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Abstract. We consider the nonstationary Navier-Stokes system in a smooth bounded
domain Q C R® with initial value ug € Lé(.Q) It is an important question to deter-
mine the optimal initial value condition in order to prove the existence of a unique
local strong solution satisfying Serrin’s condition. In this paper, we introduce a
weighted Serrin condition that yields a necessary and sufficient initial value condition
to guarantee the existence of local strong solutions u(-) contained in the weighted
Serrin class IOT(T1|‘M(T)|‘q)SdT < oo with 2/s+3/g=1-20, 0 <o < 1/2. Moreover,
we prove a restricted weak-strong uniqueness theorem in this Serrin class.
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1. Introduction
We consider the initial value problem
(1.1) ou—Adu+u-Vu+Vp = f, divu=0in (0,7) x Q,
Ulag =0, u(0) = up

in a bounded domain Q C R® with boundary 0@ of class C*! and a time
interval [0,7), 0 < T < o0.

First we recall the definitions of weak and strong solutions to (1.1) and we
define a new type of a strong solution, the “LJ(L?)-strong solution”.

Definition 1.1. Let uy € L2(Q2) be an initial value and let f = div F with
F= (E‘j)?,j:l € L?(0,T;L*(Q2)) be an external force. A vector field

(1.2) ue L*(0,T; L2(Q)) N LX(0, T; W, *(2))

is called a weak solution (in the sense of Leray-Hopf) of the Navier-Stokes
system (1.1) with data wug, f, if the relation

(1.3)  —Cuywipo r+ <V, Vwpo r — uu, Vwyo 7 = g, w(0) o — (F,VwHo ¢
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holds for each test function w e Ci°([0, T); Ci,(2)), and if the energy inequality

t t
(1.4) l||u(t)||§ + | [Vul3dr < 1||uo\|§ — | (F,Vu)dz
2 0 2 0

is satisfied for 0 <z < T.

A weak solution u of (1.1) is called an LJ(L7)-strong solution with
exponents 2 < s < o0, 3 < g < oo and weight 7% in time, 0 < o < 1/2, where
2/s+3/q=1—2a such that additionally the weighted Serrin condition

T
(1.5) we L0, T:LYQ)), e, L(T“||Lt(r)||q)‘ydf<oo

is satisfied. If in (1.5) « =0 and 2/s+3/¢g=1, then u is called a strong
solution (L*(L7)-strong solution).

In this definition we use the usual Lebesgue and Sobolev spaces, L9(Q)
with norm |- ||y = I| - [, and W*4(Q) with norm || - [|jyca(q) = Il - lly.q» Te-
spectively for 1 < ¢ < oo and ke N. Let L(0,T;L1(Q)) = L*(L7), 1 <¢q,s<
oo, with norm |- ||z 7. 20@) = I * llg 57 = (K H;dz)l/s denote the classical
Bochner spaces. Similarly, for 1 < ¢,s < o0 and o > 0 we define the weighted
(in time) Bochner spaces L3(0,7;L9(2)) = L{(L?) with norm

T 1/s
vor oy = s = (j (] - |q>5dz) .

The expression <-,->o = <-,-» denotes the pairing of functions on 2, and
{-,">o. v means the corresponding pairing on [0, T) x Q. Furthermore, to deal
with solenoidal vector fields we use the smooth function spaces C;°(2) and
Cyy(2) ={ve C{(Q) :divv =0}, and the spaces

LI(Q) = CS?U(Q)\I-H47 Wolv‘/<_Q) = COV“‘(Q)H'”M/, WOI;I(.Q) _ CS?—J(Q)H'HI-q,

Throughout this paper, 4 = 4> denotes the Stokes operator in L2(£2). More
general, 4,, 1 < ¢ < oo, means the Stokes operator in L4(Q2), and e~ t > 0,
is the semigroup generated by 4, in LI(Q). Note that, with x = (x1,x2,x3) €
Q C R, for F = (Fy); _y, u= (u1,u,u3) we let div F = (37, 0;Fy)7_, u-Vu =
(u-V)u= (u10; + u202 + u303)u, so that u-Vu = div(uu), uu = (u,'u_f)?’j:l if uis
solenoidal.

