof of Lemma 3.2. Let 1=q1 ¼ 1=2þ 1=q, 1=s1 ¼ 1=2þ 1=s and choose

b by 2b þ 3=q2 ¼ 3=q1 ¼ 3=2þ 3=q. From (3.2) and (2.1) we conclude that

k~uuðtÞkq2 a c

ð t

0

kAbe�ðt�tÞAk kPðu � ‘uÞkq1dt

a c

ð t

0

ðt� tÞ�bkukqk‘uk2dt:

By the Hardy-Littlewood-Sobolev inequality,

k~uukLs2 ðLq2 Þ a ck kukqk‘uk2kLs1
a

a ckukLs
aðLqÞk‘ukL2ðL2Þ < y

for a2 ¼ 0, a1 ¼ a < 1� 1=s1 ¼ 1=2� 1=s and s2 b 2b s1 with ð1=2þ 1=sÞþ
ð3=4þ 3=ð2qÞ � 3=ð2q2ÞÞ þ a ¼ 1þ 1=s2, i.e., 2=sþ 3=qþ 2a� 1 ¼ 2=s2 þ 3=q2 �
3=2 ¼ 0. The case s2 ¼ 2, q2 ¼ 6 also follows from Lemma 3.1. As for

the case s2 ¼ y, q2 ¼ 2, where b ¼ 3=ð2qÞ, Hölder’s inequality directly implies

that
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k~uuðtÞk2 a c

ð t

0

ðt� tÞ�3=ð2qÞt�aðtakukqÞk‘uk2dtð3:7Þ

aCkukLs
aðLqÞk‘ukL2ðL2Þ

where the integral
Ð t

0ððt� tÞ�3=ð2qÞt�aÞð1=2�1=sÞ�1

dt is finite and independent of t;

we note that here a > 0 is necessary.

To be more precise, with a constant C > 0 independent of t,

k~uukLyð0; t;L2Þ aCkukLs
að0; t;LqÞk‘ukL2ð0; t;L2Þ ! 0 as t ! 0þ :

So k~uuðtÞk2 ! 0 as t ! 0þ. Hence uðtÞ ¼ ~uuðtÞ þ Ef ;u0ðtÞ ! u0 in L2ðWÞ as

t ! 0þ. The proof is now complete. r

Remark 3.4. From ‘u A L2ðL2Þ which implies u A L2ðL6Þ and from

u A LyðL2Þ, cf. (3.7), it also follows immediately via Hölder’s inequality that

u A Ls2ðLq2Þ for all 2=s2 þ 3=q2 ¼ 3=2, 2a s2 ay, 2a q2 a 6.

Proof of Lemma 3.3. Given q, s, a and b ¼ ð2þ 8aÞ�1 we define q1, s1 by

1=4 ¼ b=qþ ð1� bÞ=q1 and 1=4 ¼ b=sþ ð1� bÞ=s1. From Hölder’s inequality

we know that kuðtÞk4 a kukb
qkuk

1�b
q1

. Hence

ðT

0

t4abkuk44dta
ðT

0

ðtakukqÞ
4bkuk4ð1�bÞ

q1
dt

a kuk4b
Ls
aðLqÞkuk

4ð1�bÞ
Ls1 ðLq1 Þ < y

since 2=s1 þ 3=q1 ¼ 3=2. The proof is now complete. r

Finally, we give a proof to Theorem 1.3.

Proof of Theorem 1.3. (1) Using (1.9) and the assumption on F we can

choose 0 < T ay in such a way that (1.8) is satisfied. Then Theorem 1.2

yields the existence of a unique Ls
aðLqÞ-strong solution u A Ls

að0;T ;LqðWÞÞ of

(1.1).

Conversely, assume that u A Ls
að0;T ;LqðWÞÞ, 0 < T ay, is an Ls

aðLqÞ-
strong solution of (1.1). Recall that E0;u0 ¼ u� ~uu� Ef ;0 where by (3.4)

~uu A Ls
aðLqÞ, and by (3.1) Ef ;0 A Ls

aðLqÞ. Hence E0;u0 A Ls
aðLqÞ as well, and

(1.9) is satisfied. This proves part (1) of Theorem 1.3.

