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Abstract. We consider the Cauchy problem of cooperative reaction-diffusion systems
with nonnegative initial data. Here we discuss the blow-up of a solution that occurs
only at space infinity. We give sufficient conditions for such phenomena, and study
an asymptotic behaviour at space infinity of the solutions at the blow-up time. In
general, relatively little is proved on the locations of blow-up point for semilinear
parabolic systems. However, our results can be applied to a large class of non-
linearity for some class of initial value. The reason of this is that, when the blow-up
occurs only at space infinity, the effect of reaction is much stronger than that of
diffusion, and the behaviour at space infinity is well approximated by the flat solution.

Key Words and Phrases. Blow-up at space infinity, Cooperative reaction-
diffusion systems.

2000 Mathematics Subject Classification Numbers. 35K45, 35K57.

1. Introduction and main theorems
We consider the initial value problem for a reaction-diffusion system:

u, = dAu+ f(u,v), xeR" t>0,
(1) v, = doAv + g(u, v), xeR" t>0,
u(x,0) = up(x), v(x,0) =vo(x), xeR",

where n > 1, d; and d, are positive constants, uy and vy are bounded non-
negative continuous functions in R", and we discuss the blow-up of solutions
that occurs only at space infinity. In this paper we also assume that nonlinear
terms f and g are continuous functions in [0, 0) x [0, c0). Our results below
include the case f(u,v) =v?, g(u,v) =u? with p,q > 1 for example.

The problem (1) has a unique bounded classical solution at least locally in
time, provided that f and g are locally Lipschitz continuous in the range of the
solutions. However, the solution may cease to exist in finite time. For given
initial data (up,v9) and nonlinear terms f and g, let

T = T(up,vo) = T(up,vo, f,9)
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be the maximal existence time of the solution. If 7= oo, the solution is said to
exist globally in time. If 7 < oo and

(2) tim supd fae(c, )l ey + 1005 Dl ey} = 20,

we say that the solution blows up in finite time. For the case 7" < oo, a point
xpy € R" is called a blow-up point of the solution to the problem (1) if there
exists a sequence {(Xu,%m)},,—; such that

tw 1T, X — XBU and (u+v)(Xp, ty) — 00 as m — o0.

A set of all blow-up points is called a blow-up set. If there exists a sequence
{(Xmy tm) }rey such that

tw T T, || — 00 and (u+v)(xp, ty) — 0 as m — oo,

then we say that the solution blows up at space infinity.

There is a huge amount of literature about location of blow-up points for
single equations. In the works of Weissler [36] and Friedman-McLeod [9], it
was shown that the single point blow-up occurs when the solution on the ball is
radially symmetric positive and monotone decreasing for r = |x|. The solution
whose blow-up set is sphere was constructed by Giga-Kohn [10] (See also [24,
38, 19, 20, 1, 2]). On the other hand, problems about blow-up set for parabolic
systems is widely open. Friedman-Giga [8] considered the system u, = du + v?,
v; = Av+uf with p=¢ > 1 and construct a radially symmetric solution that
blows up only at the origin. The generalization of this result was recently
obtained by Souplet [31] for p,q > 1. For other blow-up problems of semi-
linear parabolic systems, we also refer the reader to, e.g., [3, 4, 6, 15, 16, 17,
18, 26, 37, 28, 34, 35].

Let us recall some known results about blow-up at space infinity. Lacey
[21] considered the Dirichlet problem in a half line and constructed solutions
that blow up only at space infinity. Giga-Umeda [11] proved that blow-up
only at space infinity occurs under the condition limyy_o, uo(x) = M and
uy # M for nonnegative solutions of u, = Au+u” in R". Later, Shimojo
[33] extended their results by relaxing the assumptions of initial data uy which
are similar to (5) and (6) appeared in Theorem 1. After that Giga-Umeda
[12] obtained the same results for semilinear heat equations of the form
u; = Au+ f(u) with more general nonlinearity f. Later Shimojo [32] also
calculate the shape of blow-up profile u(x,T):=lim,.7 u(x,¢) for xe R"
precisely. See also Seki-Suzuki-Umeda [30] and Seki [29] for quasilinear para-
bolic equations, which generalize the result of [12].
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The aim of the present paper is to show the existence of solutions that blow
up only at space infinity for large class of semilinear parabolic system. This is
regarded as a generalization of the results for single equation of the above to
parabolic system (1).

