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1. Introduction

In this paper we are concerned with the Volterra di¤erence equation

xðnþ 1Þ ¼
Xn

k¼�y

Qðn� kÞxðkÞ þ pðnÞ; n A Zþ;ð1Þ

where fQðnÞg is a sequence of compact linear operators on a Banach space X

satisfying
Py

n¼0 kQðnÞkegn < y for some g > 0, and p is an X -valued function

on Z.

In preceding papers [6, 7], under some additional conditions, we proved

that the asymptotic stability of the zero solution of the equation with the forcing

term free

xðnþ 1Þ ¼
Xn

k¼�y

Qðn� kÞxðkÞ; n A Zþð2Þ

is equivalent to the invertibility of the characteristic operator outside the unit

disk of the complex plane, and established generalizations of some stability

results for finite-dimensional X in [3, 4] to infinite-dimensional X .

The main purpose of this paper is to discuss asymptotic behaviors of

solutions of Eq. (1) under the situation where the zero solution of Eq. (2) fails



to be asymptotically stable. In such a situation, the decomposition of the phase

space for Eq. (2) associated with the spectrum of the solution operator

(Theorem 1) plays quite an essential role. In fact, the decomposition of the

phase space induces that of the variation of constants formula (VCF) in the

phase space (Proposition 1, see also [8]) into two parts referred to as the stable

part of VCF and the unstable part of VCF (Theorem 2); and by studying each

part of VCF, we show that the study for Eq. (1) and (2) may be reduced in

some sense to that for certain di¤erence equations of first order in a finite-

dimensional space. Moreover, applying the decomposition of VCF, we will

give a result on the existence of almost periodic solutions of Eq. (1), which can

be viewed as a discrete analogue for Volterra di¤erence equations of Massera’s

theorem [11] on the existence of periodic solutions for linear ordinary di¤erential

equations.

2. Preliminaries

We shall give in this section the variation of constants formula for Eq. (1)

in a suitable phase space, which plays an essential role in the study on the

behaviors of solutions of Eq. (1) in the subsequent sections.

Let N , Z, Zþ, Z� and C be the set of natural numbers, integers,

nonnegative integers, nonpositive integers and complex numbers, respectively.

Let X be a Banach space over C with norm j � j. We denote by LðX Þ the

space of all bounded linear operators on X and define the norm of any T

belonging to LðX Þ by

kTk ¼ supfjTxj : x A X ; jxj ¼ 1g:

Throughout the paper we assume that there exists a positive constant g such

that

K1 :¼
Xy
n¼0

kQðnÞkegn < y:

Let us define the Banach space Bg by

Bg ¼ f : Z� 7! X

���� sup
y AZ�

jfðyÞjegy < y

� �

equipped with the norm

kfk ¼ sup
y AZ�

jfðyÞjegy; f A Bg;

and for any s A Z and f A Bg consider the initial value problem:
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xðnþ 1Þ ¼
Xn
j¼�y

Qðn� jÞxð jÞ þ pðnÞ; nb s;

xðsþ yÞ ¼ fðyÞ; y A Z�:

8>><
>>:ð3Þ

The problem (3) has a unique solution, which will be denoted by xð�; s; f; pÞ.
In fact, xð�; s; f; pÞ is given by

xðn; s; f; pÞ ¼

fðnÞ; na s;

Rðn� sÞfð0Þ þ
Xn�1

k¼s

Rðn� k � 1ÞpðkÞ

þ
Xn�1

k¼s

Rðn� k � 1Þ
X�1

j¼�y

Qðk � s� jÞfð jÞ
 !

; nb s;

8>>>>>>>><
>>>>>>>>:

ð4Þ

where fRðnÞg is the fundamental solution of (1) (or (2)), that is, the sequence in

LðX Þ defined by

Rðnþ 1Þ ¼
Xn
k¼0

Qðn� kÞRðkÞ; Rð0Þ ¼ Ið5Þ

(see [6] and [8]). Here and hereafter we employ the convention
Ps�1

s

¼ 0 for any

s A Z.

Define a family of linear operators fVðmÞgm AZþ on Bg by VðmÞf :¼
xmð0; f; 0Þ, where the notation xmðs; f; pÞ stands for the mapping from Z� into

X given by ½xmðs; f; pÞ�ðyÞ ¼ xðmþ y; s; f; pÞ for y A Z�. It follows from (4)

that

ð6Þ

½VðmÞf�ðyÞ ¼

fðmþ yÞ; ya�m;

Rðmþ yÞfð0Þ

þ
Xmþy�1

k¼0

Rðmþ y� k � 1Þ
X�1

j¼�y

Qðk � jÞfð jÞ
 !

; �m � ya 0:

8>>>>><
>>>>>:

VðmÞ is called the solution operator of Eq. (2). One can verify that each

VðmÞ is a bounded linear operator on Bg with Vð0Þ ¼ I , and moreover that

fVðmÞgm AZþ has the semigroup property, i.e., Vðmþ nÞ ¼ VðmÞVðnÞ for m; n A
Zþ (see [8]).

Let us define an operator E : X 7! Bg by

½Ex�ðyÞ ¼ x; y ¼ 0;

0; y ¼ �1;�2;�3 . . .

�

for any x A X . Clearly, E is an isometry from X into Bg:
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kExk ¼ jxj; x A X :

The following result [8] yields a representation formula for xð�; s; f; pÞ in Bg,

which we call the variation of constants formula in the phase space. For the

completeness we will give a proof.

