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1. Introduction

In this paper we are concerned with the Volterra difference equation

(1) x(n+1) ZQn— (k) + pn), neZ",
k=—w

where {Q(n)} is a sequence of compact linear operators on a Banach space X
satisfying Y7 [|Q(n)|le” < co for some y >0, and p is an X-valued function
on Z.

In preceding papers [6, 7], under some additional conditions, we proved
that the asymptotic stability of the zero solution of the equation with the forcing
term free

(2) x(n+1) = Z O(n — k)x(k), neZ"
k=—
is equivalent to the invertibility of the characteristic operator outside the unit
disk of the complex plane, and established generalizations of some stability
results for finite-dimensional X in [3, 4] to infinite-dimensional X.
The main purpose of this paper is to discuss asymptotic behaviors of
solutions of Eq. (1) under the situation where the zero solution of Eq. (2) fails
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to be asymptotically stable. In such a situation, the decomposition of the phase
space for Eq. (2) associated with the spectrum of the solution operator
(Theorem 1) plays quite an essential role. In fact, the decomposition of the
phase space induces that of the variation of constants formula (VCF) in the
phase space (Proposition 1, see also [8]) into two parts referred to as the stable
part of VCF and the unstable part of VCF (Theorem 2); and by studying each
part of VCF, we show that the study for Eq. (1) and (2) may be reduced in
some sense to that for certain difference equations of first order in a finite-
dimensional space. Moreover, applying the decomposition of VCF, we will
give a result on the existence of almost periodic solutions of Eq. (1), which can
be viewed as a discrete analogue for Volterra difference equations of Massera’s
theorem [11] on the existence of periodic solutions for linear ordinary differential
equations.

2. Preliminaries

We shall give in this section the variation of constants formula for Eq. (1)
in a suitable phase space, which plays an essential role in the study on the
behaviors of solutions of Eq. (1) in the subsequent sections.

Let N, Z, Z", Z= and C be the set of natural numbers, integers,
nonnegative integers, nonpositive integers and complex numbers, respectively.
Let X be a Banach space over C with norm |-|. We denote by Z(X) the
space of all bounded linear operators on X and define the norm of any T
belonging to £(X) by

IT|| = sup{|Tx| : x e X,|x| = 1}.

Throughout the paper we assume that there exists a positive constant y such
that

Ki =Y 00" < o0,

n=0

Let us define the Banach space %4’ by

@y={¢:2»—>z\’

pr@wW<w}
0eZ™

equipped with the norm

gl = sup [g(0)le”’,  pe#,
0eZ”

and for any 6 € Z and ¢ € 47 consider the initial value problem:
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) x(n+1) = Z O(n—j)x(j) + p(n), n=o,

x(c+0)=¢0), 0eZ .
The problem (3) has a unique solution, which will be denoted by x(-;a,4,p).
In fact, x(-;0,¢, p) is given by

¢(I"l), n<ao,
n—1

R(n—0a)¢p(0)+ » Rm—k—1)p(k)
(4) x(mo.d.p) = 2 ?

n—1 -1
+> Rn—k - 1>< > Q(k—a—j)qs(/)), n=>oa,

k=0 Jj=—

where {R(n)} is the fundamental solution of (1) (or (2)), that is, the sequence in
Z(X) defined by

(5) R(n+1)=>_0(n—kR(k),  R0)=I
k=0

(see [6] and [8]). Here and hereafter we employ the convention UZI = 0 for any
oeZ. 7

Define a family of linear operators {V(m)},,.,+ on %’ by V(m)¢:=
xm(0,¢,0), where the notation x,, (o, ¢, p) stands for the mapping from Z~ into
X given by [x,(0,¢, p)|(0) = x(m+ 0;0,¢,p) for € Z~. It follows from (4)
that

(6)

¢(Wl + 6)7 0 < —m,
R(m + 0)¢(0)
oo ={ L
+ > Rm+0—k- 1)( > Q(k—j)¢(j)), -m<0<0.
k=0 Jj=—00

V(m) is called the solution operator of Eq. (2). One can verify that each
V(m) is a bounded linear operator on %47 with V(0) = I, and moreover that
{V(m)},,cz+ has the semigroup property, i.e., V(m+n) = V(m)V(n) for m,n e
Z" (see [8]).

