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1. Introduction

This paper is devoted to the study of existence of mild solutions for initial
value problems described as an implicit second order abstract differential
equations with nonlocal conditions. Specifically, we are concerned with prob-
lems that can be modeled as an abstract Cauchy problem on a Banach space X
of the form

(1.1) %(X'(f) = g(t,x(1), X' (1)) = Ax()) + f(1,x(1), X' (1), 1€l

(1.2) ¥(0) = %0 + p(x, x'),
(1.3) ¥(0) = yo + q(x,x"),

where A is the infinitesimal generator of a strongly continuous cosine function
of bounded linear operators on X, I can be the interval [0,a] or the unbounded
interval [0,0), ¢(-), /() : I x X2 — X, and p(-),q(): C(I1,X)* — X are ap-
propriate functions.

System (1.1)—(1.3) is simultaneously a generalization of the classical second
order abstract Cauchy problem, and a generalization of some systems studied

* Supported in part by FONDECYT, under Grants 7020259 and 1050314.



114 Eduardo HERNANDEZ M. and Hernidn R. HENRIQUEZ

recently by Stanék in [14, 15, 16, 17]. In these works, Stanék studied different
problems related to the existence of solutions for a class of second order
functional differential equations modeled of the form

(14)  ("(0) +g(t,x(1),x(1)" = f(t,x(1),x"(1)), ~ tel=[0,T],
(1.5) r(x(0), x'(0), x(T)) = p(x),
(1.6) @ (x(0),x(T), x'(T)) = (),

where r,w: R* = R, f(:),9(-): I xR> > R, ¢,y : C°(I,R) — R are appropri-
ate functions, and C°(/,R) denotes an adequate subspace of the space of
continuous functions C(I,R). It is important to observe that the problem
(1.4)—(1.6) does not include partial evolution equations. This fact is the main
motivation of this paper.

Throughout this work, 4 denotes the infinitesimal generator of a strongly
continuous cosine function C(z) of bounded linear operators on X and S(¢) is
the sine function associated with C(¢), which is defined by S(¢)x = [Ot C(s)x ds,
xe X, te R. We refer the reader to [2] for the basic concepts about cosine
functions. We next only mention a few properties and notations needed to
establish our results. We represent by [D(A4)] the domain of 4 endowed with
the graph norm |x||, = ||x|| + |[|4x||, xe€ D(4). Moreover, the notation E
stands for the space consisting of vectors x € X for which the function C(-)x
is of class C!. It was proved by Kisinsky [7] that E endowed with the norm

xlly = lIxll + sup [[AS()x]l,  xekE,
0<r<l1

is a Banach space. The operator valued function

cw S
Gl = {Asm cm}

is a strongly continuous group of bounded linear operators on the space E x X,
generated by the operator
0 I
=13 o]

A 0

defined on D(A4) x E. It follows from this property that AS(¢): E — X is a
bounded linear operator, and that AS(f)x — 0, t — 0, for each xe E. Fur-
thermore, if x:[0,00) — X is a locally integrable function, then y(f) =
f(; S(t — 5)x(s)ds defines an E-valued continuous function.

Some important properties of the second order abstract Cauchy problem
were studied in Travis and Webb [18, 19]. Specifically, the existence of
solutions for the second order abstract Cauchy problem
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(1.7) x" (1) = Ax(t) + h(1), 0<t<a,
(1.8) x(0) =x0,  x'(0) = yo,

where /4 : [0,a] — X is an integrable function, was discussed in [18]. Similarly,
the existence of solutions for the semilinear second order abstract Cauchy
problem was considered in [19]. We only mention here that the function x(-)
given by

(1.9) x(t) = C(t)xo + S(t) yo + J; S(t — s)h(s)ds, 0<t<a,

is called mild solution of (1.7)—(1.8). Moreover, when x( € E, the function x(-)
is continuously differentiable and

t

xX'(t) = AS(t)xo + C(t) yo + Jo C(t — s)h(s)ds.

This paper has four sections. In section 2, we discuss the existence of mild
solutions for some partial second order differential problems with nonlocal
conditions in bounded intervals. In section 3, we are concerned with the
existence of global and almost-periodic solutions in the interval [0, 00). In the
last section, we apply our results to study a pair of concrete situations.

The terminology and notations are those generally used in functional
analysis. In particular, if (Y,]| -|y) and (Z,| -||,) are Banach spaces, we
denote by #(Y,Z) the Banach space of the bounded linear operators from Y
into Z and, we abbreviate this notation to #(Y) whenever Z =Y. Through-
out this paper, B,(z,Z) denotes the closed ball with center at z and radius r > 0
in the space Z. Additionally, for a bounded function ¢:[0,d] — [0, 00) and
0 <t<a, we will use the notation &, = sup{&(s) : s € [0,7]}.

To complete these remarks, we mention that most of our proofs are based
on the following well known result ([3, Theorem 6.5.4]).

Lemma 1.1. Let D be a closed convex subset of a Banach space X such
that 0e D. Let F:D — D be a completely continuous map. Then the set
{xeD:x=7F(x),0 < 1< 1} is unbounded or the map F has a fixed point in D.

2. Existence of mild solutions

In this section we are concerned with initial value problems defined on a
bounded interval 7 = [0,a]. We denote by N > 1 and N > 0 certain constants
such that ||C(7)|| < N and ||S(¢)|| < N for every tel. Furthermore, we rep-
resent by Nj = supy.,,[|4S()||, when A4S(f) is considered as an operator in
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the space Z(E,X). As usual, we write C(I,X) for the space of continuous
functions from 7 into X endowed with the norm of uniform convergence.
We begin by studying the initial value problem

@) L0 — gt 0] = Ax(0) + [x(0), e,
22) X(0) = 30+ p()
23) ¥(0) = o+ 4(x).

where xg, o€ X and p(-),q(-): C(I,X) — X are continuous functions that
take closed bounded sets into bounded sets. We set N,(r) = sup{|p(x)| :
xe C(I,X),[lx] < r} and Ny(r) = sup{[lg(x)] : x € C([, X), [|x]| < r}.
We assume that f and g fulfill the following general properties.
(H-1) The functions f,g:I x X — X satisfy the Carathéodory conditions:
(i) f(¢,-),9(t,) : X — X are continuous a.e. t€l.
(i) For each xe X the functions f(-,x),g(-,x):1— X are
strongly measurable.
(H-2) There exist integrable functions miy,m, : I — [0, c0) and there exist
continuous nondecreasing functions Wy, W, : [0, 0) — (0, c0) such
that

LF @ < me()Wr(lixl),  (1x) eI x X,
lg(t, )l < my(OW,(llx]),  (6,x) el xX.