Proposition 1. For any s A Z and f A Bg we have

xnðs; f; pÞ ¼ Vðn� sÞfþ
Xn�1

k¼s

Vðn� k � 1ÞEpðkÞ; nb s:

Proof. It is su‰cient to verify the following relation:

½xnðs; f; pÞ � Vðn� sÞf�ðyÞ ¼
Xn�1

k¼s

½Vðn� k � 1ÞEpðkÞ�ðyÞ; y A Z�:ð7Þ

(i) The case of ya�nþ s: Since n� sþ ya 0, we get

½xnðs; f; pÞ � Vðn� sÞf�ðyÞ ¼ xðnþ y; s; f; pÞ � ½Vðn� sÞf�ðyÞ

¼ fðn� sþ yÞ � fðn� sþ yÞ ¼ 0:

Also, for k ¼ s; sþ 1; . . . ; n� 1, we have n� k � 1þ ya n� s� 1þ ya�1,

and hence

Xn�1

k¼s

½Vðn� k � 1ÞEpðkÞ�ðyÞ ¼
Xn�1

k¼s

½EpðkÞ�ðn� k � 1þ yÞ ¼ 0:

Thus the relation (7) holds true.

(ii) The case of �nþ sþ 1a ya 0: Since 1a n� sþ y, in view of (4)

and (6) we get

½xnðs; f; pÞ � Vðn� sÞf�ðyÞ

¼ xðnþ y; s; f; pÞ � xðn� sþ y; 0; f; 0Þ

¼ Rðnþ y� sÞfð0Þ þ
Xnþy�1

k¼s

Rðnþ y� k � 1Þ
X�1

j¼�y

Qðk � s� jÞfð jÞ þ pðkÞ
 !

� Rðn� sþ yÞfð0Þ þ
Xn�sþy�1

k¼0

Rðn� sþ y� k � 1Þ
X�1

j¼�y

Qðk � jÞfð jÞ
 !( )

¼
Xnþy�1

k¼s

Rðnþ y� k � 1ÞpðkÞ:
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On the one hand, since sa nþ y� 1a n� 1, it follows that

Xn�1

k¼s

½Vðn� k � 1ÞEpðkÞ�ðyÞ ¼
Xn�1

k¼s

xðn� k � 1þ y; 0;EpðkÞ; 0Þ

¼
Xnþy�1

k¼s

xðn� k � 1þ y; 0;EpðkÞ; 0Þ

þ
Xn�1

k¼nþy

xðn� k � 1þ y; 0;EpðkÞ; 0Þ:

For sa ka nþ y� 1, we see from (4)

xðn� k � 1þ y; 0;EpðkÞ; 0Þ

¼ Rðn� k � 1þ yÞ½EpðkÞ�ð0Þ

þ
Xn�kþy�2

l¼0

Rðn� k þ y� l� 2Þ
X�1

j¼�y

Qðl� jÞ½EpðkÞ�ð jÞ
 !

¼ Rðn� k � 1þ yÞpðkÞ;

while for nþ ya ka n� 1,

xðn� k � 1þ y; 0;EpðkÞ; 0Þ ¼ ½EpðkÞ�ðn� k � 1þ yÞ ¼ 0

because of n� k � 1þ ya�1. Thus we get

Xn�1

k¼s

½Vðn� k � 1ÞEpðkÞ�ðyÞ ¼
Xnþy�1

k¼s

Rðn� k � 1þ yÞpðkÞ;

which shows the relation (7). This completes the proof. r

3. Decomposition of the phase space

Let S be the set of characteristic roots of Eq. (2), that is, the complex

numbers such that the characteristic operator zI � ~QQðzÞ associated with Eq. (2)

is not invertible in LðXÞ, where ~QQðzÞ is the Z-transform of fQðnÞg : ~QQðzÞ ¼Py
n¼0 QðnÞz�n. Let V be the generator of the semigroup fVðmÞg, i.e., V ¼

Vð1Þ. Then under the condition that QðnÞ are all compact operators, we can

find the following relation between the set S and the spectrum of V . In what

follows, for any linear operator T on a Banach space, we denote by sðTÞ the

spectrum of T and PsðTÞ the point spectrum of T .
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Lemma 1. If QðnÞ, n A Zþ, are compact operators, then for jzj > e�g the

following statements are equivalent:

(i) z A sðVÞ,
(ii) z A PsðVÞ,
(iii) z A S, that is, zI � ~QQðzÞ is not invertible in LðXÞ.

Proof. (a) (ii) ) (i). This is evident.

(b) (i) ) (iii). It is su‰cient to verify that the invertibility of zI � ~QQðzÞ
in LðXÞ implies z A rðVÞ, the resolvent set of V . To see this, given c A Bg,

consider the linear equation in Bg

ðzI � VÞf ¼ cð8Þ

Eq. (8) is equivalent to

xð1þ y; 0; f; 0Þ ¼ zfðyÞ � cðyÞ; y A Z�;

which, combined with the fact that xð1; 0; f; 0Þ ¼
P0

k¼�y Qð�kÞfðkÞ, becomes

the system of equations in X

Xy
k¼0

QðkÞfð�kÞ ¼ zfð0Þ � cð0Þ;

fð1þ yÞ ¼ zfðyÞ � cðyÞ; y ¼ �1;�2; . . . :

8>><
>>:ð9Þ

From the second equation of (9),

fð�1Þ ¼ 1

z
ðfð0Þ þ cð�1ÞÞ;

similarly

fð�2Þ ¼ 1

z
ðfð�1Þ þ cð�2ÞÞ ¼ 1

z2
fð0Þ þ 1

z2
cð�1Þ þ 1

z
cð�2Þ;

and generally we have

fð�kÞ ¼ 1

zk
fð0Þ þ

Xk�1

j¼0

1

zk�j
cð�j � 1Þ; k ¼ 0; 1; 2; . . . :ð10Þ

It follows from the first equation of (9) that

zfð0Þ � cð0Þ ¼
Xy
k¼0

QðkÞfð�kÞ

¼
Xy
k¼0

QðkÞz�kfð0Þ þ
Xy
k¼0

QðkÞ
Xk�1

j¼0

1

zk�j
cð�j � 1Þ

 !
;
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so that

ðzI � ~QQðzÞÞfð0Þ ¼ cð0Þ þ
Xy
k¼0

QðkÞ
Xk�1

j¼0

1

zk�j
cð�j � 1Þ

 !
:ð11Þ

By the invertibility of zI � ~QQðzÞ, fð0Þ is given by

fð0Þ ¼ ðzI � ~QQðzÞÞ�1 cð0Þ þ
Xy
k¼0

QðkÞ
Xk�1

j¼0

1

zk�j
cð�j � 1Þ

 !( )
:ð12Þ

Hence it follows from (10) that Eq. (8) has a unique solution, denoted Rzc, for

any c A Bg. We must show that Rzc belongs to Bg. Because for jzjeg > 1

Xy
k¼0

QðkÞ
Xk�1

j¼0

1

zk�j
cð�j � 1Þ

 !�����
�����a

Xy
k¼0

kQðkÞk
Xk�1

j¼0

1

jzjk�j
kckegð jþ1Þ

a
Xy
k¼0

kQðkÞkegk
Xk�1

j¼0

eg

ðjzjegÞk�j
kck

a
K1e

g

jzjeg � 1
kck;