Let us define an operator & : X — %’ by

x, =0,
[61(0) = {0, 0=—1,-2,-3...

for any x e X. Clearly, & is an isometry from X into #47:
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[€x] =1xl,  xeX.

The following result [8] yields a representation formula for x(-;o,¢, p) in %7,
which we call the variation of constants formula in the phase space. For the
completeness we will give a proof.

Proposition 1. For any o€ Z and ¢ € B7 we have
n—1
Xu(0,4,p) = V(n—a)p+> Vin—k—1)ép(k), nx=o.
k=0
Proof. 1t is sufficient to verify the following relation:
n—1
(7) [alo,,p) = V(n—0)g)(0) = > [V(n—k = 1)ép(k))(0), OeZ.
k=a
(i) The case of 6 < —n+a: Since n—o+ 60 <0, we get
[xXn(a,¢, p) = V(n—0)$|(0) = x(n+0:0,¢, p) — [V(n— 0)$|(0)
=¢n—c+6)—¢p(n—a+06)=0.

Also, for k=0,0+1,...,n—1, we have n—k—-14+0<n—-oc—-14+0< -1,
and hence

—1

[V(in—k—1)ép(k)(0) = Z[@@p(k)](n —k—14+0)=0.

T k=0

=
=

e
Il

Thus the relation (7) holds true.
(i) The case of —n+0o+1<60<0: Since | <n—o0+0, in view of (4)
and (6) we get

[xu(a, 4, p) = V(n—a)¢(0)
= x(n—f—@;a,(/ﬁ,p) _x(n_0-+0;03¢70>

n+0-1 —1
=R(n+0-0)p(0)+ > Rn+0—k— 1)< > Q(k—a—j)¢(j)+p(k)>

k=a Jj=—
n—o+0-1 -1
- {R(na+0)¢(0)+ Y Rn—o+0—k- 1)( 3 Q(kj)¢(j)>}
k=0 Jj=—

n+6—1
= > Rn+0—k—1)p(k).
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On the one hand, since 6 <n+6—1<n-—1, it follows that

20— k- D8R (6) = nix(n —k—146:0,6p(k),0)
k=o k=c
n+0—1
= Z x(n—k—140;0,6p(k),0)
k=c

+ Y x(n—k—1+06;0,6p(k),0).
k=n+0

For o <k <n+60-1, we see from (4)
x(n—k—140;0,6p(k),0)
=R(n—k—1+0)[&p(k)|(0)

n—k+0-2 -1
+ Y Rm—k+0-/- 2)( > o —j)[é”‘p(k)](j)>

/=0 j—
=Rn—k—140)pk),

while for n+0<k<n-1,
x(n—k—1+40;0,6pk),0) = [Ep(k)](n—k—-1+0)=0

because of n—k —1460 < —1. Thus we get

n—1 n+0-1
[V(n—k—1)ép(k)](0) = Y R(n—k—1+0)p(k),
k=oc k=o
which shows the relation (7). This completes the proof. O

3. Decomposition of the phase space

Let 2 be the set of characteristic roots of Eq. (2), that is, the complex
numbers such that the characteristic operator zI — Q(z) associated with Eq. (2)
is not invertible in % (X), where Q(z) is the Z-transform of {Q(n)}: Q(z) =
Yoo Om)z"". Let V be the generator of the semigroup {V(m)}, ie., V =
V(1). Then under the condition that Q(n) are all compact operators, we can
find the following relation between the set X' and the spectrum of V. In what
follows, for any linear operator 7' on a Banach space, we denote by o(7T) the
spectrum of 7" and P,(T) the point spectrum of T.



274 Yutaka NAGABUCHI

Lemma 1. If Q(n), ne Z", are compact operators, then for |z| > e the
following statements are equivalent:

i) zea(V),

(i) ze Py (V)

(iti) zeX, that is, zI — Q(z) is not invertible in £ (X).

Proof. (a) (i) = (i). This is evident.

