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1. Introduction

This paper is devoted to the study of existence of mild solutions for initial

value problems described as an implicit second order abstract di¤erential

equations with nonlocal conditions. Specifically, we are concerned with prob-

lems that can be modeled as an abstract Cauchy problem on a Banach space X

of the form

d

dt
ðx 0ðtÞ � gðt; xðtÞ; x 0ðtÞÞÞ ¼ AxðtÞ þ f ðt; xðtÞ; x 0ðtÞÞ; t A I ;ð1:1Þ

xð0Þ ¼ x0 þ pðx; x 0Þ;ð1:2Þ

x 0ð0Þ ¼ y0 þ qðx; x 0Þ;ð1:3Þ

where A is the infinitesimal generator of a strongly continuous cosine function

of bounded linear operators on X , I can be the interval ½0; a� or the unbounded

interval ½0;yÞ, gð�Þ; f ð�Þ : I � X 2 ! X , and pð�Þ; qð�Þ : CðI ;X Þ2 ! X are ap-

propriate functions.

System (1.1)–(1.3) is simultaneously a generalization of the classical second

order abstract Cauchy problem, and a generalization of some systems studied
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recently by Staněk in [14, 15, 16, 17]. In these works, Staněk studied di¤erent

problems related to the existence of solutions for a class of second order

functional di¤erential equations modeled of the form

ðx 0ðtÞ þ gðt; xðtÞ; x 0ðtÞÞÞ0 ¼ f ðt; xðtÞ; x 0ðtÞÞ; t A I ¼ ½0;T �;ð1:4Þ

rðxð0Þ; x 0ð0Þ; xðTÞÞ ¼ jðxÞ;ð1:5Þ

oðxð0Þ; xðTÞ; x 0ðTÞÞ ¼ cðxÞ;ð1:6Þ

where r;o : R3 ! R, f ð�Þ; gð�Þ : I � R2 ! R, j;c : C 0ðI ;RÞ ! R are appropri-

ate functions, and C0ðI ;RÞ denotes an adequate subspace of the space of

continuous functions CðI ;RÞ. It is important to observe that the problem

(1.4)–(1.6) does not include partial evolution equations. This fact is the main

motivation of this paper.

Throughout this work, A denotes the infinitesimal generator of a strongly

continuous cosine function CðtÞ of bounded linear operators on X and SðtÞ is

the sine function associated with CðtÞ, which is defined by SðtÞx ¼
Ð t

0 CðsÞx ds,

x A X , t A R. We refer the reader to [2] for the basic concepts about cosine

functions. We next only mention a few properties and notations needed to

establish our results. We represent by ½DðAÞ� the domain of A endowed with

the graph norm kxkA ¼ kxk þ kAxk, x A DðAÞ. Moreover, the notation E

stands for the space consisting of vectors x A X for which the function Cð�Þx
is of class C1. It was proved by Kisińsky [7] that E endowed with the norm

kxk1 ¼ kxk þ sup
0ata1

kASðtÞxk; x A E;

is a Banach space. The operator valued function

GðtÞ ¼ CðtÞ SðtÞ
ASðtÞ CðtÞ

� �

is a strongly continuous group of bounded linear operators on the space E � X ,

generated by the operator

A ¼ 0 I

A 0

� �

defined on DðAÞ � E. It follows from this property that ASðtÞ : E ! X is a

bounded linear operator, and that ASðtÞx ! 0, t ! 0, for each x A E. Fur-

thermore, if x : ½0;yÞ ! X is a locally integrable function, then yðtÞ ¼Ð t

0 Sðt� sÞxðsÞds defines an E-valued continuous function.

Some important properties of the second order abstract Cauchy problem

were studied in Travis and Webb [18, 19]. Specifically, the existence of

solutions for the second order abstract Cauchy problem
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x 00ðtÞ ¼ AxðtÞ þ hðtÞ; 0a ta a;ð1:7Þ

xð0Þ ¼ x0; x 0ð0Þ ¼ y0;ð1:8Þ

where h : ½0; a� ! X is an integrable function, was discussed in [18]. Similarly,

the existence of solutions for the semilinear second order abstract Cauchy

problem was considered in [19]. We only mention here that the function xð�Þ
given by

xðtÞ ¼ CðtÞx0 þ SðtÞy0 þ
ð t

0

Sðt� sÞhðsÞds; 0a ta a;ð1:9Þ

is called mild solution of (1.7)–(1.8). Moreover, when x0 A E, the function xð�Þ
is continuously di¤erentiable and

x 0ðtÞ ¼ ASðtÞx0 þ CðtÞy0 þ
ð t

0

Cðt� sÞhðsÞds:

This paper has four sections. In section 2, we discuss the existence of mild

solutions for some partial second order di¤erential problems with nonlocal

conditions in bounded intervals. In section 3, we are concerned with the

existence of global and almost-periodic solutions in the interval ½0;yÞ. In the

last section, we apply our results to study a pair of concrete situations.

The terminology and notations are those generally used in functional

analysis. In particular, if ðY ; k � kY Þ and ðZ; k � kZÞ are Banach spaces, we

denote by LðY ;ZÞ the Banach space of the bounded linear operators from Y

into Z and, we abbreviate this notation to LðY Þ whenever Z ¼ Y . Through-

out this paper, Brðz;ZÞ denotes the closed ball with center at z and radius r > 0

in the space Z. Additionally, for a bounded function x : ½0; a� ! ½0;yÞ and

0a ta a, we will use the notation xt ¼ supfxðsÞ : s A ½0; t�g.
To complete these remarks, we mention that most of our proofs are based

on the following well known result ([3, Theorem 6.5.4]).

Lemma 1.1. Let D be a closed convex subset of a Banach space X such

that 0 A D. Let F : D ! D be a completely continuous map. Then the set

fx A D : x ¼ lF ðxÞ; 0 < l < 1g is unbounded or the map F has a fixed point in D.

2. Existence of mild solutions

In this section we are concerned with initial value problems defined on a

bounded interval I ¼ ½0; a�. We denote by Nb 1 and ~NNb 0 certain constants

such that kCðtÞkaN and kSðtÞka ~NN for every t A I . Furthermore, we rep-

resent by ~NN1 ¼ sup0ataakASðtÞk, when ASðtÞ is considered as an operator in
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the space LðE;XÞ. As usual, we write CðI ;XÞ for the space of continuous

functions from I into X endowed with the norm of uniform convergence.

We begin by studying the initial value problem

d

dt
½x 0ðtÞ � gðt; xðtÞÞ� ¼ AxðtÞ þ f ðt; xðtÞÞ; t A I ;ð2:1Þ

xð0Þ ¼ x0 þ pðxÞ;ð2:2Þ

x 0ð0Þ ¼ y0 þ qðxÞ;ð2:3Þ

where x0; y0 A X and pð�Þ; qð�Þ : CðI ;XÞ ! X are continuous functions that

take closed bounded sets into bounded sets. We set NpðrÞ ¼ supfkpðxÞk :

x A CðI ;XÞ; kxka rg and NqðrÞ ¼ supfkqðxÞk : x A CðI ;XÞ; kxka rg.
We assume that f and g fulfill the following general properties.

(H-1) The functions f ; g : I � X ! X satisfy the Carathéodory conditions:

( i ) f ðt; �Þ; gðt; �Þ : X ! X are continuous a.e. t A I .

(ii) For each x A X the functions f ð�; xÞ; gð�; xÞ : I ! X are

strongly measurable.