we see from (12) that

jðRzcÞð0Þja kðzI � ~QQðzÞÞ�1k 1þ K1e
g

jzjeg � 1

� �
kck:

Therefore (10), together with (12), yields that for k A N

jðRzcÞð�kÞje�gk
a

1

ðjzjegÞk
jðRzcÞð0Þj þ

Xk�1

j¼0

eg

ðjzjegÞk�j
kck

a kðzI � ~QQðzÞÞ�1k 1þ K1e
g

jzjeg � 1

� �
kck þ eg

jzjeg � 1
kck;

consequently Rzc A Bg, as required. In particular, we have

kRzcka kðzI � ~QQðzÞÞ�1k 1þ K1e
g

jzjeg � 1

� �
kck þ eg

jzjeg � 1
kck;

and so the mapping Rz : B
g 7! Bg is bounded.

By the definition of Rz it is obvious that ðzI � VÞRz ¼ RzðzI � VÞ ¼ I .

Thus, we conclude z A rðVÞ.
(c) (iii) ) (ii). Suppose that z A sð ~QQðzÞÞ. Observe that ~QQðzÞ is a compact

operator. Then z A Psð ~QQðzÞÞ by the Riesz-Schauder theorem. So there exists
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a nonzero fð0Þ A X with ~QQðzÞfð0Þ ¼ 0. It is easy to see that f A Bg, given

by fð�kÞ :¼ z�kfð0Þ for k A N , satisfies ðzI � VÞf ¼ 0 and hence z A PsðVÞ.
r

Now we recall that the essential spectrum seðVÞ of V is defined as the set

of z A sðVÞ, for which at least one of the following holds (see [9, § 4.3], [1,

§ 1.4]):

(i) RðzI � VÞ, the range of the operator zI � V , is not closed,

(ii) the point z is the limit point of sðVÞ,
(iii) the generalized eigenspace 6

kb1
NððzI � VÞkÞ for z is of infinite

dimension,

where NððzI � VÞkÞ denotes the null space of the operator ðzI � VÞk. Also

the essential spectral radius reðVÞ of V is defined by

reðVÞ :¼ supfjzj : z A seðVÞg:

Then, we have the following estimate:

Lemma 2. The essential spectral radius reðVÞ of V satisfies reðVÞa e�g.

Proof. Given n A N , we claim that aðVðnÞÞa e�gn, where aðVðnÞÞ denotes

the a-measure (or Kuratowski measure of noncompactness) of the bounded

linear operator VðnÞ (see [9, § 4.3], [1, § 1.2]). Let W be a bounded set in Bg.

Then for arbitrary h > 0 there exists a finite cover fOigli¼1 of W such that

dðOiÞ < aðWÞ þ h for i ¼ 1; . . . ; l, where dðOiÞ denotes the diameter of the set

Oi. Since the coe‰cients QðkÞ are compact, the operator RðsÞ in (5) is com-

pact for s ¼ 1; 2; . . . . Therefore it follows from (6) that f½VðsÞf�ð0Þ : 1a sa n;

f A Wg is a relative compact set of X , and that W :¼ fðxð1; 0; f; 0Þ; . . . ;
xðn; 0; f; 0ÞÞ : f A Wg is relatively compact in X n, the n-copies of X , endowed

with the norm jxj ¼ max1asanjxðsÞj for x ¼ ðxð1Þ; . . . ; xðnÞÞ A X n. Hence there

corresponds a finite cover fWjgm
j¼1 of W satisfying dðWjÞ < h, j ¼ 1; . . . ;m.

Then fOi; jgi; j, defined by Oi; j :¼ ff A Oi : ðxð1; 0; f; 0Þ; . . . ; xðn; 0; f; 0ÞÞ A Wjg,
gives a finite refinement of fOigi, and for f;c A Oi; j we have

kVðnÞf� VðnÞcka max
1asan

jxðs; 0; f; 0Þ � xðs; 0;c; 0Þj þ e�gnkf� ck

a hþ e�gnðaðWÞ þ hÞ:

Since h is arbitrary, it follows that aðVðnÞWÞa e�gnaðWÞ, and therefore that

aðVðnÞÞa e�gn.

By Nussbaum’s formula [1, § 1.4], we get

reðVÞ ¼ lim
n!y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðV nÞn

p
¼ lim

n!y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðVðnÞÞn

p
a e�g;

as desired. r
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Let LH sðVÞ be a spectral set. Then, there exists a closed Jordan curve

C in rðVÞ which contains L in its interior and no points of L 0 :¼ sðVÞnL.
Then, it is well known that the space Bg is expressed as the direct sum of V -

invariant closed subspaces: Bg ¼ EL lEL 0
with EL ¼ PLðBgÞ and EL 0 ¼

ðI �PLÞðBgÞ, where

PL :¼ 1

2pi

ð
C

ðzI � VÞ�1
dz

is the projection from Bg onto EL, and that the relations sðV jE LÞ ¼ L and

sðV jE L 0 Þ ¼ L 0 hold. Now consider subsets of S as follows: S c :¼ SV fjzj ¼ 1g
and Su :¼ SV fjzj > 1g. Then by Lemma 1 Su ¼ sðVÞV fjzj > 1g and

S c ¼ sðVÞV fjzj ¼ 1g. We also see from Lemma 2 that each element in Su US c

does not belong to the essential spectrum seðVÞ of V ; hence Su US c is finite, so that

both ES u

and ES c

are of finite dimension. In particular, if we set Eu ¼ ES u

,

Ec ¼ ES c

and Es ¼ ES 0
, S 0 being sðVÞnðEc UEuÞ, Bg can be written as the

direct sum: Bg ¼ Eu lEc lEs. Put V uðnÞ ¼ VðnÞjE u , V cðnÞ ¼ VðnÞjE c and

V sðnÞ ¼ VðnÞjE s . Then it follows that sðV sÞ ¼ Su, sðV cÞ ¼ S c and sðV sÞ ¼ S 0,

where we denote V uð1Þ by V u, and similarly for V c and V s.