(b) (i) = (iii). It is sufficient to verify that the invertibility of zI — Q(z)
in Z(X) implies z € p(V), the resolvent set of V. To see this, given y € %7,
consider the linear equation in %7

(8) (ZI=V)p=y
Eq. (8) is equivalent to
x(1+0;0,¢,0) = z¢(0) — y(0), 0eZ,

which, combined with the fact that x(1;0,¢,0) = Z,E:_OO O(—k)¢(k), becomes
the system of equations in X

S 0(K)(—k) = 4(0) — Y (0),
k=0
S(1+0) = 24(0) — (), 60=—1,-2,....

From the second equation of (9),

©)

similarly

and generally we have

1 & L

z V4

~
Il
o

It follows from the first equation of (9) that

ZQ
k=0
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so that

(11) (zI = 0(2))$(0) = ¥(0) +§:Q(k) <§%w(—j— 1))-
By the invertibility of zI — Q(z), ¢(0) is given by

(12)  ¢(0) = (s - O(z))" {w<0> + kf; O(k) <§%w(—j = 1)) }

Hence it follows from (10) that Eq. (8) has a unique solution, denoted R.y, for
any ¥ € 4. We must show that R.y belongs to %47. Because for |z|e” > 1

© k—1
ZQ(H(Z%w J—1>

Jj=0

S llok) Z|Z|k__,.||w|ey<f“>

k=0 j=0

\esz X —_m—

hidt

=~
\ |

- |Z|eV

we see from (12) that

- Ke?
(RO < 11 = 0 (14 ) I
Therefore (10), together with (12), yields that for ke N

k—
R LI Z

}
vl

R (ke ™ <
(Rap) (K)o < D

< 11 = 0 1+ e Wl + o

consequently R,y € 47, as required. In particular, we have

IR < et = 011+ Lt )Wl + s o,

and so the mapping R.: B’ — B’ is bounded.

By the definition of R, it is obvious that (z/ — V)R, =R.(zI — V) =1.
Thus, we conclude z € p(V).

(c) (iii) = (ii). Suppose that z € 6(Q(z)). Observe that Q(z) is a compact
operator. Then z € P,(Q(z)) by the Riesz-Schauder theorem. So there exists
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a nonzero ¢(0) € X with Q(z)¢(0) =0. It is easy to see that ¢ e #’, given
by #(—k) :=z"%¢(0) for ke N, satisfies (zI — V)¢ =0 and hence ze P,(V).
Il

Now we recall that the essential spectrum o,(V) of V is defined as the set
of zeag(V), for which at least one of the following holds (see [9, §4.3], [I,
§1.4):

(i) Z(zI — V), the range of the operator zI — V, is not closed,

(ii) the point z is the limit point of o(V),

(iif) the generalized eigenspace |J, ., 4"((z] — V)Y for z is of infinite
dimension,
where A ((zI — V)*) denotes the null space of the operator (zI — V). Also
the essential spectral radius r.(V) of V is defined by

re(V) :=sup{|z| : z € a.(V)}.
Then, we have the following estimate:
Lemma 2. The essential spectral radius r.(V) of V satisfies r.(V) < e .

Proof. Given n e N, we claim that «(V(n)) < e ", where a(V (1)) denotes
the o-measure (or Kuratowski measure of noncompactness) of the bounded
linear operator V(n) (see [9, §4.3], [1, §1.2]). Let Q be a bounded set in %’.
Then for arbitrary # > 0 there exists a finite cover {O;}/_, of Q such that
d(0;) <oa(Q)+n for i=1,...,/, where d(O;) denotes the diameter of the set
O;. Since the coefficients Q(k) are compact, the operator R(s) in (5) is com-
pact for s =1,2,.... Therefore it follows from (6) that {[V(s)¢#](0) : 1 <s < n,
$eQ} is a relative compact set of X, and that W := {(x(1;0,¢,0),...,
x(n;0,9,0)) : ¢ € Q} is relatively compact in X", the n-copies of X, endowed
with the norm |x| = max| <s<,|x(s)| for x = (x(1),...,x(n)) € X". Hence there
corresponds a finite cover {W;}", of W satisfying d(W)) <n, j=1,...,m.
Then {0;;},;;, defined by O;;:={¢e O;: (x(1;0,¢,0),...,x(n;0,¢,0)) € W;},
gives a finite refinement of {O;};, and for ¢,y € O;; we have

