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Abstract. We consider the Cauchy problem of cooperative reaction-di¤usion systems

with nonnegative initial data. Here we discuss the blow-up of a solution that occurs

only at space infinity. We give su‰cient conditions for such phenomena, and study

an asymptotic behaviour at space infinity of the solutions at the blow-up time. In

general, relatively little is proved on the locations of blow-up point for semilinear

parabolic systems. However, our results can be applied to a large class of non-

linearity for some class of initial value. The reason of this is that, when the blow-up

occurs only at space infinity, the e¤ect of reaction is much stronger than that of

di¤usion, and the behaviour at space infinity is well approximated by the flat solution.
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1. Introduction and main theorems

We consider the initial value problem for a reaction-di¤usion system:

ut ¼ d1Duþ f ðu; vÞ; x A Rn; t > 0;

vt ¼ d2Dvþ gðu; vÞ; x A Rn; t > 0;

uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ; x A Rn;

8<
:ð1Þ

where nb 1, d1 and d2 are positive constants, u0 and v0 are bounded non-

negative continuous functions in Rn, and we discuss the blow-up of solutions

that occurs only at space infinity. In this paper we also assume that nonlinear

terms f and g are continuous functions in ½0;yÞ � ½0;yÞ. Our results below

include the case f ðu; vÞ ¼ vq, gðu; vÞ ¼ up with p; q > 1 for example.

The problem (1) has a unique bounded classical solution at least locally in

time, provided that f and g are locally Lipschitz continuous in the range of the

solutions. However, the solution may cease to exist in finite time. For given

initial data ðu0; v0Þ and nonlinear terms f and g, let

T ¼ Tðu0; v0Þ ¼ Tðu0; v0; f ; gÞ



be the maximal existence time of the solution. If T ¼ y, the solution is said to

exist globally in time. If T < y and

lim sup
t!T

fkuð�; tÞkLyðR nÞ þ kvð�; tÞkLyðRnÞg ¼ y;ð2Þ

we say that the solution blows up in finite time. For the case T < y, a point

xBU A Rn is called a blow-up point of the solution to the problem (1) if there

exists a sequence fðxm; tmÞgym¼1 such that

tm " T ; xm ! xBU and ðuþ vÞðxm; tmÞ ! y as m ! y:

A set of all blow-up points is called a blow-up set. If there exists a sequence

fðxm; tmÞgym¼1 such that

tm " T ; jxmj ! y and ðuþ vÞðxm; tmÞ ! y as m ! y;

then we say that the solution blows up at space infinity.

There is a huge amount of literature about location of blow-up points for

single equations. In the works of Weissler [36] and Friedman-McLeod [9], it

was shown that the single point blow-up occurs when the solution on the ball is

radially symmetric positive and monotone decreasing for r ¼ jxj. The solution

whose blow-up set is sphere was constructed by Giga-Kohn [10] (See also [24,

38, 19, 20, 1, 2]). On the other hand, problems about blow-up set for parabolic

systems is widely open. Friedman-Giga [8] considered the system ut ¼ Duþ vq,

vt ¼ Dvþ up with p ¼ q > 1 and construct a radially symmetric solution that

blows up only at the origin. The generalization of this result was recently

obtained by Souplet [31] for p; q > 1. For other blow-up problems of semi-

linear parabolic systems, we also refer the reader to, e.g., [3, 4, 6, 15, 16, 17,

18, 26, 37, 28, 34, 35].

Let us recall some known results about blow-up at space infinity. Lacey

[21] considered the Dirichlet problem in a half line and constructed solutions

that blow up only at space infinity. Giga-Umeda [11] proved that blow-up

only at space infinity occurs under the condition limjxj!y u0ðxÞ ¼ M and

u0 2M for nonnegative solutions of ut ¼ Duþ up in Rn. Later, Shimojo

[33] extended their results by relaxing the assumptions of initial data u0 which

are similar to (5) and (6) appeared in Theorem 1. After that Giga-Umeda

[12] obtained the same results for semilinear heat equations of the form

ut ¼ Duþ f ðuÞ with more general nonlinearity f . Later Shimojo [32] also

calculate the shape of blow-up profile uðx;TÞ :¼ limt!T uðx; tÞ for x A Rn

precisely. See also Seki-Suzuki-Umeda [30] and Seki [29] for quasilinear para-

bolic equations, which generalize the result of [12].
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The aim of the present paper is to show the existence of solutions that blow

up only at space infinity for large class of semilinear parabolic system. This is

regarded as a generalization of the results for single equation of the above to

parabolic system (1).

Now let us state our main theorems. In the following, let ðUðtÞ;VðtÞÞ be a

solution of the system of ordinary di¤erential equations:

Ut ¼ f ðU ;VÞ; t > 0;

Vt ¼ gðU ;VÞ; t > 0;

Uð0Þ ¼ M; Vð0Þ ¼ N;

8><
>:ð3Þ

where M;N > 0 are positive constants. Here we denote the maximum exis-

tence time of (3) by TðM;N; f ; gÞ. We write TðM;NÞ :¼ TðM;N; f ; gÞ for

simplicity. The first theorem provides us the information about the exact

maximal existence time of the solution.