For properties of weak and strong solutions to (1.1) we refer to [2, 3, 18,
19, 21, 24, 27]. We may assume in the following, without loss of generality,

that each weak solution of (1.1)

(1.6) u:[0,T) — L2(Q) is weakly continuous
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(see [26, V. Theorem 1.3.1]). Therefore u(0) = uy is well-defined. Moreover,
for a weak solution u, there exists a distribution p in (0,7) x 2, the associated
pressure, such that 6,u — Au+ u-Vu+ Vp = f holds in the sense of distributions
[26, V. 1.7]. Assume that u is a strong solution of (1.1), that dQ is of class C*
and F e C*((0,T) x Q). Then Serrin’s condition (1.5) with « =0 yields the
regularity property

(1.7 ue C*((0,T) x Q), peC”((0,T) x Q),

and uniqueness within the class of weak solutions satisfying the energy in-
equality, see [26, V. Theorem 1.8.2, Theorem 1.5.1].

The existence of at least one weak solution u of (1.1) is well-known since
the pioneering work of [19, 24]. The existence of a strong solution u of
(1.1) could be shown up to now at least in a sufficiently small interval [0, T),
0 < T < oo, and under additional smoothness conditions on the initial data
up and the external force f. The first sufficient condition on the initial data
for a bounded domain seems to be due to [21], yielding a solution class of so-
called local strong solutions. Since then many results on sufficient initial value
conditions for the existence of local strong solutions have been developed, see
[2, 10, 13, 14, 18, 20, 22, 25, 26, 27]. Recent results in [8, 9] yield sufficient
and necessary conditions, also written in terms of (solenoidal) Besov spaces
B;%/S(.Q) B‘l+3/q( ) where 2/s+3/q=1. See Section 4 for a definition of
solenoidal Besov spaces; for a review of these results we refer to [5].

In this paper, we are interested in a weighted Serrin condition with respect
to time and L;J(L?)-strong solutions. Our result yields a sufficient condition on
initial data and external force to guarantee the existence of local LS(L?)-strong
solutions. The motivation for this approach is an extension of the results in
[8, 9] where 2/s+3/q =1 to the case u ¢B;i+3/4(9)> ie.,

, r 2 3
ey ¢ L°(0,T; LI(Q)), but J (e up| ) *dr < o0, S+ . 1 —2q
0

with some o > 0. More precisely, for the case o =0 (classical Serrin class),
the condition e~*uy € L*¢9(0, T; L4(Q)) with 2/s(¢,0) +3/q = 1 is equivalent
toueB, 1236;1( ), whereas for o with 0 < o < 1/2 (weighted Serrin class) the
condition e~ug e Ly (0, T; L9(Q)) with 2/s(q, ) +3/q=1—2a is equi-

valent to up e B 1HM’(Q). Since s(gq,a) > s(¢q,0), by embedding theorems we

s(g,%)

q,
know B IYJ:%;I(Q) CB, Iqué 1(Q). Therefore, the spaces to yield strong solutions

are larger than the classical Serrin class discussed in the literature, and the
theory of [8, 9] is extended to the scale of Besov spaces B 143/ ‘1( ) filling the

>3 4:5(¢,%)
gap between Bq’_ga‘éf(Q) and B, /4(Q).
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We mention that there are also some results using weighted Serrin’s
conditions related to Kato’s approach of construction of mild and strong
solutions, see [17, 23].

We state our main result in a more precise way as follows.

Theorem 1.2. Let Q CR? be a bounded domain with boundary 022
of class C*>', and let 0 < T < o0, 2<s< o, 3<qg< o, 0<a<l1/2 with
2/s+3/q=1—2a be given. Consider the Navier-Stokes equation with initial
value uy € L2(Q) and an external force f =div F where F e L*(0,T;L*(2))N
L‘z"L{(Z(O7 T;L9%(Q)). Then there exists a constant e, = €.(q,s,o, Q) > 0 with the
following property: If

(1.8) ||5’7TA”0||L;(0, T;L0) T ||F‘|L;£2(Lq/2) <6,

then the Navier-Stokes system (1.1) has a unique LJ(L%)-strong solution with
data uy, f on the interval [0,T).

Theorem 1.3. Let Q2 be as in Theorem 1.2, let 2 <s< o0, 3<qg< 0,
0 <o<1/2with2/s+3/q=1— 20 be given, and let uy € L2(Q) and an external
force f =div F where F e L2(0,00; L*(Q)) N L}*(0, o0; L9/%(Q)).

(1) The condition

(1.9) Jo (*[le”*uo || ) *dr < o0

is sufficient and necessary for the existence of a unique L3(L7)-strong solution
ueL(0,T;LY) of the Navier-Stokes system (1.1), with data wy, [ in some
interval [0,T), 0 < T < 0.