We next abbreviate the exposition by writing W = max{ W, W,}.

When p(-) is bounded on C(I,X), we denote N, =sup{|p(x)|:
xe C(I,X)}. Similarly, when ¢(-) is bounded on C(I,X) we set N, =
sup{|l¢(x)|| : xe C(I,X)}. In the case both p(-) as ¢(-) are bounded, we
denote

(2.4) ¢ = N(|lxoll + Np) + N(|lyoll + Ng + o),

where ¢o = sup{[|g(0, y)[| : [[¥]| < l[xoll + N, }-
By comparing with the expression (1.9), we introduce the following concept
of mild solution.

Definition 2.1. A continuous function x:/ — X is said to be a mild
solution of the problem (2.1)—(2.3) if the integral equation

x(1) = C(1)(xo + p(x)) + S(0)[yo = 9(0,x(0)) + ¢(x)]

—i-J C(t—s)g(s,x(s))ds-i—J S(t—s)f(s,x(s))ds, tel,
0 0

is verified.
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We are now in a position to establish our first result of existence.

Theorem 2.1. Assume that conditions (H-1) and (H-2) are verified and that

a ~ o0 ds
2.5 J Nmy(s) + Nmy(s ds<J —.
23) (my(5) + Mmy()ds < | 550
Suppose, furthermore, that the following conditions hold.
(a) For every t>0 and r >0, the sets U(t,r) ={S(?)f(s,x):s€0,d],
Ix|| <r} and Ui(t,r) ={g(s,x) : s€0,4], ||x|]| < r} are relatively com-
pact in X.
(b) The function p(-) is bounded and completely continuous.
(c) The function q(-) is bounded and for every t € I and every r > 0 the set
V(t,r) ={S(t)q(x) : ||x|| < r} is relatively compact in X.
Then there exists a mild solution of problem (2.1)—(2.3).
Proof. We define the map I': C({,X) — C(I,X) by
(2.6) I'x(1) = C(1)(x0 + p(x)) + (1) [yo + q(x) — 9(0, x(0))]
t t
+ J C(t — 5)g(s, x(s))ds + J S(t—s5)f (s, x(s))ds
0 0

for tel. Clearly I" is well defined and a standard application of the Lebesgue
dominated convergence theorem allows us to assert that I is continuous.

In order to use Lemma 1.1, we obtain an a priori bound for the solutions
of the integral equation x = AI'(x), A€ (0,1). Let x* € C(I,X) be a solution of
x* = AI(x*), 2€(0,1). Using the previous notations, we get

A (D1 < N(|Ixoll + Np) + N([[ o]l + Ny + 190, x*(0))])

T j;<ng<s> T Ny (5)) W (| s) ) s

Denoting by f,(¢) the right hand side of the last inequality, we get that
Bi(6) < (Nmg(0) + Nomy (1)) W (B,(1)).
In view of that x*(0) = AI'(x*)(0) = A(xo + p(x*)), we have that
190, x*(O) | < sup{[lg(0, »)[| = ¥l < [|xo]l + N}

and f,(0) <c¢. This yields that

J/f;.(f) ds Jﬁ;.(t) ds

e < [ o)+ omy)as < |

0
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If we suppose that the set {f, : 1€ (0,1)} is not bounded, from the preceding
estimate we get

“ ds

J% i) < Ja(ng(s) + Nmy(s))ds < JC )

c W(S 0
which is a contradiction. Consequently, {f,: 1€ (0,1)} is a bounded set and,
as an immediate consequence, we infer that {x*:Aie (0,1)} is bounded in
C(L,X).

In what follows, we prove that I” is completely continuous. To this end,
we introduce the decomposition I" = I'} + I, where

Iu(t) = C(O)(xo + p(u) + S(O)[yo + q() — g(0,u(0))], €,

t t

C(t—s)g(s,u(s))ds+J S(t—s5)f(s,u(s))ds, tel.
0

QW”ZJ
0
It is easy to see that our hypotheses imply that I} is completely continuous.
We will next prove that I, takes bounded sets into relatively compact
ones. To abbreviate our notations, we set B, = B,(0, C(I, X)).

Initially we shall show that the set I',B, = {I>x : x € B,} is equicontinuous
on I. For fixed el and ¢ >0, since C(-) is strongly continuous, from the
condition (a) we obtain that there is 0 > 0 such that

[(C(t+h—=s) = Clt=5))g(s,x(s))]| <&, xe€B,se(0,4,

when |h| <J. Furthermore, since the sine function verifies the Lipschitz condi-
tion ||S(#1) — S(&)|| < N|t; — 12|, for x e B, and |h| <o with t+hel, we can
estimate

|1 2x(t + h) — I'ax(2)]|

t+h

< L I(Clt+h—s) — Ct - s))g(s,x<s>>||ds+zvj lg(s, x(5)) s

t

t+h

" j 1S(t+h — ) — S(t — )| 1f (5. x(5))llds + Nj 175, x(s))llds

t

t+h t

w%@+mMm¢+mmeW@@

<et+ W(r)J .

t
which establishes the assertion.

We next prove that I'»B,(t) = {I'>x(¢) : x€ B,} is a relatively compact
set in X for every rel. For fixed tel and ¢>0, since U(t,r) is a
relatively compact set and C(-) is strongly continuous, we have that U,(t,r) =
{C(t - 5)g(s,x(5)) : 0 < s < 1,x € B,} is relatively compact. On the other hand,
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using again the already mentioned Lipschitz continuity of S(-), we can choose
0 >0 and a partition of [0,7] into points 0 =53 < s < --- < s =1 such that
Sir] — 8 <0 and

k=1 rsip t
ZJ [S(s) — S(s)lf(t — 5,x(t — 5))ds|| <OINW;(r) Jomf(s)ds

i=1 Jsi

<e.