Theorem 1. Let M;N > 0 be constants, and assume that there exist

constants b1 A ½0;MÞ and, b2 A ½0;NÞ satisfying the following:

1. The nonlinear terms f and g satisfy

f ; g A C2ð½b1;yÞ � ½b2;yÞÞ;
fv b 0; gu b 0; f > 0; g > 0 for u > b1; v > b2:

�
ð4Þ

2. The initial data ðu0; v0Þ satisfies

u0 A ½b1;M�; v0 A ½b2;N�; u0 2M; v0 2N for a:e: x A Rn:ð5Þ

Furthermore, suppose that there exist sequences frmgym¼1 HR of radii and

famgym¼1 HRn satisfying limm!y rm ¼ y such that

lim sup
m!y

fkM � u0kLyðBðam; rmÞÞ þ kN � v0kLyðBðam; rmÞÞg ¼ 0;ð6Þ

where Bða; rÞ denotes the open ball of radius r > 0 centered at a A Rn. Then

Tðu0; v0Þ ¼ TðM;NÞ.

Next we state our main result on a su‰cient condition for blow-up only at

space infinity.

Theorem 2. Assume the same hypotheses as in Theorem 1. Let the

solution ðU ;VÞ of (3) blow up at t ¼ TðM;NÞ < y. If f , g and the solution

ðU ;VÞ of (3) satisfy

lim sup
t!T

f ðyUðtÞ; yVðtÞÞ
yf ðUðtÞ;VðtÞÞ < 1; lim sup

t!T

gðyUðtÞ; yVðtÞÞ
ygðUðtÞ;VðtÞÞ < 1ð7Þ
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for any y A ð0; 1Þ, and

lim sup
t!T

ðT � tÞ
€UUðtÞ
_UUðtÞ

����
����

� �
< y; lim sup

t!T

ðT � tÞ
€VVðtÞ
_VVðtÞ

����
����

� �
< y;ð8Þ

then the solution of (1) has no blow-up points in Rn (It blows up only at space

infinity).

Remark 1.1. Assume that the nonlinear terms f and g can be written in

either one of the following forms:

( i ) f ðu; vÞ ¼ up1vq1 and gðu; vÞ ¼ up2vq2 with p1; p2; q1; q2 b 0, p1 þ q1 > 1,

p2 þ q2 > 1, p2 � p1 þ 1 > 0 and q1 � q2 þ 1 > 0.

(ii) f ðu; vÞ ¼ ea1uþb1v and gðu; vÞ ¼ ea2uþb2v with a1; a2; b1; b2 b 0, a1 þ b1
> 0, a2 þ b2 > 0, a1 < a2 and b1 > b2.

Then the nonlinear terms f , g and the solution ðU ;VÞ of (3) satisfy (7) and (8).

Remark 1.2. Theorem 1 with their proof contain that

lim sup
t!TðM;NÞ

lim sup
m!y

ess inf
x ABðam; rm=2Þ

uðx; tÞ þ ess inf
x ABðam; rm=2Þ

vðx; tÞ
� �� �

¼ y

with the hypotheses of Theorem 1.

Since the above blow-up occurs only at space infinity, the pointwise limit

ðuðx;TðM;NÞÞ; vðx;TðM;NÞÞÞ ¼ limt!TðM;NÞðuðx; tÞ; vðx; tÞÞ exists for every

x A RN (see Lemma 4.1). The next theorem describes the behaviour at infinity

of the functions ðuðx;TðM;NÞÞ; vðx;TðM;NÞÞÞ.

Theorem 3. Assume the same hypotheses as in Theorem 2. Then

lim
m!y

ðuðam;TðM;NÞÞ þ vðam;TðM;NÞÞÞ ¼ y;

where the sequence famgym¼1 HRn is the same as in Theorem 1.

This paper is organized as follows. In Section 2 we prove Theorem 1.

Section 3 is devoted to the proof of Theorem 2. The proof of Theorem 3

will be given in Section 4. In Section 5 we discuss the conditions about the

nonlinear terms f and g satisfying (7) in Theorem 2, and give some examples

of f and g.

2. The maximal existence time

In this section we consider the pairs of the continuous functions ðu0; v0Þ and
ðu0; v0Þ. Recall that the functions f ðu; vÞ and gðu; vÞ satisfy (4).
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Let ðu; vÞ and (u; v) be solutions of the system (1) with initial data ðu0; v0Þ
and ðu0; v0Þ respectively. Put ~uu ¼ u� u and ~vv ¼ v� v. Then ð~uu; ~vvÞ is the

solution of the following problem:

~uut ¼ d1D~uuþ f ðu; vÞ � f ðu; vÞ; x A Rn; 0 < t < ~TT ;

~vvt ¼ d2D~vvþ gðu; vÞ � gðu; vÞ; x A Rn; 0 < t < ~TT ;

~uuðx; 0Þ ¼ u0ðxÞ � u0ðxÞ; x A Rn;

~vvðx; 0Þ ¼ v0ðxÞ � v0ðxÞ; x A Rn;

8>>><
>>>:

ð9Þ

where ~TT ¼ minfTðu0; v0Þ;Tðu0; v0Þg.
The following proposition is some kind of generalization of results in the

papers [13, 14] by Gladkov and [12] by Giga-Umeda.