(H-2) There exist integrable functions mf ;mg : I ! ½0;yÞ and there exist

continuous nondecreasing functions Wf ;Wg : ½0;yÞ ! ð0;yÞ such

that

k f ðt; xÞkamf ðtÞWf ðkxkÞ; ðt; xÞ A I � X ;

kgðt; xÞkamgðtÞWgðkxkÞ; ðt; xÞ A I � X :

We next abbreviate the exposition by writing W ¼ maxfWf ;Wgg.
When pð�Þ is bounded on CðI ;X Þ, we denote Np ¼ supfkpðxÞk :

x A CðI ;XÞg. Similarly, when qð�Þ is bounded on CðI ;XÞ we set Nq ¼
supfkqðxÞk : x A CðI ;XÞg. In the case both pð�Þ as qð�Þ are bounded, we

denote

c ¼ Nðkx0k þNpÞ þ ~NNðky0k þNq þ c0Þ;ð2:4Þ

where c0 ¼ supfkgð0; yÞk : kyka kx0k þNpg.
By comparing with the expression (1.9), we introduce the following concept

of mild solution.

Definition 2.1. A continuous function x : I ! X is said to be a mild

solution of the problem (2.1)–(2.3) if the integral equation

xðtÞ ¼ CðtÞðx0 þ pðxÞÞ þ SðtÞ½y0 � gð0; xð0ÞÞ þ qðxÞ�

þ
ð t

0

Cðt� sÞgðs; xðsÞÞdsþ
ð t

0

Sðt� sÞ f ðs; xðsÞÞds; t A I ;

is verified.
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We are now in a position to establish our first result of existence.

Theorem 2.1. Assume that conditions (H-1) and (H-2) are verified and that

ð a

0

ðNmgðsÞ þ ~NNmf ðsÞÞds <
ðy
c

ds

WðsÞ :ð2:5Þ

Suppose, furthermore, that the following conditions hold.

(a) For every t > 0 and r > 0, the sets Uðt; rÞ ¼ fSðtÞ f ðs; xÞ : s A ½0; a�;
kxka rg and U1ðt; rÞ ¼ fgðs; xÞ : s A ½0; t�; kxka rg are relatively com-

pact in X.

(b) The function pð�Þ is bounded and completely continuous.

(c) The function qð�Þ is bounded and for every t A I and every r > 0 the set

Vðt; rÞ ¼ fSðtÞqðxÞ : kxka rg is relatively compact in X.

Then there exists a mild solution of problem (2.1)–(2.3).

Proof. We define the map G : CðI ;X Þ ! CðI ;XÞ by

GxðtÞ ¼ CðtÞðx0 þ pðxÞÞ þ SðtÞ½y0 þ qðxÞ � gð0; xð0ÞÞ�ð2:6Þ

þ
ð t

0

Cðt� sÞgðs; xðsÞÞdsþ
ð t

0

Sðt� sÞ f ðs; xðsÞÞds

for t A I . Clearly G is well defined and a standard application of the Lebesgue

dominated convergence theorem allows us to assert that G is continuous.

In order to use Lemma 1.1, we obtain an a priori bound for the solutions

of the integral equation x ¼ lGðxÞ, l A ð0; 1Þ. Let xl A CðI ;XÞ be a solution of

xl ¼ lGðxlÞ, l A ð0; 1Þ. Using the previous notations, we get

kxlðtÞkaNðkx0k þNpÞ þ ~NNðky0k þNq þ kgð0; xlð0ÞÞkÞ

þ
ð t

0

ðNmgðsÞ þ ~NNmf ðsÞÞWðkxlðsÞkÞds:

Denoting by blðtÞ the right hand side of the last inequality, we get that

b 0
lðtÞa ðNmgðtÞ þ ~NNmf ðtÞÞWðblðtÞÞ:

In view of that xlð0Þ ¼ lGðxlÞð0Þ ¼ lðx0 þ pðxlÞÞ, we have that

kgð0; xlð0ÞÞka supfkgð0; yÞk : kyka kx0k þNpg

and blð0Þa c. This yields that

ð blðtÞ

c

ds

WðsÞ a
ð blðtÞ

blð0Þ

ds

WðsÞ a
ð t

0

ðNmgðsÞ þ ~NNmf ðsÞÞds <
ðy
c

ds

WðsÞ :
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If we suppose that the set fbl : l A ð0; 1Þg is not bounded, from the preceding

estimate we get

ðy
c

ds

WðsÞ a
ð a

0

ðNmgðsÞ þ ~NNmf ðsÞÞds <
ðy
c

ds

WðsÞ

which is a contradiction. Consequently, fbl : l A ð0; 1Þg is a bounded set and,

as an immediate consequence, we infer that fxl : l A ð0; 1Þg is bounded in

CðI ;XÞ.
In what follows, we prove that G is completely continuous. To this end,

we introduce the decomposition G ¼ G1 þ G2 where

G1uðtÞ ¼ CðtÞðx0 þ pðuÞÞ þ SðtÞ½y0 þ qðuÞ � gð0; uð0ÞÞ�; t A I ;

G2uðtÞ ¼
ð t

0

Cðt� sÞgðs; uðsÞÞdsþ
ð t

0

Sðt� sÞ f ðs; uðsÞÞds; t A I :

It is easy to see that our hypotheses imply that G1 is completely continuous.

We will next prove that G2 takes bounded sets into relatively compact

ones. To abbreviate our notations, we set Br ¼ Brð0;CðI ;XÞÞ.
Initially we shall show that the set G2Br ¼ fG2x : x A Brg is equicontinuous

on I . For fixed t A I and e > 0, since Cð�Þ is strongly continuous, from the

condition (a) we obtain that there is d > 0 such that

kðCðtþ h� sÞ � Cðt� sÞÞgðs; xðsÞÞk < e; x A Br; s A ½0; t�;

when jhja d. Furthermore, since the sine function verifies the Lipschitz condi-

tion kSðt1Þ � Sðt2ÞkaNjt1 � t2j, for x A Br and jhja d with tþ h A I , we can

estimate

kG2xðtþ hÞ � G2xðtÞk

a

ð t

0

kðCðtþ h� sÞ � Cðt� sÞÞgðs; xðsÞÞkdsþN

ð tþh

t

kgðs; xðsÞÞkds

þ
ð t

0

kSðtþ h� sÞ � Sðt� sÞk k f ðs; xðsÞÞkdsþ ~NN

ð tþh

t

k f ðs; xðsÞÞkds

a etþWðrÞ
ð tþh

t

ðNmgðsÞ þ ~NNmf ðsÞÞdsþNhW ðrÞ
ð t

0

mf ðsÞds;

which establishes the assertion.

We next prove that G2BrðtÞ ¼ fG2xðtÞ : x A Brg is a relatively compact

set in X for every t A I . For fixed t A I and e > 0, since U1ðt; rÞ is a

relatively compact set and Cð�Þ is strongly continuous, we have that U2ðt; rÞ ¼
fCðt� sÞgðs; xðsÞÞ : 0a sa t; x A Brg is relatively compact. On the other hand,
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using again the already mentioned Lipschitz continuity of Sð�Þ, we can choose

d > 0 and a partition of ½0; t� into points 0 ¼ s1 < s2 < � � � < sk ¼ t such that

siþ1 � si a d and

Xk�1

i¼1

ð siþ1

si

½SðsÞ � SðsiÞ� f ðt� s; xðt� sÞÞds
�����

�����a dNWf ðrÞ
ð t

0

mf ðsÞds

a e:

Collecting these remarks and applying the mean value theorem for the Bochner

integral ([9]), we get

G2xðtÞ ¼
ð t

0

Cðt� sÞgðs; xðsÞÞdsþ
Xk�1

i¼1

ð siþ1

si

SðsiÞ f ðt� s; xðt� sÞÞds

þ
Xk�1

i¼1

ð siþ1

si

ðSðsÞ � SðsiÞÞ f ðt� s; xðt� sÞÞds

A tcoðU2ðt; rÞÞ þ
Xk�1

i¼1

ðsiþ1 � siÞcoðUðt; si; rÞÞ þ Beð0;X Þ;

where co is used to denote the convex hull of a set. Consequently, G2BrðtÞ is a
totally bounded set, and hence G2BrðtÞ is relatively compact in X .