Collecting these remarks and applying the mean value theorem for the Bochner
integral ([9]), we get

t k=1 rsip
IHx(t) = J C(t—s5)g(s, x(s))ds + ZJ S(si) f(t —s,x(t —5))ds

0 i—1 Jsi

k-1 Si+1
+ ZJ (S(s) — S(s))f(t — s, x(t — 5))ds
i=1 Jsi
€ teo(Us(t,1)) + Z(SH,] —s;)co(U(t,si,1)) + B:(0, X),
i1

where co is used to denote the convex hull of a set. Consequently, I»B,(¢) is a
totally bounded set, and hence I,B,(f) is relatively compact in X.

From the Ascoli-Arzela theorem, we infer that I, B, is relatively compact in
C(I,X), which completes the proof that I' is completely continuous.

Finally, employing Lemma 1.1 we conclude that I" has a fixed point in
C(I,X) which is a mild solution of (2.1)—(2.3). O

In most of situations of practical interest the sine function is compact.
This is the motivation for the next result.

Corollary 2.1.  Assume that (H-1) and (H-2) are satisfied, the operator S(t)

is compact for all te R, and that the following conditions are fulfilled.

(a) The function f takes bounded closed sets into bounded sets and for
all 0 <t <aandr>0 the set Ui(t,r) ={g(s,x):s€[0,1],||x]| <r} is
relatively compact in X.

(b) The function p(-), q(-) are bounded and p(-) is completely continuous.

If inequality (2.5) holds, then there exists a mild solution of problem (2.1)—(2.3).

In the next result we remove the conditions that p(-) and ¢(-) are bounded
maps and that p(-) is completely continuous.

Theorem 2.2. Assume that (H-1) and (H-2) hold and that the following
conditions are fulfilled.
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(a) For every 0<t and r>0 the set U(t,r)={S(t)f(s,x):5€]0,d],
Ix|| < r} is relatively compact.
(b) There exist positive constants L, and L, such that
||g(l,X1) - g(l,)Q)” < L{JH'xl - sza le Ia X1, X2 € X7
[p(x) =Wl < Lpllx = yll, x,pe CU, X).

(c) For every tel and every r > 0 the set V(t,r) = {S(t)q(x) : ||x|| < r} is
relatively compact in X.
If, in further,

N(Lga—l—L,,)—f—N( +11m1nf r”)—&—thmf f()J my(s)ds < 1,
0

r—+0o0 r—+0
then there exists a mild solution of problem (2.1)—(2.3).

Proof. Let I' be the map defined by (2.6). Arguing as in the proof of
Theorem 2.1, it is easy to see that the map I" is well defined and continuous.
We affirm that there exists r > 0 such that I'(B,) = B,. In fact, if we assume
that the assertion is false, for each r >0 there exists x" € B, such that
|II'x"||, > r, which implies that

r<|1Ix",

< N([lxoll + Lpr + [1p(0))) + N (|l voll + Ny(r) + Lgr + [19(0,0)]])

a

+N {Lgar + J llg(s, O)||ds} + NWf(r) J my(s)ds.
0 0
Hence, this yields

1 < N(L,+ Lya) +N( +hm1nf r( )> + N liminf r(r)J my(s)ds,

r—+o 0

which is an absurd. We now consider the decomposition I" = I'} + I'», where

t

I'ix(1) = C(1)(x0 + p(x)) — S(1)g(0, x(0)) + L C(r = 5)g(s, x(5))ds,

t

Fax(t) = SO +q(x)) + j S(t - 5)f (5, x(s))ds,

0

for tel.

Let o > 0 be a constant such that I'(B,,) < B,,. Arguing as in the proof
of Theorem 2.1, we can establish that /7, is a completely continuous map. In
addition, the estimate

17 = Tholl, < (N(Lp + Lya) + NLy)||u = v,



Second Order Differential Equations 121

yields that 1"y is a contraction. Thus, /" is a condensing map on B,, and by the
Sadovskii fixed point Theorem ([13]), we derive the existence of a mild solution
of problem (2.1)—(2.3). O

We next discuss the existence of solutions for the abstract Cauchy problem
(1.1)-(1.3). Since the results are similar to those established in the first part of
this section, we will only mention the main ideas of the proofs. To study this
problem, we introduce the following technical assumptions.

(H-3) The function f:7x X x X — X satisfies the Carathéodory con-

ditions:

(i) The function f(z,-): X x X — X is continuous a.e. € I.

(ii) For each (x,y)e X x X, the function f(-,x,y):1— X is
strongly measurable.

(iii) There exists an integrable function my: 1 — [0,00) and a
continuous nondecreasing function W : [0,00) — (0, 00) such
that

£ x < me(OWy(lixll+ I, (Gx, ) el x X x X

(H-4) The function g : I x X x X — X is continuous, E-valued and verifies
the Carathéodory conditions:
(i) The function ¢(¢,-) : X x X — E is continuous a.e. f € [.
(ii) For each x,ye X the function ¢(-,x,y):I — E is strongly
measurable.
(iii) There exists an integrable function 7, : I — [0, c0) and a con-
tinuous nondecreasing function W, : [0, ) — (0, c0) such that

lg(z, x, )l < mgOWy(lIx| + I, (r,x,9) eI x X x X.

(H-5) The functions xo + p(-) : C(I, X)*> — E and ¢(-) : C(I,X)* — X are
continuous and take bounded closed sets into bounded sets.

Proceeding as before, we set
Np(r) = sup{[lxo + p(x, p)ll; = x, y € (LX), |Ix[| + Iyl < r}

and N, (r) =sup{|lg(x, »)|| : x,y e C(I,X),||x|| + ||| <r}. In the case that
p(+), respectively ¢(-), is a bounded map we denote by N,, respectively N,
an upper bound of |xo+ p(-)||; and ||q(-)||, respectively.

In the statements that follow, we use the notations B, = {(x, y) € C(I,X)* :
Il + 11l <} and W = max{ W}, W,}.

We include for completeness the following result which will be frequently
used afterwards. For a proof see [5, Lemma 1.1].
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Lemma 2.1. Let h:[0,a] — E be an integrable and continuous function
for the norm of X. Then the function v given by v(t) = f(; C(t— s)h(s)ds is
continuously differentiable, s — AS(t — s)h(s) is integrable on [0,1] and

t t

v'(t) = h(t)+ A Jo S(t— $)h(s)ds = h(t) + JO AS(t — s)h(s)ds.

We consider the following concept of mild solution.

