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Abstract. This article gives a classification scheme of algebraic transformations of

Gauss hypergeometric functions, or pull-back transformations between hypergeometric

di¤erential equations. The classification recovers the classical transformations of

degree 2, 3, 4, 6, and finds other transformations of some special classes of the

Gauss hypergeometric function. The other transformations are considered more

thoroughly in a series of supplementing articles.
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1. Introduction

An algebraic transformation of Gauss hypergeometric functions is an

identity of the form
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����jðxÞ
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Here jðxÞ is a rational function of x, and yðxÞ is a radical function, i.e., a

product of some powers of rational functions. Examples of algebraic trans-

formations are the following well-known quadratic transformations (see [Erd53,

Section 2.11], [Gou81, formulas 38, 45]):
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Algebraic transformations of Gauss hypergeometric functions are usually

induced by pull-back transformations between their hypergeometric di¤erential

equations. General relation between these two kinds of transformations is
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given in Lemma 2.1 here below. By that lemma, if a pull-back transformation

converts a hypergeometric equation to a hypergeometric equation as well, then

there are identities of the form (1) between hypergeometric solutions of the

two hypergeometric equations. Conversely, an algebraic transformation (1) is

induced by a pull-back transformation of the corresponding hypergeometric

equations, unless the hypergeometric series on the left-hand side of (1) satisfies a

first order linear di¤erential equation.

This article classifies pull-back transformations between hypergeometric

di¤erential equations. At the same time we essentially classify algebraic

transformations (1) of Gauss hypergeometric functions. Classical fractional-

linear and quadratic transformations are due to Euler, Pfa¤, Gauss and

Kummer. In [Gou81] Goursat gave a list of transformations of degree 3, 4

and 6. It has been widely assumed that there are no other algebraic trans-

formations, unless hypergeometric functions are algebraic functions. For ex-

ample, [Erd53, Section 2.1.5] states the following: ‘‘Transformations of

[degrees other than 2, 3, 4, 6] can exist only if a, b, c are certain rational

numbers; in those cases the solutions of the hypergeometric equation are

algebraic functions.’’ As our study shows, this assertion is unfortunately

not true. This fact is noticed in [AK03] as well. Existence of a few special

transformations follows from [Hod18], [Beu02].

Regarding transformations of algebraic hypergeometric functions (or more

exactly, pull-back transformations of hypergeometric di¤erential equations with

a finite monodromy group), celebrated Klein’s theorem [Kle77] ensures that all

these hypergeometric equations are pull-backs of a few standard hypergeometric

equations. Klein’s pull-back transformations do not change the projective

monodromy group. The possible finite projective monodromy groups are: a

cyclic (including the trivial), a finite dihedral, the tetrahedral, the octahedral

or the icosahedral groups. Transformations of algebraic hypergeometric func-

tions that reduce the projective monodromy group are compositions of a few

‘‘reducing’’ transformations and Klein’s transformation keeping the smaller

monodromy group; see Remark 7.1 below.

The ultimate list of pull-back transformations between hypergeometric

di¤erential equations (and of algebraic transformations for their hypergeometric

solutions) is the following:
� Classical algebraic transformations of degree 2, 3, 4 and 6 due to Gauss,

Euler, Kummer, Pfa¤ and Goursat. We review classical transformations

in Section 4, including fractional-linear transformations.
� Transformations of hypergeometric equations with an abelian mono-

dromy group. This is a degenerate case [Vid07]; the hypergeometric

equations have 2 (rather than 3) actual singularities. We consider these

transformations in Section 5.
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� Transformations of hypergeometric equations with a dihedral mono-

dromy group. These transformations are considered here in Section 6, or

more thoroughly in [Vid08a, Sections 6 and 7].
� Transformations of hypergeometric equations with a finite monodromy

group. The hypergeometric solutions are algebraic functions. Transfor-

mations of hypergeometric equations with finite cyclic or dihedral mono-

dromy groups can be included in the previous two cases. Transformations

of hypergeometric equations with the tetrahedral, octahedral or icosahedral

projective monodromy groups are considered here in Section 7, or more

thoroughly in [Vid08b].
� Transformations of hypergeometric functions which are incomplete

elliptic integrals. These transformations correspond to endomorphisms

of certain elliptic curves. They are considered in Section 8, or more

thoroughly in [Vid08c].
� Finitely many transformations of so-called hyperbolic hypergeometric

functions. Hypergeometric equations for these functions have local expo-

nent di¤erences 1=k1, 1=k2, 1=k3, where k1, k2, k3 are positive integers such

that 1=k1 þ 1=k2 þ 1=k3 < 1. These transformations are described in Sec-

tion 9, or more thoroughly in [Vid05].

The classification scheme is presented in Section 3. Sections 4 through 9

characterize various cases of algebraic transformations of hypergeometric func-

tions. We mention some three-term identities with Gauss hypergeometric

functions as well. The non-classical cases are considered more thoroughly

in separate articles [Vid08a], [Vid08b], [Vid08c], [Vid05].

Recently, Kato [Kat08] classified algebraic transformations of the 3F2

hypergeometric series. The rational transformations for the argument z in

that list form a strict subset of the transformations considered here.

2. Preliminaries

The hypergeometric di¤erential equation is [AAR99, Formula (2.3.5)]:

zð1� zÞ d
2yðzÞ
dz2

þ ðC � ðAþ Bþ 1ÞzÞ dyðzÞ
dz
� AByðzÞ ¼ 0:ð4Þ

This is a Fuchsian equation with 3 regular singular points z ¼ 0; 1 and y. The

local exponents are:

0; 1� C at z ¼ 0; 0;C � A� B at z ¼ 1; and A;B at z ¼y:

A basis of solutions for general equation (4) is

2F1
A;B

C

����z
� �

; z1�C 2F1
1þ A� C; 1þ B� C

2� C

����z
� �

:ð5Þ
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For basic theory of hypergeometric functions and Fuchsian equations see

[Beu02], [vdW02, Chapters 1, 2] or [Tem96, Chapters 4, 5]. We use the

approach of Riemann and Papperitz [AAR99, Sections 2.3, 3.9].

A (rational) pull-back transformation of an ordinary linear di¤erential

equation has the form

z 7! jðxÞ; yðzÞ 7! YðxÞ ¼ yðxÞyðjðxÞÞ;ð6Þ

where jðxÞ and yðxÞ have the same meaning as in formula (1). Geometrically,

this transformation pull-backs a di¤erential equation on the projective line P1
z

to a di¤erential equation on the projective line P1
x, with respect to the finite

covering j : P1
x ! P1

z determined by the rational function jðxÞ. Here and

throughout the paper, we let P1
x, P1

z denote the projective lines with rational

parameters x, z respectively. A pull-back transformation of a Fuchsian equa-

tions gives a Fuchsian equation again. In [AK03] pull-back transformations

are called RS-transformations.

We introduce the following definition: an irrelevant singularity for an

ordinary di¤erential equation is a regular singularity which is not logarithmic,

and where the local exponent di¤erence is equal to 1. An irrelevant singularity

can be turned into a non-singular point after a suitable pull-back transforma-

tion (6) with jðxÞ ¼ x. (For comparison, an apparent singularity is a regular

singularity which is not logarithmic, and where the local exponents are

integers. Recall that at a logarithmic point is a singular point where there

is only one local solution of the form xl 1þ a1xþ a2x
2 þ � � �

� �
, where x is a

local parameter there.) For us, a relevant singularity is a singular point which

is not an irrelevant singularity.

We are interested in pull-back transformations of one hypergeometric

equation to other hypergeometric equation, possibly with di¤erent parameters

A, B, C. These pull-back transformations are related to algebraic transfor-

mations of Gauss hypergeometric functions as follows.

Lemma 2.1. 1. Suppose that pull-back transformation ð6Þ of hypergeometric

equation ð4Þ is a hypergeometric equation as well (with the new indeterminate

x). Then, possibly after fractional-linear transformations on P1
x and P1

z , there is

an identity of the form ð1Þ between hypergeometric solutions of the two hyper-

geometric equations.

2. Suppose that hypergeometric identity ð1Þ holds in some region of the

complex plane. Let Y ðxÞ denote the left-hand side of the identity. If

Y 0ðxÞ=Y ðxÞ is not a rational function of x, then the transformation ð6Þ converts
the hypergeometric equation ð4Þ into a hypergeometric equation for YðxÞ.

Proof. We have a two-term identity whenever we have a singular point

S A P1
x of the transformed equation above a singular point Q A P1

z of the
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starting equation. Using fractional-linear transformations on P1
x and P1

z we

can achieve S is the point x ¼ 0 and that Q is the point z ¼ 0. Then

identification of two hypergeometric solutions with the local exponent 0 and

the value 1 at (respectively) x ¼ 0 and z ¼ 0 gives a two-term identity as in

(1). If all three singularities of the transformed equation do not lie above

f0; 1;ygHP1
z , they are apparent singularities. Then the transformed equation

has trivial monodromy, while the starting hypergeometric equation has a finite

monodromy group. As we will consider explicitly in Sections 7 and 5, 6, the

pull-back transformations reducing the monodromy group and the pull-back

transformations keeping the trivial monodromy group can be realized by two-

term hypergeometric identities. This is recaped in Remark 7.1 below.

For the second statement, we have two second-order linear di¤erential

equations for the left-hand side of (1): the hypergeometric equation for YðxÞ,
and a pull-back transformation (6) of the hypergeometric equation (4). If these

two equations are not CðxÞ-proportional, then we can combine them linearly

to a first-order di¤erential equation Y 0ðxÞ ¼ rðxÞY ðxÞ with rðxÞ A CðxÞ, contra-
dicting the condition on Y 0ðxÞ=YðxÞ. 9

If we have an identity (1) without a pull-back transformation between

corresponding hypergeometric equations, the left-hand side of the identity

can be expressed as terminating hypergeometric series up to a radical factor;

see Kovacic algorithm [Kov86], [vdPS03, Section 4.3.4]. In a formal sense, any

pair of terminating hypergeometric series is algebraically related. We do not

consider these degenerations.

Remark 2.2. We also do not consider transformations of the type

2F1ðj1ðzÞÞ ¼ yðzÞ 2F1ðj2ðzÞÞ, where j1ðzÞ, j2ðzÞ are rational functions (of degree

at least 2). Therefore we miss transformations of some complete elliptic

integrals, such as

KðxÞ ¼ 2

1þ y
K

1� y

1þ y

� �
;ð7Þ

where x2 þ y2 ¼ 1 and

KðxÞ ¼ p

2
2F1

1=2; 1=2

1

����x2

� �
¼
ð1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� x2t2Þ

p :

Identity (7) plays a key role in the theory of arithmetic-geometric mean; see

[AAR99, Chapter 3.2]. Other similar example is the following formula, proved

in [BBG95, Theorem 2.3]:

2F1

c; cþ 1
3

3cþ5
6

�����x3

 !
¼ ð1þ 2xÞ�3c 2F1

c; cþ 1
3

3cþ1
2

�����1� ð1� xÞ3

ð1þ 2xÞ3

 !
:ð8Þ

The case c ¼ 1=3 was found earlier in [BB91].
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A pull-back transformation between hypergeometric equations usually gives

several identities like (1) between some of the 24 Kummer’s solutions of both

equations. It is appropriate to look first for suitable pull-back coverings

j : P1
x ! P1

z up to fractional-linear transformations. As we will see, suitable

pull-back coverings are determined by appropriate transformations of singular

points and local exponent di¤erences.

Once a suitable covering j is known, it is convenient to use Riemann’s

P-notation for deriving hypergeometric identities (1) with the argument jðxÞ.
Recall that a Fuchsian equation with 3 singular points is determined by the

location of those singular points and local exponents there. The linear space

of solutions is determined by the same data. It can be defined homologically

without reference to hypergeometric equations as a local system on the pro-

jective line; see [Kat96], [Gra86, Section 1.4]. The notation for it is

P

a b g

a1 b1 c1 z

a2 b2 c2

8<
:

9=
;;ð9Þ

where a; b; g A P1
z are the singular points, and a1, a2; b1, b2; c1, c2 are the local

exponents at them, respectively. Recall that second order Fuchsian equations

with 3 relevant singularities are defined uniquely by their singularities and

local exponents, unlike general Fuchsian equations with more than 3 singular

points. Our approach can be entirely formulated in terms of local systems,

without reference to hypergeometric equations and their pull-back transforma-

tions. By Papperitz’ theorem [AAR99, Theorem 2.3.1] we must have

a1 þ a2 þ b1 þ b2 þ c1 þ c2 ¼ 1:

We are looking for transformations of local systems of the form

P

0 1 y

0 0 ~AA x

1� ~CC ~CC � ~AA� ~BB ~BB

8<
:

9=
;ð10Þ

¼ yðxÞP
0 1 y

0 0 A jðxÞ
1� C C � A� B B

8<
:

9=
;:

The factor yðxÞ should shift local exponents at irrelevant singularities to the

values 0 and 1, and it should shift one local exponent at both x ¼ 0 and x ¼ 1

to the value 0. In intermediate computations, Fuchsian equations with more

than 3 singular points naturally occur, but those extra singularities are irrelevant

singularities. We extend Riemann’s P-notation and write
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P

a b g S1 � � � Sk

a1 b1 c1 e1 � � � ek z

a2 b2 c2 e1 þ 1 � � � ek þ 1

8<
:

9=
;ð11Þ

to denote the local system (of solutions of a Fuchsian equation) with irrelevant

singularities S1; . . . ;Sk. This notation makes sense if a local system exists (i.e.,

if the local exponents sum up to the right value); then it can be transformed to

a local system like (9). For example, if none of the points g, S1; . . . ;Sk is the

infinity, local system (11) can be identified with

ðz� S1Þe1 . . . ðz� SkÞek

ðz� gÞe1þ���þek
P

a b g

a1 b1 c1 þ e1 þ � � � þ ek z

a2 b2 c2 þ e1 þ � � � þ ek

8<
:

9=
;:

Here is an example of computation with local systems leading to quadratic

transformation (3):

P

0 1 y

0 0 a=2 t2

1
2� b b� a ðaþ 1Þ=2

8<
:

9=
; ¼ P

0 1 �1 y

0 0 0 a t

1� 2b b� a b� a aþ 1

8<
:

9=
;

¼ P

0 1 y 2

0 0 0 a

1� 2b b� a b� a aþ 1

x ¼ 2t

tþ 1

8<
:

9=
;

¼ 2� xð ÞaP
0 1 y

0 0 a x

1� 2b b� a b

8<
:

9=
;:

To conclude (3), one has to identify two functions with the local exponent 0

and the value 1 at t ¼ 0 and x ¼ 0 (in the first and the last local systems

respectively), like in the proof of part 1 of Lemma 2.1.