Proposition 2.1. Assume that u0, v0, u0 and v0 are nonnegative, con-

tinuous and bounded functions. Let f ðu; vÞ and gðu; vÞ satisfy (4) with b1 ¼
infx AR n minfu0; u0gðxÞ, b2 ¼ infx AR n minfv0; v0gðxÞ. If there exist sequences

famgym¼1 HRn and frmgym¼1 satisfying 0 < r1 < r2 < � � � ! y such that

lim sup
m!y

fku0 � u0kLyðBðam; rmÞÞ þ kv0 � v0kLyðBðam; rmÞÞg ¼ 0;ð10Þ

then solutions ðu; vÞ and ðu; vÞ of (1) with initial data ðu0; v0Þ and ðu0; v0Þ satisfy

lim sup
m!y

fkuð�; tÞ � uð�; tÞkLyðBðam; rm=2ÞÞ þ kvð�; tÞ � vð�; tÞkLyðBðam; rm=2ÞÞg ¼ 0

for any t A ð0; ~TTÞ.

Proof. It is clear that the proposition holds for the case u0 1 u0 and

v0 1 v0. Hence we consider the case

u0 2 u0 or v0 2 v0:ð11Þ

First we consider vector valued functions:

Wðx; tÞ ¼ u� u

v� v

� �
ðx; tÞ and W0ðxÞ ¼

u0 � u0

v0 � v0

� �
ðxÞ:

For any domain WHRn, we define kWð�; tÞkLyðWÞ :¼ kuð�; tÞ � uð�; tÞkLyðWÞ þ
kvð�; tÞ � vð�; tÞkLyðWÞ.

From (10), for any e > 0 there exists m0 A N large enough such that for any

mbm0

kW0kLyðBðam; rmÞÞ a
e

4
:ð12Þ
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Take t0 A ð0; ~TTÞ. Put

K ¼ sup
ðu1; v1Þ; ðu2; v1Þ AA

max

�
f ðu1; v1Þ � f ðu2; v1Þ

u1 � u2

����
����; f ðu2; v1Þ � f ðu2; v2Þ

v1 � v2

����
����;

gðu1; v1Þ � gðu2; v1Þ
u1 � u2

����
����; gðu2; v1Þ � gðu2; v2Þ

v1 � v2

����
����
�
;

where A ¼ ½b1; b� � ½b2; b� with b ¼ supðx; tÞ AR n�½0; t0� maxfu; v; u; vgðx; tÞ. From

(4), the solution of the problem

Zt ¼ d1D 0
0 d2D

� �
Z þ K

1 1
1 1

� �
Z; x A Rn; t A ð0; t0Þ;

Zðx; 0Þ ¼ W0ðxÞ; x A Rn

8><
>:ð13Þ

is a supersolution of (9). Let G ¼ ðGi; jÞ1ai; ja2 be the Green matrix for the

equation (13). Then the solution Z of (13) is given by

Zðx; tÞ ¼
ð
R n

Gðx� y; tÞW0ðyÞdy

¼
ð
R nnBðx; rm=2Þ

Gðx� y; tÞW0ðyÞdyþ
ð
Bðx; rm=2Þ

Gðx� y; tÞW0ðyÞdy

¼ I þ II :

From the estimates of the fundamental solution (see [7, CHAPTER 9,

Theorem 1]), we have, for any x; y A Rn and t A ð0; t0Þ,

jGðx� y; tÞjaCt�n=2e�crð14Þ

with C ¼ Cðd1; d2;K; t0Þ and c ¼ cðd1; d2;K ; t0Þ, where r ¼ jx� yj2=t. Let

t A ð0; t0Þ. Then by (11) and (14) we have

ð
R nnBðx; rm=2Þ

jGðx� y; tÞjdya
ð
R nnBðx; rm=2Þ

Ct�n=2e�cr dya
e

4kW0kLyðR nÞ

for any m A N large enough. Thus, for any t A ð0; t0Þ

jI ja
ð
R nnBðx; rm=2Þ

Gðx� y; tÞW0ðyÞdy
�����

�����ð15Þ

a kW0kLyðRnÞ

ð
R nnBðx; rm=2Þ

Ct�n=2e�cr dya
e

2
:
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Note that x A Bðam; rm=2Þ and y A Bðx; rm=2Þ imply y A Bðam; rmÞ. Combining

this with (12), we have

jII ja kW0kLyðBðam; rm=2ÞÞ

ð
Rn

Gðx� y; tÞdy
����

����a e

2
:

These two estimates yield kZðx; tÞkLyðBðam; rm=2ÞÞ a e for t A ð0; t0Þ. Hence, by

the comparison principle, for any t A ð0; t0Þ

lim sup
m!y

kWð�; tÞkLyðBðam; rm=2ÞÞ ¼ 0:

Since t0 A ð0; ~TTÞ is arbitrary, we complete the proof. r

Proof of Theorem 1. It is clear that if TðM;NÞ ¼ y, then Tðu0; v0Þ ¼ y
by comparison. It is enough for proving the theorem to show that

lim sup
t!TðM;NÞ

sup
m AN

ess inf
x ABðam; rm=2Þ

uðx; tÞ þ ess inf
x ABðam; rm=2Þ

vðx; tÞ
� �� �

¼ y

in the case TðM;NÞ < y. To the contrary, we assume that there exists a

positive constant L < y such that

sup
t A ð0;TðM;NÞÞ

sup
m AN

ess inf
x ABðam; rm=2Þ

uðx; tÞ þ ess inf
x ABðam; rm=2Þ

vðx; tÞ
� �� �

aL:ð16Þ

From the facts U 0 b 0, V 0 b 0 and limt!TðM;NÞðUðtÞ þ VðtÞÞ ¼ y, there exists

T0 A ½0;TðM;NÞÞ such that

UðT0Þ þ VðT0Þb 3L:

By Proposition 2.1 there exists a constant m0 b 0 such that

sup
mbm0

fkUðT0Þ � uð�;T0ÞkLyðBðam; rm=2ÞÞ þ kVðT0Þ � vð�;T0ÞkLyðBðam; rm=2ÞÞgaL:

From (16) we see that

sup
mbm0

fkUðT0Þ � uð�;T0ÞkLyðBðam; rm=2ÞÞ þ kVðT0Þ � vð�;T0ÞkLyðBðam; rm=2ÞÞg

¼ sup
mbm0

UðT0Þ þ VðT0Þ � ess inf
x ABðam; rm=2Þ

uðx; tÞ � ess inf
x ABðam; rm=2Þ

vðx; tÞ
� �

b 3L� L ¼ 2L > L:

This is a contradiction. Thus we conclude that

sup
t A ½0;TðM;NÞÞ

sup
m AN

ess inf
x ABðam; rm=2Þ

uðx; tÞ þ ess inf
x ABðam; rm=2Þ

vðx; tÞ
� �� �

¼ y:
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By comparing ðuðx; tÞ; vðx; tÞÞ with the solution ðUðtÞ;VðtÞÞ of (3), we see that

the solution ðuðx; tÞ; vðx; tÞÞ does not blow up for all t A ½0;TðM;NÞÞ. Then we

obtain

lim sup
t!TðM;NÞ

sup
m AN

ess inf
x ABðam; rm=2Þ

uðx; tÞ þ ess inf
x ABðam; rm=2Þ

vðx; tÞ
� �� �

¼ y:

We thus have Tðu0; v0Þ ¼ TðM;NÞ. r

Remark 2.2. In [12] the authors used the sequence of the Green kernel of

the Dirichlet problem of the heat equation ut ¼ Du in the domains Bðam; rmÞ for
m ¼ 1; 2; . . . . In this paper we use the Green kernel for the total space, and

we do not need limiting argument for Green kernel. Hence our proof is much

simpler than that of [12].

3. Blow-up only at space infinity

In this section, we prove Theorem 2 by using the same argument that was

employed by [29] and [33].

Assume that the solution ðU ;VÞ of (3) blows up at T ¼ TðM;NÞ A ð0;yÞ.
Put jðsÞ ¼ UðT � sÞ and cðsÞ ¼ VðT � sÞ with s A ð0;T �. Thus j and c satisfy

the following ordinary di¤erential equation.

dj

ds
¼ �f ðj;cÞ; dc

ds
¼ �gðj;cÞ; jðTÞ ¼ M; cðTÞ ¼ N:ð17Þ

From the assumptions of Theorem 2, for any y A ð0; 1Þ, the functions f , g,

j and c satisfy

lim sup
s!0

f ðyjðsÞ; ycðsÞÞ
yf ðjðsÞ;cðsÞÞ < 1;ð18Þ

lim sup
s!0

gðyjðsÞ; ycðsÞÞ
ygðjðsÞ;cðsÞÞ < 1;ð19Þ

lim sup
s!0

s€jjðsÞ
_jjðsÞ

����
����< y; lim sup

s!0

s €ccðsÞ
_ccðsÞ

�����
�����< y:ð20Þ

The following lemma originally appeared in [23, Lemma 2.3] for single

semilinear parabolic equations. Here we generalize it to parabolic systems by

modifying their argument. See also [29] for the fast di¤usion single equations.

Lemma 3.1. Assume (18), (19) and (20). Let ðuðx; tÞ; vðx; tÞÞ be a solution

of (1) in Rn � ½0;TÞ. Suppose that there exist t0 A ð0;TÞ, a A Rn, r0 > 0 and

y A ð0; 1Þ such that

uðx; tÞa yjðT � tÞ; vðx; tÞa ycðT � tÞ
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in jx� aj < r0, t0 a t < T. Then ðu; vÞ does not blow up at t ¼ T in a neigh-

borhood of a.

Proof. We shall construct a suitable supersolution. It is possible to let

domains of j and c be extended to s A ðT ;T þ t0Þ with some t0 > 0. We thus

may define the functions

wðx; tÞ ¼ yjðT � tþ hðrÞÞ; zðx; tÞ ¼ ycðT � tþ hðrÞÞ;

where r ¼ jx� aj and

hðrÞ ¼ e
1þ cosðpr=r0Þ

2

� �
¼ e cos

pr

2r0

� �� �2

for e > 0 small enough. From (17) we have

wt � d1Dw� f ðw; zÞ ¼ �y _jj� d1y _jjDh� d1y€jjj‘hj2 � f ðyj; ycÞ

¼ yf ðj;cÞ 1þ d1Dhþ d1
€jj

_jj
j‘hj2 � f ðyj; ycÞ

yf ðj;cÞ

� �
:

Define m1 ¼ lim supt!0 f ðyjðtÞ; ycðtÞÞ=yf ðjðtÞ;cðtÞÞ. Then there exist t1 near

T and C ¼ CðT ; t1Þ such that for t A ðt1;TÞ

1þ d1Dhþ d1
€jj

_jj
j‘hj2 � f ðyj; ycÞ

yf ðj;cÞ

� �
ð21Þ

b ð1� m1Þ þ d1 hrr þ
N � 1

r
hr

� �
� C

jhrj2

h

with e > 0 small enough. Since m1 A ð0; 1Þ, and hrr, hr=r and jhrj2=h are

bounded on rb r0 with order e, we conclude that

wt b d1Dwþ f ðw; zÞ; jx� aj < r0; t1 < t < T ;

wðx; t0Þb uðx; t0Þ; jx� aj < r0;

wðx; tÞb uðx; tÞ; jx� aj ¼ r0; t1 a t < T

8<
:ð22Þ

for any e > 0 su‰cient small. Applying the same argument to v, g and c, we

obtain that

zt b d2Dzþ gðw; zÞ; jx� aj < r0; t1 < t < T ;

zðx; t0Þb vðx; t0Þ; jx� aj < r0;

zðx; tÞb vðx; tÞ; jx� aj ¼ r0; t1 a t < T

8<
:ð23Þ

for any e > 0 small enough.
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By the comparison principle, for x A Bða; r0Þ and t A ½t1;TÞ, we have

uðx; tÞawðx; tÞ. Since j is a decreasing function, we obtain

uðx; tÞa yj T � tþ h
r0

2

� �� �
¼ yj T � tþ e

2

� �
;

vðx; tÞa yc T � tþ h
r0

2

� �� �
¼ yc T � tþ e

2

� �

for ðx; tÞ A Bða; r0=2Þ � ½t1;TÞ. r

Remark 3.2. In [10, Theorem 4.2] the corresponding assertion of Lemma

3.1 is shown for the single equation ut ¼ Duþ jujp�1
u with 1 < p < ðnþ 2Þ=

ðn� 2Þ or na 2 (see also [25, Corollary 1.3]).

Finally, we shall prove that the blow-up occurs only at space infinity by

using Lemma 3.1.

Proof of Theorem 2. We need to show that for any a A Rn there exist

t0 A ð0;TÞ, r0 > 0 and y A ð0; 1Þ such that for x A Bða; r0Þ and t A ½t0;TÞ

juðx; tÞja yjðT � tÞ; jvðx; tÞja ycðT � tÞ:

We may assume that d1 > d2 without loss of generality. From the strong

maximum principle, the solution ðu; vÞ of (1) satisfies

uðx; tÞ < UðtÞ; vðx; tÞ < VðtÞ for ðx; tÞ A D� ð0;TÞ

for any compact set DHRn. Thus we may let u0ðxÞ < M and v0ðxÞ < N for

x A Bða; r0Þ without loss of generality. Let wðx; tÞ be a solution of

wt ¼ d1Dw; x A Bða; r0Þ; tb 0;

wðx; tÞ ¼ 1; x A qBða; r0Þ; tb 0;

1bwðx; 0Þbmaxfu0ðxÞ=M; v0ðxÞ=Ng; x A Bða; r0Þ;
Dwðx; 0Þb 0; x A Bða; r0Þ;
wðx; 0Þ2 1; x A Bða; r0Þ:

8>>>>><
>>>>>:

ð24Þ

We shall prove that for any a A Rn and any r0 > 0, ðUw;VwÞ is the super-

solution of (1) in Bða; r0Þ. By (18) we derive

ðUwÞt ¼ f ðU ;VÞwþUd1Dwb f ðUw;VwÞ þ d1DðUwÞ:

Using the same reasoning as above and (19) we also derive

ðVwÞt ¼ gðU ;VÞwþ Vd1Dwb ðUw;VwÞ þ d1DðVwÞ:
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By the maximum principle, Dwðx; tÞb 0 for any ðx; tÞ A Bða; r0Þ � ð0;TÞ, we

obtain

ðVwÞt b gðUw;VwÞ þ d2DðVwÞ:

Also Uw > u, Vw > v on qBða; r0Þ � ð0;TÞ and Bða; r0Þ � f0g. Again, by the

comparison principle, we conclude

uaUw; vaVw in Bða; r0Þ � ð0;TÞ:ð25Þ

Besides, by the strong maximum principle, we have that 0awðx; tÞ < 1 for any

ðx; tÞ A Bða; r0Þ � ð0;TÞ. In particular, for any ~rr0 A ð0; r0Þ there exist 0 < y < 1

and t0 A ð0;TÞ such that

0awðx; tÞa y; jx� aj < ~rr0; t0 a t < T :

This and (25) imply

0a uðx; tÞa yjðT � tÞ; jx� aj < ~rr0; t0 a t < T :

Analogously, we obtain that

0a vðx; tÞa ycðT � tÞ; jx� aj < ~rr0; t0 a t < T :

Combining this with Lemma 3.1, we obtain the desired result. r

4. Behavior at blow-up time

In this section we prove Theorem 3.

Lemma 4.1. Assume the same hypotheses as in Theorem 2. Then

ðu; vÞðx;TÞ ¼ limt!T ðu; vÞðx; tÞ exists for any x A Rn with T ¼ TðM;NÞ.

Proof. From Theorem 2, for any a A Rn, there exists � > 0 such that

b1 a sup
t A ð0;TÞ

uðx; tÞaL; b2 a sup
t A ð0;TÞ

vðx; tÞaL for x A Bða; eÞ

with some L ¼ Lða; eÞ < y. By the standard parabolic estimates [5, CHAP-

TER II, THEOREM 2.2], we have ðuð�; tÞ; vð�; tÞÞ A BC2þa
loc ðRnÞ for t A ð0;TÞ

and a A ð0; 1Þ. Moreover, we see ðutð�; tÞ; vtð�; tÞÞ A BC a
locðRnÞ for t A ð0;TÞ

and a A ð0; 1Þ. By integrating ðutð�; tÞ; vtð�; tÞÞ from 0 to T and subtracting

ðu0ð�Þ; v0ð�ÞÞ, we obtain ðuð�;TÞ; vð�;TÞÞ. Thus we see that ðuð�;TÞ; vð�;TÞÞ
exists. r