Definition 2.2. A continuously differentiable function x: /7 — X is said to
be a mild solution of problem (1.1)—(1.3) if the integral equation

(2.7)  x(1) = C(O)(x0 + p(x,x")) + S(B)[yo — 9(0,x(0), x'(0)) + ¢ (x, x")]

n J C(1 — $)g(s. x(s),x'(s))ds

1s verified.

Related to this definition, it is worthwhile to point out that if u(-) is a mild
solution of problem (1.1)—(1.3) and conditions (H-4), (H-5) hold, then by the
properties of second-order abstract Cauchy problem mentioned in the Intro-
duction, and Lemma 2.1 we know that

x'(1) = AS(1)(x0 + p(x,x")) + C(1)[yo — 9(0,x(0), x"(0)) + q(x, x")]

+ g(t,x(2), x'(2)) + Jo AS(t — 5)g(s,x(s), x'(s))ds

t
+J C(t—5)f(s,x(s), x"(s))ds, tel.
0

Proceeding as before, we can establish the following results of existence.
We omit the proof for the sake of brevity.

Theorem 2.3. Assume that properties (H-3), (H-4), (H-5) are satisfied and
that the following conditions hold:
(a) For each r >0, U(r) = f(I x B,) is a relatively compact set in X and
Ui(r) =g(I x B,) is a relatively compact set in E.
(b) The functions xo + p(-) and q(-) are completely continuous with values
in E and X, respectively.
(c) There exists a constant Ly >0 such that

lg(z; 1, y1) = g(t, 32, 2) || < Ly(llx1 = xal| + [ly1 = »2l])-
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If, in further,

4+ W) timinf 220 4 (v 1 F) liming Yol

r—+00 r r—+o0 r

+(N+aN+N+1)L,

+ lim inf W)

r—+o0 r

J:[Nlﬂzg(s) + (N + N)my(s)]ds < 1,

then there exists a mild solution of problem (1.1)—(1.3).

We can establish a similar result using Lipschitz conditions instead of
compactness in the space E.

Theorem 2.4. Assume that properties (H-3), (H-4), (H-5) are satisfied and
that the following conditions hold.

(a) For each r>0, U(r) = f(I x B,) is a relatively compact set in X.

(b) The function q(-) is completely continuous with values in X.

(c¢) There is a constant L, >0 such that

lg(2, x1, 91) = g(t, x2, )l < Ly([lx1 = xaf| + [[y1 = »2[]),

Sfor all x1,x2,y1,y2 € X.
(d) There exists a constant L, >0 such that

[ p(ur,01) — p(uz, v2) |} < Lp(|lur — w2l + [[o1 — v2)),

for all uyj,ux,v1,v0 € C(I, X).
If, in further,

5 ./ - N
(Ni+N)L, + (N +N) liminf ﬂJr(NJraNl +(a+1)N+1)L,

r—+0o0 r
I /4 a
+(N+N) hmﬁnf ’;(V)J my(s)ds < 1,
F—+00 0

then there exists a mild solution of problem (1.1)—(1.3).

3. Global solutions

In this section, we discuss the existence of global and asymptotically almost
periodic mild solutions for the nonlocal problem (2.1)—(2.3). For this reason,
we modify our previous notations. In what follows, I represent the interval
[0,00), and we assume that C(z) and S(7) are uniformly bounded on 7. We
denote by N and N positive constants such that ||C(¢)|| < N and ||S(7)|| < N,
for all > 0. The conditions (H-1) and (H-2) are referred to this interval I
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and, we assume that the functions my, m, are only locally integrable. Fur-
thermore, we abbreviate the exposition by writing W = max{W;, W,} and
m = max{my,my}. Similarly, a function x : I — X is said to be a mild solution
of problem (2.1)—(2.3) if it verifies the Definition 2.1. We begin by studying the
existence of global solutions.

3.1. Existence of solutions on [0, c0)

We next study the existence of mild solutions in the space of continuous
functions with weight. Let /:[0,00) — (0,00) be a continuous nondecreasing
function such that #(0) = 1 and A(7) — oo, as t — co. In what follows C}(X)
denotes the space of all continuous functions x:[0,00) — X such that
h(t)"'||x(1)|| — 0, 1 — oo, endowed with the norm ||x||, = sup, A(z)""[|x(2)],
and Cy(X) denotes the space consisting of continuous functions x : [0, 0) — X
that vanish at infinity endowed with the norm of the uniform convergence. In
this subsection we assume that the functions p(-),¢("): C}(X) — X are con-
tinuous and bounded. We use the notations N, = sup{||p(x)||: xe C}(X)},
N, = sup{||¢(x)|| : x € C(X)}, and the constant ¢ has the expression introduced
in (2.4).

The following property is well known, we include it here for future
reference.

Lemma 3.1. A4 set W < Cy(X) is relatively compact if and only if W is
equicontinuous, the functions x(t) — 0, t — oo, uniformly for xe€ W, and the
orbits W (t) are relatively compact in X for all t > 0.

In the next statement, we denote by y : [0, 00) — [0, c0) the function defined
by y(s) = Nmy(s) + Nmy(s).

Theorem 3.1. Assume that conditions (H-1) and (H-2) hold, and that

1 (!
liminf — — h(s))ds < 1.
i s gy o<

Suppose further that the following conditions are fulfilled.
(a) For each tel, t' <t and r=0, {S(&')f(s,x):0<s<¢|x|| <r} and
{g(s,x): 0 <s <t |x|| <r} are relatively compact sets in X.
(b)  The functions p(-), q(-) are bounded and p(-),S(1)q(-) : C(X) — X are
completely continuous, for each t > 0.
(¢) For every L>0, h(r)™ Jom(s)W (Lh(s))ds — 0, as t — oo.
Then there exists a mild solution x(-) € C)(X) of problem (2.1)-(2.3).



Second Order Differential Equations 125

Proof. For each x e C)(X), we define I'x(7) by means of (2.6). Clearly
I'(x) is a continuous function. Moreover,

(3.1 (@] < Nllxoll + L)l + N(lLyoll + g1l + [lg(0, x(0)])

~

+ | [Nmy(s) + Nong ()] W (|1 x(s) )l

(=]

Since ||x(s)| < ||x||,/~(s) the above expression yields that

I1rx@l _ N

(3:2) 0 h(t)(\IXO||+||p( ) + ()(||y0||+\|9( )|+ 119 (0, x(0))[1)

t
7 9+ N () L)l
and applying condition (c), it follows that A(¢)"'||I'x(7)|| converges to zero as
t — oo. This shows that I" is a well defined map from CP(X) into C(X).
The inequality (3.2) also shows that /(¢)~"||I'x(¢)|| — 0 as ¢ — oo, uniformly for
x in a bounded subset of C,? (X). Using this property we can easily show that
I’ is continuous.