Consequently, we obtain the following result.

Theorem 1. Let VðnÞ be the solution operator of Eq. (2). Then there

corresponds a decomposition of the phase space

Bg ¼ Eu lEc lEs

with the following properties:

(i) dimðEu lEcÞ < y,

(ii) VðnÞEu HEu, VðnÞEc HEc, and VðnÞEs HEs,

(iii) V sðnÞ has the semigroup property in Zþ, while V uðnÞ and V cðnÞ have

in Z ,

(iv) there exist constants K b 1 and a > e > 0 such that

kV sðnÞkaKe�an; n A Zþ;

kV uð�nÞkaKe�an; n A Zþ;

kV cðnÞkaKeejnj; n A Z:

Proof. It remains to show (iii) and (iv). Because of sðV uÞ ¼ Su, we see

ðV uÞ�1 A LðEuÞ. If we define V uð�nÞ ¼ ðV uÞ�n for n A N , V uðnÞ satisfies the

semigroup property on n A Z, and likewise for V cðnÞ. This shows (iii).

Since sðV sÞ ¼ S 0, it follows from Lemma 2 that the spectral radius of

V s is less than one, so that there exist Kb 1 and a > 0 such that kV sðnÞka
Ke�an, n A Zþ, which proves the first inequality of (iv). Also, noting that
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rsðV uð�1ÞÞ ¼ rsððV uÞ�1Þ < 1, we obtain the second inequality of (iv). The

third one follows from the fact that rsðV cð�1ÞÞ ¼ rsððV cÞ�1Þ ¼ 1 ¼ rsðV cð1ÞÞ.
r

4. Decomposition of variation of constants formula

Corresponding to the decomposition of the phase space Bg in the previous

section, one can naturally decompose the variation of constants formula in

Proposition 1 into two parts. Consider the equations

xðnÞ ¼ V sðn� sÞxðsÞ þ
Xn�1

k¼s

V sðn� k � 1ÞP sðEpðkÞÞ; nb s;ð13Þ

hðnÞ ¼ V ucðn� sÞhðsÞ þ
Xn�1

k¼s

V ucðn� k � 1ÞP ucðEpðkÞÞ; nb s;ð14Þ

where V ucðnÞ denotes the restriction of VðnÞ to the space Euc :¼ Eu lEc. The

equations (13) and (14) are called the stable part of VCF and the unstable part

of VCF, respectively. Then we get:

Theorem 2. For the solution xðn; s; f; pÞ of Eq. (1) the E s-component

P sxnðs; f; pÞ and the Euc-component P ucxnðs; f; pÞ of xnðs; f; pÞ satisfy the

stable part and the unstable part of VCF, respectively.

Conversely, suppose that functions xðnÞ and hðnÞ on Z with xðnÞ A Es and

hðnÞ A Euc satisfy the stable part and the unstable part of VCF, respectively,

for nb s. Then the function xðnÞ defined by xðnÞ ¼ ½xðnÞ þ hðnÞ�ð0Þ, n A Z , is a

solution of Eq. (1).

Proof. The former part is obvious from Proposition 1 and Theorem 1

(iii). We will verify the latter part. Let xðnÞ and hðnÞ, n A Z, be solutions of

Eq. (13), respectively, and define ~xxðnÞ ¼ xðnÞ þ hðnÞ for n A Z. It then follows

that

Vðn� sÞ~xxðsÞ þ
Xn�1

k¼s

Vðn� k � 1ÞðEðpðkÞÞ

¼ V sðn� sÞxðsÞ þ V ucðn� sÞhðsÞ þ
Xn�1

k¼s

Vðn� k � 1ÞðEðpðkÞÞ

¼ xðnÞ �
Xn�1

k¼s

V sðn� k � 1ÞP sðEpðkÞÞ
( )
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þ hðnÞ �
Xn�1

k¼s

V ucðn� k � 1ÞP ucðEpðkÞÞ
( )

þ
Xn�1

k¼s

Vðn� k � 1ÞðEðpðkÞÞ

¼ xðnÞ þ hðnÞ ¼ ~xxðnÞ;

which, together with Proposition 1, implies that ~xxðnÞ ¼ xnðs; ~xxðsÞ; pÞ. Hence,

setting xðnÞ :¼ ½xðnÞ þ hðnÞ�ð0Þ, we have

xðnÞ ¼ ½~xxðnÞ�ð0Þ ¼ xðn; s; ~xxðsÞ; pÞ

for any n and s with nb s. We claim that xn ¼ ~xxðnÞ for every n A Z. Indeed,

given m A N , we see that for �ma ya 0,

xðnþ yÞ ¼ xðnþ y; n�m; ~xxðn�mÞ; pÞð15Þ

¼ xnðy; n�m; ~xxðn�mÞ; pÞ

¼ ½xnðn�m; ~xxðn�mÞ; pÞ�ðyÞ

¼ ½~xxðnÞ�ðyÞ

Since m is arbitrary, (15) holds for all y A Z�, and so xn ¼ ~xxðnÞ for every

n A Z. This yields xðnÞ ¼ xðn; s; xs; pÞ, which implies that xðnÞ is a solution of

Eq. (1). r

In what follows we shall show that the unstable part of VCF is reduced to

a certain type of first order di¤erence equation in a finite dimensional space.