Proof of Theorem 3. Let e A ð0;minfM � b1;N � b2gÞ. We consider the

following elements of initial data
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um; e
0 ðxÞ ¼

M � e; jx� amj < rm � 1;

�ðM � e� b1Þðjx� amj � rmÞ þ b1; rm � 1a jx� amj < rm;

b1; jx� amjb rm;

8><
>:ð26Þ

v
m; e
0 ðxÞ ¼

N � e; jx� amj < rm � 1;

�ðN � e� b2Þðjx� amj � rmÞ þ b2; rm � 1a jx� amj < rm;

b2; jx� amjb rm;

8><
>:ð27Þ

where b1, b2 are the same as in Theorem 1. Let ðum; e; vm; eÞ be the solutions of

the equation (1) with the initial data ðum; e
0 ; vm; e

0 Þ. Let ðU e;V eÞ be the solutions

of (3) with initial value ðM � e;N � eÞ. We shall write T e ¼ TðM � e;N � eÞ
for simplicity.

By Proposition 2.1 for any e > 0 there exists a natural number m0 A N such

that for any m > m0,

U eðtÞ � ea um; eðx; tÞ; V eðtÞ � ea vm; eðx; tÞð28Þ

for x A Bðam; rm=2Þ, t A ð0;T eÞ. By the comparison principle, due also to (6) we

could find m0 A N such that

um; eðx; tÞa uðx; tÞ; vm; eðx; tÞa vðx; tÞð29Þ

for any x A Rn, t A ð0;T eÞ provided that mbm0. By using the fact T ¼
TðM;NÞ < T e, Lemma 4.1, (28) and (29), for any e there exist an index still

denoted by m0 ¼ m0ðeÞ A N such that for any m > m0

U eðTÞ � ea uðam;TÞ; V eðTÞ � ea vðam;TÞ for mbm0:ð30Þ

Since e > 0 can be chosen arbitrarily small and lime!0ðU eðTÞ þ V eðTÞÞ ¼ y,

(30) implies

lim
m!y

ðuðam;TÞ þ vðam;TÞÞ ¼ y: r

5. Examples of nonlinearities

In this section we exhibit several examples of nonlinearities that satisfy the

conditions of the theorems in the previous sections. More precisely, suppose

that there exist nonnegative functions f1; g1 A C2ð½b1;yÞÞ, f2; g2 A C 2ð½b2;yÞÞ
with b1, b2 used in Theorem 1 such that

f ðu; vÞ ¼ f1ðuÞ f2ðvÞ; gðu; vÞ ¼ g1ðuÞg2ðvÞ;ð31Þ

f 0
2 ðvÞ > 0 and g 0

1ðuÞ > 0 for u > b1; v > b2:ð32Þ
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Then the corresponding system of ordinary di¤erential equations (3) becomes

Ut ¼ f1ðUÞf2ðVÞ; t > 0;

Vt ¼ g1ðUÞg2ðVÞ; t > 0;

Uð0Þ ¼ M; Vð0Þ ¼ N:

8><
>:ð33Þ

Define

EðtÞ ¼ EðU ;VÞðtÞ ¼ F ðUðtÞÞ � GðVðtÞÞ;ð34Þ

where

FðwÞ ¼
ðw

M

g1ðsÞ
f1ðsÞ

ds; GðwÞ ¼
ðw

N

f2ðsÞ
g2ðsÞ

ds:

We have that EðtÞ ¼ EðUðtÞ;VðtÞÞ is independent for t, since, by using (33),

E 0ðtÞ ¼ F 0ðUðtÞÞU 0ðtÞ � G 0ðVðtÞÞV 0ðtÞ

¼ g1ðUðtÞÞ
f1ðUðtÞÞ f1ðUðtÞÞ f2ðVðtÞÞ � f2ðVðtÞÞ

g2ðVðtÞÞ g1ðVðtÞÞg2ðVðtÞÞ

¼ g1ðUðtÞÞ f2ðVðtÞÞ � f2ðVðtÞÞg1ðUðtÞÞ ¼ 0:

Thus there exists a constant E0 A R such that

FðUðtÞÞ � GðVðtÞÞ ¼ F ðMÞ � GðNÞ ¼ E0

with t A ½0;TðM;NÞÞ. Next we define the following two functions:

FðxÞ ¼ f1ðxÞ f2ðG�1ðF ðxÞ � E0ÞÞ; GðxÞ ¼ g1ðF�1ðE0 þ GðxÞÞÞg2ðxÞ:ð35Þ

The main proposition of this section is the following.

Proposition 5.1. Assume the same hypotheses as in Theorem 1. Let f , g

have the forms of (31) and (32). Let ðFðxÞÞg and ðGðxÞÞg are convex functions

for some g A ð0; 1Þ and any x > x1 with some x1 > 0, and satisfy

ðy
x1

dx

FðxÞ < y;

ðy
x1

dx

GðxÞ < y:ð36Þ

Then the condition (8) in Theorems 2 and 3 holds.

Before proving this proposition, we need a lemma.

Lemma 5.2. Let U A Cð½0;TÞÞVC2ð0;TÞ be a solution to

_UU ¼ FðUÞ; Uð0Þ ¼ M with F A C2ðb;yÞ;ð37Þ
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where T > 0, bb 0, FðsÞ > 0 for s > b and M > b satisfy
Ðy
M
ds=FðsÞ A ½T ;yÞ.