Now let us state our main theorems. In the following, let (U(z), V' (z)) be a
solution of the system of ordinary differential equations:

Uu=rUV), t>0,
(3) VI:g(Uv V)a t>03
U(0) = M, (0) = N,

where M, N > 0 are positive constants. Here we denote the maximum exis-
tence time of (3) by T(M,N, f,g). We write T(M,N):=T(M,N, f,g) for
simplicity. The first theorem provides us the information about the exact
maximal existence time of the solution.

Theorem 1. Let M,N >0 be constants, and assume that there exist
constants by € [0, M) and, by € [0,N) satisfying the following:
1. The nonlinear terms [ and g satisfy

{ﬁgecz([bhoo) X [ba, 0)),
f20,9,20, f>0,9g>0 for u>by,v>bs.

—
N
~—

2. The initial data (uy,vy) satisfies
(5)  ug € by, M], vg € [ba, NJ, uy #= M, vp#EN  for ae xeR".

Furthermore, suppose that there exist sequences {ry},_, <R of radii and
{am},_y = R" satisfying lim,,_., 1,y = o0 such that

(6) lim sup{|| M — uo|

m— o0

L® (B(u,mrm>) } B 07

L (Blan,r)) T IN = 0]

where B(a,r) denotes the open ball of radius r > 0 centered at a€ R". Then
T(uo,vo) = T(MJV)

Next we state our main result on a sufficient condition for blow-up only at
space infinity.

Theorem 2. Assume the same hypotheses as in Theorem 1. Let the
solution (U, V) of (3) blow up at t=T(M,N) < co. If f, g and the solution
(U, V) of (3) satisfy

fOUQ@),0v (1) _ lim sup g0U(1), oV (0) _,
l i

(7) lim sup ) - 0g(U(0), V(1)

t—T 0f<U(l)7 V(
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Sfor any 0€(0,1), and
40

V()

(8) lim sup{(T - l)’% nst

b,
=T 1)

then the solution of (1) has no blow-up points in R" (It blows up only at space
infinity).

Remark 1.1. Assume that the nonlinear terms f and g can be written in
either one of the following forms:

}< 0, limsup{(T—t)

(i) f(u,0) =ulv? and g(u,v) = uv® with py, p2,41,q2 2 0, pr +q1 > 1,
p+ep>1, pp—pr+1>0and ¢y —¢g2+1>0.

(ll) f(u7 U) = en*thv and g(u,v) = e®*thr with O‘laaZ?ﬁlvﬂZ >0, o +ﬂl
>0, ap+f, >0, g <o and B > f,.

Then the nonlinear terms f, g and the solution (U, V) of (3) satisfy (7) and (8).
Remark 1.2. Theorem 1 with their proof contain that
lim sup {lim sup{ essinf wu(x,f) + essinf u(x, I)H = o
[—»T(Mﬁ N) m— o0 XEB(“W«,"m/z) XEB(“H1«,rrr1/2)
with the hypotheses of Theorem 1.

Since the above blow-up occurs only at space infinity, the pointwise limit
(u(x, T(M,N)),v(x, T(M,N))) = lim,_p(y, 5y (u(x, 1), v(x, 7)) exists for every
x e R" (see Lemma 4.1). The next theorem describes the behaviour at infinity
of the functions (u(x, T(M,N)),v(x,T(M,N))).

Theorem 3. Assume the same hypotheses as in Theorem 2. Then

lim (u(an, T(M, N)) + v(an, T(M, N))) = o,

m—oo
where the sequence {an},,_; = R" is the same as in Theorem 1.

This paper is organized as follows. In Section 2 we prove Theorem 1.
Section 3 is devoted to the proof of Theorem 2. The proof of Theorem 3
will be given in Section 4. In Section 5 we discuss the conditions about the
nonlinear terms f and g satisfying (7) in Theorem 2, and give some examples
of f and g.