(2) Let u be a weak solution of the system (1.1) in [0, 0) x Q with data
uy, f, and let

(1.10) J“(f“|\e*muo||q)fdf _
0

Then the weighted Serrin’s condition u e L3(0,T;L1(Q)) does not hold for each
0< T < oo. Moreover, the system (1.1) does not have a L}(L?)-strong solution
with data uy, f and weighted Serrin exponents s, q, o in any interval [0,T),
0<T< oo

A weak-strong uniqueness theorem in the sense of the classical Serrin
Uniqueness Theorem seems to be out of reach for LJ(L7)-strong solutions
within the full class of weak solutions satisfying the energy inequality. The
reason is based on the algebraic identities and sharp use of norms and Holder
estimates in the proof of Serrin’s Theorem, cf. [26, Ch. V, Sect. 1.5]. However,
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we prove uniqueness within the subclass of well-chosen weak solutions describing
weak solutions constructed by concrete approximation procedures. We refer to
Assumptions 5.1, 5.4 and Remarks 5.2, 5.3 for precise definitions.

Theorem 1.4. Let Q C R® be a bounded domain with boundary of class C*'
and let 2 <s< w0, 3<g< oo, 0<a<1/2 with 2/s+3/q=1—20 be given.
Moreover, suppose that uy e L2() ﬂBq”i”’/ b and an external force f =div F
where F e L*(0,00; L*(Q)) ﬁL;éz(O,oo;L‘//z(.Q)) are given. Then the unique
Li(LY)-strong solution ue L}(0,T;LY(Q)) is unique on a time interval [0,T"),
T' >0, in the class of all well-chosen weak solutions.

The plan of this paper is as follows. In Section 2, to prepare the proof
we recall some well-known properties of Stokes operators and some important
estimates. In Section 3 we first prove Theorem 1.2 by admitting Lemma 3.1,
Lemma 3.2 and Lemma 3.3. Then we prove these Lemmata and finally we
give a proof to Theorem 1.3. In Section 4 we discuss these results in terms of
Besov spaces, and the final section contains the proof of Theorem 1.4.

2. Preliminaries

For the reader’s convenience, we first explain some well-known properties
of the Stokes operator. Let Q be as in Theorem 1.2, let [0,7),0 < T < oo,
be a time interval and let 1 < ¢ < co. Then P, : LY(Q2) — L1(£2) denotes the
Helmholtz projection, and the Stokes operator A4, = —P,4: D(A,) — L1(Q) is
defined with domain D(4,) = W*4(Q) N Wol’q(.Q) NLI(L) and range R(A4,) =
Li(R2). Since P,v = Py for ve LY(Q)NLY(Q) and A,v = A,v for ve D(4,) N
D(4,), 1 <y < oo, we sometimes write 4, = A to simplify the notation if
there is no misunderstanding. In particular, if ¢ =2, we always write P = P,
and A = A,. Furthermore, let A7 : D(A47) — LI(2), -1 <o <1, denote the
fractional powers of A,. It holds D(4,) C D(4)) C LI(Q), R(A7) = LI(R2)
if 0<a<1. We note that (A‘;)f1 = (4,%) and (4,) = A, where 1/q+
1/q' = 1.

Now we recall the embedding estimate

3 3
2.1 lll, < c||A;‘v||y7 veD(4)), 1 <y<q, 2cx+5 = 7 0<ax<l,
and the estimate
(2.2) ||A;e*rAqv||q <ct e ], veLli(R),0<a<1,1>0,

with constants ¢ = ¢(Q,q) >0, d =d(2,q) >0, see [1, 7, 11, 12, 15, 27, 31].
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By using the estimates (2.1), (2.2) with 0 < f < 3/4, 26 +3/¢=3/2 and
constants ¢, 6 > 0 not depending on ¢, we obtain for uy € L2(Q) that 4 Pu, e
Li(€2) and that

le™ ol = 147~ 4 Pugll, = || Afe ™A uq|
< ct e A ||, < et Pefug

for 1>0. So e ull, with up € L2(Q) is well-defined at least for ¢> 0,
and ff(r“||e*’Auo||q)sdr< oo for any #>0 and o> 0. In particular, the
assumptions (1.9), (1.10) in Theorem 1.3 may be replaced by the assump-
tion [J(z*le " u|,)*dr < oo or [(z*|le”*up||,)"dz = oo, respectively, for any
n > 0.