On the other hand, if x; € CP(X) is a solution of the equation AI'(x;) = x;,
for 0 < 2 <1, we find that ||x;(0)|| < [|[I'(x2)(0)|| < N(||xo|| + Np»). Therefore,
it follows from (3.1) that

a0 < e [ 766 W (i) s,

ﬂmmﬂmm@w

and
1 t
Hmmﬁ%ww—JWWWWMWW-
>0 h(t) 0

If we assume that the set {||x,||,:0 <A< 1} is unbounded, taking r = ||x;]|,,
we obtain that

1< liminf sup h(l)Jty(s) W (rh(s))ds,

=0 T >0

which is an absurd. Consequently, we conclude that {|x;][,:0 <A< 1} is a
bounded set.
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On the other hand, if B, = B,(0, C,?(X)), for r > 0, it is not difficult to see
that the set {#~'I'x : x € B,} fulfills the conditions of Lemma 3.1, which implies
that this set is relatively compact in Cy(X) and, consequently I'(B,) is relatively
compact in C,?(X ). Finally, applying Lemma 1.1 we get the existence of a mild
solution of problem (2.1)—(2.3). O

3.2. Existence of asymptotically almost periodic solutions

We now study the existence of asymptotically almost periodic (a.a.p)
solutions of (2.1)—(2.3). For the basic concepts about almost periodic (a.p.)
and asymptotically almost periodic functions we refer to [21]. Furthermore, the
reader can consult [6, 11, 12] for recent developments about the existence of
almost periodic and asymptotically almost periodic solutions, and the extension
to the admissibility of functions spaces, of the abstract Cauchy problem. In
what follows, we denote by C,(X) the space consisting of bounded continuous
functions from [0, c0) into X endowed with the norm of uniform convergence,
and the notation AP(X) (resp. AAP(X)) stands for the subspace of C,(X)
formed by the functions x:[0,00) — X which are a.p. (resp. a.a.p.) with
the norm inherits from Cp(X). Moreover, a strongly continuous function
F:[0,00) - #(X,Y) is said (strongly) a.p. if for each xe X the function
F()x:[0,00) = Y is a.p. We refer to [1] for the characterization of almost
periodic cosine functions and to [4] for similar results for almost periodic sine
functions. Our results will be based on some well known criteria of compact-
ness in AP(X) and A4AP(X) ([21]). In particular, it follows from [21, Theorem
6.3] that if F:[0,00) - £ (X,7Y) is a.p. and U is a relatively compact subset
of X, then V ={F(:)x:xe U} is relatively compact in AP(Y). We can
strengthen this property for the sine function.

Proposition 3.1. Assume that S(-) is almost periodic and that U = X. If
the set {S(t)x : x € U,t > 0} is relatively compact in X, then V ={S(-)x : xe U}
is relatively compact in AP(X).

Proof. Let us fix § > 0. Since S(O)U is relatively compact in X, by the
previous remark we can affirm that the set Vs = {S(:)S(0)x : x € U} is relatively
compact in AP(X). On the other hand, for each ¢ > 0 there is J > 0 such that
II(I — C(s))S(t)x]| <, for all 0 <s<0d, xe U and all £ >0. It follows from
this estimate that

- Hlf(l — C(s))S(t)xds|| < .

9 Jo




Second Order Differential Equations 127

Combining this property with the decomposition

1 1
S(t)x = SS(I)S(é)x + S(t)x — ES(I)S(é)x,
we get that ¥ <0 'Vs+ B,(0,Cy(X)), which readily implies that ¥V is a
relatively compact set. O

The condition about the compactness of {S(¢#)x:xe U,t > 0} considered
in the previous proposition is verified in several situations. We begin with a
definition. The function S(-) is said uniformly almost periodic if S : [0, 0) —
Z(X) is almost periodic for the norm of operators.

Remark 3.1.  Assume that S(-) is almost periodic and that U is a bounded
subset of X. If one of the following conditions hold:

(i) U is relatively compact.

(i) S(-) is uniformly almost periodic and S(#) is compact for all ¢ € R,
then {S(¢)x:xe U,t>0} is relatively compact.

By the results of Lutz [8] the case (ii) includes the periodic sine functions.

On the other hand, for each function f e AAP(X) there are uniquely
determined functions f; € AP(X) and f; € Co(X) such that f = fi + fo. Let
V = AAP(X) and denote V; ={f;: fe V},i=1,2. Ttis easy to see that V is
relatively compact in A4P(X) if and only if V] is relatively compact in 4P(X)
and V; is relatively compact in Cyp(X). Combining this property with Lemma
3.1 and [21, Theorem 6.3] the following criterion is obtained.

Lemma 3.2. Let V < AAP(X) be a set with the following properties:

(@) V is uniformly equicontinuous on [0, o).

(b) V is equi-asymptotically almost periodic. That is, for every ¢ > 0 there
are T, >0 and a relatively dense set P, = [0,00) such that

[Ix(z 4+ 7) — x(0)|| <e, xeV,t=T,teP,

(c) For each t >0, V(t) is relatively compact in X.
Then V is a relatively compact set in AAP(X).

We will use repeatedly the following property, which is a direct consequence
of Lemma 3.1 and the mean value theorem for the Bochner integral ([9]).

Proposition 3.2. Let Z;, i=1,2, be Banach spaces and let V <
LY0,0),2Z)). If Fi:[0,0) = L(Z1,Zy) and F:[0,00) — £(Z2,2Z,) are
strongly continuous functions that satisfy the following conditions:

(@) [, Fi(s)x(s)ds — 0 in Z when L — oo, uniformly for xe V.

(b) For each t >0, {x(s): xe V,0<s <t} is a relatively compact set in

Z,
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then W (t) = {fo Fi(s)x(s)ds:xe V}, t=0, and W =\],_,_, W(t) are rela-
tively compact sets in 22 Furthermore, if F5 is uniformly bounded on [0, c0) and
jﬁh Fi(s)x(s)ds — 0, when h — 0, uniformly for xeV, then U= {z,:x€e V},
where zy(t) = F>(1) [ Fi(s)x(s)ds, is a relatively compact set in Co(Z>).