(2) Let u be a weak solution as in Theorem 1.3 (2), and suppose that

u A Ls
að0;T ;LqÞ holds for some T > 0. Then we conclude from (1) thatÐy

0 ðtake�tAu0kqÞ
sdt < y which is a contradiction to (1.10). This completes

the proof. r
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4. Interpretation in terms of Besov spaces

For 1 < q < 3=2 and 0 < t < 1=q let Bt
q; rðWÞ3 denote the usual Besov space

of vector fields, and let B t
q; rðWÞ ¼ Bt

q; rðWÞ3 \ Lq
sðWÞ, see [3, (0.5), (0.6)]. Then,

by [3, (0.4), (3.18)] with H 2
qðWÞ ¼ DðAqÞ,

B t
q; rðWÞ ¼ ðLq

sðWÞ;DðAqÞÞy; r; 0 < y < 1; 1 < r < y; t ¼ 2y;

and Cy
0;sðWÞ is dense in B t

q; rðWÞ. Further, let B�t
q; rðWÞ :¼ ðB t

q 0; r 0 ðWÞÞ0, cf. [3,

(0.6)]. Hence, with t ¼ 2aþ 2=s ¼ 1� 3=q and the duality theorem for real

interpolation, cf. [30, Thm. 1.11.2],

B�1þ3=q
q; s ¼ B�2a�2=s

q; s ¼ ðB2aþ2=s
q 0; s 0 Þ 0 ¼ ðLq 0

s ;DðAq 0 ÞÞ 0aþ1=s; s 0

¼ ðDðAq 0 Þ;Lq 0

s Þ01�a�1=s; s 0 ¼ ðDðAq 0 Þ 0;Lq
sÞ1�a�1=s; s:

Using the identity ðA�1u0;AjÞ ¼ ðu0; jÞ for j A DðAÞ we get that

ku0kB�1þ3=q
q; s

Aku0kðDðAq 0 Þ
0;Lq

s Þ1�a�1=s; s
AkA�1u0kðLq

s ;DðAqÞÞ1�a�1=s; s

AkA�1u0kq þ
ðy
0

ðtaþ1=skAe�tAA�1u0kqÞ
s dt

t

� �1=s

AkA�1u0kq þ
ðy
0

ðtake�tAu0kqÞ
sdt

� �1=s
:

Since the semigroup e�tA is exponentially decreasing, we may omit the term

kA�1u0kq in the last norm above, see [30, Thm. 1.14.5]. Fixing q A ð3;yÞ and

considering s, a as related by 2ð1=sþ aÞ ¼ 1� 3=q, we conclude that the norms

ku0kB�1þ3=q
q; s

and ke�tAu0kLs
aðLqÞ are equivalent:

For later use, we introduce the notation

ku0kB�1þ3=q
q; s ðTÞ ¼ ke�tAu0kLs

aðð0;T ;LqÞ; 0 < T ay:

In the limit a ! 0 we approach the case B
�1þ3=q
q; sðq;0Þ with 2=sðq; 0Þ þ 3=q ¼ 1 of the

classical Serrin condition considered in [8, 9], whereas for s ! y we approach

the limit space B�1þ3=q
q;y .

5. Restricted Serrin’s uniqueness theorem

Assumption 5.1. Let W � R3 be a bounded domain with boundary of

class C2;1.
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(1) Given u0 A L2
sðWÞ and an external force f ¼ div F where F A

L2ð0;y;L2ðWÞÞ we assume the existence of approximating sequences ðu0nÞ �
L2
sðWÞ of u0 such that

u0n ! u0 in L2
sðWÞ

and ðFnÞ � L2ð0;y;L2ðWÞÞ of F such that

Fn ! F in L2ð0;y;L2ðWÞÞ as n ! y:

(2) Let ðJnÞ denote a family of bounded operators in LðLq
sðWÞ;DðA1=2

q ÞÞ
such that for each 1 < q < y there exists a constant Cq > 0 such that

kJnkLðLq
s Þ þ

1

n
A1=2

q Jn

����
����
LðLq

s Þ
aCq and Jnu ! u in Lq

sðWÞ as n ! y:

(3) For each n A N let un denote the weak solution of the approximate

Navier-Stokes system

qtun � Dun þ ðJnunÞ � ‘un þ ‘pn ¼ div Fn; div un ¼ 0 in ð0;TÞ �Wð5:1Þ

unjqW ¼ 0; unð0Þ ¼ un0

Remark 5.2. A typical example of operators ðJnÞ in Assumption 5.1 is

given by the family of Yosida operators Jn ¼ ðI þ n�1A
1=2
q Þ�1. It is well known

that this family of operators is uniformly bounded on Lq
sðWÞ as well as on

DðA1=2
q Þ for each 1 < q < y. Moreover, Jnu ! u in Lq

sðWÞ as n ! y. By

analogy, the operators Jn ¼ e�A
1=2
q =n have the same properties.

We know from [26, Ch. V, Thm. 2.5.1] (with a minor modification in the

case of Jn ¼ e�A
1=2
q =n) that there exists a unique weak solution un A LHT :¼

LyðL2Þ \ L2ðH 1
0 Þ of (5.1) satisfying the uniform estimate

kunkLyðL2Þ þ kunkL2ðH 1Þ aCðku0nk2 þ kFnkL2ðL2ÞÞ

aCðku0k2 þ kFkL2ðL2Þ þ 1Þ

for all su‰ciently large n A N . Therefore, there exists v A LHT and a sub-

sequence ðunk Þ of ðunÞ such that

unk * v in L2ðH 1
0 Þ; unk *

�
v in LyðL2Þ; unk ! v in L2ðL2Þ:

From the last convergence we also conclude that unk ðt0Þ ! vðt0Þ in L2ðWÞ for

a.a. t0 A ð0;TÞ. Actually, v A LHT is a weak solution of (1.1).
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Remark 5.3. (1) Since we do not know whether weak solutions of (1.1)

are unique, v may depend on the subsequence ðunk Þ chosen above. In this case,

we say that

v is a well-chosen weak solution of ð1:1Þ:ð5:2Þ

Note that a well-chosen weak solution v is always related to a concrete

approximation procedure as in Assumption 5.1 and the choice of an adequate

(weakly– �) convergent subsequence of a sequence of approximate solutions ðunÞ.
(2) The question whether solutions constructed by the Galerkin method

fall into the scope of a modified Assumption 5.1 and yield uniqueness in the

sense of Theorem 1.4 has not been settled. A similar question concerning

the property to be a suitable weak solution, cf. H. Beirão da Veiga [4, p. 321],

has been answered in the a‰rmative, see J.-L. Guermond [16].

Assumption 5.4. Under the assumptions of Assumption 5.1 additionally let

2 < s < y, 3 < q < y, 0 < a < 1=2 with 2=sþ 3=q ¼ 1� 2a be given. Sup-

pose that even u0; u0n A B�1þ3=q
q; s and F ;Fn A L

s=2
2a ð0;y;Lq=2ðWÞÞ such that also

u0n ! u0 in B�1þ3=q
q; s ; Fn ! F in L

s=2
2a ð0;y;Lq=2ðWÞÞ as n ! y:

From now on by a well-chosen weak solution of (1.1) we also assume that

the approximation satisfies Assumption 5.4 as well as Assumption 5.1.