Further note that D(A(}/z) = Wol""(Q) N LI(Q) and that the norms
(23) 4ol ~ Vol ve DAY,
are equivalent. In particular, if ¢ =2, then

(2.4) 1420, = [Voll,,  veD(A'?).

Another estimate which will be frequently used in Section 3 is as follows.
Let g =div G with G = (G,]),3 -1 € L9(Q). Then an approximation argument,
see [26, III Lemma 2.6.1], [6, p. 431], shows that Aq_l/qu div G e LI(Q) is well-
defined by the identity

A;2P, div G,p) = (G.VA, gy, peLl (),
1/g+1/q' =1, and that
(2.5) 14, 2P, div G| < cl|Gll,

holds with ¢ =¢(Q,q) > 0. The estimate (2.5) was first established in [14,
Lemma 2.1].

Finally, we recall a weighted version of the Hardy-Littlewood-Sobolev
inequality, cf. [28, 29]: For 2 € R and s > 1 we consider the weighted L*-space

Li(R) = { Nl = (jR<|r|°‘|u<r>|>fdr)l/s < oo}.

Lemma 2.1. Let 0</i<l1, l1<si<sm<oo, —1/sij<oay<1—1/sy,
/s <op<1—=1/sy and /s + (A+ay —m) =14 1/s2, oo <oy. Then the
integral operator

Lf() = j 0~ oM (2)de

is bounded as operator I, : L;!(R) — L2(R).
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3. Proof of Theorems 1.2 and 1.3
Now we are in the position to prove the main theorem.

Proof of Theorem 1.2. Let u be a weak solution of (1.1) with initial
value upe L2 and external force f =divF where Fe L2(L) N LY*(L%?).
Furthermore, let E;,, denote the solution of the Stokes problem

ov—Av+Vp = f, divo=0

v]p0 =0, v(0) = uy,

t
Ep (1) = e ug + J A== 4712 p div F(r)de
0

= EO,uO(Z) + Ef‘70([).
Assume Eo,, € L3(LY), ie., [;llt%e ™up|,dr < 0. Since upeL? and Fe
L?(L?), we know that Er,, e C°([0,T];L?)NL*(H"), satisfying the energy
equality. Moreover, by using the estimates (2.1) and (2.2) with 2+ 3/q =
3/(q/2) with ¢ >3, ie, f=3/(2q) <1/2

t
IE0(0ll, < ¢ [ 14" e 2P div)Plo)
' p—1/2
<] (=0 P

By applying the weighted Hardy-Littlewood-Sobolev inequality (see Lemma
2.1) with the exponents s =s, op = o, 51 =5/2, oy =20, A=+1/2€(0,1),
—2/s<20<1—=2/s and —1/s<a<1—1/s, we have
(31) ”Ef,UHL;(Lq) < C||F||L§£2(Lz//2)

provided 2/s+ (3/(29) +1/2 + 20— o) = 1 4+ 1 /s (which is equivalent to 2/s+
3/g=1-20). We then set #=u— E;,, which solves the (Navier-)Stokes
system

Ot — Au+u-Vu+Vp =0, diva=0
0 =0, u(0) = 0.
So we can write at least formally

(3.2) a(r) = — J; e P div(u @ u)(z)dr

t
__ J A2~ =04 4712 P div) (u @ u)(7)dx.
0
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With f=3/(2¢g) as above we get

t
(3:3) la(@)ll, < CJ l4Y2 e D4 [ AT2P div]| (4 ® w)| pde
0

t
< cJ (t— 1) 2|l e
0

Then the Hardy-Littlewood-Sobolev inequality as above implies that
- 2
(3.4) () sra) < cll(ully)]

Since u = u+ Er,,, we have

2
L= C||”HL;(U)-

~ ~ — 2
(35) ||u||L;‘(O,T;L‘/) = c(HuHL;_'(O, T;L4) + ||F||L££Z(0’ T;L4/?) + He TA”OHL;(()VT;L[,)) .

As in [9, p. 99] there exists by Banach’s Fixed Point Theorem an e, =
€«(q,s,0,2) >0 such that we get the existence of a unique fixed point
e L30,T;LY) solving

Ot — Au+ (u+ Eyr ) - V(a+ Ery) +Vp=0, diva=0

provided (1.8) is satisfied, i.e., e"uo|l (0, 7, 14 + \|F||L25£z(u/2) <e.. Henceu=
#+ Efru,€L)0,T;L?).