2. The maximal existence time

In this section we consider the pairs of the continuous functions (ug, vy) and
(#1p,9). Recall that the functions f(u,v) and g(u,v) satisfy (4).
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Let (u,v) and (&, 7) be solutions of the system (1) with initial data (u,vo)
and (i, 0p) respectively. Put #=wu—u and o =v—0. Then (#,0) is the
solution of the following problem:

i =dyAi+ f(u,v) — f(2,0), xeR", 0<t<T,
o = oA+ g(u,v) — g(2,5), xeR",0<t<T,
ﬂ(xv 0) = uO(X) - _O(X)v X € an
9(x,0) = vo(x) — To(x), xeR",

©)

where T = min{ T (u, vo), T (ity, 7o)}
The following proposition is some kind of generalization of results in the
papers [13, 14] by Gladkov and [12] by Giga-Umeda.

Proposition 2.1. Assume that uy, vy, iy and vy are nonnegative, con-
tinuous and bounded functions. Let f(u,v) and g(u,v) satisfy (4) with by =
infycgr min{ug, fip }(x), by = inf,cgr min{vo, Bo}(x). If there exist sequences
{am},r_y = R" and {ry},._, satisfying 0 <ry <ry <--+— oo such that

(10) lim sup{|[up — L_‘O||er«(3(a,,,,r,,,)) + [lvo — Tol| .- (B(a,,,,rm))} =0,

m—oo

then solutions (u,v) and (a,v) of (1) with initial data (uy,vo) and (ig, o) satisfy

lim sup{||u(-, ?) — a(-, 1)|

m su L= Blam, rmy2)) T 1000 = B0 O 2 (Bay, 2} =0
for any te (0,T).

Proof. 1t is clear that the proposition holds for the case uy =iy and
vg = 0g. Hence we consider the case

(11) Uy £ il or vy Z Do.

First we consider vector valued functions:

W(x, 1) = (”_ L__‘)(x, ) and  Wo(x) = (”0 _%)(x).

vV—7D vy — Vg

For any domain @ < R", we define ||[W (-, 1)l 1 (o) = llu(-, 1) — (-, )0 +

[o(- 1) = o, )l Lo @) -
From (10), for any ¢ > 0 there exists m € N large enough such that for any
m = my

(12) H WO||L*(B(”nz"'n1)) =

B
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Take 1, € (0,T). Put

fuz,vl — f(uz,v2)

v — 2

)

b

where A = [by,b] x [by,b] with b= sup, ; cgrxpo,s,) max{u,v, i, v}(x,7). From
(4), the solution of the problem

“1 Ul u2 Ul
K= sup max{ ACE ’
(1,01, (12, 01) Uy —up

g(ur,v1) — g(uz, v1)
up —

g(uz,v1) — g(uz, v2)
U1 — U2

_(di4 0 11 n
(13) Z,( 0 d2A>Z+K<1 1>Z, xeR" te(0,1),

Z(x,0) = Wy(x), xeR"

is a supersolution of (9). Let G=(G;;),.; <, be the Green matrix for the
equation (13). Then the solution Z of (13) is given by

Z(x,1) = JRn Glx — 7, 0)Wo(y)dy

G@—ymwmw@+j G(x — y.0) Wo(y)dy

JR"\B(X, rm/2) B(x,1rm/2)

=I1+1I.

From the estimates of the fundamental solution (see [7, CHAPTER 9,
Theorem 1]), we have, for any x,y e R" and 1€ (0, 1),

(14) |G(x — y,0)| < Ct"Pe
with C = C(dy,dr,K,ty) and ¢ =c(d,dr,K, 1), where p=|x— y|2/t. Let

te(0,7). Then by (11) and (14) we have

|G(x — y,0)|dy < J Cr2e= dy <

J R™B(X, 1 /2) R™B(X, 11 /2) HWoll L= g

for any m e N large enough. Thus, for any 7€ (0, %)

(15) = Gx — 3, ) Wo(y)dy
R"\B(x,r,/2)
< HWO”L“(R”)J Crilet dy < 2.
R"\B(x,rn/2) 2
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Note that x € B(ay,r,/2) and y e B(x,r,/2) imply y € B(a,,, ). Combining
this with (12), we have

€
| < [ IWOll L (Bay,r/2)) JR” G(x—, Z)dJ” <5

These two estimates yield [|Z(x, )|l 1= (g1, /2) < & Tor 1€(0,1). Hence, by
the comparison principle, for any e (0,1)