V06— Vool < max [x(5;0,4,0) = x(5:0,,0)| + 4~ ]|

<n+e7"(u(Q) +n)

Since # is arbitrary, it follows that o(V(n)Q) < e ”a(Q), and therefore that
a(V(n)) <e ™.
By Nussbaum’s formula [1, §1.4], we get

r(V) = lim {/a(V") = lim /a(V(n)) <e7,

n—o0 n—oo

as desired. |
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Let 4 = a(V) be a spectral set. Then, there exists a closed Jordan curve
C in p(V) which contains A in its interior and no points of A" :=a(V)\4.
Then, it is well known that the space %7 is expressed as the direct sum of V-
invariant closed subspaces: %’ = E4@® E* with E1=["(#7) and E1 =
(I — I (A7), where

= %J (zI — V) 'dz
C

is the projection from %7 onto E/, and that the relations o(¥|z4) = 4 and
o(V|ga) = A" hold.  Now consider subsets of X as follows: X :=XN{|z| =1}
and X" :=2N{|z|>1}. Then by Lemma 1 X*=qg(V)N{|z| >1} and
2¢=g(V)N{|z] = 1}. We also see from Lemma 2 that each element in 2" U X¢
does not belong to the essential spectrum (V) of V; hence X'* U X' is finite, so that
both E*" and E** are of finite dimension. In particular, if we set E* = E*",
E¢=E*" and E° = E*| X' being o(V)\(E‘UE"), #” can be written as the
direct sum: %" =E'@E‘ @ E°. Put V'(n)=V(n)|g, V<@n)="V(n)|g and
V3(n) = V(n)|gs. Then it follows that g(V*) = 2% a(V¢) = X and o(V*) = 27,
where we denote V%(1) by V¥, and similarly for 77¢ and V.
Consequently, we obtain the following result.

Theorem 1. Let V(n) be the solution operator of Eq. (2). Then there
corresponds a decomposition of the phase space

B =E'QE QE’

with the following properties:

(i) dim(E* @ E°) < oo,

(i) V(n)E" < E", V(n)E < E¢, and V(n)E* < E¥,

(i)  V*(n) has the semigroup property in Z*, while V*(n) and V“(n) have
in Z,

(iv) there exist constants K > 1 and o > ¢ >0 such that

Vi) < Ke™, neZ",
|V¥(=n)|| < Ke™,  neZt,
| VEn)|| < Ke®™, neZ.

Proof. It remains to show (iii) and (iv). Because of o(V*) =2, we see
(V)™ e L(E%). 1If we define V¥(—n) = (V*)™ for ne N, V*(n) satisfies the
semigroup property on ne Z, and likewise for ¥ “(n). This shows (iii).

Since o(V*) =2’ it follows from Lemma 2 that the spectral radius of
V5 is less than one, so that there exist K > | and o > 0 such that ||[V*(n)| <
Ke ™ neZ", which proves the first inequality of (iv). Also, noting that
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re(V4(=1)) = r,((V*)™") < 1, we obtain the second inequality of (iv). The
third one follows from the fact that r,(V¢(—1)) = rs(V¢)™") =1 = ry(V<(1)).
O

4. Decomposition of variation of constants formula

Corresponding to the decomposition of the phase space %’ in the previous
section, one can naturally decompose the variation of constants formula in
Proposition 1 into two parts. Consider the equations

n—1

(13)  &(n)=V*n—-0)é(o)+ Z Vin—k— 1)1 (&p(k)), n>o,
k=o

n—1
(14) n(n) = V*“(m—om(o)+ > V*“n—k-1)IT"“(Ep(k)), n=a,
k=0

where V*“(n) denotes the restriction of V' (n) to the space E* := E* @ E¢. The
equations (13) and (14) are called the stable part of VCF and the unstable part
of VCF, respectively. Then we get:

Theorem 2. For the solution x(n;o,¢,p) of Eq. (1) the E*-component
II’x, (0,4, p) and the E"-component I1"x,(c,¢,p) of x,(o,¢,p) satisfy the
stable part and the unstable part of VCF, respectively.