Now we need to prove that this constructed mild solution u is indeed a
weak solution under the following conditions, cf. the assumptions in Theorem
1.2 and some facts already proved:

wieLy(LY), well, e MueLi(LY),  FeL)L)NLy (L),
To this aim we need the following lemmata which will be proved later.

Lemma 3.1. The mild solution u constructed in the above procedure satisfies
Vue L*0,T; L*(Q)).

Lemma 3.2. Under the assumptions of Lemma 3.1 we have that ue
L2(0,T; L2(Q)) for all 2/s:+3/q2 =3/2,2 < s, <0, 2< gy, <6. Moreover,
la(0)|l, — 0 and u(t) — uy in L*(Q) as t — 0+

Lemma 3.3.  Under the assumptions of Lemma 3.1 u € L;f/(2+8a)(07 T; LY(Q)).

By Lemma 3.3 we may use that ue L}, ¢, (L*). Hence ue L¥(e, T; L*)
for all 0 <e<T. So, by [26, IV. Thm. 2.3.1, Lemma 2.4.2] and for a.a.
€€ (0,T), u is the unique weak solution in L*(e, T; L*) on (¢, T) of the linear

Stokes problem
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ou—Au+Vp=divF, divu=0
Uoo =0, ul,_=ule)

with external force div F, F = F —u® u e L*(¢, T; L?) and initial value u(e) €
L*(Q) C L*(Q). Therefore, u satisfies the energy equality on (e, 7)), i.e.

1 2 2 1 > [

o)l + [ 1vulBde = S0} - [ 7.y
for all te(e,T) and a.a. e€(0,7). Moreover, ue C%[e, T); L?) and hence
ue C°(0,T);L?), see [26, IV 2.1-2.3]. Furthermore, since by Lemma 3.2
ue L*((0,T);L?), it also satisfies the energy equality on [0,7). Hence u is
a weak solution; this completes the proof of Theorem 1.2. OJ

Now we prove the above Lemmata which are used in the proof of Theorem
1.2.

Proof of Lemma 3.1. We use a modification of the proof described in [9].
Since for the moment we have no differentiability property for the mild solution
u, we apply the Yosida operator J, = (I +1n'4'/2)7! ne N, to (3.2) and write
J,Pdivu®u in the form J,P div(u ® (&t + Er ), 4= (I +n~'4'/?)ai,, where
i, = J,u. Then we have

. 1 : _
JuP divu @ u=JuPu-VEf )+ JnP(u Vi) +—J, P div(u ® A4 Y24,

=J,P(u-VEs )+ J.Pu-Vi,)

+ %A1/2J,,(A*1/2P div)(u ® A"%,).

We use Holder’s inequality with 1/y =1/2+4 1/q to obtain the estimate
17,2 div(u @ u)|l, < ellul, IV Epully + Vitull, + (14" a]1)
= cllull IV Es,uoll5 + 211 4" 1)

since ||J,] < ¢ and ||n~'4'2J,|| < ¢ uniformly in ne N.
From (3.2) we get that

t
AP0, (1) = —J AV2e =94 P div(u ® u)(7)dz.
0
By the embedding estimate (2.1) with 25+3/2=3/y (i.e. f=3/(2¢q) since
1/y=1/2+1/q) we see that

t
14" 28, (0)], < CJ 1412 e 1, P div(u ® u)(7)]] dr.
0
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Applying Lemma 2.1 we have for 0 < 7, < T

T 1/s1
1A 2 (D) 120,73 12) < C(L (Ml (IVEr,ull> + ||A1/2ﬂn||z))‘“df)

where sy = (1/2+1/s)"', oy =a, 55 =2, aa =0, and (1/2+ 1/s) +3/(2q) +
1/2+a—0=1+1/2, which is equivalent to 2/s+3/¢=1—2a. Thus, by
Holder’s inequality,

(3:6) (14"l 20,7, 10
=< C||”||L;(o, TI:L‘i)(”VEf-,uoHLZ(O, 1,12 T ||Al/2ﬁn||L2(0, TI;LZ))'

Assume 0 < 71 < T so small such that c[lul|; 7,,7) < 1/2 is satisfied. Then
the absorption argument easily leads from (3.6) to the estimate