Lim sup || (-, )| - (3.1 /29y = O-

m— oo
Since 7o € (0,T) is arbitrary, we complete the proof. O
Proof of Theorem 1. 1Tt is clear that if T(M,N) = oo, then T (uy,vy) = o0

by comparison. It is enough for proving the theorem to show that

lim sup [sup{ essinf  u(x,?) + essinf v(x,t)H:oo
t—T(M,N)LmeN X € B(am;rm/2) x€B(dp;1/2)

in the case T(M,N) < co. To the contrary, we assume that there exists a

positive constant L < oo such that

16 su su essinf wu(x,t) + essinf ov(x,t }] < L.
( ) [6(0, T(E,N)) |:,7161Pi1{x68(a,,,,r,,,/2) ( ) xeB(a”,,r,,,/Z) ( )

From the facts U’ >0, V' >0 and lim,_7, ) (U(?) + V(2)) = oo, there exists
Toe[0,T(M,N)) such that

U(Ty) + V(Ty) = 3L.
By Proposition 2.1 there exists a constant my > 0 such that

sup {[|U(To) = u(-, To)ll 1= (B(a, 2y + 1V (T0) = 0C To) | = (801,12} < L

m=my

From (16) we see that

sup {||U(To) — u(-, T0)||Loc(3(a,,,,r,,,/2)) + [ V(To) —v(-, T0)||L°’~‘(B(a,,,.r,,,/2))}

m>=my

= sup {U(Tg) + V(Ty) — essinf wu(x,?) — essinf o(x, t)}

m=>my x€B(am,1m/2) x€B(a,rn/2)
>3L—-L=2L>1L.

This is a contradiction. Thus we conclude that

sup sup essinf wu(x,1)+ essinf ov(x,t H = 0.
tE[O,T(M,N))[meN{XGB(am-,rm/z ( ) x€B(ap,rm/2) ( )
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By comparing (u(x,),v(x,t)) with the solution (U(z), V' (¢)) of (3), we see that
the solution (u(x, ), v(x,t)) does not blow up for all € [0, T(M,N)). Then we
obtain

lim sup [sup{ essinf u(x,7) 4+ essinf ov(x, t)H = o0.
(—T(M,N) LmeN \x€B(an,rn/2) x€B(ap,rm/2)

We thus have T'(ug,v0) = T(M,N). O

Remark 2.2. In [12] the authors used the sequence of the Green kernel of
the Dirichlet problem of the heat equation u; = Au in the domains B(ay,, ) for
m=1,2,.... In this paper we use the Green kernel for the total space, and
we do not need limiting argument for Green kernel. Hence our proof is much
simpler than that of [12].

3. Blow-up only at space infinity

In this section, we prove Theorem 2 by using the same argument that was
employed by [29] and [33].

Assume that the solution (U, V') of (3) blows up at T = T(M,N) € (0, 0).
Put ¢(s) = U(T —s) and y(s) = V(T —s) with s € (0, T]. Thus ¢ and y satisfy
the following ordinary differential equation.

0 Lo, Degiow).  wm=m, WT)=N.

From the assumptions of Theorem 2, for any 6 € (0, 1), the functions f, ¢,
¢ and Y satisfy

<1,

L (0p(s), 09(s))
(18) M Sp o () ()

o(0p(s).00(s) _ |

) U g(p(s). ()
(20) lim sup w’ < o0, lim sup sw(s) < o0.
s—0 (p(S) s—0 N

The following lemma originally appeared in [23, Lemma 2.3] for single
semilinear parabolic equations. Here we generalize it to parabolic systems by
modifying their argument. See also [29] for the fast diffusion single equations.

Lemma 3.1. Assume (18), (19) and (20). Let (u(x,t),v(x,t)) be a solution
of (1) in R" x [0,T). Suppose that there exist ty € (0,T), ae R", ro >0 and
0 e (0,1) such that

u(x, 1) < 0p(T — 1), o(x,t) <OY(T — 1)
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in |[x—al<ry, to<t<T. Then (u,v) does not blow up at t =T in a neigh-
borhood of a.