Assume that FgðxÞ is convex for x > x0 with some x0 > b and some g A ð0; 1Þ.
Then

lim sup
t!T

ðT � tÞ €UUðtÞ
_UUðtÞ

����
����< y:

Proof. Define jðsÞ ¼ UðT � sÞ with s A ð0;T �. Note that _jjðsÞ ¼
�FðjðsÞÞ. Since Fg is convex, we have

ðFgÞ00 ¼ gFg�2fFF 00 � ð1� gÞðF 0Þ2gb 0:

Put d ¼ 1� g. Then, we obtain

FF 00
b dðF 0Þ2:ð38Þ

From (37) we have

s ¼ lim
h!þ0

ð jðhÞ

jðsÞ

dx

FðxÞ :

Since (38) implies

1

F
a

F 00

dðF 0Þ2
;

derive

sa lim
h!þ0

ð jðhÞ

jðsÞ

F 00ðxÞ
dðF 0ðxÞÞ2

dx ¼ lim
h!þ0

ð jðhÞ

jðsÞ

1

d
� 1

F 0ðxÞ

� �0
dx

¼ lim
h!þ0

1

d

1

F 0ðjðsÞÞ �
1

F 0ðjðhÞÞ

� �
¼ 1

d

1

F 0ðjðsÞÞ :

On the other hand, we have

€jj

_jj
¼ �F 0ðjÞ _jj

_jj
¼ �F 0ðjÞ:

Then we obtain

€jjðsÞ
_jjðsÞ

����
����¼ � €jjðsÞ

_jjðsÞ ¼ F 0ðjðsÞÞa 1

ds

and

s€jjðsÞ
_jjðsÞ

����
����a 1

d
: r
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Proof of Proposition 5.1. From (34) we have

FðUÞ ¼ E0 þ GðVÞ; GðVÞ ¼ FðUÞ � E0

and

U ¼ F�1ðE0 þ GðVÞÞ; V ¼ G�1ðF ðUÞ � E0Þ:ð39Þ

Substituting (39) into (33), we obtain

Ut ¼ f1ðUÞ f2ðG�1ðFðUÞ � E0ÞÞ ¼ FðUÞ;

Vt ¼ g1ðF�1ðE0 þ GðVÞÞÞg2ðVÞ ¼ GðVÞ:

Since Fg and G g are convex with some g A ð0; 1Þ, (8) holds by Lemma 5.2.

r

Proposition 5.3. Assume the same hypotheses as in Theorem 1. Let

f ðu; vÞ ¼ up1vq1 and gðu; vÞ ¼ up2vq2 with p1; p2; q1; q2 b 0, p1 þ q1 > 1 and

p2 þ q2 > 1. Let b1; b2 > 0. Furthermore, suppose that one of the following

four conditions hold;

( i ) p2 � p1 þ 1 > 0 and q1 � q2 þ 1 > 0,

( ii ) p2 � p1 þ 1 ¼ 0 and q1 � q2 þ 1 ¼ 0,

(iii) p2 � p1 þ 1 > 0, q1 � q2 þ 1 ¼ 0 and p1 > 0,

(iv) p2 � p1 þ 1 ¼ 0, q1 � q2 þ 1 > 0 and q2 > 0.

Then Theorems 2 and 3 hold.

Remark 5.4. In Proposition 5.3, from (4) and (5), if b1 > 0 (or b2 > 0),

then p1, p2 (or q1, q2) may be taken 0a p1 < 1 and/or 0a p2 < 1 (or

0a q1 < 1 and/or 0a q2 < 1). On the other hand, if p1; p2 b 1 (or q1; q2 b 1),

then it is possible that b1 ¼ 0 (or b2 ¼ 0).

Proof of Proposition 5.3. We consider the problem:

Ut ¼ U p1V q1 ; t > 0;

Vt ¼ U p2V q2 ; t > 0;

Uð0Þ ¼ M > 0; Vð0Þ ¼ N > 0;

8<
:ð40Þ

which is the associated ordinary di¤erential equation (3) in this case. Since

p1 þ q1 > 1 and p2 þ q2 > 1, we can easily check that TðM;NÞ < y and (7)

holds.

Next we shall check validity of the condition (8) by using proposition 5.1.

In this example (34) becomes

EðU ;VÞðtÞ ¼ hp2�p1þ1ðUðtÞÞ � hq1�q2þ1ðVðtÞÞ;
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where

hpðsÞ ¼
sp=p; p0 0;

log s; p ¼ 0:

�

Thus from (40) we have dE=dt ¼ 0. This implies that there exists a constant E0

such that

E0 ¼ EðU ;VÞ ¼ EðM;NÞ:

First we consider the case (i). In this case we have

FðUÞ ¼ U p1
U p2�p1þ1

p2 � p1 þ 1
� E0

� �
ðq1 � q2 þ 1Þ

� �q1=ðq1�q2þ1Þ

@U p1þq1ðp2�p1þ1Þ=ðq1�q2þ1Þ as U ! y

and

GðVÞ ¼ E0 þ
V q1�q2þ1

q1 � q2 þ 1

� �
ðp2 � p1 þ 1Þ

� �p2=ðp2�p1þ1Þ

V q2

@V p2ðq1�q2þ1Þ=ðp2�p1þ1Þþq2 as V ! y

with

E0 ¼
Mp2�p1þ1

p2 � p1 þ 1
� Nq1�q2þ1

q1 � q2 þ 1
;

where ‘‘f ðsÞ@ gðsÞ as s ! y’’ means that there exist positive constants C1

and C2 such that C1 a lims!y f ðsÞ=gðsÞaC2. Since p1 þ q1 > 1, p2 þ q2 > 1,

p2 � p1 þ 1 > 0 and q1 � q2 þ 1 > 0, we have

p1 þ
q1ðp2 � p1 þ 1Þ
q1 � q2 þ 1

> 1 and
p2ðq1 � q2 þ 1Þ
p2 � p1 þ 1

þ q2 > 1;

i.e. Fg, G g are convex functions and satisfy (36). Thus by Proposition 5.1 we

obtain (8).