From the Ascoli-Arzelà theorem, we infer that G2Br is relatively compact in

CðI ;XÞ, which completes the proof that G is completely continuous.

Finally, employing Lemma 1.1 we conclude that G has a fixed point in

CðI ;XÞ which is a mild solution of (2.1)–(2.3). r

In most of situations of practical interest the sine function is compact.

This is the motivation for the next result.

Corollary 2.1. Assume that (H-1) and (H-2) are satisfied, the operator SðtÞ
is compact for all t A R, and that the following conditions are fulfilled.

(a) The function f takes bounded closed sets into bounded sets and for

all 0a ta a and rb 0 the set U1ðt; rÞ ¼ fgðs; xÞ : s A ½0; t�; kxka rg is

relatively compact in X.

(b) The function pð�Þ, qð�Þ are bounded and pð�Þ is completely continuous.

If inequality (2.5) holds, then there exists a mild solution of problem (2.1)–(2.3).

In the next result we remove the conditions that pð�Þ and qð�Þ are bounded

maps and that pð�Þ is completely continuous.

Theorem 2.2. Assume that (H-1) and (H-2) hold and that the following

conditions are fulfilled.
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(a) For every 0 < t and r > 0 the set Uðt; rÞ ¼ fSðtÞ f ðs; xÞ : s A ½0; a�;
kxka rg is relatively compact.

(b) There exist positive constants Lg and Lp such that

kgðt; x1Þ � gðt; x2ÞkaLgkx1 � x2k; t A I ; x1; x2 A X ;

kpðxÞ � pðyÞkaLpkx� yk; x; y A CðI ;XÞ:

(c) For every t A I and every r > 0 the set Vðt; rÞ ¼ fSðtÞqðxÞ : kxka rg is

relatively compact in X.

If, in further,

NðLgaþ LpÞ þ ~NN Lg þ lim inf
r!þy

NqðrÞ
r

� �
þ ~NN lim inf

r!þy

Wf ðrÞ
r

ð a

0

mf ðsÞds < 1;

then there exists a mild solution of problem (2.1)–(2.3).

Proof. Let G be the map defined by (2.6). Arguing as in the proof of

Theorem 2.1, it is easy to see that the map G is well defined and continuous.

We a‰rm that there exists r > 0 such that GðBrÞJBr. In fact, if we assume

that the assertion is false, for each r > 0 there exists xr A Br such that

kGxrka > r, which implies that

r < kGxrka

aNðkx0k þ Lprþ kpð0ÞkÞ þ ~NNðky0k þNqðrÞ þ Lgrþ kgð0; 0ÞkÞ

þN Lgarþ
ð a

0

kgðs; 0Þkds
� �

þ ~NNWf ðrÞ
ð a

0

mf ðsÞds:

Hence, this yields

1aNðLp þ LgaÞ þ ~NN Lg þ lim inf
r!þy

NqðrÞ
r

� �
þ ~NN lim inf

r!þy

Wf ðrÞ
r

ð a

0

mf ðsÞds;

which is an absurd. We now consider the decomposition G ¼ G1 þ G2, where

G1xðtÞ ¼ CðtÞðx0 þ pðxÞÞ � SðtÞgð0; xð0ÞÞ þ
ð t

0

Cðt� sÞgðs; xðsÞÞds;

G2xðtÞ ¼ SðtÞðy0 þ qðxÞÞ þ
ð t

0

Sðt� sÞ f ðs; xðsÞÞds;

for t A I .

Let r0 > 0 be a constant such that GðBr0ÞJBr0 . Arguing as in the proof

of Theorem 2.1, we can establish that G2 is a completely continuous map. In

addition, the estimate

kG1u� G1vka a ðNðLp þ LgaÞ þ ~NNLgÞku� vka
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yields that G1 is a contraction. Thus, G is a condensing map on Br0 and by the

Sadovskii fixed point Theorem ([13]), we derive the existence of a mild solution

of problem (2.1)–(2.3). r

We next discuss the existence of solutions for the abstract Cauchy problem

(1.1)–(1.3). Since the results are similar to those established in the first part of

this section, we will only mention the main ideas of the proofs. To study this

problem, we introduce the following technical assumptions.

(H-3) The function f : I � X � X ! X satisfies the Carathéodory con-

ditions:

( i ) The function f ðt; �Þ : X � X ! X is continuous a.e. t A I .

( ii ) For each ðx; yÞ A X � X , the function f ð�; x; yÞ : I ! X is

strongly measurable.

(iii) There exists an integrable function mf : I ! ½0;yÞ and a

continuous nondecreasing function Wf : ½0;yÞ ! ð0;yÞ such

that

k f ðt; x; yÞkamf ðtÞWf ðkxk þ kykÞ; ðt; x; yÞ A I � X � X :

(H-4) The function g : I � X � X ! X is continuous, E-valued and verifies

the Carathéodory conditions:

( i ) The function gðt; �Þ : X � X ! E is continuous a.e. t A I .

( ii ) For each x; y A X the function gð�; x; yÞ : I ! E is strongly

measurable.

(iii) There exists an integrable function ~mmg : I ! ½0;yÞ and a con-

tinuous nondecreasing function ~WWg : ½0;yÞ ! ð0;yÞ such that

kgðt; x; yÞk1 a ~mmgðtÞ ~WWgðkxk þ kykÞ; ðt; x; yÞ A I � X � X :

(H-5) The functions x0 þ pð�Þ : CðI ;X Þ2 ! E and qð�Þ : CðI ;XÞ2 ! X are

continuous and take bounded closed sets into bounded sets.

Proceeding as before, we set

NpðrÞ ¼ supfkx0 þ pðx; yÞk1 : x; y A CðI ;XÞ; kxk þ kyka rg

and NqðrÞ ¼ supfkqðx; yÞk : x; y A CðI ;X Þ; kxk þ kyka rg. In the case that

pð�Þ, respectively qð�Þ, is a bounded map we denote by Np, respectively Nq,

an upper bound of kx0 þ pð�Þk1 and kqð�Þk, respectively.

In the statements that follow, we use the notations Br ¼ fðx; yÞ A CðI ;XÞ2 :
kxk þ kyka rg and W ¼ maxfWf ; ~WWgg.

We include for completeness the following result which will be frequently

used afterwards. For a proof see [5, Lemma 1.1].
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Lemma 2.1. Let h : ½0; a� ! E be an integrable and continuous function

for the norm of X. Then the function v given by vðtÞ ¼
Ð t

0 Cðt� sÞhðsÞds is

continuously di¤erentiable, s 7! ASðt� sÞhðsÞ is integrable on ½0; t� and

v 0ðtÞ ¼ hðtÞ þ A

ð t

0

Sðt� sÞhðsÞds ¼ hðtÞ þ
ð t

0

ASðt� sÞhðsÞds:

We consider the following concept of mild solution.

Definition 2.2. A continuously di¤erentiable function x : I ! X is said to

be a mild solution of problem (1.1)–(1.3) if the integral equation

xðtÞ ¼ CðtÞðx0 þ pðx; x 0ÞÞ þ SðtÞ½y0 � gð0; xð0Þ; x 0ð0ÞÞ þ qðx; x 0Þ�ð2:7Þ

þ
ð t

0

Cðt� sÞgðs; xðsÞ; x 0ðsÞÞds

þ
ð t

0

Sðt� sÞ f ðs; xðsÞ; x 0ðsÞÞds; t A I ;

is verified.