Proof. We shall construct a suitable supersolution. It is possible to let
domains of ¢ and y be extended to se (7, T + tp) with some 7 > 0. We thus
may define the functions

w(x, 1) = 0p(T — t + h(r)), z(x, ) = OY(T — t + h(r)),

where r = |x —a| and

=) e

for & > 0 small enough. From (17) we have
e — di A — f(,2) = —0p — dy0pAh — di0GIVh|” — £ (0, 00)

- ? e _M}

—0f(¢7¢){1+d1dh+d1¢|Vh| o) |
Define u, = limsup,_, f(0p(t),00(¢))/0f (p(t),¥(¢)). Then there exist #; near
T and C = C(T,t;) such that for e (¢, 7T)

(21) {1+d1Ah+dlg|Vh|2_M}

0f (9, ¥)

r h

N—1 |
> (1 —,Ul)+d1 (hrr+ hl) - Cu

with &> 0 small enough. Since x4, €(0,1), and h,, h/r and |h|*/h are
bounded on r > ry with order ¢ we conclude that

(22) w(x, o) = u(x, ), |x — a| < ro,

{wt >didw+ f(w,z), |x—a|<ry,t1 <t<T,
w(x, t) > u(x, 1), x—al=ry, 1 <t<T

for any ¢ > 0 sufficient small. Applying the same argument to v, g and ¥, we
obtain that

(23) z(x, 1) = v(x, to), |x — a| < ro,

{ztzdzdz—i—g(w,z)7 x—al <rp, g <t<T,
z(x, 1) = v(x, 1), x—al=r, 1 <t<T

for any ¢ > 0 small enough.
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By the comparison principle, for xe B(a,ry) and te[f;,T), we have
u(x,1) <w(x,f). Since ¢ is a decreasing function, we obtain

sl f) (1)
o (r-ro(5) (s

for (x,1) € Bla,ro/2) x [t1, T). O

Remark 3.2. In [10, Theorem 4.2] the corresponding assertion of Lemma
3.1 is shown for the single equation u, = Au+ |u’'u with 1 < p < (n+2)/
(n—2) or n<2 (see also [25, Corollary 1.3]).

Finally, we shall prove that the blow-up occurs only at space infinity by
using Lemma 3.1.

Proof of Theorem 2. We need to show that for any a € R" there exist
toe (0,T), ro>0 and 0 € (0,1) such that for x € B(a,ry) and t€ [ty,T)

lu(x,1)] < 0p(T — 1), lo(x, )] < OY(T —1).

We may assume that d; > d, without loss of generality. From the strong
maximum principle, the solution (u,v) of (1) satisfies

u(x, 1) < U(1), v(x, 1) < V(1) for (x,1) e D x (0,7)

for any compact set D < R". Thus we may let uy(x) < M and vo(x) < N for
x € B(a,ry) without loss of generality. Let w(x, ) be a solution of

w, = didw, x € B(a,r), t =0,

wix, 1) =1, x € 0B(a,r), t >0,
(24) 1 > w(x,0) > max{ug(x)/M,vo(x)/N}, xe B(a,r),

Aw(x,0) > 0, x € B(a,ry),

w(x,0) # 1, x € B(a,r).

We shall prove that for any a € R" and any ry >0, (Uw, Vw) is the super-
solution of (1) in B(a,ry). By (18) we derive

(Uw), = f(U,V)w+ Udidw = f(Uw, Vw) + di4(Uw).
Using the same reasoning as above and (19) we also derive

(Vw), =g(U, V)w+ Vdidw = (Uw, Vw) + di A(Vw).
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By the maximum principle, Aw(x,¢) >0 for any (x,¢) € B(a,ry) x (0,T), we
obtain

(Vw), = g(Uw, Vw) + dry A(Vw).

Also Uw >u, Vw > v on dB(a,ry) x (0,T) and B(a,ry) x {0}. Again, by the
comparison principle, we conclude

(25) u< Uw, v< Vw in B(a,rg) x (0,7T).

Besides, by the strong maximum principle, we have that 0 < w(x, ) < | for any
(x,1) € B(a,rg) X (0,T). In particular, for any 7y € (0,ry) there exist 0 < 6 < 1
and 79 € (0,7) such that

0 <w(x,1) <0, |x —a| <fy, to <t <T.
This and (25) imply
0 <u(x,t) <O0p(T —1), x—al <7y, to<t<T.
Analogously, we obtain that
0 <uv(x,t) <OY(T —1), x—a|<f,to<t<T.