Next, we consider the case (ii). Under this condition,

FðUÞ ¼ U p1ðe�E0UÞq1 @U p1þq1 as U ! y;

GðVÞ ¼ ðeE0VÞp2V q2 @V p2þq2 as V ! y

with

E0 ¼ log M � log N:

Since p1 þ q1 > 1 and p2 þ q2 > 1, we have (8) by Proposition 5.1.
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Finally, we consider the cases (iii) and (iv). In the case (iii) we obtain

FðUÞ ¼ U p1e�q1E0 exp
q1U

p2�p1þ1

p2 � p1 þ 1

� �
;

GðVÞ ¼ fðE0 þ log VÞðp2 � p1 þ 1Þgp2=ðp2�p1þ1Þ
V q2

with

E0 ¼
Mp2�p1þ1

p2 � p1 þ 1
� log N:

Since q1 > 0 and q1 � q2 þ 1 ¼ 0, we have q2 > 1. Hence again there exist g

such that Fg, G g are convex functions. Thus by Proposition 5.1 we obtain

(8). For the case (iv) we can use the same argument to show the validity of (8).

r

Proposition 5.5. Under the same assumptions as in Theorem 1, let f ðu; vÞ ¼
ea1uþb1v and gðu; vÞ ¼ ea2uþb2v with a1; a2; b1; b2 b 0, a1 þ b1 > 0 and a2 þ b2 > 0.

Furthermore, one of the following four conditions hold;

( i ) a1 < a2 and b1 > b2,

( ii ) a1 ¼ a2 and b1 ¼ b2,

(iii) a1 < a2, b1 ¼ b2 and a1 þ b2 > 0,

(iv) a1 ¼ a2, b1 > b2 and a1 þ b2 > 0.

Then Theorems 2 and 3 hold.

Proof. We consider the following system of equations:

Ut ¼ ea1Uþb1V ; t > 0;

Vt ¼ ea2Uþb2V ; t > 0;

Uð0Þ ¼ M > 0; Vð0Þ ¼ N > 0;

8><
>:ð41Þ

which is the associated ordinary di¤erential system (3) in this case. Since

a1 þ b1 > 0 and a2 þ b2 > 0, we can easily check that TðM;NÞ < y and (7)

holds.

Next, we shall verify the validity of the condition (8) by using Proposition

5.1. Now (34) becomes

EðU ;VÞðtÞ ¼ ha2�a1ðUðtÞÞ � hb2�b1ðVðtÞÞ;

where

haðsÞ ¼
eas=a; a0 0;

s; a ¼ 0:

�

Thus from (41) we have dE=dt ¼ 0 and there exists a constant E0 such that

E0 ¼ EðU ;VÞ ¼ EðM;NÞ:
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First we consider the case (i). In this case we have

FðUÞ ¼ ea1U
eða2�a1ÞU

a2 � a1
� E0

� �
ðb1 � b2Þ

� �b1=ðb1�b2Þ

;

GðVÞ ¼ eðb1�b2ÞV

b1 � b2
þ E0

� �
ða2 � a1Þ

� �a2=ða2�a1Þ

eb2V

with

E0 ¼
eða2�a1ÞM

a2 � a1
� eðb1�b2ÞN

b1 � b2
:

Hence (36) is satisfied. By Proposition 5.1, we obtain (8).

Next, we consider the case (ii). We can easily check that

FðUÞ ¼ eða1þb1ÞU�b1E0 ;

GðVÞ ¼ ea2E0þða2þb2ÞV

with

E0 ¼ M �N:

Thus (36) holds, and we obtain (8) by Proposition 5.1.

Finally, we consider the cases (iii) and (iv). In the case (iii) we obtain

FðUÞ ¼ exp a1U þ b1e
ða2�a1ÞU

a2 � a1
� E0b1

� �
;

GðVÞ ¼ fðE0 þ VÞða2 � a1Þga2=ða2�a1Þeb2V

with

E0 ¼
eða2�a1ÞM

a2 � a1
�N:

Since a1 þ b2 > 0 we obtain (8) by Proposition 5.1 as before. For the case (iv)

we can obtain (8) by using the same argument. r
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Poincaré Anal. Non Linéaire, 19 (2002), 505–542.

nuna adreso:

Masahiko Shimojo

Department of Mathematics

National Taiwan Normal University

88, Section 4, Ting Chou Road

Taipei 11677

R. O. China

E-mail: shimojotw@gmail.com

Noriaki Umeda

Graduate School of Mathematical Sciences

The University of Tokyo

3-8-1, Komaba, Meguro-ku

Tokyo, 153-8914

Japan

E-mail: dor@dh.mbn.or.jp

(Ricevita la 29-an de marto, 2010)

(Reviziita la 6-an de aŭgusto, 2010)
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