Related to this definition, it is worthwhile to point out that if uð�Þ is a mild

solution of problem (1.1)–(1.3) and conditions (H-4), (H-5) hold, then by the

properties of second-order abstract Cauchy problem mentioned in the Intro-

duction, and Lemma 2.1 we know that

x 0ðtÞ ¼ ASðtÞðx0 þ pðx; x 0ÞÞ þ CðtÞ½y0 � gð0; xð0Þ; x 0ð0ÞÞ þ qðx; x 0Þ�

þ gðt; xðtÞ; x 0ðtÞÞ þ
ð t

0

ASðt� sÞgðs; xðsÞ; x 0ðsÞÞds

þ
ð t

0

Cðt� sÞ f ðs; xðsÞ; x 0ðsÞÞds; t A I :

Proceeding as before, we can establish the following results of existence.

We omit the proof for the sake of brevity.

Theorem 2.3. Assume that properties (H-3), (H-4), (H-5) are satisfied and

that the following conditions hold:

(a) For each r > 0, UðrÞ ¼ f ðI � BrÞ is a relatively compact set in X and

U1ðrÞ ¼ gðI � BrÞ is a relatively compact set in E.

(b) The functions x0 þ pð�Þ and qð�Þ are completely continuous with values

in E and X, respectively.

(c) There exists a constant Lg b 0 such that

kgðt; x1; y1Þ � gðt; x2; y2ÞkaLgðkx1 � x2k þ ky1 � y2kÞ:
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If, in further,

ðN þ ~NN1Þ lim inf
r!þy

NpðrÞ
r

þ ðN þ ~NNÞ lim inf
r!þy

NqðrÞ
r

þ ð ~NN þ aN þN þ 1ÞLg

þ lim inf
r!þy

WðrÞ
r

ð a

0

½ ~NN1 ~mmgðsÞ þ ðN þ ~NNÞmf ðsÞ�ds < 1;

then there exists a mild solution of problem (1.1)–(1.3).

We can establish a similar result using Lipschitz conditions instead of

compactness in the space E.

Theorem 2.4. Assume that properties (H-3), (H-4), (H-5) are satisfied and

that the following conditions hold.

(a) For each r > 0, UðrÞ ¼ f ðI � BrÞ is a relatively compact set in X.

(b) The function qð�Þ is completely continuous with values in X.

(c) There is a constant Lg b 0 such that

kgðt; x1; y1Þ � gðt; x2; y2Þk1 aLgðkx1 � x2k þ ky1 � y2kÞ;

for all x1; x2; y1; y2 A X.

(d) There exists a constant Lp b 0 such that

kpðu1; v1Þ � pðu2; v2Þk1 aLpðku1 � u2k þ kv1 � v2kÞ;

for all u1; u2; v1; v2 A CðI ;X Þ.
If, in further,

ð ~NN1 þNÞLp þ ðN þ ~NNÞ lim inf
r!þy

NqðrÞ
r

þ ð ~NN þ a ~NN1 þ ðaþ 1ÞN þ 1ÞLg

þ ðN þ ~NNÞ lim inf
r!þy

Wf ðrÞ
r

ð a

0

mf ðsÞds < 1;

then there exists a mild solution of problem (1.1)–(1.3).

3. Global solutions

In this section, we discuss the existence of global and asymptotically almost

periodic mild solutions for the nonlocal problem (2.1)–(2.3). For this reason,

we modify our previous notations. In what follows, I represent the interval

½0;yÞ, and we assume that CðtÞ and SðtÞ are uniformly bounded on I . We

denote by N and ~NN positive constants such that kCðtÞkaN and kSðtÞka ~NN,

for all tb 0. The conditions (H-1) and (H-2) are referred to this interval I
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and, we assume that the functions mf , mg are only locally integrable. Fur-

thermore, we abbreviate the exposition by writing W ¼ maxfWf ;Wgg and

m ¼ maxfmf ;mgg. Similarly, a function x : I ! X is said to be a mild solution

of problem (2.1)–(2.3) if it verifies the Definition 2.1. We begin by studying the

existence of global solutions.

3.1. Existence of solutions on ½0;yÞ

We next study the existence of mild solutions in the space of continuous

functions with weight. Let h : ½0;yÞ ! ð0;yÞ be a continuous nondecreasing

function such that hð0Þ ¼ 1 and hðtÞ ! y, as t ! y. In what follows C0
h ðX Þ

denotes the space of all continuous functions x : ½0;yÞ ! X such that

hðtÞ�1kxðtÞk ! 0, t ! y, endowed with the norm kxkh ¼ suptb0 hðtÞ
�1kxðtÞk,

and C0ðX Þ denotes the space consisting of continuous functions x : ½0;yÞ ! X

that vanish at infinity endowed with the norm of the uniform convergence. In

this subsection we assume that the functions pð�Þ; qð�Þ : C0
h ðXÞ ! X are con-

tinuous and bounded. We use the notations Np ¼ supfkpðxÞk : x A C0
h ðXÞg,

Nq ¼ supfkqðxÞk : x A C0
h ðXÞg, and the constant c has the expression introduced

in (2.4).

The following property is well known, we include it here for future

reference.

Lemma 3.1. A set W JC0ðX Þ is relatively compact if and only if W is

equicontinuous, the functions xðtÞ ! 0, t ! y, uniformly for x A W, and the

orbits WðtÞ are relatively compact in X for all tb 0.

In the next statement, we denote by g : ½0;yÞ ! ½0;yÞ the function defined

by gðsÞ ¼ NmgðsÞ þ ~NNmf ðsÞ.

Theorem 3.1. Assume that conditions (H-1) and (H-2) hold, and that

lim inf
r!y

1

r
sup
tb0

1

hðtÞ

ð t

0

gðsÞWðrhðsÞÞds < 1:

Suppose further that the following conditions are fulfilled.

(a) For each t A I , t 0 a t and rb 0, fSðt 0Þ f ðs; xÞ : 0a sa t; kxka rg and

fgðs; xÞ : 0a sa t; kxka rg are relatively compact sets in X.

(b) The functions pð�Þ, qð�Þ are bounded and pð�Þ;SðtÞqð�Þ : C0
h ðXÞ ! X are

completely continuous, for each tb 0.

(c) For every Lb 0, hðtÞ�1 Ð t

0 mðsÞWðLhðsÞÞds ! 0, as t ! y.

Then there exists a mild solution xð�Þ A C0
h ðX Þ of problem (2.1)–(2.3).
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Proof. For each x A C 0
h ðXÞ, we define GxðtÞ by means of (2.6). Clearly

GðxÞ is a continuous function. Moreover,

kGxðtÞkaNðkx0k þ kpðxÞkÞ þ ~NNðky0k þ kqðxÞk þ kgð0; xð0ÞÞkÞð3:1Þ

þ
ð t

0

½NmgðsÞ þ ~NNmf ðsÞ�WðkxðsÞkÞds:

Since kxðsÞka kxkhhðsÞ the above expression yields that

kGxðtÞk
hðtÞ a

N

hðtÞ ðkx0k þ kpðxÞkÞ þ
~NN

hðtÞ ðky0k þ kqðxÞk þ kgð0; xð0ÞÞkÞð3:2Þ

þ 1

hðtÞ

ð t

0

½NmgðsÞ þ ~NNmf ðsÞ�WðkxkhhðsÞÞds;

and applying condition (c), it follows that hðtÞ�1kGxðtÞk converges to zero as

t ! y. This shows that G is a well defined map from C0
h ðXÞ into C0

h ðXÞ.
The inequality (3.2) also shows that hðtÞ�1kGxðtÞk ! 0 as t ! y, uniformly for

x in a bounded subset of C0
h ðX Þ. Using this property we can easily show that

G is continuous.