Combining this with Lemma 3.1, we obtain the desired result. |

4. Behavior at blow-up time
In this section we prove Theorem 3.

Lemma 4.1. Assume the same hypotheses as in Theorem 2. Then
(u,v)(x, T) = lim,_, 7 (u,v)(x, 1) exists for any x € R" with T =T(M,N).

Proof. From Theorem 2, for any a € R", there exists € > 0 such that

by < sup u(x,t) <L, by < sup v(x,f) <L for x € B(a,¢)
te(0,7) te(0,7)
with some L = L(a,&) < co. By the standard parabolic estimates [5, CHAP-
TER II, THEOREM 2.2], we have (u(:,1),0(-,7)) € BC}{*(R") for te (0,T)
and o€ (0,1). Moreover, we see (u(-,1),v,(-,t)) € BC}.(R") for te(0,T)
and o€ (0,1). By integrating (u(-,t),v,(-,¢)) from 0 to T and subtracting
(uo(+),v0(-)), we obtain (u(-,T),v(-,T)). Thus we see that (u(-,7T),v(-,T))
exists. B

Proof of Theorem 3. Let ¢ € (0,min{M — b, N — by}). We consider the
following elements of initial data
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M —e, |Xx — am| <rm—1,

(26)  uy"“(x) =9 —(M —&—b1)(|X — au| — 1) + b1, Tm—1<|x—ap| < rm,
bl7 |x—am| > T'm,
N —¢, |Xx — am| < rm—1,

(27) v (x) =9 =(N —e=b2)(|x = @m| — 1) + b2, 1 — 1 < |X — a| < 1,
b, |x — am| = rm,

where b;, b, are the same as in Theorem 1. Let (1" v"¢) be the solutions of
the equation (1) with the initial data (u;,"% vy"“). Let (U*, V*) be the solutions
of (3) with initial value (M —¢&, N —¢). We shall write 7 =T(M —¢,N —¢)
for simplicity.

By Proposition 2.1 for any ¢ > 0 there exists a natural number ny € N such
that for any m > my,

(28) Ul(t) —e <u™%(x,t), VE(t) —e < 0™°(x, 1)

for x € B(ay,rm/2), t € (0,T¢). By the comparison principle, due also to (6) we
could find my e N such that

(29) u™(x, 1) < u(x, 1), " (x, 1) < v(x, 1)

for any xe R", te(0,T%) provided that m >my. By using the fact 7T =
T(M,N) < T¢ Lemma 4.1, (28) and (29), for any ¢ there exist an index still
denoted by my = mgy(e) € N such that for any m > my

(30) UXT)-—e<ula,,T), VET)—e<v(amT) for m > my.
Since ¢ > 0 can be chosen arbitrarily small and lim,o(U*(T) + V4(T)) = oo,
(30) implies
lim (u(ay, T) + v(ay,, T)) = oo. O
m— o0
5. Examples of nonlinearities

In this section we exhibit several examples of nonlinearities that satisfy the
conditions of the theorems in the previous sections. More precisely, suppose
that there exist nonnegative functions fi,g; € C*([b1,©)), f2,92 € C*([bs, 0))
with by, b, used in Theorem 1 such that

(31) Su,v) = filu) f2(v),  g(u,v) = g1(u)g2(v),
(32) fw)>0 and  g{(u) >0  for u> by, v>b,.



Cooperative Reaction-Diffusion Systems 327

Then the corresponding system of ordinary differential equations (3) becomes

(
(33) Vi=g1(U)g2(V), t>0,

Define
(34) E(r) =EU,V)(1t) = F(U(1) — G(V (1)),

where

_ "9l _ ")
F(w) = JMfl(S) ds, Gw) = JN ") ds.

We have that E(¢t) = E(U(¢), V(¢)) is independent for ¢, since, by using (33),
E'(t)=F'(U@0)U'(t) - G"(V (1)) V' (1)

_ai(U) A()
AT) 9>(V(1))

= (U)LY (@) = V()91 (U(1) = 0.