Conversely, suppose that functions &(n) and n(n) on Z with &(n) € E* and
n(n) € E* satisfy the stable part and the unstable part of VCF, respectively,
for n > 0. Then the function x(n) defined by x(n) = [&(n) +#(n)](0), ne Z, is a
solution of Eq. (1).

Proof. The former part is obvious from Proposition 1 and Theorem 1
(ii). We will verify the latter part. Let &(n) and 5(n), n € Z, be solutions of
Eq. (13), respectively, and define X(n) = &(n) 4+ n(n) for ne Z. Tt then follows
that

n—1

= Vi(n—0)e(o) + V*“(n—ayla) + Y V(n—k = 1)(&(p(k))
k=oc
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n—1 n—1
+ {f?(ﬂ) =Y Ve —k - 1)17”“(517(16))} +Y Vin—k=1)(6(p(k))
k=co

k=o

which, together with Proposition 1, implies that X(n) = x,(g,X(0), p). Hence,
setting x(n) := [¢(n) 4+ 7(n)](0), we have

for any n and ¢ with n > ¢. We claim that x, = X(n) for every n € Z. Indeed,
given m e N, we see that for —m < 60 <0,

(15) xX(n+0) = x(n+0;n — m, %(n — m), p)
= Xu(0;n — m,x(n — m), p)
= [xu(n —m, X(n —m), p)|(0)
= [x(n)](0)

Since m is arbitrary, (15) holds for all #e Z~, and so x, = X(n) for every
ne Z. This yields x(n) = x(n; g, x5, p), which implies that x(n) is a solution of

Eq. (1). O

In what follows we shall show that the unstable part of VCF is reduced to
a certain type of first order difference equation in a finite dimensional space.

Let d denote the dimension of the subspace E*¢, which is known to be
finite (Theorem 1), and {¢,,...,¢,} be a basis of E*. Also denote its dual
basis by {/,...,¥,}. Each y; may be considered as an element in (#")", the
dual space of #’, by the zero extension, i.e., ¥,/ =0 for i=1,...,d. Now
set

2
¢:(¢17"-7¢d)7 Y=

Yy
@ and ¥ are called a basis vector of E“ and the dual vector associated with @,
respectively. We use the notation <, ) for the pairing between the dual space
and the original one, and also write by (¥, @) the matrix ({y;,4;>); ;» which is

the identity matrix of degree d. In this setting the projection I7% := IT* 4 [I¢
onto E* is expressed in terms of @ and ¥ as

Mg = oW, 4y, peB.
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Recall that V" induces a linear transform of E*, denoted V%, and let B be its
representation matrix with respect to the basis @: V@ = @B.

Let x(n) be a solution of Eq. (1) and z(n) € C? the coordinate of IT“x,
with respect to the basis vector @, ie., IT"x, = ®z(n). Then:

Theorem 3. If x(n) is a solution of Eq. (1), then its coordinate z(n) satisfies
the difference equation of first order in C:

(16) z(n+1) = Bz(n) + (¥, ép(k)).
Conversely, given any solution z(n) of (16) the sequence x.(n) defined by
n—1
Xu(n) = |@z(n) + > V(n—k—1)IT(&p(k))|(0)
k=—o

is a solution of Eq. (1). Furthermore, given any solution x(n) of Eq. (1), the
solution x.(n) with z(n) satisfying ®z(n) = [I"x, satsifies

[x(n) = x.(n)] < K(xo, p)e™ "7, nx=o,

where K (x4, p) is a constant depending on ||x,|| and sup,.,|p(n)

Proof. Let x(n) be a solution of Eq. (1) and z(n) the coordinate of its
unstable component. Then we see
z(n) =<KW, D)z(n) =<V, Pz(n))
=¥ "Xy

n—1
= <w,nm’ <V(n — o)+ Y Vin—k- l)((é”p(k))) >

k=o

= <'P, Vin—o)[T*x, + nil Vin—k— 1)H“‘(@”p(k))>

k=0

n—1
=W, V(n—0)@z(0)y + Y (W, V(n—k—1)BW,6p(k)d)
k=o

n—1

= (¥, DB" "z(0)) + Y (¥, @B F (W, 6p(k))
k=0

n—1
=B"z(0) + > _B" "W, &p(k)>
k=0

Thus, we find that z(n) satisfies Eq. (16).
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Conversely, let z(n) be a solution of Eq. (16). Then it follows that

n—1
z(n) = B"°z(0) + Y B"FICW, 6p(k)),

k=o
so that

(152(1’1) _ Vw(n Jr Z V"L I 1 H"C(([p(k))