On the other hand, if xl A C0
h ðX Þ is a solution of the equation lGðxlÞ ¼ xl,

for 0 < l < 1, we find that kxlð0Þka kGðxlÞð0ÞkaNðkx0k þNpÞ. Therefore,

it follows from (3.1) that

kxlðtÞka cþ
ð t

0

gðsÞWðkxlðsÞkÞds;

which in turn implies that

kxlðtÞk
hðtÞ a

c

hðtÞ þ
1

hðtÞ

ð t

0

gðsÞWðkxlkhhðsÞÞds

and

kxlkh a cþ sup
tb0

1

hðtÞ

ð t

0

gðsÞWðkxlkhhðsÞÞds:

If we assume that the set fkxlkh : 0 < l < 1g is unbounded, taking r ¼ kxlkh,
we obtain that

1a lim inf
r!y

1

r
sup
tb0

1

hðtÞ

ð t

0

gðsÞWðrhðsÞÞds;

which is an absurd. Consequently, we conclude that fkxlkh : 0 < l < 1g is a

bounded set.
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On the other hand, if Br ¼ Brð0;C 0
h ðXÞÞ, for r > 0, it is not di‰cult to see

that the set fh�1Gx : x A Brg fulfills the conditions of Lemma 3.1, which implies

that this set is relatively compact in C0ðX Þ and, consequently GðBrÞ is relatively

compact in C0
h ðXÞ. Finally, applying Lemma 1.1 we get the existence of a mild

solution of problem (2.1)–(2.3). r

3.2. Existence of asymptotically almost periodic solutions

We now study the existence of asymptotically almost periodic (a.a.p)

solutions of (2.1)–(2.3). For the basic concepts about almost periodic (a.p.)

and asymptotically almost periodic functions we refer to [21]. Furthermore, the

reader can consult [6, 11, 12] for recent developments about the existence of

almost periodic and asymptotically almost periodic solutions, and the extension

to the admissibility of functions spaces, of the abstract Cauchy problem. In

what follows, we denote by CbðXÞ the space consisting of bounded continuous

functions from ½0;yÞ into X endowed with the norm of uniform convergence,

and the notation APðXÞ (resp. AAPðXÞ) stands for the subspace of CbðX Þ
formed by the functions x : ½0;yÞ ! X which are a.p. (resp. a.a.p.) with

the norm inherits from CbðX Þ. Moreover, a strongly continuous function

F : ½0;yÞ ! LðX ;YÞ is said (strongly) a.p. if for each x A X the function

F ð�Þx : ½0;yÞ ! Y is a.p. We refer to [1] for the characterization of almost

periodic cosine functions and to [4] for similar results for almost periodic sine

functions. Our results will be based on some well known criteria of compact-

ness in APðXÞ and AAPðXÞ ([21]). In particular, it follows from [21, Theorem

6.3] that if F : ½0;yÞ ! LðX ;YÞ is a.p. and U is a relatively compact subset

of X , then V ¼ fFð�Þx : x A Ug is relatively compact in APðYÞ. We can

strengthen this property for the sine function.

Proposition 3.1. Assume that Sð�Þ is almost periodic and that U JX. If

the set fSðtÞx : x A U ; tb 0g is relatively compact in X, then V ¼ fSð�Þx : x A Ug
is relatively compact in APðXÞ.

Proof. Let us fix d > 0. Since SðdÞU is relatively compact in X , by the

previous remark we can a‰rm that the set Vd ¼ fSð�ÞSðdÞx : x A Ug is relatively

compact in APðXÞ. On the other hand, for each e > 0 there is d > 0 such that

kðI � CðsÞÞSðtÞxka e, for all 0a sa d, x A U and all tb 0. It follows from

this estimate that

SðtÞx� 1

d
SðtÞSðdÞx

����
���� ¼ 1

d

ð d

0

ðI � CðsÞÞSðtÞxds
����

����a e:
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Combining this property with the decomposition

SðtÞx ¼ 1

d
SðtÞSðdÞxþ SðtÞx� 1

d
SðtÞSðdÞx;

we get that V J d�1Vd þ Beð0;CbðXÞÞ, which readily implies that V is a

relatively compact set. r

The condition about the compactness of fSðtÞx : x A U ; tb 0g considered

in the previous proposition is verified in several situations. We begin with a

definition. The function Sð�Þ is said uniformly almost periodic if S : ½0;yÞ !
LðX Þ is almost periodic for the norm of operators.

Remark 3.1. Assume that Sð�Þ is almost periodic and that U is a bounded

subset of X . If one of the following conditions hold:

( i ) U is relatively compact.

(ii) Sð�Þ is uniformly almost periodic and SðtÞ is compact for all t A R,

then fSðtÞx : x A U ; tb 0g is relatively compact.

By the results of Lutz [8] the case (ii) includes the periodic sine functions.

On the other hand, for each function f A AAPðXÞ there are uniquely

determined functions f1 A APðXÞ and f2 A C0ðXÞ such that f ¼ f1 þ f2. Let

V JAAPðXÞ and denote Vi ¼ f fi : f A Vg, i ¼ 1; 2. It is easy to see that V is

relatively compact in AAPðX Þ if and only if V1 is relatively compact in APðX Þ
and V2 is relatively compact in C0ðXÞ. Combining this property with Lemma

3.1 and [21, Theorem 6.3] the following criterion is obtained.

Lemma 3.2. Let V JAAPðX Þ be a set with the following properties:

(a) V is uniformly equicontinuous on ½0;yÞ.
(b) V is equi-asymptotically almost periodic. That is, for every e > 0 there

are Te b 0 and a relatively dense set Pe J ½0;yÞ such that

kxðtþ tÞ � xðtÞka e; x A V ; tbTe; t A Pe:

(c) For each tb 0, VðtÞ is relatively compact in X.

Then V is a relatively compact set in AAPðXÞ.

We will use repeatedly the following property, which is a direct consequence

of Lemma 3.1 and the mean value theorem for the Bochner integral ([9]).

Proposition 3.2. Let Zi, i ¼ 1; 2, be Banach spaces and let V J
L1ð½0;yÞ;Z1Þ. If F1 : ½0;yÞ ! LðZ1;Z2Þ and F2 : ½0;yÞ ! LðZ2;Z2Þ are

strongly continuous functions that satisfy the following conditions:

(a)
Ðy
L
F1ðsÞxðsÞds ! 0 in Z2 when L ! y, uniformly for x A V.

(b) For each tb 0, fxðsÞ : x A V ; 0a sa tg is a relatively compact set in

Z1,
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then WðtÞ ¼ f
Ð t

0 F1ðsÞxðsÞds : x A Vg, tb 0, and W ¼ 6
0atay WðtÞ are rela-

tively compact sets in Z2. Furthermore, if F2 is uniformly bounded on ½0;yÞ andÐ tþh

t
F1ðsÞxðsÞds ! 0, when h ! 0, uniformly for x A V, then U ¼ fzx : x A Vg,

where zxðtÞ ¼ F2ðtÞ
Ðy
t
F1ðsÞxðsÞds, is a relatively compact set in C0ðZ2Þ.