Let d denote the dimension of the subspace Euc, which is known to be

finite (Theorem 1), and ff1; . . . ; fdg be a basis of Euc. Also denote its dual

basis by fc1; . . . ;cdg. Each ci may be considered as an element in ðBgÞ�, the
dual space of Bg, by the zero extension, i.e., cijE s ¼ 0 for i ¼ 1; . . . ; d. Now

set

F ¼ ðf1; . . . ; fdÞ; C ¼
c1

..

.

cd

0
BB@

1
CCA:

F and C are called a basis vector of Euc and the dual vector associated with F,

respectively. We use the notation h ; i for the pairing between the dual space

and the original one, and also write by hC ;Fi the matrix ðhci; fjiÞi; j, which is

the identity matrix of degree d. In this setting the projection P uc :¼ P u þP c

onto Euc is expressed in terms of F and C as

P usf ¼ FhC ; fi; f A Bg:
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Recall that V induces a linear transform of Euc, denoted V uc, and let B be its

representation matrix with respect to the basis F: V ucF ¼ FB.

Let xðnÞ be a solution of Eq. (1) and zðnÞ A C d the coordinate of P ucxn
with respect to the basis vector F, i.e., P ucxn ¼ FzðnÞ. Then:

Theorem 3. If xðnÞ is a solution of Eq. (1), then its coordinate zðnÞ satisfies

the di¤erence equation of first order in C d :

zðnþ 1Þ ¼ BzðnÞ þ hC ;EpðkÞi:ð16Þ

Conversely, given any solution zðnÞ of (16) the sequence x�ðnÞ defined by

x�ðnÞ ¼ FzðnÞ þ
Xn�1

k¼�y

V sðn� k � 1ÞP sðEpðkÞÞ
" #

ð0Þ

is a solution of Eq. (1). Furthermore, given any solution xðnÞ of Eq. (1), the

solution x�ðnÞ with zðnÞ satisfying FzðnÞ ¼ P ucxn satsifies

jxðnÞ � x�ðnÞjaKðxs; pÞe�aðn�sÞ; nb s;

where Kðxs; pÞ is a constant depending on kxsk and supn AZ jpðnÞj.

Proof. Let xðnÞ be a solution of Eq. (1) and zðnÞ the coordinate of its

unstable component. Then we see

zðnÞ ¼ hC ;FizðnÞ ¼ hC ;FzðnÞi

¼ hC ;P ucxni

¼ C ;P uc Vðn� sÞxs þ
Xn�1

k¼s

Vðn� k � 1ÞðEpðkÞÞ
 !* +

¼ C ;Vðn� sÞP ucxs þ
Xn�1

k¼s

Vðn� k � 1ÞP ucðEpðkÞÞ
* +

¼ hC ;Vðn� sÞFzðsÞiþ
Xn�1

k¼s

hC ;Vðn� k � 1ÞFhC ;EpðkÞii

¼ hC ;FBn�szðsÞiþ
Xn�1

k¼s

hC ;FBn�k�1ihC ;EpðkÞi

¼ Bn�szðsÞ þ
Xn�1

k¼s

Bn�k�1hC ;EpðkÞi

Thus, we find that zðnÞ satisfies Eq. (16).
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Conversely, let zðnÞ be a solution of Eq. (16). Then it follows that

zðnÞ ¼ Bn�szðsÞ þ
Xn�1

k¼s

Bn�k�1hC ;EpðkÞi;

so that

FzðnÞ ¼ V ucðn� sÞFzðsÞ þ
Xn�1

k¼s

V ucðn� k � 1ÞP ucðEpðkÞÞ:

Hence FzðnÞ is a solution of the unstable part of VCF. On the other hand,

since pðnÞ is bounded, we get

Xn�1

k¼�y

kV sðn� k � 1ÞðEpðkÞÞka
Xn�1

k¼�y

Ke�aðn�k�1ÞkP sEk sup
t AZ

kpðtÞk
� �

ð17Þ

a
K

1� e�a
kP sk sup

t AZ
kpðtÞk

� �
< y:

Furthermore, xðnÞ :¼
Pn�1

k¼�y V sðn� k � 1ÞP sðEpðkÞÞ satisfies the stable part of

VCF. Therefore by Theorem 2 we deduce that x�ðnÞ ¼ ½FzðnÞ þ xðnÞ�ð0Þ is a

solution of Eq. (1).

Finally, let xðnÞ be a solution of Eq. (1) and x�ðnÞ the one given in the

theorem. Then by Proposition 1 we see

xn � ðx�Þn ¼ xn �FzðnÞ � xðnÞ

¼ Vðn� sÞðxs �FzðsÞÞ þ
Xn�1

k¼s

Vðn� k � 1ÞðEpðkÞÞ

�
Xn�1

k¼s

V ucðn� k � 1ÞP ucðEpðkÞÞ �
Xn�1

k¼�y

V sðn� k � 1ÞðEpðkÞÞ

¼ V sðn� sÞP sxs �
Xs�1

k¼�y

V sðn� k � 1ÞP sðEpðkÞÞ:

Since kV sðn� sÞðP sxsÞkaKe�aðn�sÞkP sk kxsk and

Xs�1

k¼�y

kV sðn� k � 1ÞðEpðkÞÞka KkP sk kpkZ
1� e�a

e�aðn�sÞ;

we get
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jxðnÞ � x�ðnÞja kxn � x�nka
KkP sk
1� e�a

kxsk þ sup
n AZ

jpðnÞj
� �

e�aðn�sÞ; for nb s;

and the proof is completed. r

Theorem 3 asserts that the study of asymptotic behaviors of solutions for

Eq. (1) may be reduced to that for a finite di¤erence equation.

5. Boundedness and almost periodicity of solutions

Based on the decomposition of VCF, in this section, we will establish some

results on the existence of almost periodic solutions for Eq. (1) in connection

with the existence of bounded solutions. In particular, in the case where the

zero solution of Eq. (2) is hyperbolic, we prove unique existence of almost

periodic solutions and give its explicit representation.