Once a hypergeometric identity (1) is obtained, it can be composed with

Euler’s and Pfa¤ ’s fractional-linear transformations; we recall them in formulas

(16)–(18) below. Geometrically, these transformations permute the singularities

1, y (on P1
z or P1

x) and their local exponents. Besides, simultaneous permu-

tation of the local exponents at x ¼ 0 and z ¼ 0 usually implies a similar

identity to (1), as presented in the following lemma.

Lemma 2.3. Suppose that a pull-back transformation induces identity ð1Þ in
an open neighborhood of x ¼ 0. Then jðxÞ1�C @Kx1� ~CC as x! 0 for some

constant K, and the following identity holds (if both hypergeometric functions are

well-defined ):
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2F1
1þ ~AA� ~CC; 1þ ~BB� ~CC

2� ~CC

����x
� �

ð12Þ

¼ yðxÞ jðxÞ
1�C

Kx1� ~CC
2F1

1þ A� C; 1þ B� C

2� C

����jðxÞ
� �

:

Proof. The asymptotic relation jðxÞ1�C @Kx1� ~CC as x! 0 is clear from

the transformation of local exponents. (We are ensured that yð0Þ ¼ 1.)

Further, we have relation (10) and the relations

P

0 1 y

0 0 A jðxÞ
1� C C � A� B B

8<
:

9=
;

¼ jðxÞ1�CP
0 1 y

C � 1 0 Aþ 1� C jðxÞ
0 C � A� B Bþ 1� C

8<
:

9=
;;

P

0 1 y

0 0 ~AA x

1� ~CC ~CC � ~AA� ~BB ~BB

8<
:

9=
;

¼ x1� ~CCP

0 1 y
~CC � 1 0 ~AAþ 1� ~CC x

0 ~CC � ~AA� ~BB ~BBþ 1� ~CC

8<
:

9=
;:

From here we get the right identification of local systems for (12). 9

A general pull-back transformation converts a hypergeometric equation to a

Fuchsian di¤erential equation with several singularities. To find proper can-

didates for pull-back coverings j : P1
x ! P1

z , we look first for possible pull-back

transformations of hypergeometric equations to Fuchsian equations with (at

most) 3 relevant singularities. These Fuchsian equations can be always trans-

formed to hypergeometric equations by suitable fractional-linear pull-back

transformations, and vice versa. Relevant singular points and local exponent

di¤erences for the transformed equation are determined by the covering j

only. Here are simple rules which determine singularities and local exponent

di¤erences for the transformed equation.

Lemma 2.4. Let j : P1
x ! P1

z be a finite covering. Let H1 denote a

Fuchsian equation on P1
z , and let H2 denote the pull-back transformation of

H1 under ð6Þ. Let S A P1
x, Q A P1

z be points such that jðSÞ ¼ Q.

1. The point S is a logarithmic point for H2 if and only if the point Q is a

logarithmic point for H1.

146 Raimundas Vidūnas



2. If the point Q is non-singular for H1, then the point S is not a relevant

singularity for H2 if and only if the covering j does not branch at S.

3. If the point Q is a singular point for H1, then the point S is not a

relevant singularity for H2 if and only if the following two conditions hold:
� The point Q is not logarithmic.
� The local exponent di¤erence at Q is equal to 1=k, where k is the

branching index of j at S.

Proof. First we note that if the point S is not a relevant singularity, then

it is either a non-singular point or an irrelevant singularity. Therefore S is not

a relevant singularity if and only if it is not a logarithmic point and the local

exponent di¤erence is equal to 1.

Let p, q denote the local exponents for H1 at the point Q. Let k denote

the branching order of j at S. Then the local exponent di¤erence at S is equal

to kðp� qÞ. To see this, note that if m A C is the order of yðxÞ at S, the local

exponents at S are equal to kpþm and kqþm. This fact is clear if Q is not

logarithmic, when the local exponents can be read from solutions. In general

one has to use the indicial polynomial to determine local exponents.

The first statement is clear, since local solutions of H1 at S can be pull-

backed to local solutions of H2 at Q, and local solutions of H2 at Q can be

push-forwarded to local solutions of H1 at S.

If the point Q is non-singular, the point S is not logarithmic by the first

statement, so S is a not a relevant singularity if and only if k ¼ 1.

If the point Q is singular, then the local exponent di¤erence at S is equal to

1 if and only if the local exponent di¤erence jp� qj is equal to 1=k. 9

The following Lemma gives an estimate for the number of points S to

which part 3 of Lemma 2.4 applies, and it gives a relation between local

exponent di¤erences of two hypergeometric equations related by a pull-back

transformation and the degree of the pull-back transformation. In this paper

we make the convention that real local exponent di¤erences are non-negative,

and complex local exponent di¤erences have the argument in the interval

ð�p; p�.

Lemma 2.5. Let j : P1
x ! P1

z be a finite covering, and let d denote the

degree of j.

1. Let D denote a set of 3 points on P1
z . If all branching points of j lie

above D, then there are exactly d þ 2 distinct points on P1
x above D. Otherwise

there are more than d þ 2 distinct points above D.

2. Let H1 denote a hypergeometric equation on P1
z , and let H2 denote a

pull-back transformation of H1 with respect to j. Suppose that H2 is hyper-

geometric equation as well. Let e1, e2, e3 denote the local exponent di¤er-
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ences for H1, and let e 01, e 02, e 03 denote the local exponent di¤erences for

H2. Then

dðe1 þ e2 þ e3 � 1Þ ¼ e 01 þ e 02 þ e 03 � 1:ð13Þ

Proof. For a point S A P1
x let ordS j denote the branching order of j at

S. By Hurwitz formula [Har77, Corollary IV.2.4] we have �2 ¼ �2d þD,

where

D ¼
X
S AP1

x

ordS j� 1ð Þ:

Therefore D ¼ 2d � 2. The number of points above D is

3d �
X

jðSÞ AD
ordS j� 1ð Þb 3d �D ¼ d þ 2:

We have the equality if and only if all branching points of j lie above D.

Now we show the second statement. For a point S A P1
z or S A P1

x, let

ledðSÞ denote the local exponent di¤erence for H1 or H2 (respectively) at S.

The following sums make sense:X
S AP1

x

ðledðSÞ � 1Þ ¼
X
Q AP1

z

X
jðSÞ¼Q

ðledðSÞ � 1Þ

¼
X
Q AP1

z

d ledðQÞ �
X

jðSÞ¼Q
1

0
@

1
A

¼ d
X
Q AP1

z

ðledðQÞ � 1Þ þD:

The first sum is equal to e 01 þ e 02 þ e 03 � 3. The last expression is equal to

dðe1 þ e2 þ e3 � 3Þ þ 2d � 2. 9

3. The classification scheme

The core problem is to classify pull-back transformations of hypergeometric

equations to Fuchsian equations with at most 3 relevant singular points. By

Lemma 2.4, a general pull-back transformation gives a Fuchsian equation

with quite many relevant singular points, especially above the set f0; 1;ygHP1
z .

In order to get a Fuchsian equation with so few singular points, we have

to restrict parameters (or local exponent di¤erences) of the original hyper-

geometric equation, and usually we can allow branching only above the set

f0; 1;ygHP1
z .
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We classify pull-back transformations between hypergeometric equations

(and algebraic transformations of Gauss hypergeometric functions) in the

following five principal steps:

1. Let H1 denote hypergeometric equation (4), and consider its pull-back

transformation (6). Let H2 denote the pull-backed di¤erential equation,

and let T denote the number of singular points of H2. Let D denote

the subset f0; 1;yg of P1
z , and let d denote the degree of the covering

j : P1
x ! P1

z in transformation (6). We consequently assume that exactly

N A f0; 1; 2; 3g of the 3 local exponent di¤erences for H1 at D are restricted

to the values of the form 1=k, where k is a positive integer. If k ¼ 1 then

the corresponding point of D is assumed to be not logarithmic, as we

cannot get rid of singularities above a logarithmic point.

2. In each assumed case, use Lemma 2.4 and determine all possible

combinations of the degree d and restricted local exponent di¤erences. Let

k1; . . . ; kN denote the denominators of the restricted di¤erences. By part 4

of Lemma 2.4,

T b ½the number of singular points above D�

b d þ 2� ½the number of non-singular points above D�

b d þ 2�
XN
j¼1

d

kj

� �
:

Since we wish T a 3, we get the following restrictive inequality in integers:

d �
XN
j¼1

d

kj

� �
a 1:ð14Þ

To skip specializations of cases with smaller N, we may assume that

dbmaxðk1; . . . ; kNÞ. A preliminary list of possibilities can be obtained

by dropping the rounding down in (14); this gives a weaker but more

convenient inequality

1

d
þ
XN
j¼1

1

kj
b 1:ð15Þ

3. For each combination of d and restricted local exponent di¤erences,

determine possible branching patterns for j such that the transformed

equation H2 would have at most three singular points. In most cases we

can allow branching points only above D, and we have to take the maximal

number d=kj
	 


of non-singular points above the point with the local

exponent di¤erence 1=kj.
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4. For each possible branching pattern, determine all rational functions

jðxÞ which define a covering with that branching pattern. For da 6 this

can be done using a computer by a straightforward method of undeter-

mined coe‰cients. In [Vid05, Section 3] a more appropriate algorithm is

introduced which uses di¤erentiation of jðxÞ. In many cases this problem

has precisely one solution up to fractional-linear transformations. But not

for any branching pattern a covering exists, and there can be several

di¤erent coverings with the same branching pattern. For infinite families

of branching patterns we are able to give a general, algorithmic or explicit

characterization of corresponding coverings. For instance, if hypergeo-

metric solutions can be expressed very explicitly, we can identify the local

systems in (10) up to unknown factor yðxÞ. Then quotients of corre-

sponding hypergeometric solutions (aka Schwarz maps) can be identified

precisely, which gives a straightforward way to determine jðxÞ.
5. Once a suitable covering j : P1

x ! P1
z is computed, there always

exist corresponding pull-back transformations. Two-term identities like

(1) can be computed using extended Riemann’s P-notation of Section

2. We have two-term identities for each singular point S of the trans-

formed equation such that jðSÞHD, as in the proof of part 1 of Lemma

2.1. Once we fix S, jðSÞ as x ¼ 0, z ¼ 0 respectively, permutations of

local exponents and other singularities give identities (1) which are related

by Euler’s and Pfa¤ ’s transformations and Lemma 2.3. If the transformed

equation has less than 3 actual singularities, one can consider any point

above D in this manner. Some of the obtained identities may be the same

up to change of free parameters.

Now we sketch explicit appliance of the above procedure. When N ¼ 0, i.e.,

when no local exponent di¤erences are restricted, then d ¼ 1 by formula

(15). This gives Euler’s and Pfa¤ ’s fractional-linear transformations. When

N ¼ 1, we have the following cases:
� k1 ¼ 2, d ¼ 2. This gives the classical quadratic transformations. See

Section 4.
� k1 ¼ 1, d any. The z-point with the local exponent di¤erence 1=k1 is

assumed to be non-logarithmic, so the equation H1 has only two relevant

singularities. As we show in Lemma 5.1 below, the two unrestricted local

exponent di¤erences must be equal. As it turns out, the covering j

branches only above the two points with unrestricted local exponent

di¤erences. If the triple of local exponent di¤erences for H1 is ð1; p; pÞ,
the triple of local exponent di¤erences for H2 is ð1; dp; dpÞ. Formally, this

case has a continuous family of fractional-linear pull-back transformations,

but that does not give interesting hypergeometric identities.