HAl/zﬁnHLZ(o,TI;LZ) < 2cllull Lo, 71; L) IV Er ol 120, 7y 12) < 0

independent of neN. Consequently, A% Viie L>(0,T;L?) and Vue
L*(0,Ty;L?). By the same procedure we obtain a new constant ¢ = ¢(7) > 0,
a new length 75 and consecutive intervals (7,71 + T»), (T + 1>, T1 + 2T5), . . .,
that Viie L>(Ty, T + T»; L?),..., and consequently that Vi, Vu e L*(0, T; L?).
This completes the proof. O

Proof of Lemma 3.2. Let 1/qy =1/2+1/q, 1/s; =1/2+ 1/s and choose
p by 28+3/g2=3/q1 =3/2+3/¢q. From (3.2) and (2.1) we conclude that

t
la(®)ll,, < CL 147~ DA | Pu - V)|, de

<[ =0 Iwdc
By the Hardy-Littlewood-Sobolev inequality,
[all ooy < el luall IVallal
< cllull Ly IVull 22y < 0

for 0p =0, oy =a<1—1/sy=1/2—1/s and s, =2 > s with (1/2+1/s)+
(3/44+3/(2q9) —3/2q)) +a=1+1/s,1e,2/s+3/q+20—1=2/50+3/q2 —
3/2=0. The case s =2, qo =6 also follows from Lemma 3.1. As for
the case s, = o0, g» = 2, where ff = 3/(2¢), Holder’s inequality directly implies
that
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t
(3.7) a2, < j (t— )P0 (¥ |lu| ) |Vl ,do

< Cllull sy Vull 212
—1
where the integral [,((r — 7) /@)=y (127197 4 is finite and independent of 7
we note that here o > 0 is necessary.
To be more precise, with a constant C > 0 independent of ¢,

Nall 0,602 < Cllull 0,600 VUll 20,502 = 0 as =04

So |la(t)|l, = 0 as t— 0+. Hence u(t)=u(t)+ Ey (1) — up in L*(Q) as
t — 0+4. The proof is now complete. O

Remark 3.4. From Vue L*(L?) which implies ue L?>(L%) and from
ue L*(L?), cf. (3.7), it also follows immediately via Hélder’s inequality that
ue L2(L%2) for all 2/s:+3/q2=3/2, 2<s3 <0, 2< g2 <6.

Proof of Lemma 3.3. Given ¢, s, « and = (2+ 8x)"" we define ¢, s, by
1/4=p/g+ (1 —p)/q: and 1/4=p/s+ (1 —p)/s1. From Hoélder’s inequality
we know that [|u(r), < ||u]Z||ull, . Hence

T T
4 4 4, 4(1—
L o4 |ul|3dr < j (?[fuall ) * e 3P de

4 4(1-p
< ull o el 15 20y < o0
since 2/s; +3/q1 =3/2. The proof is now complete. O

Finally, we give a proof to Theorem 1.3.

Proof of Theorem 1.3. (1) Using (1.9) and the assumption on F we can
choose 0 < T < oo in such a way that (1.8) is satisfied. Then Theorem 1.2
yields the existence of a unique Lj(L?)-strong solution u e L3(0,T;L7(2)) of
(1.1).

Conversely, assume that we L3(0,7;L9(R)), 0 < T < o0, is an LJ(LY)-
strong solution of (1.1). Recall that Ey,, =u—u— E;o where by (3.4)
uelL;(L9), and by (3.1) E;oeLj(L?). Hence Eg, €Lj(LY) as well, and
(1.9) is satisfied. This proves part (1) of Theorem 1.3.

(2) Let u be a weak solution as in Theorem 1.3 (2), and suppose that
uelL3(0,T;LY) holds for some 7 >0. Then we conclude from (1) that
Jo (z*lle=*up||,)"dr < oo which is a contradiction to (1.10). This completes
the proof. |
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4. Interpretation in terms of Besov spaces

Forl <g<3/2and 0<t<1/q let B;},,(.Q)3 denote the usual Besov space
of vector fields, and let B, (2) = B;},,(.Q)3 NLI(RQ), see [3, (0.5), (0.6)]. Then,
by [3, (0.4), (3.18)] with H(Q) = D(4,),

Bé,(Q) = (LI(Q2), D(4y))y,,» 0<fO<1,1<r<ow,t=20,

and Cy,(2) is dense in B, (Q). Further, let B [(Q):= (B;,’r/(.Q))', cf. [3,
(0.6)]. Hence, with t=20+2/s=1—-3/q and the duality theorem for real
interpolation, cf. [30, Thm. 1.11.2],
- 20— 242 '
Bq"ly+3/q _ qua 2/s _ (Bq?‘_f, /S)f = (LY ’D(Aq’));+1/s,s'