We first recall that a function p from Z into a Banach space Y with norm

k � k is called almost periodic, if for arbitrary e > 0 there exists an l ¼ lðeÞ A N

with the property that for any a A Z there is a t A Z satisfying aa t < aþ l

and

kpðnþ tÞ � pðnÞk < e for n A Z:

If p : Z 7! Y is almost periodic, then the limit

aðl; pÞ ¼ lim
N!y

1

2N

XN
k¼�N

pðkÞl�k

exists whenever l belongs to the unit circle fjzj ¼ 1g. The limit aðl; pÞ is called
the Bohr transform of p, and the set sbðpÞ, which consists of all numbers

l A fjzj ¼ 1g with aðl; pÞ0 0, is called the Bohr spectrum of p.

Theorem 4. Suppose that pðnÞ is a bounded function. Then

(i) the function xðnÞ ¼
Pn�1

k¼�y V sðn� k � 1ÞP sðEpðkÞÞ satisfies the stable

part of VCF for all n and s with nb s. Moreover, if x 0ðnÞ is bounded on Z and

satisfies the stable part of VCF for all n and s with nb s, then xðnÞ1 x 0ðnÞ for

n A Z.

(ii) In addition, if pðnÞ is almost periodic, then xðnÞ is an almost periodic

solution of the stable part of VCF such that sbðxÞH sbðpÞ.

Proof. (i) The former part has already been shown in the proof of

Theorem 3. We now prove the latter part. Let x 0ðnÞ be another bounded

solution of (13) on Z. Since xðnÞ � x 0ðnÞ ¼ V sðn� sÞðxðsÞ � x 0ðsÞÞ, we see
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kxðnÞ � x 0ðnÞkaKe�aðn�sÞ sup
t AZ

kxðnÞk þ sup
t AZ

kx 0ðnÞk
� �

! 0

as s ! �y, and hence xðnÞ1 x 0ðnÞ.
(ii) Let pðnÞ be almost periodic. We first claim that xðnÞ is almost

periodic. Since pðnÞ is an almost periodic function, given e > 0, there exists a

trigonometric polynomial p eðnÞ such that

sup
n AZ

jpðnÞ � peðnÞj < 1� e�a

KkP sEk e;

where peðnÞ is of the form

p eðnÞ ¼
Xm
j¼1

xjm
n
j ; xj A X ; mj A sbðpÞ:

Put

xeðnÞ :¼
Xn�1

k¼�y

V sðn� k � 1ÞP sðEpeðkÞÞ ¼
Xm
j¼1

Xn�1

k¼�y

V sðn� k � 1ÞP sðExjÞmk
j :

Then by a similar estimate to (17) we have

kxðnÞ � xeðnÞka K

1� e�a
kP sEk sup

t AZ
jpðtÞ � peðtÞj

� �
< e:ð18Þ

Now set YðnÞ :¼
Pn�1

k¼�y
V sðn� k � 1ÞP sðExjÞmk

j

� �
m�n
j . Then it follows that

Yðnþ 1Þ ¼
Xn

k¼�y

V sðn� kÞP sðExjÞmk
j

 !
m�n�1
j

¼
Xn�1

k¼�y

V sðn� k � 1ÞP sðExjÞmk
j

 !
m�n
j ¼ YðnÞ for n A Z;

so that YðnÞ is independent of n; in particular

Xn�1

k¼�y

V sðn� k � 1ÞP sðExjÞmk
j ¼ Yð0Þmn

j ;

which is almost periodic. This implies that xeðnÞ is almost periodic, and hence

so is xðnÞ by (18).
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We next verify the relation sbðxÞH sbðpÞ. Since

sb
Xn�1

k¼�y

V sðn� k � 1ÞP sðExjÞmk
j

 !
¼ sbðfYð0Þmn

j gnÞ ¼ fmjgH sbðpÞ;

we see that sbðxeÞH sbðpÞ. Assume that sbðxÞH sbðpÞ does not hold. Then

there exist l A sbðxÞnsbðpÞ and an N0 A N such that

1

2N

XN
k¼�N

xðkÞl�k

�����
�����b 2e0 for NbN0;

where e0 is some positive number. Then, by (18) we get

1

2N

XN
k¼�N

xe0ðkÞl�k

�����
����� ¼ 1

2N

XN
k¼�N

ðxe0ðkÞ � xðkÞÞl�k þ 1

2N

XN
k¼�N

xðkÞl�k

�����
�����

b
1

2N

XN
k¼�N

xðkÞl�k

�����
������ 2N þ 1

2N
e0

b
e0

2
for NbN0;

which implies that l A sbðxe0ÞH sbðpÞ. This is a contradiction. r

Theorem 5. Suppose that pðnÞ is an almost periodic function, and that Eq.

(16) has a bounded solution on Zþ. Then there exists an almost periodic solution

zðnÞ of Eq. (16) such that sbðzÞH sbðpÞ.

Proof. The proof will be devided into three steps:

Step 1. We will first show that Eq. (16) has a bounded solution on the

whole Z. Let fnkgHN be any sequence with nk ! y as k ! y. Since

pðnÞ is almost periodic, taking a subsequence if necessary, we may assume that

pðnþ nkÞ converges to some almost periodic function qðnÞ uniformly on Z as

k ! y. Let us denote by uðnÞ a bounded solution of Eq. (16) on Zþ and set

ukðnÞ :¼ uðnþ nkÞ for nb�nk. Then we have

ukðnþ 1Þ ¼ BukðnÞ þ hF;Epðnþ nkÞi for nb�nk:ð19Þ

Because of the boundedness of uðnÞ, by the diagonalization we may assume that

ukðnÞ converges to some bounded function u�ðnÞ uniformly on any finite subset

of Z. Letting k ! y in (19), we get

u�ðnþ 1Þ ¼ Bu�ðnÞ þ hF;EqðnÞi for n A Z:ð20Þ

Applying the same argument this time to the sequence vkðnÞ :¼ u�ðn� nkÞ,
we may assume that vkðnÞ converges to some bounded function vðnÞ uniformly
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on any finite subset of Z. Noting that qðn� nkÞ converges to pðnÞ uniformly

on Z as k ! y, we find that vðnÞ is a bounded solution of Eq. (16) on Z.