When N ¼ 2, we have the following cases:
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� If maxðk1; k2Þ > 2, the possibilities are listed in Table 1. Steps 2 and 3

of the classification scheme are straightforward, and a snapshot of

possibilities after them is presented by the first four columns of Table

1. The notation for a branching pattern in the fourth column gives d þ 2

branching orders for the points above D; branching orders at points in the

same fiber are separated by the þ signs, branching orders for di¤erent fibers

are separated by the ¼ signs. Step 4 of our scheme gives at most one

covering (up to fractional-linear transformations) for each branching

pattern. Ultimately, Table 1 yields precisely the classical transformations

of degree 3, 4, 6 due to Goursat [Gou81]; see Section 4. It is straight-

forward to figure out possible compositions of small degree coverings, and

then identify them with the unique coverings for Table 1. Degrees of

constituents for decomposable coverings are listed in the last column from

right (for the constituent transformation from H1) to left. Note that one

degree 6 covering has two distinct decompositions; a corresponding hyper-

geometric transformation is given in formula (28) below.
� k1 ¼ 2, k2 ¼ 2, d any. The monodromy group of H1 is a dihedral

group. The hypergeometric functions can be expressed very explicitly, see

Section 6. The triple ð1=2; 1=2; pÞ of local exponent di¤erences for H1 is

transformed either to ð1=2; 1=2; dpÞ for any d, or to ð1; dp=2; dp=2Þ for even d.
� k1 ¼ 1; k2 and d are any positive integers. The z-point with the local

exponent di¤erence 1=k1 is not logarithmic, so the triple of local exponent

di¤erences for H1 must be ð1; 1=k2; 1=k2Þ. The monodromy group is a

finite cyclic group. Possible transformations are outlined in Section 5.

When N ¼ 3, we have the following three very distinct cases:
� 1=k1 þ 1=k2 þ 1=k3 > 1. The monodromy groups of H1 and H2 are

finite, the hypergeometric functions are algebraic. The degree d is un-

bounded. Klein’s theorem [Kle77] implies that any hypergeometric equation

Local exponent di¤erences

ð1=k1; 1=k2; pÞ above

Degree

d

Branching pattern above

the regular singular points

Covering

composition

ð1=2; 1=3; pÞ ð1=2; p; 2pÞ 3 2þ 1 ¼ 3 ¼ 2þ 1 indecomposable

ð1=2; 1=3; pÞ ð1=3; p; 3pÞ 4 2þ 2 ¼ 3þ 1 ¼ 3þ 1 indecomposable

ð1=2; 1=3; pÞ ð1=3; 2p; 2pÞ 4 2þ 2 ¼ 3þ 1 ¼ 2þ 2 no covering

ð1=2; 1=3; pÞ ðp; p; 4pÞ 6 2þ 2þ 2 ¼ 3þ 3 ¼ 4þ 1þ 1 2� 3

ð1=2; 1=3; pÞ ð2p; 2p; 2pÞ 6 2þ 2þ 2 ¼ 3þ 3 ¼ 2þ 2þ 2 2� 3 or 3� 2

ð1=2; 1=3; pÞ ðp; 2p; 3pÞ 6 2þ 2þ 2 ¼ 3þ 3 ¼ 3þ 2þ 1 no covering

ð1=2; 1=4; pÞ ðp; p; 2pÞ 4 2þ 2 ¼ 4 ¼ 2þ 1þ 1 2� 2

ð1=3; 1=3; pÞ ðp; p; pÞ 3 3 ¼ 3 ¼ 1þ 1þ 1 indecomposable

Table 1: Transformations of Gauss hypergeometric functions with 1 free parameter, except

for dihedral and degenerate functions
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with a finite monodromy group (or equivalently, with algebraic solutions) is

a pull-back transformation of a standard hypergeometric equation with the

same monodromy group. These are the most interesting pull-back trans-

formations for this case. Equations with finite cyclic monodromy groups

are mentioned in the previous subcase; their transformations are considered

in Section 5. Equations with finite dihedral monodromy groups are

considered in Section 6. Equations with the tetrahedral, octahedral or

icosahedral projective monodromy groups are characterized in Section 7.
� 1=k1 þ 1=k2 þ 1=k3 ¼ 1. Non-trivial hypergeometric solutions of H1 are

incomplete elliptic integrals, see Section 8. The degree d is unbounded,

di¤erent transformations with the same branching pattern are possible.

Most interesting transformations pull-back the equation H1 into itself, so

that H2 ¼ H1; these transformations come from endomorphisms of the

corresponding elliptic curve.
� 1=k1 þ 1=k2 þ 1=k3 < 1. Here we have transformations of hyperbolic

hypergeometric functions, see Section 9. The list of these transformations

is finite, the maximal degree of their coverings is 24. Existence of some of

these transformations is shown in [Hod18], [Beu02], [AK03].

The degree of transformations is determined by formula (13), except in the

case of incomplete elliptic integrals. If all local exponent di¤erences are real

numbers in the interval ð0; 1�, the covering j : P1
x ! P1

z is defined over R and

it branches only above f0; 1;ygHP1
z , then it induces a tessellation of the

Schwarz triangle for H2 into Schwarz triangles for H1, as outlined in [Hod18,

Beu02] or [Vid05, Section 2]. Recall that a Schwarz triangle for a hyper-

geometric equation is the image of the upper half-plane under a Schwarz map

for the equation. The described tessellation is called Coxeter decomposition. If

it exists, formula (13) can be interpreted nicely in terms of areas of the Schwarz

triangles for H1 and H2 in the spherical or hyperbolic metric. Out of the

classical transformations, only the cubic transformation with the branching

pattern 3 ¼ 3 ¼ 1þ 1þ 1 does not allow a Coxeter decomposition; see formula

(23) below.

The following sections form an overview of algebraic transformations for

di¤erent types of Gauss hypergeometric functions. We also mention some

three-term identities with Gauss hypergeometric functions. Non-classical cases

are considered more thoroughly in other articles [Vid08a], [Vid08b], [Vid08c],

[Vid05].

4. Classical transformations

Formally, Euler’s and Pfa¤ ’s fractional-linear transformations [AAR99,

Theorem 2.2.5]
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2F1
a; b

c

����z
� �

¼ ð1� zÞ�a 2F1
a; c� b

c

���� z

z� 1

� �
ð16Þ

¼ ð1� zÞ�b 2F1
c� a; b

c

���� z

z� 1

� �
ð17Þ

¼ ð1� zÞc�a�b 2F1
c� a; c� b

c

����z
� �

:ð18Þ

can be considered as pull-back transformations of degree 1. These are the

only transformations without restrictions on the parameters (or local exponent

di¤erences) of a hypergeometric function under transformation. In a geomet-

rical sense, they permute the local exponents at z ¼ 1 and z ¼y. In general,

permutation of the singular points z ¼ 0, z ¼ 1, z ¼y and local exponents at

them gives 24 Kummer’s hypergeometric series solutions to the same hyper-

geometric di¤erential equation. Any three hypergeometric solutions are linearly

related, of course.

To present other classical and non-classical transformations, we introduce

the following notation. Let ðp1; q1; r1Þ  
d ðp2; q2; r2Þ schematically denote a

pull-back transformation of degree d, which transforms a hypergeometric

equation with the local exponent di¤erences p1, q1, r1 to a hypergeometric

equation with the local exponent di¤erences p2, q2, r2. The order of local

exponents in a triple is irrelevant. Note that the arrow follows the direction of

the covering j : P1
x ! P1

z .

The list of classical transformations comes from the data of Table 1. Here

is the list of classical transformations with indecomposable j, up to Euler’s and

Pfa¤ ’s fractional-linear transformations and the conversion of Lemma 2.3.
� ð1=2; p; qÞ  2 ð2p; q; qÞ. These are classical quadratic transformations.

All two-term quadratic transformations of hypergeometric functions can be

obtained by composing (2) or (3) with Euler’s and Pfa¤ ’s transformations.

An example of a three-term relation under a quadratic transformation is

the following (see also Remark 5.2 below, and [Erd53, 2.11(3)]):

2F1

a; b
aþbþ1

2

����x
� �

¼
G
�
1
2

�
G
�
aþbþ1

2

�
G
�
aþ1
2

�
G
�
bþ1
2

� 2F1

a
2 ;

b
2

1
2

�����ð1� 2xÞ2
 !

ð19Þ

þ ð1� 2xÞ
G
�
� 1

2

�
G
�
aþbþ1

2

�
G
�
a
2

�
G
�
b
2

� 2F1

aþ1
2 ; bþ12

3
2

�����ð1� 2xÞ2
 !

:

� ð1=2; 1=3; pÞ  3 ð1=2; p; 2pÞ. These are well-known Goursat’s cubic

transformations. Two-term transformations follow from the following

three formulas, along with Euller’s and Pfa¤ ’s transformations and appli-

cation of Lemma 2.3 to (22):
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2F1
a; ð2aþ 1Þ=2
ð4aþ 2Þ=3

����x
� �

¼ 1� 3x

4

� ��a
2F1

a=3; ðaþ 1Þ=3
ð4aþ 5Þ=6

����� 27x
2ð1� xÞ

ð4� 3xÞ3

 !
;ð20Þ

2F1
a; ð2aþ 1Þ=2
ð4aþ 5Þ=6

����x
� �

¼ ð1þ 3xÞ�a 2F1
a=3; ðaþ 1Þ=3
ð4aþ 5Þ=6

����� 27xð1� xÞ2

ð1þ 3xÞ3

 !
;ð21Þ

2F1
a; ð2aþ 1Þ=6

1=2

����x
� �

¼ 1þ x

3

� ��a
2F1

a=3; ðaþ 1Þ=3
1=2

����� xð9� xÞ2

ð3þ xÞ3

 !
:ð22Þ

� ð1=3; 1=3; pÞ  3 ðp; p; pÞ. These are less-known cubic transformations.

Let o denote a primitive cubic root of unity, so o2 þ oþ 1 ¼ 0. Since

singular points of the transformed equation are all the same, there is only

one two-term formula (up to changing the parameter):

2F1
a; ðaþ 1Þ=3
ð2aþ 2Þ=3

����x
� �

ð23Þ

¼ ð1þ o2xÞ�a 2F1
a=3; ðaþ 1Þ=3
ð2aþ 2Þ=3

����� 3ð2oþ 1Þxðx� 1Þ
ðxþ oÞ3

 !
:

A three-term formula is the following (see also [Erd53, 2.11(38)]):

2F1
a; ðaþ 1Þ=3
ð2aþ 2Þ=3

����x
� �

ð24Þ

¼ 3a�1ð1þ o2xÞ�a
"
Gðð2aþ 2Þ=3ÞGða=3Þ

Gð2=3ÞGðaÞ 2F1
a=3; ðaþ 1Þ=3

2=3

����� xþ o2

xþ o

� �3 !

� 1þ ox

1þ o2x

Gðð2aþ 2Þ=3ÞGððaþ 2Þ=3Þ
Gð4=3ÞGðaÞ

� 2F1
ðaþ 1Þ=3; ðaþ 2Þ=3

4=3

����� xþ o2

xþ o

� �3 !#
:

� ð1=2; 1=3; pÞ  4 ð1=3; p; 3pÞ. These are indecomposable Goursat’s trans-

formations of degree 4. Two-term transformations follow from the fol-

lowing three formulas, if we compose them with Euller’s and Pfa¤ ’s

transformations and apply Lemma 2.3 to (27):

2F1
4a=3; ð4aþ 1Þ=3
ð4aþ 1Þ=2

����x
� �

¼ 1� 8x

9

� ��a
2F1

a=3; ðaþ 1Þ=3
ð4aþ 5Þ=6

�����64x
3ð1� xÞ

ð9� 8xÞ3

 !
;ð25Þ
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2F1
4a=3; ð4aþ 1Þ=3
ð4aþ 5Þ=6

����x
� �

¼ ð1þ 8xÞ�a 2F1
a=3; ðaþ 1Þ=3
ð4aþ 5Þ=6

�����64xð1� xÞ3

ð1þ 8xÞ3

 !
;ð26Þ

2F1
4a=3; ð4aþ 1Þ=6

2=3

����x
� �

¼ ð1� xÞ�a 2F1
a=3; ð3� 2aÞ=6

2=3

������xð8þ xÞ3

64ð1� xÞ3

 !
:ð27Þ

As recorded in Table 1, there are four ways to compose quadratic and cubic

transformations to higher degree transformations of hypergeometric functions.