Thus there exists a constant Ey € R such that

H(U@0) AV (1)

g1 (V(1)g2(V (1))

F(U(1) = G(V(1)) = F(M) = G(N) = Ey

with 1€ [0, T(M,N)). Next we define the following two functions:

(35) ®(&) = (O AGHFE) - Ey)),  T(&)=gi(F " (Eo+ G()))g2().

The main proposition of this section is the following.

Proposition 5.1. Assume the same hypotheses as in Theorem 1. Let f, g
have the forms of (31) and (32). Let (®(&))” and (I'(¢))" are convex functions
for some ye (0,1) and any & > & with some & > 0, and satisfy

(36) Jé Fé)< o0, Jé ﬁé)< 0.

Then the condition (8) in Theorems 2 and 3 holds.
Before proving this proposition, we need a lemma.

Lemma 5.2. Let Ue C([0,T))NC?*(0,T) be a solution to

(37) U=o(U), U@)=M  with ®e C*(b, ),
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where T >0, b >0, ®(s) >0 for s> b and M > b satisfy [,,ds/®(s) € [T, ).
Assume that @7(E) is convex for &> &y with some & > b and some y € (0,1).
Then

(T -9U@)

lim sup 0

t—T

<
Proof. Define ¢(s)=U(T —s) with se€(0,7]. Note that ¢(s)=
—&(p(s)). Since @7 is convex, we have
(@7)" =y {DD" — (1 - y)(@')*} = 0.
Put 6 =1—y. Then, we obtain
(38) DD > 5(P')*.

From (37) we have

Since (38) implies

derive
o(n) " (1) !
s < lim J Lé)zdfz lim J l(—#)dé
=40 ) o) O(@'(E)) =50 )y O\ P(E)
.1 { 1 1 } 1 1
= lim - §— - — === .

1—+00 | D' (p(s))  D'(p(n)) 6 D'(0(s))

On the other hand, we have

Q —@l((p)(b I Y
p P ()
Then we obtain
e _ _90) _ 1
e R PR OIS
and
s¢(s)
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Proof of Proposition 5.1. From (34) we have

F(U) =Ey+G(V), G(V)=F(U) - Ep

and
(39) U=F'(E+GV)), V=G F(U) - E).
Substituting (39) into (33), we obtain

U = fi(U) (G (F(U) — Eo)) = ®(U),
Vi=g1(F ' (Eo+ G(V)g2(V) =T (V).

Since @7 and I'” are convex with some y e (0,1), (8) holds by Lemma 5.2.
O

Proposition 5.3. Assume the same hypotheses as in Theorem 1. Let
f(u,v) =uPv? and g(u,v) = uP0®? with p1,p2,q1,42 =20, pr+q1 >1 and
p2+q2> 1. Let by,by >0. Furthermore, suppose that one of the following
four conditions hold,

(i) pp—p1+1>0and g —qu+1>0,

(ii) pp—p1+1=0and g —q+1=0,

(i) pp—p1+1>0, g1 —q2+1=0 and p; >0,

(iv) pp—p1+1=0,q1—g2+1>0 and ¢ > 0.

Then Theorems 2 and 3 hold.

Remark 5.4. In Proposition 5.3, from (4) and (5), if by >0 (or b, > 0),
then p;, p» (or ¢, ¢») may be taken 0 < p; <1 andfor 0 < py <1 (or
0 <¢ <1and/or 0 <g, <1). On the other hand, if p;, p» > 1 (or q1,42 > 1),
then it is possible that by =0 (or b, = 0).

Proof of Proposition 5.3. We consider the problem:

(40) V,=UPVE, >0,

{UI:UPIVIII, t>0,
U0)=M>0,V(0)=N>0,

which is the associated ordinary differential equation (3) in this case. Since

p1+q1 >1and p,+ ¢, > 1, we can easily check that 7(M,N) < oo and (7)
holds.

Next we shall check validity of the condition (8) by using proposition 5.1.
In this example (34) becomes

E(U,V)(1) = hpy—py 11 (U(1) = by, 411 (V (1))
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where

s’/p, p#0,
ho(s) =
() { logs, p=0.

Thus from (40) we have dE/dt = 0. This implies that there exists a constant Ej
such that

Ey=E(U,V)=E(M,N).