/

= (D(AKI/)7L:71 ){70(71/3',3" = (D(Aq/)/7Lg)lfoz71/s,x'
Using the identity (4 'ug, Ap) = (uo, p) for ¢ € D(A) we get that

~ ~ —1
luoll g, 15500 = ol pia, ey, = 1A 0l 28,4,

-1 ” o+1/s —14 4—1 SdT '
~ 4wl (| @l Aem A woll,)

T
1v
~ -1 OO o) ,—TA4 s s
~ |4 uoll, + O(T le™ " uoll,)"dz | .

Since the semigroup e~™ is exponentially decreasing, we may omit the term
||A‘1uo||q in the last norm above, see [30, Thm. 1.14.5]. Fixing ¢ € (3, 00) and

considering s, o as related by 2(1/s+ o) = 1 — 3/q, we conclude that the norms

T

||u0||B;i+3/q and |le” Au0||L§(L(,) are equivalent.

For later use, we introduce the notation

T.

Huo”B;i”/”(T) = |le” Au0| L3((0,T: L9) 0<T< oo.

In the limit « — 0 we approach the case B;i?jé;f with 2/s(q,0) +3/qg =1 of the
classical Serrin condition considered in [8, 9], whereas for s — oo we approach

s ~143
the limit space B, /.

5. Restricted Serrin’s uniqueness theorem

Assumption 5.1. Let Q C R® be a bounded domain with boundary of
class C>1.
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(1) Given upeL?(Q) and an external force f =divF where Fe
L?(0,00; L*(Q2)) we assume the existence of approximating sequences (up,) C
L2(Q) of uy such that

Uon — Ug in Lg(.Q)
and (F,) C L?*(0,00;L*(Q2)) of F such that
F,—F in L*(0,00;L*(Q)) as n — .

(2) Let (J,) denote a family of bounded operators in Z(Lg(.Q),D(A(}/ 2))
such that for each 1 < ¢ < oo there exists a constant C, > 0 such that

1

;A;/an <C, and Juu— u in LI(Q) as n — 0.

Z(L3)

Il () + H

(3) For each ne N let u, denote the weak solution of the approximate
Navier-Stokes system

(5.1) Oy — Auy + (Juuty) - Vuy, + Vp, = div F,, divu, =0 in (0,7) x Q
un|ag = 07 u,,(O) = Upo

Remark 5.2. A typical example of operators (J,) in Assumption 5.1 is
given by the family of Yosida operators J, = (I + n’lA;/ 2)71. It is well known
that this family of operators is uniformly bounded on LZ(L2) as well as on
D(A;/z) for each 1 < ¢ < co. Moreover, J,u — u in LI(2) as n — co. By
analogy, the operators J, = ¢=4"/" have the same properties.

We know from [26, Ch. V, Thm. 2.5.1] (with a minor modification in the
case of J, = e’A;/Z/”) that there exists a unique weak solution u, € XHr :=
L*(L*) N L*(H}) of (5.1) satisfying the uniform estimate

[nll 2o 22y + [l 201y < Cl[uonlly + [[Fnll 2(22)

< C(lluolly + [1F N 222y + 1)

for all sufficiently large ne N. Therefore, there exists ve XHy and a sub-
sequence (uy, ) of (u,) such that

Uy, — v in L*(Hy), Uy, — v in L*(L?), Uy, — v in L*(L?).

k

From the last convergence we also conclude that u,, (f)) — v(f9) in L*(Q) for
a.a. foe(0,7). Actually, ve ZHy is a weak solution of (1.1).
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Remark 5.3. (1) Since we do not know whether weak solutions of (1.1)
are unique, v may depend on the subsequence (u,,) chosen above. In this case,
we say that

(5.2) v is a well-chosen weak solution of (1.1).

Note that a well-chosen weak solution v is always related to a concrete
approximation procedure as in Assumption 5.1 and the choice of an adequate
(weakly—*) convergent subsequence of a sequence of approximate solutions (uy,).

(2) The question whether solutions constructed by the Galerkin method
fall into the scope of a modified Assumption 5.1 and yield uniqueness in the
sense of Theorem 1.4 has not been settled. A similar question concerning
the property to be a suitable weak solution, cf. H. Beirdo da Veiga [4, p. 321],
has been answered in the affirmative, see J.-L. Guermond [16].