This gives three di¤erent pull-back transformations of degree 4 and 6. The

composition transformations can be schematically represented as follows:

ð1=2; 1=4; pÞ  2 ð1=2; p; pÞ  2 ðp; p; 2pÞ;

ð1=2; 1=3; pÞ  3 ð1=2; p; 2pÞ  2 ðp; p; 4pÞ;

ð1=2; 1=3; pÞ  3 ð1=2; p; 2pÞ  2 ð2p; 2p; 2pÞ;

ð1=2; 1=3; pÞ  2 ð1=3; 1=3; 2pÞ  3 ð2p; 2p; 2pÞ:

The last two compositions should produce the same covering, since computa-

tions show that the pull-back ð1=2; 1=3; pÞ  6 ð2p; 2p; 2pÞ is unique up to

fractional-linear transformations; see [Vid05, Section 3]. Indeed, one may

check that the identity

2F1
2a; ð2aþ 1Þ=3
ð4aþ 2Þ=3

����x
� �

ð28Þ

¼ ð1� xþ x2Þ�a 2F1
a=3; ðaþ 1Þ=3
ð4aþ 5Þ=6

����� 274 x2ðx� 1Þ2

ðx2 � xþ 1Þ3

 !

is a composition of (3) and (21), and also a composition of (23), (3) and (16).

Note that these two compositions use di¤erent types of cubic transformations.

5. Hypergeometric equations with two singularities

Here we outline transformations of hypergeometric equations with two

relevant singularities; their monodromy group is abelian. The explicit classi-

fication scheme of Section 3 refers to this case three times. These equations

form a special sample of degenerate hypergeometric equations [Vid07]. For the

degenerate cases, not all usual hypergeometric formulas for fractional-linear

transformations or other classical algebraic transformations may hold, since the

structure of 24 Kummer’s solutions degenerates; see [Vid07, Table 1]. Here we

consider only the new case of pull-back transformations of the hypergeometric

equations with the cyclic monodromy group.
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If a Fuchsian equation has the local exponent di¤erence 1 at some point,

that point can be a non-singular point, an irrelevant singularity or a logarithmic

point. Here is how the logarithmic case is distinguished for hypergeometric

equations.

Lemma 5.1. Consider hypergeometric equation ð4Þ, and let P A f0; 1;yg.
Suppose that the local exponent di¤erence at S is equal to 1. Then the point S is

logarithmic if and only if (absolute values of ) the two local exponent di¤erences at

the other two points of the set f0; 1;yg are not equal.

Proof. Because of fractional-linear transformations, we may assume that

S is the point z ¼ 0, and the local exponents there are 0 and 1. Therefore

C ¼ 0. Then the point z ¼ 0 is either a non-singular point or a logarithmic

point. It is non-singular if and only if AB ¼ 0. If B ¼ 0, then local exponent

di¤erences at z ¼ 1 and z ¼y are both equal to A. 9

This lemma implies that a hypergeometric equation has (at most) two

relevant singularities if and only if the local exponent di¤erence at one of the

three points z ¼ 0, z ¼ 1, z ¼y is 1, and the local exponent di¤erences at the

other two points are equal. After applying a suitable fractional-linear trans-

formation to this situation we may assume that the point z ¼ 0 is non-singular.

Like in the proof of Lemma 5.1, we have C ¼ 0 and we may take B ¼ 0. Then

we are either in the case n ¼ m ¼ 0 of [Vid07, Section 7 or 8], or in the case

n ¼ m ¼ l ¼ 0 of [Vid07, Section 9]. Most of the 24 Kummer’s solutions have

to be interpreted either as the constant 1 or the power function ð1� zÞ�a. The

only interesting hypergeometric function (up to Euler’s and Pfa¤ ’s transforma-

tions) is the following:

2F1
1þ a; 1

2

����z
� �

¼

1� ð1� zÞ�a

az
; if a0 0;

� 1

z
logð1� zÞ; if a ¼ 0:

8>><
>>:ð29Þ

For general a, pull-back transformation (6) of the considered hypergeo-

metric equation to a hypergeometric equation branches only above the points

z ¼ 1 and z ¼y. Indeed, if the covering j : P1
x ! P1

z branches above other

point, then these branching points would be singular by part 2 of Lemma 2.4,

and there would be at least 3 singular points above f1;ygHP1
z by part 1 of

Lemma 2.5. To keep the number of singular points down to 3, the covering j

should branch only above f1;yg. Up to fractional-linear transformations on

P1
x, these coverings have the form ð1� zÞ 7! ð1� xÞd , or

z 7! xfd�1ðxÞ; where fd�1ðxÞ ¼
1� ð1� xÞd

x
:ð30Þ
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Note that fd�1ðxÞ is a polynomial of degree d � 1. A corresponding hyper-

geometric identity is

2F1
1þ da; 1

2

����x
� �

¼ fd�1ðxÞ
d

2F1
1þ a; 1

2

����xfd�1ðxÞ
� �

:ð31Þ

This transformation is obvious from the explicit expressions in (29).

Formally, we additionally have a continuous family z 7! 1� b þ bz of

fractional-linear pull-back transformations which fix the two points z ¼ 1 and

z ¼y. However, they do not give interesting hypergeometric identities since

Kummer’s series at those two points are trivial.

If jaj ¼ 1=k for an integer k > 1, there are more pull-back transformations

of hypergeometric equations with the local exponent di¤erences ð1; a; aÞ. In

this case, the monodromy group is a finite cyclic group, of order k. Pull-

backed equations will have a cyclic monodromy group as well, possibly of

smaller order. On the other hand, the mentioned Klein’s theorem [Kle77]

implies that any hypergeometric equation with a cyclic monodromy group of

order k is a pull-back of a hypergeometric equation with the local exponent

di¤erences ð1; 1=k; 1=kÞ. These pull-back transformations can be easily com-

puted from explicit terminating solutions of the target di¤erential equation.

According to [Vid07, Section 7], a general hypergeometric equation with a

completely reducible (but non-trivial) monodromy representation has the local

exponents ðmþ nþ 1; a; aþ n�mÞ, where a B Z and n;m A Z are non-negative.

A basis of terminating solutions is

2F1
�n; a�m

�m� n

����z
� �

; ð1� zÞ�a 2F1
�m;�a� n

�m� n

����z
� �

:ð32Þ

The monodromy group is finite cyclic if a ¼ l=k with co-prime positive

k; l A Z. The terminating solutions can be written as terminating hypergeo-

metric series at z ¼ 1 as well:

2F1
�n; a�m

�m� n

����z
� �

¼ ð1þ aÞnm!

ðmþ nÞ! 2F1
�n; a�m

1þ a

����1� z

� �
; etc:

The quotient of two solutions in (32) defines a Schwarz map for the hyper-

geometric equation. In the simplest case n ¼ m ¼ 0, a ¼ 1=k, the Schwartz

map is just ð1� zÞ1=k. Klein’s pull-back transformation for ð1; 1=k; 1=kÞ  d

ðmþ nþ 1; l=k; l=k þ n�mÞ is obtained from identification of the two Schwarz

maps. The pull-back covering is defined by

ð1� zÞ 7! ð1� xÞl 2F1
�n; l=k �m

�m� n

����x
� �k�

2F1
�m;�l=k � n

�m� n

����x
� �k

:ð33Þ
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The Schwarz maps (or pairs of hypergeometric solutions) are identified here by

the corresponding local exponents at x ¼ 1 (placed above z ¼ 1) and the same

value at x ¼ 0 (placed above x ¼ 0). The degree of the transformation is equal

to maxðnk þ l;mkÞ, by formula (13) as well. Besides, z 7! Oðxnþmþ1Þ at x ¼ 0

by the required branching pattern. In particular,

2F1
�m;�l=k � n

�m� n

����x
� ��

2F1
�n; l=k �m

�m� n

����x
� �

¼ ð1� xÞl=k þOðxnþmþ1Þð34Þ

at x ¼ 0, hence the quotient of two hypergeometric polynomials is the Padé

approximation of ð1� xÞl=k of precise degree ðm; nÞ. For example, the Pade

approximation of
ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

of degree ð1; 1Þ is ð4� xÞ=ð4� 3xÞ. Hence the

following pullback must give a transformation ð1; 1=2; 1=2Þ  3 ð3; 1=2; 1=2Þ:

1� z 7! ð1� xÞðx� 4Þ2

ð3x� 4Þ2
:

A corresponding hypergeometric identity is

2F1
3=2; 2

4

����x
� �

¼ 4

4� 3x
2F1

1=2; 1

2

����� x3

ð3x� 4Þ2

 !
:ð35Þ

Transformation (33) is Klein’s pull-back transformation if gcdðk; lÞ ¼ 1.

Otherwise the transformed hypergeometric equation has a smaller monodromy

group. These transformations must factor via (30) with d ¼ gcdðk; lÞ, and

Klein’s transformation between equations with the smaller monodromy group.

Even l=k A Z can be allowed if the transformed equation has no logarithmic

points. The condition for that is l=k > m; see [Vid07, Corollary 2.3 part (2)].

Under this condition, one may even allow k ¼ 1 and consider transformations

ð1; 1; 1Þ  �lþn ðmþ nþ 1; l; lþ n�mÞ. All hypergeometric equations with the

trivial monodromy group can be obtained in this way, by Klein’s theorem.

Solutions of these hypergeometric equations are analyzed in [Vid07, Section

8]. A hypergeometric equation with the local exponent di¤erences ð1; 1; 1Þ can
be transformed to y 00 ¼ 0 by fractional-linear transformations. We underscore

that transformation (33) specializes nicely even for k ¼ 1 if only logarithmic

solutions are not involved; the corresponding two-term hypergeometric identities

are trivial.

Remark 5.2. Algebraic transformations of Gauss hypergeometric functions

often hold only in some part of the complex plane, even after standard analytic

continuation. For example, formula (2) is obviously false at x ¼ 1. Formula

(2) holds when ReðxÞ < 1=2, as the standard z-cut ð1;yÞ is mapped into the line

ReðxÞ ¼ 1=2 under the transformation z ¼ 4xð1� xÞ.
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An extreme example of this kind is the following transformation of a

hypergeometric function to a rational function:

2F1
1=2; 1

2

������ 4x3ðx� 1Þ2ðxþ 2Þ
ð3x� 2Þ2

 !
¼ 2� 3x

ð1� xÞ2ðxþ 2Þ
:ð36Þ

This identity holds in a neighborhood of x ¼ 0, but it certainly does not hold

around x ¼ 1 or x ¼ �2. Apparently, standard cuts for analytic continuation

for the hypergeometric function isolate the three points x ¼ 0, x ¼ 1, x ¼ �2.
Note that

2F1
1=2; 1

2

����z
� �

¼ 2� 2
ffiffiffiffiffiffiffiffiffiffiffi
1� z
p

z

is a two-valued algebraic function on P1
z . Its composition in (36) with the

degree 6 rational function apparently consists of two disjoint branches. The

second branch is the rational function ð3x� 2Þ=x3, which is the correct evalua-

tion of the left-hand side of (36) around the points x ¼ 1, x ¼ �2 (check the

power series.)

Many identities like (36) can be produced for hypergeometric functions of

this section with 1=a A Z. The pull-backed hypergeometric equations should be

Fuchsian equations with the trivial monodromy group. More generally, any

algebraic hypergeometric function can be pull-backed to a rational function.

Other algebraic hypergeometric functions are considered in the following two

sections.

Three-term hypergeometric identities may also have limited region of

validity. But it may happen that branch cuts of two hypergeometric terms

cancel each other in a three-term identity. For example, standard branch cuts

for the hypergeometric functions on the right-hand side of (19) are the intervals

½1;yÞ and ð�y; 0� on the real line. But identity (19) is valid on Cn½1;yÞ, if
we agree to evaluate the right-hand consistently on the interval ð�y; 0�: either
using analytic continuation of both terms from the upper half-plane, or from

the lower half-plane.

6. Dihedral functions

Hypergeometric equations with (infinite or finite) dihedral monodromy

group are characterized by the property that two local exponent di¤erences are

rational numbers with the denominator 2. By a quadratic pull-back transfor-

mation, these equations can be transformed to Fuchsian equations with at

most 4 singularities and with a cyclic monodromy group. Explicit expressions

and transformations for these functions are considered thoroughly in [Vid08a].

Here we look at transformations of hypergeometric equations which have two
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local exponent di¤erences equal to 1=2. The explicit classification scheme of

Section 3 refers to this case twice.

The starting hypergeometric equation for new transformations has the local

exponent di¤erences ð1=2; 1=2; aÞ. Hypergeometric solutions of such an equa-

tion can be written explicitly. In particular, quadratic transformation (2) with

b ¼ aþ 1 implies

2F1
a=2; ðaþ 1Þ=2

aþ 1

����z
� �

¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� z
p

2

 !�a
:ð37Þ

Other explicit formulas are

2F1
a=2; ðaþ 1Þ=2

1=2

����z
� �

¼ ð1�
ffiffiffi
z
p
Þ�a þ ð1þ

ffiffiffi
z
p
Þ�a

2
;ð38Þ

2F1
ðaþ 1Þ=2; ðaþ 2Þ=2

3=2

����z
� �

¼

ð1�
ffiffiffi
z
p
Þ�a � ð1þ

ffiffiffi
z
p
Þ�a

2a
ffiffiffi
z
p ; if a0 0;

1

2
ffiffiffi
z
p log

1þ
ffiffiffi
z
p

1�
ffiffiffi
z
p ; if a ¼ 0:

8>>>><
>>>>:

ð39Þ

General dihedral Gauss hypergeometric functions are contiguous to these 2F1

functions. As shown in [Vid08a], explicit expressions for them can be given in

terms of terminating Appell’s F2 or F3 series. For example, generalizations of

(37)–(38) are

2F1
a=2; ðaþ 1Þ=2þ l

aþ k þ lþ 1

����1� z

� �
ð40Þ

¼ zk=2
1þ

ffiffiffi
z
p

2

� ��a�k�l
F3

k þ 1; lþ 1;�k;�l
aþ k þ lþ 1

����
ffiffiffi
z
p
� 1

2
ffiffiffi
z
p ;

1�
ffiffiffi
z
p

2

� �
;

ððaþ 1Þ=2Þn
ð1=2Þn

2F1
a=2; nþ ðaþ 1Þ=2
�mþ 1=2

����z
� �

ð41Þ

¼ ð1þ
ffiffiffi
z
p
Þ�a

2
F2

a;�m;�n
�2m;�2n

���� 2
ffiffiffi
z
p

1þ
ffiffiffi
z
p ;

2

1þ
ffiffiffi
z
p

� �

þ ð1�
ffiffiffi
z
p
Þ�a

2
F2

a;�m;�n
�2m;�2n

���� 2
ffiffiffi
z
pffiffiffi
z
p
� 1

;
2

1�
ffiffiffi
z
p

� �
:

Here m, n are assumed to be non-negative integers.