Let x : ½0;yÞ ! X be a locally integrable function. In the next results, we

denote by zx; yx : ½0;yÞ ! X the functions defined by zxðtÞ ¼
Ð t

0 Cðt� sÞxðsÞds
and yxðtÞ ¼

Ð t

0 Sðt� sÞxðsÞds, tb 0.

Corollary 3.1. Assume that the sine function Sð�Þ is almost periodic and

V JL1ð½0;yÞ;X Þ is a set with the following properties:

(a)
Ðy
L
kxðsÞkds ! 0 when L ! y, uniformly for x A V.

(b)
Ð tþs

t
kxðxÞkdx ! 0, when s ! 0, uniformly for x A V and tb 0.

(c) For each tb 0, fxðsÞ : 0a sa t; x A Vg is a relatively compact set.

Then fyx : x A Vg and fzx : x A Vg are relatively compact sets in AAPðX Þ.

Proof. It follows from [4, Corollary 3.1] that each function yx is

asymptotically almost periodic. Moreover, by Proposition 3.2 we have that

the sets f
Ðy
0 CðsÞxðsÞds : x A Vg and f

Ðy
0 SðsÞxðsÞds : x A Vg are included in

a compact subset of X . This implies that the set consisting of functions

Sð�Þ
Ðy
0 CðsÞxðsÞds� Cð�Þ

Ðy
0 SðsÞxðsÞds for x A V is relatively compact in

APðXÞ. Similarly, applying again Proposition 3.2 we get that the set formed

by the functions

CðtÞ
ðy
t

SðsÞxðsÞds� SðtÞ
ðy
t

CðsÞxðsÞds;

for x A V , is relatively compact in C0ðXÞ. Combining these remarks with the

decomposition

yxðtÞ ¼ SðtÞ
ðy
0

CðsÞxðsÞds � SðtÞ
ðy
t

CðsÞxðsÞds

� CðtÞ
ðy
0

SðsÞxðsÞdsþ CðtÞ
ðy
t

SðsÞxðsÞds;

we obtain that fyx : x A Vg is a relatively compact set in AAPðX Þ.
On the other hand, we claim that the function zx is uniformly continuous

for each x A V . To establish this assertion, we take L > 0. Since Cð�Þ is

almost periodic, from condition (c) follows that

kCðtþ sÞxðxÞ � CðtÞxðxÞk ! 0; s ! 0;
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and this convergence is uniform for tb 0, 0a xaL and x A V . Therefore,

kzxðtþ sÞ � zxðtÞka
ð t

0

kCðtþ s� xÞxðxÞ � Cðt� xÞxðxÞkdx

þ
ð tþs

t

Cðtþ s� xÞxðxÞdx
����

����

a

ðL

0

sup
tb0;x AV

kCðtþ s� xÞxðxÞ � Cðt� xÞxðxÞkdx

þ 2N

ðy
L

kxðxÞkdxþN

ð tþs

t

kxðxÞkdx:

Using conditions (a) and (b), we can choose L appropriately so that the right

hand side of the above inequality converges to 0, as s ! 0, uniformly for tb 0.

In view of that zx is the derivative of yx, it follows from [21, Theorem 5.2] that

zx A AAPðXÞ. Moreover, the above estimate also shows that the functions zx,

x A V , are uniformly equicontinuous.

Finally, we establish that fzx : x A Vg is equi-asymptotically almost peri-

odic. It follows from Proposition 3.2 that fzxðtÞ : x A Vg is a relatively

compact set for all tb 0. For a fixed e > 0, applying condition (a), we infer

the existence of Te > 0 such that
Ðy
Te
kxðsÞkdsa e=6N, for all x A V . In

addition, since the set fCð�ÞxðsÞ : 0a saTeg is uniformly almost periodic,

there is a relatively dense set Pe J ½0;yÞ such that

kCðxþ tÞxðsÞ � CðxÞxðsÞka e

3Te
;

for all xb 0, 0a saTe and all t A Pe. Hence, for tbTe, we get

kzxðtþ tÞ � zxðtÞka
ðTe

0

kCðtþ t� sÞxðsÞ � Cðt� sÞxðsÞkds

þ 3N

ðy
Te

kxðsÞkds

a e;

which shows the assertion. We complete the proof applying Lemma 3.2 to the

set fzx : x A Vg. r

Using this result and proceeding as in the proof of Proposition 3.1, we can

obtain the compactness of fyx : x A Vg under some weaker conditions.
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Corollary 3.2. Assume that Sð�Þ is almost periodic, V JL1ð½0;yÞ;XÞ and

conditions (a) and (b) of Corollary 3.1 are satisfied. If for each t; db 0, the

set fSðdÞxðsÞ : 0a sa t; x A Vg is relatively compact in X, then fyx : x A Vg is

relatively compact in AAPðXÞ.

We are now in a position to establish the main result of this work. In

this result, we consider that pð�Þ; qð�Þ : AAPðX Þ ! X are bounded continuous

functions. As before Np and Nq denote the upper bound of kpð�Þk and kqð�Þk,
respectively, and c is given by (2.4).

Theorem 3.2. Assume that Sð�Þ is almost periodic and that the conditions

(H-1) and (H-2) hold with functions mf ð�Þ and mgð�Þ integrable on ½0;yÞ and that

ðy
0

ðNmgðsÞ þ ~NNmf ðsÞÞds <
ðy
c

ds

WðsÞ :ð3:3Þ

Assume further that the following conditions are fulfilled:

(a) For each t; t 0 > 0 and each constant rb 0, fSðt 0Þ f ðs; xÞ : 0a sa t;

kxka rg and fgðs; xÞ : 0a sa t; kxka rg are relatively compact sets in

X.

(b) The function pð�Þ : AAPðXÞ ! X is bounded and completely continuous.

(c) The function qð�Þ is bounded and fSðtÞqðxÞ : tb 0; kxka rg is a

relatively compact set in X for each r > 0.

Then there exists a mild solution uð�Þ A AAPðXÞ of problem (2.1)–(2.3).

Proof. For each x A AAPðXÞ, we define GxðtÞ by means of (2.6). By

the integrability of functions mf ð�Þ and mgð�Þ, and proceeding as in the proof

of Corollary 3.1 for the functions f ðs; xðsÞÞ and gðs; xðsÞÞ, we infer that

GðxÞ A AAPðX Þ. Furthermore, if we take a sequence ðxnÞn that converges

to x in the space AAPðXÞ, then Sðt� sÞ f ðs; xnðsÞÞ ! Sðt� sÞ f ðs; xðsÞÞ and

Cðt� sÞgðs; xnðsÞÞ ! Cðt� sÞgðs; xðsÞÞ, as n ! y, a.e. on ½0; t�. Let L ¼
supfkxky; kxnky : n A Ng. From the inequalities

kCðt� sÞgðs; xnðsÞÞ � Cðt� sÞgðs; xðsÞÞka 2NmgðsÞWgðLÞ;

kSðt� sÞ f ðs; xnðsÞÞ � Sðt� sÞ f ðs; xðsÞÞka 2 ~NNmf ðsÞWf ðLÞ;

and using again the integrability of mf ð�Þ and mgð�Þ, we conclude that GxnðtÞ !
GxðtÞ, when n ! y, and that this convergence is uniform on ½0;yÞ. This

yields that G is a continuous map.