First we consider the case (i). In this case we have

Upr—pitl a1/(q1—g2+1)
o= { ()

p2—pi+1
~ UP1ai(p2=pi+1)/(@1-g2+1) as U — o
and
Y ai—g:+] p2/(p2—p1+1) .
rv)y=<(Ev+————)(p—p1+1 e
) ={(B+ ) - pr+ )
~ PPl +1)/(p2=pi+)+a as V — oo
with
MP2—pi+l NO—g+1
Ey

T+l gt

where “f(s) ~ g(s) as s — o0” means that there exist positive constants C;
and G, such that C; < limg_ o, f(s)/g(s) < Cy. Since p1+q1 > 1, pr+q > 1,
p2—p1+1>0and g —¢g+1>0, we have

— 1
and p2(q1 — g2+ 1)

qi(p2—p1+1)
| +—2>1
a1 —q+1 p2—p1+1

P+ +q2 > 1,

i.e. @7, I'” are convex functions and satisfy (36). Thus by Proposition 5.1 we
obtain (8).
Next, we consider the case (ii). Under this condition,

D(U)=UM(eBU)! ~Urts  as U— o,
r(V)y=(efnPrye ~yrte  as V— oo
with
Ey=1logM —log N.

Since p; +¢1 > 1 and py + g2 > 1, we have (8) by Proposition 5.1.
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Finally, we consider the cases (iii) and (iv). In the case (iii) we obtain

q1 UP:—PH—l }

D(U) = Ule 150 ex {
(o) P p2—pi+1

T'(V)={(Ey+log V)(ps — p1 + 1)}/ rptlpa
with
MPz*P|+1

Ey=——-——
T p—pi+1

—log N.

Since ¢; > 0 and ¢; —¢» +1 =0, we have ¢ > 1. Hence again there exist y
such that @7 I'7 are convex functions. Thus by Proposition 5.1 we obtain
(8). For the case (iv) we can use the same argument to show the validity of (8).

O

Proposition 5.5. Under the same assumptions as in Theorem 1, let f(u,v) =
e and g(u,v) = e B0 with oy, 00, 1, =0, 0y + B > 0 and oy + B, > 0.
Furthermore, one of the following four conditions hold,

(i) a1 <op and B > f,,

(il) o =0 and By =p,,

(i) oy <o, fy =p, and o+ f, >0,

(iv) oy =0, fi >, and o+ f, > 0.

Then Theorems 2 and 3 hold.

Proof.  We consider the following system of equations:

U =enUthV >0,
(41) Vi=enUthY >0,

U(0)=M >0, V(0)=N >0,
which is the associated ordinary differential system (3) in this case. Since
o +p; >0 and o + f, > 0, we can easily check that T(M,N) < oo and (7)
holds.

Next, we shall verify the validity of the condition (8) by using Proposition
5.1. Now (34) becomes

E(U, V(1) = hay a0y (U(1)) = hg,p, (V' (1)),

where

o= {1 220
S, o =0.

Thus from (41) we have dE/dt =0 and there exists a constant Ej such that

Ey = E(U,V) = E(M,N).
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First we consider the case (i). In this case we have

U ela—u)U B/ (Bi=5)
@W%wm{c____&ym_mﬂ ’
Oy —
eBi=B)V > ]12/(0(211)
Ir(V)=||-—%"+E (02 —a oV
= |Gyt B) )

with
EO _ e(“Z‘“l)M _ e(ﬁ]_ﬁZ)N '
wm—o  fi—f
Hence (36) is satisfied. By Proposition 5.1, we obtain (8).
Next, we consider the case (ii). We can easily check that

D(U) = e +PIU-FiEo,
F(V) — eoton+(ocz+ﬁ2)V
with
Ey=M — N.
Thus (36) holds, and we obtain (8) by Proposition 5.1.

Finally, we consider the cases (iii) and (iv). In the case (iii) we obtain
ﬂle(lzfotl)U
o

2 — o1

(V) ={(Eo+ V)(oq — o)}/l

O(U) =exp|oyU + — Eof |,

with

Oy — 0o

Since a1 + f, > 0 we obtain (8) by Proposition 5.1 as before. For the case (iv)
we can obtain (8) by using the same argument. O
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