For general a, there are two types of transformations:
� ð1=2; 1=2; aÞ  d ð1=2; 1=2; daÞ. These are the only transformations to a

dihedral monodromy group as well, as there is a singularity above the point

with the local exponent di¤erence a. Identification of explicit Schwarz
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maps gives the following recipe for computing the pull-back coverings

j : P1
x ! P1

z . Expand ð1þ
ffiffiffi
x
p
Þd in the form y1ðxÞ þ y2ðxÞ

ffiffiffi
x
p

with

y1ðxÞ; y2ðxÞ A C ½x�. Then jðxÞ ¼ xy22ðxÞ=y
2
1ðxÞ gives a pull-back transfor-

mation of dihedral hypergeometric equations. Explicitly,

y1ðxÞ ¼
Xbd=2c
k¼0

d

2k

� �
xk ¼ 2F1

�d=2;�ðd � 1Þ=2
1=2

����x
� �

;

y2ðxÞ ¼
Xbðd�1Þ=2c
k¼0

d

2k þ 1

� �
xk ¼ d 2F1

�ðd � 1Þ=2;�ðd � 2Þ=2
3=2

����x
� �

:

A particular transformation of hypergeometric functions is the following:

2F1
da=2; ðdaþ 1Þ=2

1=2

����x
� �

¼ y1ðxÞ�a 2F1
a=2; ðaþ 1Þ=2

1=2

����� xy2ðxÞ
2

y1ðxÞ2

 !
:ð42Þ

It is instructive to check this transformation using (38). Other transforma-

tions from the same pull-back covering are given in [Vid08a, Section 6].

Particularly interesting are the following formulas; they hold for odd or even

d, respectively:

2F1
da=2;�da=2

1=2

����x
� �

¼ 2F1
a=2;�a=2

1=2

�����d 2x 2F1
ð1� dÞ=2; ð1þ dÞ=2

3=2

����x
� �2 !

;

2F1
da=2;�da=2

1=2

����x
� �

¼ 2F1
a=2;�a=2

1=2

�����d 2xð1� xÞ 2F1
1� d=2; 1þ d=2

3=2

����x
� �2 !

:

The branching pattern of jðxÞ is

1þ 2þ 2þ � � � þ 2 ¼ d ¼ 1þ 2þ 2þ � � � þ 2; if d is odd;

1þ 1þ 2þ 2þ � � � þ 2 ¼ d ¼ 2þ 2þ � � � þ 2; if d is even:

� ð1=2; 1=2; aÞ  2l ð1; la; laÞ, and d ¼ 2l is even. These are transforma-

tions to hypergeometric equations of Section 5. They are compositions of

the mentioned quadratic transformation and the transformations

ð1=2; 1=2; aÞ  d ð1=2; 1=2; daÞ or ð1; a; aÞ  d ð1; da; daÞ described above.

If a ¼ 1=k with k a positive integer, the monodromy group is the finite dihedral

group with 2k elements, and hypergeometric solutions are algebraic. Klein’s

theorem [Kle77] implies that any hypergeometric equation with a finite dihedral

monodromy group is a pull-back from a hypergeometric equation with the local

exponent di¤erences ð1=2; 1=2; 1=kÞ and the same monodromy group. The

pull-back transformation can be computed by the similar method: identifica-

tion of explicit Schwarz maps, using the mentioned explicit evaluations with
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terminating Appell’s F2 or F3 series. That leads to expressing a polynomial inffiffiffi
x
p

in the form y1ðxÞ þ
ffiffiffi
x
p

y2ðxÞ as above.

Theorem 6.1. Let k, l, m, n be positive integers, and suppose that kb 2,

gcdðk; lÞ ¼ 1. Let us denote

GðxÞ ¼ xm=2F3
mþ 1; nþ 1;�m;�n

1þ l=k

����
ffiffiffi
x
p
þ 1

2
ffiffiffi
x
p ;

1þ
ffiffiffi
x
p

2

� �
:

This is a polynomial in
ffiffiffi
x
p

. We can write

1þ
ffiffiffi
x
p� �l

GðxÞk ¼ Y1ðxÞ þ xmþ1=2Y2ðxÞ;

so that Y1ðxÞ and Y2ðxÞ are polynomials in x. Then the rational function

FðxÞ ¼ x2mþ1Y2ðxÞ2=Y1ðxÞ2 defines Klein’s pull-back covering ð1=2; 1=2; 1=kÞ  d

ðmþ 1=2; nþ 1=2; l=kÞ. The degree d of this rational function is equal to

ðmþ nÞk þ l.

Proof. This is Theorem 7.1 in [Vid08a]. 9

The condition gcdðk; lÞ ¼ 1 can be replaced by the weaker condition l=k B Z,

but then the transformed hypergeometric equation has a smaller dihedral mono-

dromy group, and it factors via the transformation in (42) with d ¼ gcdðk; lÞ.
Even more, l=k A Z can be allowed, if the transformed equation has no

logarithmic solutions. Su‰cient and necessary conditions for that are given

in [Vid08a, Theorem 2.1]. The branching pattern for all these coverings has the

following pattern:
� Above the two points with the local exponent di¤erence 1=2, there are

two points with the branching orders 2mþ 1, 2nþ 1, and the remaining

points are simple branching points.
� Above the point with the local exponent di¤erence 1=k, there is one

pointwiththeramificationorderl,andmþ npointswiththeramificationorderk.

Any covering ð1=2; 1=2; 1=kÞ  d ðmþ 1=2; nþ 1=2; l=kÞ is unique up to

fractional-linear transformations, as Schwarz maps are identified uniquely.

Transformations from the local exponent di¤erences ð1=2; 1=2; 1=kÞ to hyper-

geometric equations with finite cyclic monodromy groups are either the

mentioned degeneration l=k A Z, or compositions with the quadratic trans-

formation ð1=2; 1=2; 1=kÞ  2 ð1; 1=k; 1=kÞ. Other transformations involving

dihedral Gauss hypergeometric functions are special cases of classical trans-

formations.

For the purposes of Theorem 6.1, the function GðxÞ can be alternatively

defined as follows:

1þ
ffiffiffi
x
p� �ðmþnÞþl

F2
�l=k �m� n;�m;�n

�2m;�2n

���� 2
ffiffiffi
x
p

1þ
ffiffiffi
x
p ;

2

1þ
ffiffiffi
x
p

� �k
:ð43Þ
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The two definitions di¤er by a constant multiple. The F2 and F3 sums are

related by reversing the order of summation in both directions in the rectangular

sums, as noted in [Vid08a].

For an example, consider the case n ¼ 1, m ¼ 0, l ¼ 1 of Theorem 6.1.

To compute the transformation ð1=2; 1=2; 1=kÞ  �kþ1 ð1=2; 3=2; 1=kÞ we need to

expand

ð1þ
ffiffiffi
x
p
Þ 1�

ffiffiffi
x
p

k

� �k
¼ y3ðxÞ þ x3=2y4ðxÞ:

Straightforward computation shows that

y3ðxÞ ¼ 2F1
�k=2;�ðk þ 1Þ=2

�1=2

���� xk2

� �
;ð44Þ

y4ðxÞ ¼
k2 � 1

3k2 2F1
�ðk � 2Þ=2;�ðk � 3Þ=2

5=2

���� xk2

� �
:

A transformation of hypergeometric functions is

2F1
�1=ð2kÞ;�1=2� 1=ð2kÞ

�1=2

����x
� �

ð45Þ

¼ y3ðxÞ1=k 2F1
�1=ð2kÞ; 1=2� 1=ð2kÞ

1=2

����� x
3y4ðxÞ2

y3ðxÞ2

 !
:

On the other hand,

2F1
�1=ð2kÞ;�1=2� 1=ð2kÞ

1� 1=k

����1� z

� �
¼ k �

ffiffiffi
z
p

k � 1

1þ
ffiffiffi
z
p

2

� �1=k

by formula (40). Note that the construction in (44) breaks down if k ¼ 1;

a hypergeometric equation with the local exponent di¤erences ð1=2; 3=2; 1Þ has
logarithmic solutions.

As computed in [Vid08a, Section 7], the polynomials Y1ðxÞ, Y2ðxÞ of

Theorem 6.1 in the case n ¼ 1, m ¼ 0, l ¼ 2 can be expressed as terminating

3F2 series.

7. Algebraic Gauss hypergeometric functions

Algebraic Gauss hypergeometric functions form a classical subject of

mathematics. These functions were classified by Schwarz [Sch72]. Recall

that a Fuchsian equation has a basis of algebraic solutions if and only if

its monodromy group is finite. Finite projective monodromy groups for second

order equations are either cyclic, or dihedral, or the tetrahedral group iso-
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morphic to A4, or the octahedral group isomorphic to S4, or the icosahedral

group isomorphic to A5. An important characterization of second order

Fuchsian equations with finite monodromy group was given by Klein [Kle77,

Kle78]: all these equations are pull-backs of a few standard hypergeometric

equations with algebraic solutions. In particular, this holds for hypergeometric

equations with finite monodromy groups. The corresponding standard equa-

tion depends on the projective monodromy group:
� Second order equations with a cyclic monodromy group are pull-backs

of a hypergeometric equation with the local exponent di¤erences

ð1; 1=k; 1=kÞ, where k is a positive integer. Klein’s transformations to

general hypergeometric equations with a cyclic monodromy group are

considered in Section 5 above.
� Second order equations with a finite dihedral monodromy group are

pull-backs of a hypergeometric equation with the local exponent di¤erences

ð1=2; 1=2; 1=kÞ, where kb 2. Klein’s transformations to general hyper-

geometric equations with a dihedral monodromy group are considered in

Section 6 above.
� Second order equations with the tetrahedral projective monodromy

group are pull-backs of a hypergeometric equation with the local exponent

di¤erences ð1=2; 1=3; 1=3Þ. Hypergeometric equations with this mono-

dromy group are contiguous to hypergeometric equations with the local

exponent di¤erences ð1=2; 1=3; 1=3Þ or ð1=3; 1=3; 2=3Þ.
� Second order equations with the octahedral projective monodromy

group are pull-backs of a hypergeometric equation with the local exponent

di¤erences ð1=2; 1=3; 1=4Þ. Hypergeometric equations with this mono-

dromy group are contiguous to hypergeometric equations with the local

exponent di¤erences ð1=2; 1=3; 1=4Þ or ð2=3; 1=4; 1=4Þ.
� Second order equations with the icosahedral projective monodromy

group are pull-backs of a hypergeometric equation with the local exponent

di¤erences ð1=2; 1=3; 1=5Þ. Hypergeometric equations with this mono-

dromy group are contiguous to hypergeometric equations with the lo-

cal exponent di¤erences ð1=2; 1=3; 1=5Þ, ð1=2; 1=3; 2=5Þ, ð1=2; 1=5; 2=5Þ,
ð1=3; 1=3; 2=5Þ, ð1=3; 2=3; 1=5Þ, ð2=3; 1=5; 1=5Þ, ð1=3; 2=5; 3=5Þ, ð1=3; 1=5; 3=5Þ,
ð1=5; 1=5; 4=5Þ or ð2=5; 2=5; 2=5Þ.

A general algorithm for computation of Klein’s coverings is given in [vHW05].

The algorithm is based on finding semi-invariants of the monodromy group by

solving appropriate symmetric powers of the given second order di¤erential

equation. A more e¤ective algorithm specifically for hypergeometric equations

with finite monodromy groups is given in [Vid08b]. This algorithm is based on

identification of explicit Schwarz maps for the given and the corresponding

standard hypergeometric equation.
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Klein’s pull-back transformations are most interesting among the trans-

formations of algebraic 2F1 functions. As we will show soon, all other trans-

formations between hypergeometric equations with a finite monodromy group

are special cases of classical transformations, expect the series of transformations

of Sections 5, 6, and one degree 5 transformation between standard icosahedral

and octahedral hypergeometric equations.