Hence @z(n) is a solution of the unstable part of VCF. On the other hand,
since p(n) is bounded, we get

n—1 n—1
(17 > IVim—k=1(Epk)| < Y Ke Y IHs(fI(Supllp( )II)

k=—o k=—w
K
< 2 = I (supllpol) < o
1eZ
Furthermore, &(n) := 37— VS(n—k — 1)I1°(6p(k)) satisfies the stable part of

VCF. Therefore by Theorem 2 we deduce that x.(n) = [@z(n) + £(n)](0) is a
solution of Eq. (1).

Finally, let x(n) be a solution of Eq. (1) and x.(n) the one given in the
theorem. Then by Proposition 1 we see

Xn — (x*)n =Xn — de(”) - f(fl)

n—1

=V(n—0)(x, — Dz(0)) + Y _ V(n—k—1)(&p(k))
k=c

- i Vi(n —k — 1) 1" (&Ep(k Z Vi(n—k —1)(&p(k))
k=c

k=—o0

=V'n—o)ll Z Vin—k—DIT*(&pk)).
k=—w
Since || V5(n — o)(IT*x,)|| < Ke "= ||IT* ||x,| and

K| [Ipll 2
] —e®

7otn o)
)

g—1
Yo Vi —k=1)(Epk)] <

k=—o0

we get
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K H.Y
() — ()] = e — < T (|xa| + sug|p<n>|)e“<”>7 for n>o,
ne

and the proof is completed. U

Theorem 3 asserts that the study of asymptotic behaviors of solutions for
Eq. (1) may be reduced to that for a finite difference equation.

5. Boundedness and almost periodicity of solutions

Based on the decomposition of VCF, in this section, we will establish some
results on the existence of almost periodic solutions for Eq. (1) in connection
with the existence of bounded solutions. In particular, in the case where the
zero solution of Eq. (2) is hyperbolic, we prove unique existence of almost
periodic solutions and give its explicit representation.

We first recall that a function p from Z into a Banach space Y with norm
I - || is called almost periodic, if for arbitrary ¢ > 0 there exists an / = /(¢) e N
with the property that for any a € Z there is a 7€ Z satisfying a <7<a+/¢
and

lp(n+7)— pn)| <e for ne Z.
If p: Z— Y is almost periodic, then the limit

N
aisp) = lim == 3" p(k)i ™
k=—N

exists whenever 4 belongs to the unit circle {|z] = 1}. The limit a(4; p) is called
the Bohr transform of p, and the set g,(p), which consists of all numbers
A e{lz| =1} with a(4; p) #0, is called the Bohr spectrum of p.

Theorem 4. Suppose that p(n) is a bounded function. Then

(i) the function &(n) =S1—" VS(n—k — 1)II*(Ep(k)) satisfies the stable
part of VCF for all n and o with n > 6. Moreover, if &'(n) is bounded on Z and
satisfies the stable part of VCF for all n and ¢ with n > o, then &(n) = &' (n) for
nelZ.

(i) In addition, if p(n) is almost periodic, then &(n) is an almost periodic
solution of the stable part of VCF such that op(&) < ap(p).

Proof. (i) The former part has already been shown in the proof of
Theorem 3. We now prove the latter part. Let &'(n) be another bounded
solution of (13) on Z. Since &(n) — &'(n) = VS(n—0)(E(o) — E'(a)), we see
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1) — &) < Ke“<”>{sgg <+ sup IIf’(n)II} 0

as 0 — —oo, and hence &(n) = &'(n).