Let x:[0,00) — X be a locally integrable function. In the next results we
denote by Zy, x ¢ [0, oo) — X the functions defined by z,(t) = [; C(t — s)x(s)ds
and y.(1) = [, S(t — s)x(s)ds, t > 0.

Corollary 3.1. Assume that the sine function S(-) is almost periodic and
Ve 2Y[0,0),X) is a set with the following properties:

(@) [} llx(s)||lds — O when L — oo, uniformly for xe V.

(b) tﬂ [x(&)||dE — 0, when s — 0, uniformly for xeV and t > 0.

(c) For each t >0, {x(s):0<s<t,xeV} is a relatively compact set.
Then {yy:xeV} and {z\: x € V} are relatively compact sets in AAP(X).

Proof. 1t follows from [4, Corollary 3.1] that each function y, is
asymptotically almost periodic. Moreover, by Proposition 3.2 we have that
the sets {[,” C(s)x(s)ds:xe V} and {[;” S(s)x(s)ds:xe V} are included in
a compact subset of X Thls 1mp11es that the set consisting of functions

ONe s)ds— C() [;° S s)ds for xeV is relatively compact in
AP(X ). S1m11ar1y, applymg agdln Proposition 3.2 we get that the set formed
by the functions

o0 o0

S(s)x(s)ds — S(7) J C(5)x(5)ds,

t

) J

1

for x e V, is relatively compact in Cy(X). Combining these remarks with the
decomposition

0

C(s)x(s)ds — S(Z)J C(s)x(s)ds

t

o0 0

S(s)x(s)ds + C(I)J S(s)x(s)ds,

t

we obtain that {y,:xe V} is a relatively compact set in 44P(X).

On the other hand, we claim that the function z, is uniformly continuous
for each xe V. To establish this assertion, we take L >0. Since C(-) is
almost periodic, from condition (c) follows that

IC(1+9)x(¢) = C()x()]| =0,  s—0,
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and this convergence is uniform for t >0, 0 <& < L and xe V. Therefore,
t
H%O+@—%A0HSJHCU+S—5W@)—CU—5M@Ndé
0

J "t s— c)x@)déH

1

"

< J sup [|[C(t+s5—&)x(E) — C(t —&)x(E)|dé

0 t=0,xeV

t+s

+2NEIX(6)Id€+NJ (&) e

t

Using conditions (a) and (b), we can choose L appropriately so that the right
hand side of the above inequality converges to 0, as s — 0, uniformly for z > 0.
In view of that z, is the derivative of y,, it follows from [21, Theorem 5.2] that
zy € AAP(X). Moreover, the above estimate also shows that the functions z,,
x € V, are uniformly equicontinuous.

Finally, we establish that {z:xe V} is equi-asymptotically almost peri-
odic. It follows from Proposition 3.2 that {z.(z):xe V} is a relatively
compact set for all 1> 0. For a fixed ¢ > 0, applying condition (a), we infer
the existence of 7, >0 such that f;c Ix(s)||ds < /6N, for all xeV. In
addition, since the set {C(-)x(s):0 <s< T;} is uniformly almost periodic,
there is a relatively dense set P, = [0,00) such that

€
3T’

|C(E+1)x(s) — C(E)x(s)| <
for all £>0, 0<s< T, and all te P,. Hence, for r > T,, we get
lzx(t + 7) — zx(2)] < J |C(¢+ 17— 85)x(s) — C(t — s)x(s)||ds

0

+ 3NJ x(s) s
T,
<eg,

which shows the assertion. We complete the proof applying Lemma 3.2 to the
set {zy:x€e V}. O

Using this result and proceeding as in the proof of Proposition 3.1, we can
obtain the compactness of {y,:xe V} under some weaker conditions.
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Corollary 3.2.  Assume that S(-) is almost periodic, V = ([0, ), X) and
conditions (a) and (b) of Corollary 3.1 are satisfied. If for each t,0 >0, the
set {S)x(s):0<s<t,xeV} is relatively compact in X, then {y,:xeV} is
relatively compact in AAP(X).

We are now in a position to establish the main result of this work. In
this result, we consider that p(-),q(-) : AAP(X) — X are bounded continuous
functions. As before N, and N, denote the upper bound of ||p(-)|| and ||g(-)]|,
respectively, and ¢ is given by (2.4).

Theorem 3.2. Assume that S(-) is almost periodic and that the conditions
(H-1) and (H-2) hold with functions my(-) and my(-) integrable on [0, ) and that

(3.3) J: (Nimy(s) + Ny (s))ds < r Vlfis) .

Assume further that the following conditions are fulfilled.
(a) For each t,t' >0 and each constant r >0, {S(¢)f(s,x):0<s <1,
Ix]| < r} and {g(s,x) : 0 < s < t,||x|| < r} are relatively compact sets in
X.
(b)  The function p(-) : AAP(X) — X is bounded and completely continuous.
(¢) The function q(-) is bounded and {S(t)q(x):t=0,|x|| <r} is a
relatively compact set in X for each r > 0.
Then there exists a mild solution u(-) € AAP(X) of problem (2.1)—(2.3).

Proof. For each xe AAP(X), we define I'x(f) by means of (2.6). By
the integrability of functions mi(-) and m,(-), and proceeding as in the proof
of Corollary 3.1 for the functions f(s,x(s)) and g¢g(s,x(s)), we infer that
I'(x) e AAP(X). Furthermore, if we take a sequence (x,), that converges
to x in the space AAP(X), then S(z—s)f(s,x,(s)) — S(t—5)f(s,x(s)) and
C(t—9)g(s, xn(s)) — C(t —5)g(s,x(s)), as n— oo, ae. on [0,7]. Let L=
sup{||x]| ., |xull., : € N}. From the inequalities

|C(t — 5)g(s, xa(s)) — C(t — 5)g(s,x(s5))|| < 2Nmy(s) Wy(L),
1S(2 = )1 (5, xa(s)) = S(z = 5).f (5, x(5)) | < 2Nmy(s)Wy(L),

and using again the integrability of my(-) and my(-), we conclude that I'x,(t) —
I'x(t), when n — oo, and that this convergence is uniform on [0, c0). This
yields that I" is a continuous map.