First we sketch the algorithm in [Vid08b] for computing Klein’s pull-back

transformations of hypergeometric equations with the tetrahedral, octahedral or

icosahedral projective monodromy groups. The mentioned contiguous orbits of

hypergeometric functions determine Schwarz types of algebraic 2F1 functions.

There is one dihedral, 2 tetrahedral, 2 octahedral and 10 icosahedral Schwarz

types.

The algorithm in [Vid08b] uses explicit evaluation of algebraic Gauss hyper-

geometric functions, called Darboux evaluations. The geometric idea behind

them is to pull-back a hypergeometric equation with a finite monodromy group

to a Fuchsian di¤erential equation with a cyclic monodromy group. Pull-

backed hypergeometric solutions can be expressed in terms of radical functions,

like in formulas (37)–(41) for dihedral functions. The minimal degree for these

Darboux pull-backs to a cyclic monodromy group is 3, 4 or 5 for, respectively,

tetrahedral, octahedral and icosahedral di¤erential equations. The quadratic

transformation ð1=2; 1=2; aÞ  2 ð1; a; aÞ in Section 6 is actually a Darboux pull-

back in the dihedral case. Here are a few examples of Darboux evaluations

for larger finite monodromy groups:

2F1
1=4;�1=12

2=3

����� xðxþ 4Þ3

4ð2x� 1Þ3

 !
¼ 1

ð1� 2xÞ1=4
;

2F1
1=2;�1=6

2=3

����� xðxþ 2Þ3

ð2xþ 1Þ3

 !
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2x
p ;

2F1
7=24;�1=24

3=4

����� 108xðx� 1Þ4

ðx2 þ 14xþ 1Þ3

 !
¼ 1

ð1þ 14xþ x2Þ1=8
;

2F1
1=6;�1=6

1=4

����� 27xðxþ 1Þ4

2ðx2 þ 4xþ 1Þ3

 !
¼ 1þ 2xð Þ1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4xþ x2
p ;

2F1
13=60;�7=60

3=5

����� 1728xðx2 � 11x� 1Þ5

ðx4 þ 228x3 þ 494x2 � 228xþ 1Þ3

 !

¼ 1� 7x

ð1� 228xþ 494x2 þ 228x3 þ x4Þ7=20
;
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2F1
7=20;�1=20

4=5

����� 64xðx2 � x� 1Þ5

ðx2 � 1Þðx2 þ 4x� 1Þ5

 !

¼ 1þ xð Þ7=20

1� xð Þ1=20 1� 4x� x2ð Þ1=4
:

Some of minimal Darboux pull-back coverings for icosahedral functions are

defined not on P1
x, but on a genus 1 curve. For example,

2F1
8=15;�1=15

4=5

����� 54ðx1 þ 5xÞ3ð1� 2x1 þ 6xÞ5

ð16x2 � 1Þðx1 � 5xÞ2ð1� 2x1 � 14xÞ5

 !

¼ ð1þ 4xÞ8=15ðx1 þ 5xÞ1=6x1=15

ð1� 2x1 � 14xÞ1=3ðx1 � 3xÞ3=10
;

2F1
7=10;�1=10

4=5

����� 16x2ð1þ x� x2Þ2ð1� x2Þ2

ð1þ x2 þ 2xÞð1þ x2 � 2xÞ5

 !

¼ ð1� x2 þ 2xÞ1=15ð1� x2Þ3=5

ð1þ x2 þ 2xÞ7=30
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2x
p ;

where

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1þ xÞð1þ 16xÞ

p
and x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1þ x� x2Þ

q
:

These formulas can be checked with a computer algebra package by expanding

both sides in power series in x or
ffiffiffi
x
p

. In [Vid08b], a few of these evaluations

are computed for each Schwarz type of algebraic Gauss hypergeometric

functions. Using contiguous relations, one can find a Darboux evaluation

for any algebraic 2F1 function. For comparison, in Section 6 we used general

formulas (with terminating Appell’s F2 or F3 sums) for dihedral 2F1 functions,

instead of applying contiguous relations.

A suitable ramification pattern for Klein’s pull-back covering, say for a

transformation ð1=2; 1=3; 1=4Þ  d ðnþ 1=2;mþ 1=3; lþ 1=4Þ of local exponent

di¤erences, is easy to set up. In the setting of Section 2, it is convenient to

assume that x ¼ 0 lies above z ¼ 0 and assign local exponent di¤erences with

the largest denominator (say, 4) to these points. Hypergeometric solutions of

the given and its standard hypergeometric equations at these points can be a

priori identified (up to a constant multiple, at worst) by their local exponents.

This gives identification of Schwarz maps (for both hypergeometric equations)

up to a constant multiple. The constant multiple can be determined by a

separate routine for each Schwarz type. Elimination of the variables in

Darboux evaluations gives an algebraic relation between the arguments of
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the given and its standard hypergeometric equations, which must give Klein’s

pull-back covering. The degree of Klein’s pull-back covering for a transfor-

mation ð1=2; 1=3; 1=kÞ  d ðe0; e1; eyÞ can be computed from (13):

d ¼ 6k

6� k
ðe0 þ e1 þ ey � 1Þ:ð46Þ

Here is a list of Klein’s pull-back coverings computed in [Vid08b]. The

triples of local exponent di¤erences for the transformed equation are given

on the left. The standard hypergeometric equations have the local exponent

di¤erences ð1=2; 1=3; 1=3Þ or ð1=2; 1=3; 1=5Þ.

ð1=2; 2=3; 2=3Þ: z ¼ � x2ð4x� 5Þ3

ð5x� 4Þ3
;

ð3=2; 1=3; 1=3Þ: z ¼ � xðx2 � 42x� 7Þ3

ð7x2 þ 42x� 1Þ3
;

ð1=2; 1=3; 4=3Þ: z ¼ � xð256x2 � 448xþ 189Þ3

27ð28x� 27Þ3
;

ð1=2; 2=3; 4=3Þ: z ¼ 19683x2ð4x� 1Þ3

ð256x3 � 192x2 þ 21x� 4Þ3
;

ð1=2; 1=3; 5=3Þ: z ¼ � 19683xð128x� 125Þ3

ð16384x3 � 30720x2 þ 14880x� 625Þ3
;

ð3=2; 1=3; 2=3Þ: z ¼ � 729xð5x2 þ 14xþ 125Þ3

ð4x3 þ 15x2 � 690x� 625Þ3
;

ð1=3; 2=3; 5=3Þ: z ¼ 4xð256x3 � 640x2 þ 520x� 135Þ3

27ðx� 1Þ2ð32x� 27Þ3
;

ð2=3; 2=3; 4=3Þ: z ¼ � x2ðx� 1Þ2ð16x2 � 16xþ 5Þ3

4ð5x2 � 5xþ 1Þ3
;

ð2=3; 4=3; 4=3Þ: z ¼ � 108x4ðx� 1Þ4ð27x2 � 27xþ 7Þ3

ð189x4 � 378x3 þ 301x2 � 112xþ 16Þ3
;

ð1=2; 2=3; 1=5Þ: z ¼ xð102400x2 � 11264x� 11Þ5

ð180224000x3 þ 4325376x2 � 21252xþ 1Þ3
;

ð1=5; 1=5; 6=5Þ:

z ¼ 108xð1� xÞð512x2 � 512xþ 3Þ5

ð1048576x6� 3145728x5þ 3244032x4� 1245184x3þ 94848x2þ 3456xþ 1Þ3
:
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Once a pull-back covering is known, hypergeometric identities are easy to

derive. For example,

2F1
1=4;�5=12

1=3

����x
� �

¼ 1� 5x

4

� �1=4
2F1

1=4;�1=12
2=3

����� x2ð4x� 5Þ3

ð5x� 4Þ3

 !
;ð47Þ

2F1
�1=4;�7=12

2=3

����x
� �

ð48Þ

¼ ð1� 42x� 7x2Þ1=4 2F1
1=4;�1=12

2=3

������ xðx2 � 42x� 7Þ3

ð7x2 þ 42x� 1Þ3

 !
:

Or similarly, let z ¼ j14ðxÞ be the degree 14 covering for the ð2=3; 4=3; 4=3Þ
tetrahedral case. A hypergeometric identity is:

2F1
�1=2;�7=6
�1=3

����x
� �

¼ ð189x
4 � 378x3 þ 301x2 � 112xþ 16Þ1=4

2
ð49Þ

� 2F1
1=4;�1=12

2=3

�����j14ðxÞ
 !

:

A list of other transformations between algebraic Gauss hypergeometric

equations is not long. If the starting equation is not a standard (tetrahedral,

octahedral or icosahedral) equation, at least one of the local exponent di¤er-

ences is e¤ectively non-restricted, so we can only have special cases of classical

transformations. If one of the possible monodromy groups (i.e., icosahedral,

octahedral, tetrahedral, dihedral or cyclic, including trivial) can be a subgroup

of another, there is a transformation between two standard hypergeometric

equations with those monodromy groups. These transformations factor fol-

lowing the possible subgroup relations between the monodromy groups. The

transformations that reduce the monodromy group to a largest proper subgroup

are special cases of transformations considered in Sections 4 through 6, except

the transformation between standard icosahedral and tetrahedral hypergeometric

equations. The pull-back covering has degree 5:

j5ðxÞ ¼
50ð5þ 3

ffiffiffiffiffiffiffiffiffi
�15
p

Þxð1024x� 781� 171
ffiffiffiffiffiffiffiffiffi
�15
p

Þ3

ð128xþ 7þ 33
ffiffiffiffiffiffiffiffiffi
�15
p

Þ5
:

Here is a corresponding hypergeometric identity:

2F1
1=4;�1=12

2=3

����x
� �

ð50Þ

¼ 1þ 7� 33
ffiffiffiffiffiffiffiffiffi
�15
p

128
x

 !1=12
2F1

11=60;�1=60
2=3

����j5ðxÞ
� �

:
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This transformation is derived in [AK03, Section 5.1] as well. In general, if a

standard hypergeometric equation is transformed to a (not necessary standard)

hypergeometric equation with smaller monodromy group, that transformation

must factor via the corresponding transformation between standard equations

and Klein’s transformation preserving the smaller monodromy group.

Remark 7.1. Hypergeometric equations with a finite monodromy group

can be pull-backed to di¤erential equations with the trivial monodromy group.

Then algebraic Gauss hypergeometric functions are transformed to rational

functions (perhaps on a higher genus curve). The minimal transformation

degree for these transformations is the order of the monodromy group, which is

12, 24, 60 for tetrahedral, octahedral, icosahedral equations, respectively. If the

transformed equation is hypergeometric, its degree is given by formula (13).

A priori, it seems possible that a pull-back to hypergeometric equation

with the trivial monodromy group can have all its 3 singularities outside the

fibers above f0; 1;ygHP1
z . This situation would be an exception to part 1 of

Lemma 2.1: we would have a transformation between hypergeometric equations

without two-term identities between their hypergeometric solutions. A simple

candidate for such a pull-back transformation could transform the local expo-

nent di¤erences as ð1=2; 1=2; 1=2Þ  10 ð2; 2; 2Þ; it would have 5 simple ramifica-

tion points above each of the 3 points with the local exponent di¤erence

1=2. It two hypergeometric equations with the trivial monodromy group can

be transformed to each other, they are related by a chain of transformations

considered in Sections 4 through 7. In Klein’s standard hypergeometric

equations are involved, there is a unique (because of identification of Schwarz

maps) transformation, which is a composition of considered transformations

of standard equations reducing the projective monodromy group with Klein’s

transformation keeping the smallest monodromy group. Otherwise we have

a classical transformation. As we observed, all these transformations allow

two-term hypergeometric identities. (Particularly see the statement just be-

fore Remark 5.2). In the indicated composition of pull-back transformations,

we can still have a two-term identity if we keep a fractional local exponent

di¤erence at z ¼ 0 up till the last transformation (possibly acting on a

hypergeometric equation with the trivial monodromy group). In particular,

computations confirm that no pull-back covering for the transformation

ð1=2; 1=2; 1=2Þ  10 ð2; 2; 2Þ exists.

8. Elliptic integrals

Here we consider algebraic transformations for solutions of hypergeometric

equations with the local exponent di¤erences ð1=2; 1=4; 1=4Þ, or ð1=2; 1=3; 1=6Þ,
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or ð1=3; 1=3; 1=3Þ. For each of these equations some of hypergeometric solu-

tions are trivial (i.e., constants or power functions), while other solutions are

incomplete elliptic integrals (up to a possible power factor). Here are repre-

sentative interesting solutions of hypergeometric equations with the mentioned

triples of local exponent di¤erences:

2F1
1=2; 1=4

5=4

����z
� �

¼ z�1=4

4

ð z
0

t�3=4ð1� tÞ�1=2dtð51Þ

¼ z�1=4

2

ðy
1=
ffiffi
z
p

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 � x
p ;

2F1
1=2; 1=6

7=6

����z
� �

¼ z�1=6

6

ð z
0

t�5=6ð1� tÞ�1=2dtð52Þ

¼ z�1=6

2

ðy
1=
ffiffi
z3
p

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 � 1
p ;

2F1
1=3; 2=3

4=3

����z
� �

¼ z�1=3

3

ð z
0

t�2=3ð1� tÞ�2=3dtð53Þ

¼ z�1=3
ðy
1=
ffiffi
z3
p

dx

ðx3 � 1Þ2=3
:

Here we substituted t ¼ x�2 or t ¼ x�3 into the immediate integral expressions.