Assumption 5.4. Under the assumptions of Assumption 5.1 additionally let
2<s< o0, 3<qg< o, 0<a<1/2 with 2/s+3/g=1— 20 be given. Sup-
pose that even ug, uy, € B;l”m and F,F, eL'zyéz(O, o0; L1%(Q)) such that also

Upy — Uy 1IN qui“/‘f, F,—F in Lgf(o, o0; LY*(Q)) as n — oo.

From now on by a well-chosen weak solution of (1.1) we also assume that
the approximation satisfies Assumption 5.4 as well as Assumption 5.1.

Proof of Theorem 1.4. As in Sect. 3, we set u,(t) = i,(t) + E, ., (¢) where,
cf. (3.2),

t
(1) = — J A2 =04( 4712 P div) (Juu, ® uy,)(7)dr.
0

By the assumptions on uy,, F, and a similar argument as in Sect. 3, (Ej, 4, ) C
L;(L%) is uniformly bounded and converges to Ef ,; to be more precisely, due
to the estimate for Ep,, and (3.1),

(5:3) NEf uw, — Ef,uoHL;(o, 7L S c(|Juon — uOHB;"VWq(T/) + ||Fy — F”L;‘(O,T’;L‘l))

where ¢ = ¢(g,s,2,2) > 0 is independent of the interval (0,7'), 0 < T’ < T, on
which (5.3) is considered.
We also observe that as in (3.3)—(3.5)

- 2
(5.4) ||”n||L;(o,T';Lq) = CqHJn“n||L;(o,T';L4)||”nHL;(o, 7Ly = C||un”L;(o, T/ L4)

_ 2
< Cllanll 50, 77 20y + 1 Efuon | 10, 775 1.9))

~ 2
= C(””n”L;(O,T';LtI) + ””011”3;*3/4@/) + HF””L;‘%(O,T/;L!//Z))
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with a constant C > 0 independent of 0 < 7/ < T. Actually, as in the proof of
Theorem 1.2 in Sect. 3, cf. [9, p. 99], there exists an ¢ >0 and 7' € (0,7)
independent of n € NV such that we find a unique solution u, of (5.1) on (0,7")
in L(0,7';L9) for all sufficiently large ne N. Moreover, (u,) is uniformly
bounded in L;(L?) with bound |[u|, s, 7/;14) < Ce. where C is independent of
NeN and T'. Hence we may assume that u, — U in Li(LY) as k — oo,
using without loss of generality the same subsequence as the sequence (uy,)
considered in the L>-theory of Remark 5.2. Consequently, U = v.

It remains to show that U equals the given strong LJ(L?)-solution
ue L0, T'; L9) with data uy, F. Due to (3.2)

Un (1) = u(t) = Ej, .y, (1) = Ef 1 (1)

t
— J AV~ LV2 P div) (Jyuty — 1) @ g + u ® (4, — u))(z)dz
0

yielding the estimate
(5.5) [t — u”L-;(Lfl)

<N Ef i = Erouwllyo)

+ C([|Jnttn — ”HL«;(Lq) + [[un — ul L;(Lq))(||“n| LyLey + ||u||L;(Ltz))-
Since
[ nttn = ttlly < Mt = )l + 1t = ully < Cyllun = ull, +0(1)  as n— o0
and

[[u4n] L:0,77;Le) T ||”||L;(o, Ly < Cés,

we conclude from (5.5) and Lebesgue’s Theorem on Dominated Convergence
that

[t — u”Lj(QT’;L#) < 1Ef, 0, — Ef‘MOHL;(O, .0t Cellun — “HL;(O, TrLe) T o(1)

for all 0 < 7' < T and ne N, but with C > 0 independent of 7’. Choosing
& >0 so small that even Ce, < 1/2, we get that

llun — ”HL;(O, T L) = 2||Efy 0, — Ef,uo”Lg(o, TrLe) T o(1) as n — .

In order to fulfill the inequality Ce, < 1/2 and (1.8) for ugy,, up and F,, F this
step possibly required to replace T’ by a sufficiently small 7”7 € (0, T’]. Since
the first term on the right-hand side converges to 0 by Assumption 5.4, we
obtain that |[u, — ul| ¢ 7v,. — 0 as n — oo and consequently that u=U =v
on [0,T"). O
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