On the other hand, proceeding as in the proof of Theorem 2.1, we can
conclude that the set of functions {x; € AAP(X): Al'(x;) =x;,0 <A< 1} is
uniformly bounded on [0, o).
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Finally, we shall show that I" is completely continuous. In order to
establish this assertion we take a bounded set V' = AAP(X). Since p(-) is
completely continuous, the set of functions {C(-)(xo + p(x)):xe€ V} is rela-
tively compact in AP(X). Similarly, it follows from conditions (a) and (b), and
applying Proposition 3.1 that {S(-)(yo + ¢(x) + g(0,x(0))) : x € V'} is relatively
compact in AP(X). In addition, since the sets of functions A; = {g(-,x(+)) :
xe V}and A, = {f(-,x(-)) : x € V} satisfy the hypotheses of Corollary 3.1 and
Corollary 3.2, respectively, we infer that I'(V') is relatively compact in A4P(X).

The existence of a mild solution of problem (2.1)-(2.3) is now consequence
of Lemma 1.1. U

We next establish a result of regularity for the asymptotically almost
periodic mild solutions of problem (2.1)—(2.3). This result will be based on the
following properties of the almost periodic sine functions.

Lemma 3.3. Assume that S(-) is almost periodic. Then the following
assertions are fulfilled.

(a) For each x € X the function S(-)x is almost periodic for the norm in E.

(b) If AS(:) is uniformly bounded on R as an ¥ (E, X )-valued map, then the
group G is almost periodic.

(c) If AS(:) is uniformly bounded on R as an ¥ (E,X)-valued map and
u:[0,00) — X is a function for which there is y e D(A) such that
u(t) — Ay e 1[0, 0), X), then the function wi(-) given by wy(t) =
j(; C(t — s)u(s)ds is asymptotically almost periodic.

(d) If AS(:) is uniformly bounded on R as an ¥ (E,X)-valued map and
v:[0,00) = E is a function for which there is z€ E such that
v(t) —ze LY[0,0),E), then the function wy(-) given by wy(t) =
f(; AS(t — s)v(s)ds is asymptotically almost periodic.

Proof. Let xe X. Since the sine function S(-) is almost periodic, it
follows from [4, Theorem 3.2] that C(-) is almost periodic. Consequently, the
function (C(-)x,S(-)x) is almost periodic with values in X x X. Thus, given
&> 0 there is a relatively dense set P, such that

|C(t+1)x — C(t)x|| + ||S(t + 7)x — S(t)x| <, t>0,7€P,.
Using that C(-) is uniformly bounded on R and
(3.4) C(t+s)x = C(t)C(s)x + AS(1)S(s)x,

we obtain
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IS(t+7)x = S(O)x||;, = IS(t+1)x — S(O)x|| + sup [[AS(h)[S(t+ 7)x — S(¢)x]]|

0<h<l

<ée sup ICIIHIC( + 7)x — C(0)x]|

0<h<

+ sup ||C(t+h+1)x — C(t+ h)x||
0<h<l

< (N +2)e,

for all £ >0 and 7€ P,, which proves the assertion (a).
On the other hand, for all ye E and >0 we have that

[A4S(t + h)y = ASO || < 4SOl 9z, x) (C(R) = Dylly + [ COIHAS )y

If we assume that [[AS(7)[|¢g x) is bounded on R, it follows from the above
inequality that function AS(:)y is uniformly continuous on [0,c0) and, since
AS(-)y is the derivative of the almost periodic function C(f)y, applying the
Bochner Theorem (see [21, p. 24]), we infer that AS(-)y is almost periodic.
Using now the definition of G given in the Introduction, we conclude that the
group G is almost periodic, which establishes (b).

Finally, since the functions

5] =[] [t n

and
0 0 y 1
= —of Z(10 ExX
PR M R B RN R !
assertions (c) and (d) are a consequence of (b) and [21, Example 5.1]. O

We next consider AS(-) as a strongly continuous #(E, X)-valued function.

Proposition 3.3. Assume that S(-) is almost periodic and that the operator-
valued function AS(-) is uniformly bounded on R. Let u(-) be an asymptotically
almost periodic mild solution of problem (2.1)—(2.3). If, in further, the following
conditions are satisfied:
(a) There is y € D(A) such that the function [0,00) — X, t— f(t,u(t)) —
Ay, is integrable.

(b) The function [0,0) — X, t — g(t,u(t)), is asymptotically almost peri-
odic, the values g(t,u(t)) € E and there is z € E such that g(-,u(")) —z
e 2'([0,0), E).

(¢) xo+p(u) €k,
then u(-) is continuously differentiable and u'(-) is asymptotically almost periodic.
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Proof. From our hypotheses and Lemma 2.1, we obtain that u is
continuously differentiable and that

u' (1) = AS(1)(x0 + p(u)) + C(1)(yo + q(u) + g(0,u(0)) + g(t,u(1))
t t
+J AS(t*S)g(S,H(S))dS‘FJ C(t —s)f(s,u(s))ds
0 0
for 1> 0. Combining this equality with the integrability of f(s,u(s)) and
g(s,u(s)), and the assertions of Lemma 3.3, we get that ' is asymptotically
almost periodic. O

4. Applications

The one dimensional wave equation modeled as an abstract Cauchy
problem has been studied extensively. See for example [20]. In this section,
we apply the results established in the previous sections to study some variants
of the wave equation.

On the space X = L*([0,7]), we consider the operator Af (&) = (&) with
domain D(A) = {f(:) e H*(0,7) : f(0) = f(n) =0}. It is well known that A
is the infinitesimal generator of a strongly continuous cosine function C(¢)
on X. Furthermore, A has discrete spectrum, with eigenvalues —n”, ne N,
and corresponding normalized eigenvectors z, (&) = (2/71)1/ 2 sin(né). Moreover,
C(t)p = i cos(nt)<g,zyyzy, and S(f)p = i sin(nf)

n=1

n=1

{p,zyyzy, for teR. This

implies that ||C(¢)|| = 1, the operator S(¢) is compact and ||S(?)|| = 1, for every
te R (see [2] for details).