Step 2. We claim that the existence of bounded solutions of Eq. (16) on

Z implies that of almost periodic solutions. Let S be the set of all bounded

solutions of Eq. (16) on Z. S is not empty by Step 1. Now put

r0 :¼ inf
z AS

kzk;

where kzk ¼ supn AZ jzðnÞj and j � j denotes the Euclidean norm in C d . Then

we will verify that r0 ¼ kzk holds for some z A S. Indeed, we can choose

a sequence fzkgk AN in S such that r0 a kzkka r0 þ 1=k for k A N . Since

fzkðnÞgk is uniformly bounded on Z, we may assume that fzkðnÞgk converges to

some bounded function ẑzðnÞ uniformly on any finite set of Z as k ! y. In the

same way as in Step 1, we find that ẑz A S. Letting k ! y in the inequality

jzkðnÞja kzkka r0 þ 1=k, we have jẑzðnÞja r0 for n A Z, so that kẑzk ¼ r0.

Our claim is proved if we show that ẑzðnÞ is almost periodic. For this it is

su‰cient to verify that given any sequence fnkgHZ, fẑzðnþ nkÞg contains a

subsequence which converges uniformly on Z (see [5]). We will show this by a

contradiction. So assume that fẑzðnþ nkÞg contains no subsequences which con-

verge uniformly on Z. Then there exist a d > 0 and sequences fnð1Þk g; fnð2Þk gH
fnkg and fmkgHZ such that

jẑzðmk þ n
ð1Þ
k Þ � ẑzðmk þ n

ð2Þ
k Þjb d; for k A N :ð21Þ

Since fẑzðnþmk þ n
ð jÞ
k Þg is uniformly bounded in Z, one can assume that

limk!y ẑzðnþmk þ n
ð jÞ
k Þ ¼ ẑzð jÞðnÞ uniformly on any finite subset in Z for

some bounded functions ẑzð jÞðnÞ on Z. Also since we may assume that

limk!y pðnþ nkÞ ¼ qðnÞ and limk!y qðnþmkÞ ¼ rðnÞ uniformly on Z for some

almost periodic functions q and r, we deduce that limk!y pðnþmk þ nkÞ ¼ rðnÞ
uniformly on Z. By the same reasoning as in Step 1, we see that both ẑzð1ÞðnÞ
and ẑzð2ÞðnÞ satisfy

zðnþ 1Þ ¼ BzðnÞ þ hF;ErðnÞið22Þ

for n A Z. Now set

zþðnÞ :¼ ẑzð1ÞðnÞ þ ẑzð2ÞðnÞ
2

; z�ðnÞ :¼ ẑzð1ÞðnÞ � ẑzð2ÞðnÞ
2

:

Then, zþðnÞ satisfies Eq. (22) on Z, while z�ðnÞ is a bounded solution of the

equation zðnþ 1Þ ¼ BzðnÞ on Z. In particular, z�ðnÞ must be almost periodic.

Therefore we have infn AZ jz�ðnÞj > 0 since jz�ð0Þj > 0 by (21). Noting kzð1Þk ¼
kzð2Þk ¼ r0, we get
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jzþðnÞj2 þ jz�ðnÞj2 ¼ 1

2
ðjzð1ÞðnÞj2 þ jzð2ÞðnÞj2Þa r20 ;

so that kzþk < r0. By the same argument as the last paragraph in Step 1, we

may assume that limk!y zþðn�mk � nkÞ ¼ z�ðnÞ for some z� A S. Thus we

arrive at kz�k ¼ kzþk < r0 ¼ kẑzk, which contradicts to the definition of r0.

Step 3. Once the existence of an almost periodic solution of Eq. (16) is

guaranteed, one can obtain a solution with the desired property as follows:

Let ẑzðnÞ be the one in Step 2. We claim that

ðB� lÞaðl; ẑzÞ ¼ 0; for l B sbðpÞ:ð23Þ

Indeed,

ðB� lÞaðl; ẑzÞ ¼ lim
N!y

1

2N

XN
k¼�N

ðB� lÞẑzðkÞl�k

¼ lim
N!y

1

2N

XN
k¼�N

fẑzðk þ 1Þ � hC ;EpðkÞi� lẑzðkÞgl�k

¼ lim
N!y

1

2N
ðẑzðN þ 1Þl�N � ẑzð�NÞlNþ1Þ

� lim
N!y

C ;E
1

2N

XN
k¼�N

pðkÞl�k

 !* +

¼ �hC ;Eaðl; pÞi;

so that we have ðB� lÞaðl; ẑzÞ ¼ 0 for l B sbðpÞ, as required. By virtue of (23)

we see that aðl; ẑzÞ ¼ 0 for l B sðBÞU sbðpÞ, sðBÞ being the set of eigenvalues of

the matrix B. Now let wðnÞ :¼
P

l A sðBÞnsbðpÞ aðl; ẑzÞl
n and consider the function

zðnÞ ¼ ẑzðnÞ � wðnÞ. We notice from (23) that

wðnþ 1Þ ¼
X

l A sðBÞnsbðpÞ
laðl; ẑzÞln ¼

X
l A sðBÞnsbðpÞ

Baðl; ẑzÞln ¼ BwðnÞ;

and hence zðnÞ is a solution of (16). Moreover, by its definition zðnÞ satisfies

sbðzÞH sbðpÞ. Consequently, the solution zðnÞ, so obtained, is a desired one.

r

In view of Theorem 3 through Theorem 5, we get the following theorem.