As we see, the three hypergeometric functions can be transformed to integrals of

holomorphic forms on the genus 1 curves

y2 ¼ x3 � x; y2 ¼ x3 � 1; x3 þ y3 ¼ 1;ð54Þ

respectively. In fact, the integrand functions define algebraic curves isomorphic

respectively to these three cubic curves; see [Vid08c] for details. Let E1, E2, E3

be three curves defined in (54), respectively. We consider them as elliptic

curves (with the classical group structure) by fixing the point at infinity for E1

and E2, or the infinite point ð1 : �1 : 0Þ for E3, as the neutral element of the

group structure. The elliptic curves E2 and E3 are isomorphic. Non-trivial

solutions of hypergeometric equations with the local exponent di¤erences

ð2=3; 1=6; 1=6Þ are genus 2 hyperelliptic integrals. For example,

2F1
1=3; 1=6

7=6

����z
� �

¼ z�1=6

6

ð z
0

t�5=6ð1� tÞ�1=3dt

¼ z�1=6

21=3

ðy
yðzÞ

X dXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 6 þ 1
p ; where yðzÞ ¼ ð1� zÞ1=3

21=3z1=6
:

Here the substitution is t! ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 6 þ 1
p

� X 3Þ2.
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Formula (13) gives no restriction on the degree d of pull-back transfor-

mations of the hypergeometric equations under consideration. But (13) requires

that the transformed hypergeometric equation must have local exponent di¤er-

ences e0, e1, ey such that e0 þ e1 þ ey ¼ 1. In particular, all 3 singularities of

the transformed equation are relevant singularities, and the pull-back covering

branches only above 3 points. Possible branching patterns are presented in

Table 2. Multiplicative terms in the last column give the branching order (as

the second multiplicant) and the number of points with that branching order in

the same fiber (as the first multiplicant).

Coverings with the branching patterns of Table 2 give rise to morphisms

between the corresponding (hyper)elliptic curves. For example, a pull-back

transformation ð1=2; 1=3; 1=6Þ  ð1=3; 1=3; 1=3Þ of degree 6nþ 2 implies the

polynomial identity

R3nþ1ðzÞ2 ¼ ðz� 1ÞQ2nðzÞ3 � z2PnðzÞ6ð55Þ

for some polynomials PnðzÞ, Q2nðzÞ, R3nþ1ðzÞ of degree n, 2n, 3nþ 1, respec-

tively. This gives the following morphism from E3 to E2:

ðx; yÞ 7! xyQ2nðx�3Þ
Pnðx�3Þ2

;
x3R3nþ1ðx�3Þ
Pnðx�3Þ3

 !
:ð56Þ

Conversely, a morphism (or endomorphism) between the elliptic curves relates

the holomorphic di¤erentials up to a constant multiple, and gives rise to a

Local exponent di¤erences

below above

Degree

d

Branching above

the regular singular points

ð1=2; 1=4; 1=4Þ ð1=2; 1=4; 1=4Þ 4n 2n � 2 ¼ n � 4 ¼ ðn� 1Þ � 4þ 2þ 1þ 1

ð1=2; 1=4; 1=4Þ ð1=2; 1=4; 1=4Þ 4nþ 1 2n � 2þ 1 ¼ n � 4þ 1 ¼ n � 4þ 1

ð1=2; 1=4; 1=4Þ ð1=2; 1=4; 1=4Þ 4nþ 2 ð2nþ 1Þ � 2 ¼ n � 4þ 2 ¼ n � 4þ 1þ 1

ð1=2; 1=3; 1=6Þ ð1=2; 1=3; 1=6Þ 6n 3n � 2 ¼ 2n � 3 ¼ ðn� 1Þ � 6þ 3þ 2þ 1

ð1=2; 1=3; 1=6Þ ð1=2; 1=3; 1=6Þ 6nþ 1 3n � 2þ 1 ¼ 2n � 3þ 1 ¼ n � 6þ 1

ð1=2; 1=3; 1=6Þ ð1=2; 1=3; 1=6Þ 6nþ 3 ð3nþ 1Þ � 2þ 1 ¼ ð2nþ 1Þ � 3 ¼ n � 6þ 2þ 1

ð1=2; 1=3; 1=6Þ ð1=2; 1=3; 1=6Þ 6nþ 4 ð3nþ 2Þ � 2 ¼ ð2nþ 1Þ � 3þ 1 ¼ n � 6þ 3þ 1

ð1=2; 1=3; 1=6Þ ð1=3; 1=3; 1=3Þ 6n 3n � 2 ¼ 2n � 3 ¼ ðn� 1Þ � 6þ 2þ 2þ 2

ð1=2; 1=3; 1=6Þ ð1=3; 1=3; 1=3Þ 6n 3n � 2 ¼ ð2n� 1Þ � 3þ 1þ 1þ 1 ¼ n � 6
ð1=2; 1=3; 1=6Þ ð1=3; 1=3; 1=3Þ 6nþ 2 ð3nþ 1Þ � 2 ¼ 2n � 3þ 1þ 1 ¼ n � 6þ 2

ð1=2; 1=3; 1=6Þ ð1=3; 1=3; 1=3Þ 6nþ 4 ð3nþ 2Þ � 2 ¼ ð2nþ 1Þ � 3þ 1 ¼ n � 6þ 2þ 2

ð1=2; 1=3; 1=6Þ ð2=3; 1=6; 1=6Þ 6n 3n � 2 ¼ 2n � 3 ¼ ðn� 1Þ � 6þ 4þ 1þ 1

ð1=2; 1=3; 1=6Þ ð2=3; 1=6; 1=6Þ 6nþ 2 ð3nþ 1Þ � 2 ¼ 2n � 3þ 2 ¼ n � 6þ 1þ 1

ð1=3; 1=3; 1=3Þ ð1=3; 1=3; 1=3Þ 3n n � 3 ¼ n � 3 ¼ ðn� 1Þ � 3þ 1þ 1þ 1

ð1=3; 1=3; 1=3Þ ð1=3; 1=3; 1=3Þ 3nþ 1 n � 3þ 1 ¼ n � 3þ 1 ¼ n � 3þ 1

Table 2: Transformations of hypergeometric elliptic integrals
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transformation of their integrals. If the morphism fixes the upper integration

bound y in (51), (52), (53), we get a transformation of the hypergeometric

functions as well. This correspondence is investigated thoroughly in [Vid08c].

Here we demonstrate it on several examples.

Most interesting are pull-back transformations of the three mentioned

hypergeometric equations to themselves. These transformations correspond

to isogeny endomorphisms of the elliptic curves E1, E2 or E3. The ring of

isogeny endomorphisms for E1 is isomorphic to the ring Z½i� of Gaussian

integers [Sil86]. The ring of isogeny endomorphisms for E2 or E3 is isomorphic

to the ring Z½o�, where o is a primitive cubic root of unity as in (23). Com-

position of the isogenies corresponds to multiplication in the mentioned rings

of algebraic integers. Roots of unity in both Z½i� and Z½o� correspond to

trivial transformations of hypergeometric equations. The degree of a pull-back

transformation induced by an endomorphism is equal to the C-norm of the

corresponding algebraic integer. In particular, there may be none or several

transformations for a fixed degree and branching pattern from Table 2, de-

pending on how many algebraic integers exist with that norm.

The transformations from the local exponent di¤erences ð1=2; 1=3; 1=6Þ to
the local exponent di¤erences ð1=3; 1=3; 1=3Þ or ð2=3; 1=6; 1=6Þ are compositions

of a classical quadratic transformation and the mentioned endomorphisms of

elliptic curves; see [Vid08c, Section 5]. In particular, there are actually no

transformations ð1=2; 1=3; 1=6Þ  ð1=3; 1=3; 1=3Þ of degree 6nþ 4, even if indi-

cated in Table 2, because there are no transformations ð1=2; 1=3; 1=6Þ  
ð1=2; 1=3; 1=6Þ of degree 3nþ 2.

Now we consider explicitly pull-back transformations coming from the

endomorphisms of E1. If ðx; yÞ 7! ðcx;cyÞ is an isogeny endomorphism of E1,

then the substitution x 7! cxðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 � x
p

Þ into (51) gives an integral of a

holomorphic di¤erential form again. Since the linear space of holomorphic

di¤erentials on E1 is one-dimensional, the transformed di¤erential form must

be proportional to dx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 � x
p

. The upper integration bound does not change.

Transformation of the lower integration bound gives the transformation

z 7! cxð1=
ffiffiffi
z
p
Þ�2 of the hypergeometric function into itself, up to a radical

factor. Using induction and the addition law on E1, one can prove [Vid08c,

Theorem 2.1] that cxð1=
ffiffiffi
z
p
Þ�2 is a rational function for any isogeny endo-

morphism, and that its degree is equal to the degree of the isogeny. Conversely

[Vid08c, Theorem 2.1], analysis of the first three branching patterns in Table

2 shows that any pull-back transformation ð1=2; 1=4; 1=4Þ  d ð1=2; 1=4; 1=4Þ is

induced by an endomorphism of E1.

As mentioned, the ring of isogeny endomorphisms of E1 is isomorphic

to the ring Z½i� of Gaussian integers. We identify i A Z½i� with the isogeny

ðx; yÞ 7! ð�x; iyÞ. Addition of isogenies is equivalent to the chord-and-tangent
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addition law on E1. Here are a few examples of isogenies on E1:

ðx; yÞ 7! x2 � 1

2ix
;
yðx2 þ 1Þ
2ði � 1Þx2

� �
; ðx; yÞ 7! ðx2 þ 1Þ2

4xðx2 � 1Þ ;
ðx2 þ 1Þðx4 � 6x2 þ 1Þ

8xyðx2 � 1Þ

 !
;

ðx; yÞ 7! xðx2 � 1� 2iÞ2

ðð1þ 2iÞx2 � 1Þ2
;
yðx4 þ ð2þ 8iÞx2 þ 1Þðx2 � 1� 2iÞ

ðð1þ 2iÞx2 � 1Þ3

 !
:

They correspond to the Gaussian integers 1þ i, 2, 1þ 2i, respectively. Here

below are the induced algebraic transformations of Gauss hypergeometric

functions:

2F1
1=2; 1=4

5=4

����z
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� z
p 2F1

1=2; 1=4

5=4

������ 4z

ðz� 1Þ2

 !
:ð57Þ

2F1
1=2; 1=4

5=4

����z
� �

¼
ffiffiffiffiffiffiffiffiffiffiffi
1� z
p

1þ z
2F1

1=2; 1=4

5=4

����� 16zðz� 1Þ2

ðzþ 1Þ4

 !
:ð58Þ

2F1
1=2; 1=4

5=4

����z
� �

¼ 1� z=ð1þ 2iÞ
1� ð1þ 2iÞz 2F1

1=2; 1=4

5=4

����� zðz� 1� 2iÞ4

ðð1þ 2iÞz� 1Þ4

 !
:ð59Þ

The first two identities are special cases of classical transformations. The

radical factors on a right-hand side are equal to ½cxð1=
ffiffiffi
z
p
Þ�2�1=4z�1=4 times a

constant (deducible from the value of hypergeometric series at z ¼ 0). The

transformations ð1=2; 1=4; 1=4Þ  d ð1=2; 1=4; 1=4Þ form a semi-group under com-

position, isomorphic to the multiplicative semi-group Z½i�?=ðG1;GiÞ. The

degree of these transformations is equal to the norm p2 þ q2 of a corresponding

Gaussian integer pþ qi. In particular, there are no transformations of degree

21 although Table 2 allows it, because there are no Gaussian integers with this

norm. On the other hand, there are several di¤erent transformations of degree

25, corresponding to 3G 4i or 5. One of them is the composition of (59)

with itself, the other is the composition of (59) with the complex conjugate of

itself. In fact, algebraic transformations related by the complex conjugation are

not related by fractional-linear transformations in general. The addition law on

E1 can be translated into ‘‘addition’’ of the polynomial triples determining the

branching points (of order 2 or 4) of explicit pull-back coverings for the first

three branching patterns in Table 2; see [Vid08c, Section 2].

Likewise, an isogeny endomorphism on E2 transforms the holomorphic

di¤erential form in (52) into a scalar multiple of itself, and the upper inte-

gration bound does not change. The lower integration bound changes as

z 7! cxðz�1=3Þ
�3. By induction and the addition law on E2, this is a rational

function determining a desired pull-back covering, and its degree is equal to the

degree of the isogeny [Vid08c, Section 3]. Conversely, analysis of respective
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cases of Table 2 shows that any pull-back transformation ð1=2; 1=3; 1=6Þ  d

ð1=2; 1=3; 1=6Þ is induced by an endomorphism of E2. These transformations

form a semi-group under composition, isomorphic to Z½o�?= G1;Go;Go�1
� �

.