On the other hand, proceeding as in the proof of Theorem 2.1, we can

conclude that the set of functions fxl A AAPðXÞ : lGðxlÞ ¼ xl; 0 < l < 1g is

uniformly bounded on ½0;yÞ.
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Finally, we shall show that G is completely continuous. In order to

establish this assertion we take a bounded set V JAAPðXÞ. Since pð�Þ is

completely continuous, the set of functions fCð�Þðx0 þ pðxÞÞ : x A Vg is rela-

tively compact in APðXÞ. Similarly, it follows from conditions (a) and (b), and

applying Proposition 3.1 that fSð�Þðy0 þ qðxÞ þ gð0; xð0ÞÞÞ : x A Vg is relatively

compact in APðXÞ. In addition, since the sets of functions L1 ¼ fgð�; xð�ÞÞ :
x A Vg and L2 ¼ f f ð�; xð�ÞÞ : x A Vg satisfy the hypotheses of Corollary 3.1 and

Corollary 3.2, respectively, we infer that GðVÞ is relatively compact in AAPðXÞ.
The existence of a mild solution of problem (2.1)–(2.3) is now consequence

of Lemma 1.1. r

We next establish a result of regularity for the asymptotically almost

periodic mild solutions of problem (2.1)–(2.3). This result will be based on the

following properties of the almost periodic sine functions.

Lemma 3.3. Assume that Sð�Þ is almost periodic. Then the following

assertions are fulfilled:

(a) For each x A X the function Sð�Þx is almost periodic for the norm in E.

(b) If ASð�Þ is uniformly bounded on R as an LðE;X Þ-valued map, then the

group G is almost periodic.

(c) If ASð�Þ is uniformly bounded on R as an LðE;X Þ-valued map and

u : ½0;yÞ ! X is a function for which there is y A DðAÞ such that

uðtÞ � Ay A L1ð½0;yÞ;XÞ, then the function w1ð�Þ given by w1ðtÞ ¼Ð t

0 Cðt� sÞuðsÞds is asymptotically almost periodic.

(d) If ASð�Þ is uniformly bounded on R as an LðE;X Þ-valued map and

v : ½0;yÞ ! E is a function for which there is z A E such that

vðtÞ � z A L1ð½0;yÞ;EÞ, then the function w2ð�Þ given by w2ðtÞ ¼Ð t

0 ASðt� sÞvðsÞds is asymptotically almost periodic.

Proof. Let x A X . Since the sine function Sð�Þ is almost periodic, it

follows from [4, Theorem 3.2] that Cð�Þ is almost periodic. Consequently, the

function ðCð�Þx;Sð�ÞxÞ is almost periodic with values in X � X . Thus, given

e > 0 there is a relatively dense set Pe such that

kCðtþ tÞx� CðtÞxk þ kSðtþ tÞx� SðtÞxka e; tb 0; t A Pe:

Using that Cð�Þ is uniformly bounded on R and

Cðtþ sÞx ¼ CðtÞCðsÞxþ ASðtÞSðsÞx;ð3:4Þ

we obtain
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kSðtþ tÞx� SðtÞxk1 ¼ kSðtþ tÞx� SðtÞxk þ sup
0aha1

kASðhÞ½Sðtþ tÞx� SðtÞx�k

a eþ sup
0aha1

kCðhÞk kCðtþ tÞx� CðtÞxk

þ sup
0aha1

kCðtþ hþ tÞx� Cðtþ hÞxk

a ðN þ 2Þe;

for all tb 0 and t A Pe, which proves the assertion (a).

On the other hand, for all y A E and tb 0 we have that

kASðtþ hÞy� ASðtÞyka kASðtÞkLðE;XÞkðCðhÞ � IÞyk1 þ kCðtÞk kASðhÞyk:

If we assume that kASðtÞkLðE;XÞ is bounded on R, it follows from the above

inequality that function ASð�Þy is uniformly continuous on ½0;yÞ and, since

ASð�Þy is the derivative of the almost periodic function CðtÞy, applying the

Bochner Theorem (see [21, p. 24]), we infer that ASð�Þy is almost periodic.

Using now the definition of G given in the Introduction, we conclude that the

group G is almost periodic, which establishes (b).

Finally, since the functions

v� z

0

� �
¼ v

0

� �
�A

0

z

� �
A L1ð½0;yÞ;E � XÞ

and

0

u� Ay

� �
¼ 0

u

� �
�A

y

0

� �
A L1ð½0;yÞ;E � X Þ;

assertions (c) and (d) are a consequence of (b) and [21, Example 5.1]. r

We next consider ASð�Þ as a strongly continuous LðE;XÞ-valued function.

Proposition 3.3. Assume that Sð�Þ is almost periodic and that the operator-

valued function ASð�Þ is uniformly bounded on R. Let uð�Þ be an asymptotically

almost periodic mild solution of problem (2.1)–(2.3). If, in further, the following

conditions are satisfied:

(a) There is y A DðAÞ such that the function ½0;yÞ ! X, t 7! f ðt; uðtÞÞ�
Ay, is integrable.

(b) The function ½0;yÞ ! X, t 7! gðt; uðtÞÞ, is asymptotically almost peri-

odic, the values gðt; uðtÞÞ A E and there is z A E such that gð�; uð�ÞÞ � z

A L1ð½0;yÞ;EÞ.
(c) x0 þ pðuÞ A E,

then uð�Þ is continuously di¤erentiable and u 0ð�Þ is asymptotically almost periodic.
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Proof. From our hypotheses and Lemma 2.1, we obtain that u is

continuously di¤erentiable and that

u 0ðtÞ ¼ ASðtÞðx0 þ pðuÞÞ þ CðtÞðy0 þ qðuÞ þ gð0; uð0ÞÞ þ gðt; uðtÞÞ

þ
ð t

0

ASðt� sÞgðs; uðsÞÞdsþ
ð t

0

Cðt� sÞ f ðs; uðsÞÞds

for tb 0. Combining this equality with the integrability of f ðs; uðsÞÞ and

gðs; uðsÞÞ, and the assertions of Lemma 3.3, we get that u 0 is asymptotically

almost periodic. r

4. Applications

The one dimensional wave equation modeled as an abstract Cauchy

problem has been studied extensively. See for example [20]. In this section,

we apply the results established in the previous sections to study some variants

of the wave equation.

On the space X ¼ L2ð½0; p�Þ, we consider the operator Af ðxÞ ¼ f 00ðxÞ with

domain DðAÞ ¼ f f ð�Þ A H 2ð0; pÞ : f ð0Þ ¼ f ðpÞ ¼ 0g. It is well known that A

is the infinitesimal generator of a strongly continuous cosine function CðtÞ
on X . Furthermore, A has discrete spectrum, with eigenvalues �n2, n A N ,

and corresponding normalized eigenvectors znðxÞ ¼ ð2=pÞ1=2 sinðnxÞ. Moreover,

CðtÞj ¼
Py
n¼1

cosðntÞhj; znizn and SðtÞj ¼
Py
n¼1

sinðntÞ
n

hj; znizn for t A R. This

implies that kCðtÞk ¼ 1, the operator SðtÞ is compact and kSðtÞk ¼ 1, for every

t A R (see [2] for details).

We consider the following initial value problem with nonlocal conditions

defined for t A I ¼ ½0; a� and x A ½0; p�,

q

qt

quðt; xÞ
qt

� F1ðt; x; uðt; xÞÞ
� �

¼ q2uðt; xÞ
qx2

þ Fðt; x; uðt; xÞÞ;ð4:1Þ

uðt; 0Þ ¼ uðt; pÞ ¼ 0;ð4:2Þ

uð0; xÞ ¼ x0ðxÞ þ
Xn

i¼1

aiuðti; xÞ;ð4:3Þ

quð0; xÞ
qt

¼ y0ðxÞ þ
Xk

i¼1

biðuðsi; xÞÞ:ð4:4Þ

In this statement we assume that F1;F : I � ½0; p� � R ! R satisfy the con-

ditions:
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(C-1) The functions F ðt; x; �Þ;F1ðt; x; �Þ : R ! R are continuous a.e. ðt; xÞ A
I � ½0; p�.