Theorem 6. Let pðnÞ be an almost periodic function. If Eq. (1) has a

bounded solution on Zþ, it has an almost periodic solution xðnÞ such that

sbðxÞH sbðpÞ.
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Proof. Let yðnÞ be a bounded solution of Eq. (1) on Zþ. Since yn is

bounded in Bg, it follows from Theorems 3 and 5 that there exists an almost

periodic solution zðnÞ of (16) with sbðzÞH sbðpÞ. Notice that FzðnÞ is a Bg-

valued almost periodic function such that sbðFzÞ ¼ sbðzÞH sbðpÞ. Let xðnÞ be

the one defined in the proof of Theorem 4. Then, it follows from Theorems 3

and 4 that xðnÞ :¼ ½FzðnÞ þ xðnÞ�ð0Þ is a desired solution. r

When it is the case where the zero soluiton of Eq. (2) is hyperbolic, that is,

no characteristic roots of Eq. (2) belong to the unit circle fjzj ¼ 1g, the situa-

tion is quite simple. In fact, we can ensure the unique existence of bounded

solutions of Eq. (1).

Theorem 7. Suppose that the characteritic operator zI � ~QQðzÞ of Eq. (2) is

invertible in LðXÞ for jzj ¼ 1. Then we have:

(i) for any bounded function p : Z 7! X, Eq. (1) has a unique bounded

solution on Z , which is represented by the formula

xðnÞ ¼
Xn�1

k¼�y

V sðn� k � 1ÞP sðEpðkÞÞ �
Xy
k¼n

V uðn� k � 1ÞP sðEpðkÞÞ
" #

ð0Þ;ð24Þ

(ii) if pðnÞ is periodic, then the solution xðnÞ is also periodic.

Proof. (i) Uniqueness. We first show the uniqueness of bounded solutions

on Z. Let xðnÞ be a bounded solution of Eq. (1). Then xðnÞ ¼ P sxn is a

solution of the stable part of VCF:

xðnÞ ¼ V sðn� sÞxðsÞ þ
Xn�1

k¼s

V sðn� k � 1ÞðEpðkÞÞ; nb s:ð25Þ

Since xðnÞ is bounded, xðnÞ is also bounded on Z; and therefore by Theorem

4(i) we get

xðnÞ ¼
Xn�1

k¼�y

V sðn� k � 1ÞðEpðkÞÞ; n A Z:

By our assumption it follows that Ec ¼ f0g, so that hðnÞ ¼ P uxðnÞ satisfies the

unstable part of VCF:

hðnÞ ¼ V uðn� sÞhðsÞ þ
Xn�1

k¼s

V uðn� k � 1ÞP uðEpðkÞÞ; nb s:

In view of Theorem 1 (iii), we see
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hðsÞ ¼ V uðs� nÞV uðn� sÞhðsÞð26Þ

¼ V uðs� nÞ hðnÞ �
Xn�1

k¼s

V uðn� k � 1ÞP uðEpðkÞÞ
( )

¼ V uðs� nÞhðnÞ �
Xn�1

k¼s

V uðs� k � 1ÞP uðEpðkÞÞ

By the same reasoning as the argument for xðnÞ, we deduce that

kV uðs� nÞhðnÞkaKe�aðn�sÞkP uk sup
s AZ

kxsk
� �

! 0; as n ! y

and

Xy
k¼s

kV uðs� k � 1ÞP uðEpðkÞÞk < y:

Hence, letting n ! y in (26), we get

hðsÞ ¼ �
Xy
k¼s

V uðs� k � 1ÞðEpðkÞÞ; nb s;

in particular

hðnÞ ¼ �
Xy
k¼n

V uðn� k � 1ÞðEpðkÞÞ; n A Z:

We thus have

xn ¼ xðnÞ þ hðnÞ

¼
Xn�1

k¼�y

V sðn� k � 1ÞðEpðkÞÞ �
Xy
k¼n

V sðn� k � 1ÞðEpðkÞÞ; n A Z;

consequently

xðnÞ ¼ xnð0Þ ¼
Xn�1

k¼0

V sðn� k � 1ÞP sðEpðkÞÞ �
Xy
k¼n

V uðn� k � 1ÞP sðEpðkÞÞ
" #

ð0Þ:

Existence. Next let us show the existence of a bounded solution of Eq.

(1). To do this, consider a function z : Z ! Bg defined by

zðnÞ :¼
Xn�1

k¼�y

V sðn� k � 1ÞðEpðkÞÞ �
Xy
k¼n

V uðn� k � 1ÞðEpðkÞÞ; n A Z:
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We notice that supn AZkzðnÞk < y since

kzðnÞka
Xn�1

k¼�y

Ke�aðn�k�1ÞkP sEk sup
n AZ

kpðtÞk
� �

þ
Xy
k¼n

Keaðn�k�1ÞkP uEk sup
n AZ

kpðtÞk
� �

a
Kð1þ e�aÞ

1� ea
ðkP sk þ kP ukÞ sup

n AZ
kpðtÞk

� �
; n A Z:

Since the first and the second terms of zðnÞ satisfy the stable and the unstable

parts of VCF, respectively, we conclude from Theorem 2 that zðnÞ :¼ ½zðnÞ�ð0Þ
gives a bounded solution of Eq. (1).

(ii) If pðnÞ is a periodic function, zðnÞ is also periodic, and hence so is

zðnÞ. r

Corollary 1. Suppose that zI � ~QQðzÞ is invertible in LðXÞ for jzj ¼ 1.

Then, for any almost periodic function p : Z 7! X, Eq. (1) has a unique almost

periodic solution xðnÞ, which is given by the formula in Theorem 7. Furthermore,

the relation sbðxÞH sbðpÞ holds.

Proof. By Theorem 7 Eq. (1) has a unique bounded solution xðnÞ on Z,

which is given by (24); in particular Theorem 6 implies that Eq. (1) has an

almost periodic solution x 0ðnÞ with sbðx 0ÞH sbðpÞ as well. Since an almost

periodic solution is necessarily bounded on Z, x 0ðnÞ must coincide with xðnÞ.
This completes the proof. r
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