We identify the cubic root o with the isogeny ðx; yÞ 7! ðox; yÞ. Here are

examples of explicit transformations corresponding to the algebraic integers

1� o, 3, 3þ o of Z½o�:

2F1
1=2; 1=6

7=6

����z
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z
p 2F1

1=2; 1=6

7=6

����� 27z

ð4z� 1Þ3

 !
;ð60Þ

2F1
1=2; 1=6

7=6

����z
� �

¼ 1� 4zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 96zþ 48z2 � 64z3
pð61Þ

� 2F1
1=2; 1=6

7=6

����� �729zð4z� 1Þ6

ð64z3 � 48z2 � 96z� 1Þ3

 !
;

2F1
1=2; 1=6

7=6

����z
� �

¼ 1� 4z=ð3oþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð44þ 48oÞzþ ð48oþ 16Þz2

pð62Þ

� 2F1
1=2; 1=6

7=6

����� zð4z� 3o� 1Þ6

ðð48oþ 16Þz2� ð44þ 48oÞzþ 1Þ3

 !
:

Similarly, transformations ð1=3; 1=3; 1=3Þ  d ð1=3; 1=3; 1=3Þ correspond to

the isogeny endomorphisms on E3. Recall that this elliptic curve is isomorphic

to E2. With the chosen addition law on E3 and identification of a hyper-

geometric solution as the integral in (53), the isogeny of multiplication by

�1 A Z½o� corresponds to Euler’s transformation (16). Transformations of the

hypergeometric function for (53) into itself form a semi-group (under compo-

sition) isomorphic to Z½o��= 1;o;o�1
� �

. We identify the cubic root o with the

isogeny ðx; yÞ 7! ðo�1x;o�1yÞ. Here are explicit transformations correspond-

ing to 2; 3; 3þ o A Z½o�:

2F1
1=3; 2=3

4=3

����z
� �

¼ 1� z=2

1� 2z
2F1

1=3; 2=3

4=3

����� zðz� 2Þ3

ð1� 2zÞ3

 !
;ð63Þ

2F1
1=3; 2=3

4=3

����z
� �

¼ ð1� zþ z2Þð1� zÞ1=3

1þ 3z� 6z2 þ z3
ð64Þ

� 2F1
1=3; 2=3

4=3

����� 27zðz� 1Þðz2 � zþ 1Þ3

ðz3 � 6z2 þ 3zþ 1Þ3

 !
;
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2F1
1=3; 2=3

4=3

����z
� �

¼ 1� z� z2=ð3oþ 2Þ
1þ ð3oþ 2Þz� ð3oþ 2Þz2ð65Þ

� 2F1
1=3; 2=3

4=3

����� zðz2 þ ð3oþ 2Þz� 3o� 2Þ3

ð1þ ð3oþ 2Þz� ð3oþ 2Þz2Þ3

 !
:

An explicit transformation corresponding to 1� o can be obtained from (23)

with a ¼ 1.

As mentioned, transformations from the local exponent di¤erences

ð1=2; 1=3; 1=6Þ to the local exponent di¤erences ð1=3; 1=3; 1=3Þ or ð2=3; 1=6; 1=6Þ
are compositions of a classical quadratic transformation and the mentioned

endomorphisms of elliptic curves. Correspondingly, the morphisms from E3

or the hyperelliptic curve Y 2 ¼ X 6 þ 1 to E2, that leave the infinite points

at infinity, factor via isogeny endomorphisms of E2 and the straightforward

morphisms ðx; yÞ 7! ð22=3xy; i � 2ix3Þ or ðX ;Y Þ 7! ð�X 2; iY Þ, respectively.

9. Hyperbolic hypergeometric functions

Transformations of hyperbolic hypergeometric functions are extensively

studied in [Vid05]. There are 9 non-classical transformations in this case, of

degree 6, 8, 9, 10, 12, 18 or 24.

Without loss of generality, we may assume k1 a k2 a k3 a d. Inequality

(15) together with 1=k1 þ 1=k2 þ 1=k3 < 1 already implies finitely many possi-

bilities for the tuple ðk1; k2; k3; dÞ. Indeed, inequality (15) gives a bound for d

when k1, k2, k3 are fixed; then k3 a d gives a bound for k3 when k1, k2 are

fixed, etc. But stronger inequalities and conditions follow from [Vid05, Lemma

2.2]. First of all, the transformed equation must have precisely 3 singular

points, and the covering j : P1
z ! P1

x branches only above the set f0; 1;ygHP1
z .

Then we consequently derive:

d � d

k1

� �
� d

k2

� �
� d

k3

� �
¼ 1; d 1� 1

k1
� 1

k2
� 1

k3

� �
a 1� 3

k3
;

1� 1

k1
� 1

k2

� �
k2
3 � 2k3 þ 3a 0;

2

3
a

1

k1
þ 1

k2
< 1:

With these stronger formulas we get a moderate list of possibilities after Step 2

of our classification scheme. The list of possible branching patterns after Step

3 is presented by the first three columns of Table 3. The branching patterns

are determined by the two triples of local exponent di¤erences and the principle

that each fiber of f0; 1;ygHP1
z contains maximal possible number of non-

singular points. For each branching pattern there is at most one covering.
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The coverings were computed by the algorithm in [Vid05, Section 3]; they are

characterized in the fourth column of Table 3. The last column indicates

existence of Coxeter decompositions described at the end of Section 3. The

three cases which admit a Coxeter decomposition are implied in [Hod20] and

[Beu02].

Here we give rational functions defining the indecomposable pull-back

transformations, and examples of corresponding algebraic transformations of

Gauss hypergeometric functions.
� ð1=2; 1=3; 1=7Þ  8 ð1=3; 1=3; 1=7Þ. This transformation was independ-

ently computed numerically in [AK03], and later fully presented in

[Kit03]. Let o denote a primitive cubic root of unity as in (23). The

covering and an algebraic transformation are:

j8ðxÞ ¼
xðx� 1Þð27x2 � ð723þ 1392oÞx� 496þ 696oÞ3

64ðð6oþ 3Þx� 8� 3oÞ7
;ð66Þ

2F1
2=21; 5=21

2=3

����x
� �

¼ 1� 33þ 39o

49
x

� ��1=12
2F1

1=84; 13=84

2=3

����j8ðxÞ
� �

:ð67Þ

Note that the conjugation o ¼ �1� o acts in the same way as a com-

position with fractional-linear transformation interchanging the points

x ¼ 0 and x ¼ 1. This confirms uniqueness of the covering.
� ð1=2; 1=3; 1=7Þ  9 ð1=2; 1=7; 1=7Þ. Let x denote an algebraic number satis-

fying x2 þ xþ 2 ¼ 0. The covering and an algebraic transformation are:

Local exponent di¤erences

ð1=k; 1=l; 1=mÞ above

Degree

d

Covering

composition

Coxeter

decomposition

ð1=2; 1=3; 1=7Þ ð1=3; 1=3; 1=7Þ 8 indecomposable no

ð1=2; 1=3; 1=7Þ ð1=2; 1=7; 1=7Þ 9 indecomposable no

ð1=2; 1=3; 1=7Þ ð1=3; 1=7; 2=7Þ 10 indecomposable yes

ð1=2; 1=3; 1=7Þ ð1=7; 1=7; 3=7Þ 12 no covering

ð1=2; 1=3; 1=7Þ ð1=7; 2=7; 2=7Þ 12 no covering

ð1=2; 1=3; 1=7Þ ð1=3; 1=7; 1=7Þ 16 no covering

ð1=2; 1=3; 1=7Þ ð1=7; 1=7; 2=7Þ 18 2� 9 no

ð1=2; 1=3; 1=7Þ ð1=7; 1=7; 1=7Þ 24 3� 8 yes

ð1=2; 1=3; 1=8Þ ð1=3; 1=8; 1=8Þ 10 indecomposable no

ð1=2; 1=3; 1=8Þ ð1=4; 1=8; 1=8Þ 12 2� 2� 3 yes

ð1=2; 1=3; 1=9Þ ð1=9; 1=9; 1=9Þ 12 3� 4 no

ð1=2; 1=4; 1=5Þ ð1=4; 1=4; 1=5Þ 6 indecomposable no

ð1=2; 1=4; 1=5Þ ð1=5; 1=5; 1=5Þ 8 no covering

Table 3: Transformations of hyperbolic hypergeometric functions
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j9ðxÞ ¼
27xðx� 1Þð49x� 31� 13xÞ7

49ð7203x3 þ ð9947x� 5831Þx2 � ð9947xþ 2009Þxþ 275� 87xÞ3
;ð68Þ

2F1
3=28; 17=28

6=7

����x
� �

ð69Þ

¼ 1þ 7ð10� 29xÞ
8

x� 343ð50� 29xÞ
512

x2 þ 1029ð362þ 87xÞ
16384

x3

� ��1=28

� 2F1
1=84; 29=84

6=7

����j9ðxÞ
� �

:

� ð1=2; 1=3; 1=7Þ  10 ð1=3; 1=7; 2=7Þ. This transformation was indepen-

dently computed in [Kit03] as well. The covering and an algebraic

transformation are:

j10ðxÞ ¼ �
x2ðx� 1Þð49x� 81Þ7

4ð16807x3 � 9261x2 � 13851xþ 6561Þ3
;ð70Þ

2F1
5=42; 19=42

5=7

����x
� �

¼ 1� 19

9
x� 343

243
x2 þ 16807

6561
x3

� ��1=28
ð71Þ

� 2F1
1=84; 29=84

6=7

����j10ðxÞ
� �

:

� ð1=2; 1=3; 1=8Þ  10 ð1=3; 1=8; 1=8Þ. Let b denote an algebraic number

satisfying b2 þ 2 ¼ 0. The covering and an algebraic transformation are:

~jj10ðxÞ ¼
4xðx� 1Þð8bxþ 7� 4bÞ8

ð2048bx3 � 3072bx2 � 3264x2 þ 912bxþ 3264xþ 56b � 17Þ3
;ð72Þ

2F1
5=24; 13=24

7=8

����x
� �

ð73Þ

¼ 1þ 16ð4� 17bÞ
9

x� 64ð167� 136bÞ
243

x2 þ 2048ð112� 17bÞ
6561

x3

� ��1=16

� 2F1
1=48; 17=48

7=8

����~jj10ðxÞ
� �

:

� ð1=2; 1=4; 1=5Þ  6 ð1=4; 1=4; 1=5Þ. The covering and an algebraic trans-

formation are:

j6ðxÞ ¼
4ixðx� 1Þð4x� 2� 11iÞ4

ð8x� 4þ 3iÞ5
;ð74Þ
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2F1
3=20; 7=20

3=4

����x
� �

¼ 1� 8ð4þ 3iÞ
25

x

� ��1=8
2F1

1=40; 9=40
3=4

����j6ðxÞ
� �

:ð75Þ

The composite transformations can be schematically represented similarly as in

Section 4:

ð1=2; 1=3; 1=7Þ  9 ð1=2; 1=7; 1=7Þ  2 ð1=7; 1=7; 2=7Þ;

ð1=2; 1=3; 1=7Þ  8 ð1=3; 1=3; 1=7Þ  3 ð1=7; 1=7; 1=7Þ;

ð1=2; 1=3; 1=8Þ  3 ð1=2; 1=4; 1=8Þ  2 ð1=2; 1=8; 1=8Þ  2 ð1=4; 1=8; 1=8Þ;

ð1=2; 1=3; 1=9Þ  4 ð1=3; 1=3; 1=9Þ  3 ð1=9; 1=9; 1=9Þ:

Note that the transformation of degree 24 admits a Coxeter decomposition,

although it is a composition of two transformations without a Coxeter de-

composition. Here is an explicit algebraic transformation of degree 24:

2F1
2=7; 3=7

6=7

����x
� �

ð76Þ

¼ ð1� 235xþ 1430x2 � 1695x3 þ 270x4 þ 229x5 þ x6Þ�1=28

� ð1� xþ x2Þ�1=28 2F1
1=84; 29=84

6=7

����j24ðxÞ
� �

;

where

j24ðxÞ ¼
1728xðx� 1Þðx3 � 8x2 þ 5xþ 1Þ7

ðx2 � xþ 1Þ3ðx6 þ 229x5 þ 270x4 � 1695x3 þ 1430x2 � 235xþ 1Þ3
:
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Birkhäusen, The Benjamin/Cummings Publishing Company, Inc., Boston, 1986.

[Har77] Hartshorne, R., Algebraic Geometry, Springer Verlag, New York, 1977.

[Hod18] Hodgkinson, J., An application of conformal representation to certain hypergeometric

series, Proc. London Math. Soc., 17 (1918), 17–24.

[Hod20] Hodgkinson, J., A detail in conformal representation, Proc. London Math. Soc., 18

(1920), 268–273.

[Kat96] Katz, Nicholas M., Rigid local systems, Princeton Univ. Press. The Benjamin/

Cummings Publishing Company, Inc., Princeton, 1996.

[Kat08] Kato, M., Algebraic transformations of 3F2, Funkcial. Ekvac., 51 (2008), 221–243.

[Kit03] Kitaev, A. V., Dessins d’enfants, their deformations and algebraic the sixth Painlevé
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