(C-2) For each w A R, the function Fð�;wÞ : I � ½0; p� ! R is measurable

and there exist positive measurable functions hF
1 ; h

F
2 : I � ½0; p� ! R

with hF
1 A L2ðI � ½0; p�Þ and sup0axap h

F
2 ð�; xÞ A L1ðIÞ such that

jFðt; x;wÞja hF
1 ðt; xÞ þ hF

2 ðt; xÞjwj; t A I ; x A ½0; p�; w A R:

(C-3) The function F1ð�; 0Þ A L2ðI � ½0; p�Þ, and there exists a positive

constant L1 such that

jF1ðt; x;w1Þ � F1ðt; x;w2ÞjaL1jw1 � w2j; t A I ; x A ½0; p�; w1;w2 A R:

Furthermore, x0; y0 A X , 0 < ti, sj < a, ai A R and bj : R ! R are bounded

continuous functions for i ¼ 1; . . . ; n and j ¼ 1; . . . ; k.

We define the substitution operators gðt; xÞðxÞ ¼ F1ðt; x; xðxÞÞ and f ðt; xÞðxÞ
¼ Fðt; x; xðxÞÞ for x A X . It follows from [10, Proposition V.2.5] that f ð�Þ and

gð�Þ satisfy the Carathéodory conditions (H-1), (H-2), and that gð�Þ is Lipschitz

continuous. Moreover, it is not di‰cult to see that

k f ðt; xÞk2 a
ð p

0

hF
1 ðt; xÞ

2
dx

� �1=2

þ sup
0axap

hF
2 ðt; xÞkxk2;

kgðt; xÞ � gðt; yÞk2 aL1kx� yk2

for all x; y A X and all t A I , which implies that we can choose

mf ðtÞ ¼
ð p

0

hF
1 ðt; xÞ

2
dx

� �1=2

þ sup
0axap

hF
2 ðt; xÞ;

and Wf ðrÞ ¼ 1 for 0a ra 1 and Wf ðrÞ ¼ r, for rb 1. We complete this

representation by defining the maps pðuÞðxÞ ¼
Pn
i¼1

aiuðti; xÞ and qðuÞðxÞ ¼
Pk
i¼1

biðuðsi; xÞÞ for u A CðI ;X Þ, where we have abbreviated uðtÞðxÞ ¼ uðt; xÞ.

With these definitions the problem (4.1)–(4.4) can be modeled as the abstract

nonlocal Cauchy problem (2.1)–(2.3).

Proposition 4.1. Assume that the previous conditions are fulfilled. If

ð a

0

sup
0axap

hF
2 ðs; xÞdsþ ðaþ 1ÞL1 þ

Xn

i¼1

jaij < 1;

then there exists a mild solution of problem (4.1)–(4.4).
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Proof. Since SðtÞ is compact for all t A R the existence of a mild solution

of problem (4.1)–(4.4) follows directly from Theorem 2.2. r

Finally, we will study the existence of global mild solutions for the problem

q

qt

quðt; xÞ
qt

�
ð p

0

bðt; h; xÞuðt; hÞdh
� �

¼ q2uðt; xÞ
qx2

þ Fðt; x; uðt; xÞÞ;ð4:5Þ

uðt; 0Þ ¼ uðt; pÞ ¼ 0;ð4:6Þ

uð0; xÞ ¼ x0ðxÞ þ
ðy
0

Pðuðs; �ÞÞðxÞdmðsÞ;ð4:7Þ

q

qt
uð0; xÞ ¼ y0ðxÞ þ

ðy
0

Qðuðs; �ÞÞðxÞdnðsÞ;ð4:8Þ

for t A ½0;yÞ x A ½0; p�. We turn to model this problem on the space

X ¼ L2ð½0; p�Þ and, we assume that the following technical conditions hold,

where I ¼ ½0;yÞ:
( i ) The function F : I � ½0; p� � R ! R satisfies condition (C-1), for

each w A R the function Fð�;wÞ : I � ½0; p� ! R is measurable, and

there exists a positive measurable function hF ð�Þ : I � ½0; p� ! R with

sup0axap h
F ð�; xÞ A L1ðIÞ such that

jF ðt; x;wÞja hF ðt; xÞjwj; tb 0; x A ½0; p�; w A R:

( ii ) The functions bðs; h; xÞ, qbðs; h; xÞ=qx, q2bðs; h; xÞ=qx2 are continuous

on ½0;yÞ � ½0; p�2 and bðs; h; pÞ ¼ bðs; h; 0Þ ¼ 0 for all ðs; hÞ A I � ½0; p�.
(iii) The maps P;Q : X ! X are continuous and bounded, and P is

completely continuous (we refer to [10] for examples of operators

that satisfy these properties). Furthermore, m, n are real functions of

bounded variation on ½0;yÞ.
(iv) x0; y0 A X .

Defining the maps f ; g : I � X ! X and pð�Þ; qð�Þ : CðI ;XÞ ! X by

f ðt; xÞðxÞ ¼ F ðt; x; xðxÞÞ; gðt; xÞðxÞ ¼
ð p

0

bðt; h; xÞxðhÞdh;

pðuÞðxÞ ¼
ðy
0

PðuðsÞÞðxÞdmðsÞ; qðuÞðxÞ ¼
ðy
0

QðuðsÞÞðxÞdnðsÞ

for x A ½0; p�, the problem (4.5)–(4.8) can be modeled as the abstract Cauchy

problem (2.1)–(2.3). It follows from (i) that we can choose the functions

mf ðtÞ ¼ hF ðt; �Þp, mgðtÞ ¼ ð
Ð p

0

Ð p

0 bðt; h; xÞ2dhdxÞ1=2 and WðsÞ ¼ s. Let gðtÞ ¼
mf ðtÞ þmgðtÞ and assume that hð�Þ is a function verifying the general assump-

tions considered in subsection 3.1. It is easy to see that we can consider pð�Þ
and qð�Þ as bounded continuous functions defined on C0

h ðX Þ and AAPðX Þ.

135Second Order Di¤erential Equations



Proposition 4.2. Assume that the preceding conditions are fulfilled

hðtÞ�1 Ð t

0 gðsÞhðsÞds ! 0 as t ! y, and sup
tb0

hðtÞ�1 Ð t

0 gðsÞhðsÞds < 1. Then there

exists a mild solution of problem (4.5)–(4.8) in C0
h ðXÞ.

Proof. We infer from condition (ii) that gðt; �Þ is a ½DðAÞ�-valued linear

continuous operator. Moreover, it is easy to see that f ð�Þ, gð�Þ, pð�Þ and

qð�Þ satisfy the compactness conditions considered in Theorem 3.1. Since

sup
tb0

hðtÞ�1 Ð t

0 gðsÞhðsÞds < 1, the assertion is a consequence of Theorem 3.1.

r

We mention here that, under very general assumptions on g, there exists a

function h which satisfies the conditions considered in this proposition. For

instance, if g is equi-integrable, that is, for each e > 0 there is d > 0 such that for

every measurable set BJ ½0;yÞ, with lðBÞa d, then
Ð
B
gðsÞdsa e, we have that

hðtÞ ¼ expðat2Þ, for some a > 0 large enough, fulfills the requirements.

Using similar arguments we can prove the next result.

Proposition 4.3. Assume that the previous conditions are verified and that

gð�Þ is integrable on ½0;yÞ. Then there exists an asymptotically almost periodic

mild solution of problem (4.5)–(4.8).

Proof. Since
Ðy
c
WðsÞ�1

ds ¼ y the assertion is a consequence of Theorem

3.2 and the fact that Sð�Þ is periodic. r
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