We consider the following initial value problem with nonlocal conditions
defined for te I =[0,q] and & € [0, 7],

2
an GG Aecune)] =TT ).
(4.2) u(t,0) = u(t,n) =0,
43) u(0,8) = xo&) + 3 mu(t &),
i=1
k
(44 WOL) e+ 30 plutsn ).

i=1

In this statement we assume that Fj,F: I x [0,7] x R — R satisfy the con-
ditions:
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(C-1) The functions F(z,&,-),Fi(t,&,-) : R — R are continuous a.e. (¢,&) €
I x [0,7].

(C-2) For each we R, the function F(-,w): I x [0,7] — R is measurable
and there exist positive measurable functions 7', 7% : I x [0,7] — R
with #{ € (I x [0,7]) and supy_:., n¥ (-,&) € £'(I) such that

|F(2,E w)| < nf(t,f) +175(t,f)|w|, tel, (el0,n], weR.

(C-3) The function Fi(-,0)e L*(1 x [0,7]), and there exists a positive
constant L; such that

|[Fi(t,E,wy) = Fi(t,E,wa)| < Ly|wy — wal, tel, £e[0,n], w,ws € R.

Furthermore, xo, yo € X, 0 <, 5; <a, o; € R and f; : R — R are bounded
continuous functions for i=1,...,n and j=1,... k.

We define the substitution operators g(z, x)(&) = Fi(¢,&,x(&)) and f(¢,x)(&)
= F(1,&,x(&)) for xe X. 1t follows from [10, Proposition V.2.5] that f(-) and
g(-) satisfy the Carathéodory conditions (H-1), (H-2), and that g(-) is Lipschitz
continuous. Moreover, it is not difficult to see that

n 1/2
el < ([ af o)+ s s ol
0 0<é<n
lg(,x) —g(t, )|l < Lillx = yll,
for all x,ye X and all re I, which implies that we can choose

n 1/2
mf<r>=<j0 ﬁ(af)%) ©osup 0l (10,

0<é<nm

and Wy(r)=1 for 0<r<1 and Wy(r)=r, for r>1. We complete this
representation by defining the maps p(u)(&) = > oqu(t;,€) and q(u)(€) =
k i=1

> Bi(u(si, €)) for ue C(I,X), where we have abbreviated u(?)(&) = u(t,&).
i=1

With these definitions the problem (4.1)—(4.4) can be modeled as the abstract
nonlocal Cauchy problem (2.1)—(2.3).

Proposition 4.1. Assume that the previous conditions are fulfilled. If

a n
J sup n% (s,&)ds + (a+ 1)Ly + Z o] < 1,
00<é<nm i=1

then there exists a mild solution of problem (4.1)—(4.4).
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Proof. Since S(f) is compact for all € R the existence of a mild solution
of problem (4.1)—(4.4) follows directly from Theorem 2.2. O

Finally, we will study the existence of global mild solutions for the problem

4s) 2 [a”(l’ §) an(z,n,f)u(t, n)d:y] _ TGO L g e u(n, ),

ot| ot 0 o&?
(4.6) u(t,0) = u(t,n) =0,
(4.7) (0.6 = xo(&) + | Pluts, )(Oduts),
(48) Lu0.9) = (O + | Qs @)
0

for te[0,00) £€[0,z]. We turn to model this problem on the space
X = L*([0,n]) and, we assume that the following technical conditions hold,
where I = [0, c0):

(i) The function F:I x[0,7] x R— R satisfies condition (C-1), for
each we R the function F(-,w):1I x [0,7] — R is measurable, and
there exists a positive measurable function 7 (-) : I x [0,7] — R with
SUpg<e<, 7 (-,&) € £'(I) such that

[F(t.&w) <n"(1,&)wl,  1=0,¢€0,7], weR.

(ii) The functions b(s,7,&), db(s,n, &) /&, 8*b(s,n,E)/0E* are continuous
on [0, o) x [0,7]* and b(s, 7, 7) = b(s,n,0) = 0 for all (s,5) € I x [0,7].

(i) The maps P,Q:X — X are continuous and bounded, and P is
completely continuous (we refer to [10] for examples of operators
that satisfy these properties). Furthermore, u, v are real functions of
bounded variation on [0, c0).

(IV) X0, Vo € X.

Defining the maps f,g:1x X — X and p(-),q(-): C(I,X) — X by

£, = FL 6 X)) glt,x)(&) = J:bo,n,f)x(n)dn;

P(u(s))(S)du(s); q(H)(f):J O(u(s))(&)dv(s)

0

o0

P = |

0

for & e[0,7], the problem (4.5)—(4.8) can be modeled as the abstract Cauchy
problem (2.1)—(2.3). It follows from (i) that we can choose the functions
my(t) =T (t,) 0 mg(t) = ([ o b(t,n, &) dnd)"? and W(s)=s. Let y(1) =
my(t) +my(t) and assume that A(-) is a function verifying the general assump-
tions considered in subsection 3.1. It is easy to see that we can consider p(:)
and ¢(-) as bounded continuous functions defined on CP(X) and AAP(X).



136 Eduardo HERNANDEZ M. and Hernidn R. HENRIQUEZ

Proposition 4.2. Assume that the preceding conditions are fulfilled
h(0)™" [y y(s)h(s)ds — 0 as t — oo, and sup h(t)"' [} y(s)h(s)ds < 1. Then there
>0

exists a mild solution of problem (4.5)-(4.8) in C)(X).

Proof. We infer from condition (ii) that ¢(z,-) is a [D(A4)]-valued linear
continuous operator. Moreover, it is easy to see that f(-), ¢(-), p(-) and
q(-) satisfy the compactness conditions considered in Theorem 3.1. Since
sup h(1)” Jo 7(s)h(s)ds < 1, the assertion is a consequence of Theorem 3.1.
t>0 I:]

We mention here that, under very general assumptions on 7, there exists a
function / which satisfies the conditions considered in this proposition. For
instance, if y is equi-integrable, that is, for each & > 0 there is d > 0 such that for
every measurable set B < [0, 0), with A(B) <J, then [, y(s)ds < ¢, we have that
h(t) = exp(at?), for some o > 0 large enough, fulfills the requirements.

Using similar arguments we can prove the next result.

Proposition 4.3. Assume that the previous conditions are verified and that
y(+) is integrable on [0, 0). Then there exists an asymptotically almost periodic
mild solution of problem (4.5)—(4.8).

Proof. Since [ W(s) 'ds = oo the assertion is a consequence of Theorem
3.2 and the fact that S(-) is periodic. [l
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