Proof of Theorem 1.4. As in Sect. 3, we set unðtÞ ¼ ~uunðtÞ þ Efn;u0nðtÞ where,
cf. (3.2),

~uunðtÞ ¼ �
ð t

0

A1=2e�ðt�tÞAðA�1=2P divÞðJnun n unÞðtÞdt:

By the assumptions on u0n, Fn and a similar argument as in Sect. 3, ðEfn;u0nÞ �
Ls
aðLqÞ is uniformly bounded and converges to Ef ;u0 ; to be more precisely, due

to the estimate for E0;u0 and (3.1),

kEfn;u0n � Ef ;u0kLs
að0;T 0;LqÞ a cðku0n � u0kB�1þ3=q

q; s ðT 0Þ þ kFn � FkLs
að0;T 0;LqÞÞð5:3Þ

where c ¼ cðq; s; a;WÞ > 0 is independent of the interval ð0;T 0Þ, 0 < T 0 aT , on

which (5.3) is considered.

We also observe that as in (3.3)–(3.5)

k~uunkLs
að0;T 0;LqÞ aCqkJnunkLs

að0;T 0;LqÞkunkLs
að0;T 0;LqÞ aCkunk2Ls

að0;T 0;LqÞð5:4Þ

aCðk~uunkLs
að0;T 0;LqÞ þ kEfn;u0nkLs

að0;T 0;LqÞÞ
2

aCðk~uunkLs
að0;T 0;LqÞ þ ku0nkB�1þ3=q

q; s ðT 0Þ þ kFnkLs=2

a=2
ð0;T 0;Lq=2ÞÞ

2
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with a constant C > 0 independent of 0 < T 0 aT . Actually, as in the proof of

Theorem 1.2 in Sect. 3, cf. [9, p. 99], there exists an e� > 0 and T 0 A ð0;TÞ
independent of n A N such that we find a unique solution un of (5.1) on ð0;T 0Þ
in Ls

að0;T 0;LqÞ for all su‰ciently large n A N . Moreover, ðunÞ is uniformly

bounded in Ls
aðLqÞ with bound kunkLs

að0;T 0;LqÞ aCe� where C is independent of

N A N and T 0. Hence we may assume that unk * U in Ls
aðLqÞ as k ! y,

using without loss of generality the same subsequence as the sequence ðunk Þ
considered in the L2-theory of Remark 5.2. Consequently, U ¼ v.

It remains to show that U equals the given strong Ls
aðLqÞ-solution

u A Ls
að0;T 0;LqÞ with data u0, F . Due to (3.2)

unðtÞ � uðtÞ ¼ Efn;u0nðtÞ � Ef ;u0ðtÞ

�
ð t

0

A1=2e�ðt�tÞAðA�1=2P divÞððJnun � uÞn un þ un ðun � uÞÞðtÞdt

yielding the estimate

kun � ukLs
aðLqÞð5:5Þ

a kEfn;u0n � Ef ;u0kLs
aðLqÞ

þ CðkJnun � ukLs
aðLqÞ þ kun � ukLs

aðLqÞÞðkunkLs
aðLqÞ þ kukLs

aðLqÞÞ:

Since

kJnun � ukq a kJnðun � uÞkq þ kJnu� ukq aCqkun � ukq þ oð1Þ as n ! y

and

kunkLs
að0;T 0;LqÞ þ kukLs

að0;T 0;LqÞ aCe�;

we conclude from (5.5) and Lebesgue’s Theorem on Dominated Convergence

that

kun � ukLs
að0;T 0;LqÞ a kEfn;u0n � Ef ;u0kLs

að0;T ;LqÞ þ Ce�kun � ukLs
að0;T 0;LqÞ þ oð1Þ

for all 0 < T 0 aT and n A N , but with C > 0 independent of T 0. Choosing

e� > 0 so small that even Ce� a 1=2, we get that

kun � ukLs
að0;T 00;LqÞ a 2kEfn;u0n � Ef ;u0kLs

að0;T 00;LqÞ þ oð1Þ as n ! y:

In order to fulfill the inequality Ce� a 1=2 and (1.8) for u0n, u0 and Fn, F this

step possibly required to replace T 0 by a su‰ciently small T 00 A ð0;T 0�. Since

the first term on the right-hand side converges to 0 by Assumption 5.4, we

obtain that kun � ukLs
að0;T 00;LqÞ ! 0 as n ! y and consequently that u ¼ U ¼ v

on ½0;T 00Þ. r
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