(i) Let p(n) be almost periodic. We first claim that £(n) is almost
periodic. Since p(n) is an almost periodic function, given ¢ > 0, there exists a
trigonometric polynomial p®(n) such that

—o

sup |p(n) — p*(n)| < l—e™
i L K[

where p®(n) is of the form
gn):E:xj,ujf’, xj€ X, ;€ ap(p).
=1

Put

n—1
=3 Vi —k - )IT(Eptik =ZZ (n—k = DIT(6x))uf

k=—w0 j=1 k=—

Then by a similar estimate to (17) we have

(18) e - &) < 16 (sup p(2) - p€<r>|) <e.
teZ

Now set O(n) := < E Vin—k— l)H‘V(é’xj)u]k)u]T”. Then it follows that

k=—o0
n

@(n+1)—<z VS(n— k)T (Ex;)u ),5

k=—o0

(Z Vin—k = )IT°(6x;) > M=0(n) for ne Z,
k=—o0

so that ©(n) is independent of n; in particular
n—1
Y Vn—k = DIP(Ex)uf = 00),
k=—w0

which is almost periodic. This implies that £°(n) is almost periodic, and hence

so is &(n) by (18).
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We next verify the relation ,(&) = gp(p). Since

n—1
Gb( > Vin—k- 1)Hs(é‘)xj)ﬂ}‘> =a({600)'},) = {1} = an(p),

k=—o

we see that g,(E°) = gp(p). Assume that o,(&) = g5(p) does not hold. Then
there exist A€ a,(&)\op(p) and an Ny e N such that

1 & 01k
Wk;N()A

where ¢ is some positive number. Then, by (18) we get

>2,  for N> N,

1 EN: E(k)aH| = 1 EN: (& (k) — ),rh,_i zN: E(k)ak
2N —\ 2N~ 2N~ ’
1 & 2N +1
> |5+ &(k)a* &
2Nk;N 2N
> %0 for N = Ny,
which implies that 1€ 0,(¢®) < gp(p). This is a contradiction. O

Theorem 5. Suppose that p(n) is an almost periodic function, and that Eq.
(16) has a bounded solution on Z*. Then there exists an almost periodic solution
z(n) of Eq. (16) such that op(z) < ap(p).

Proof. The proof will be devided into three steps:

Step 1. We will first show that Eq. (16) has a bounded solution on the
whole Z. Let {n:} =« N be any sequence with ny — o0 as k — oco. Since
p(n) is almost periodic, taking a subsequence if necessary, we may assume that
p(n+ny) converges to some almost periodic function g(n) uniformly on Z as
k — co. Let us denote by u(n) a bounded solution of Eq. (16) on Z* and set
uk(n) := u(n+n;) for n > —n;. Then we have

(19) uk(n+1) = BuF(n) + <@, Ep(n + ny)» for n > —n.

Because of the boundedness of u(n), by the diagonalization we may assume that
uk(n) converges to some bounded function u*(n) uniformly on any finite subset
of Z. Letting k — oo in (19), we get

(20) u*(n+1) = Bu"(n) + {D,Eq(n)) for ne Z.

Applying the same argument this time to the sequence v*(n) := u*(n — ny),
we may assume that v¥(n) converges to some bounded function v(n) uniformly
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on any finite subset of Z. Noting that g(n — n;) converges to p(n) uniformly
on Z as k — oo, we find that v(n) is a bounded solution of Eq. (16) on Z.
Step 2. We claim that the existence of bounded solutions of Eq. (16) on
Z implies that of almost periodic solutions. Let % be the set of all bounded
solutions of Eq. (16) on Z. % is not empty by Step 1. Now put

po := Inf [|z],
where |z|| = sup,.|z(n)| and |-| denotes the Euclidean norm in C?. Then
we will verify that p, = ||z]| holds for some ze€ . Indeed, we can choose
a sequence {z¥},_y in & such that p, < ||z¥|| <p,+1/k for ke N. Since
{z%(n)}, is uniformly bounded on Z, we may assume that {z¥(n)}, converges to
some bounded function Z(n) uniformly on any finite set of Z as k — co. In the
same way as in Step 1, we find that Ze .%. Letting k — oo in the inequality
|zK(n)| < ||2¥]| < po + 1/k, we have |2(n)| < p, for ne Z, so that ||Z|| = p,.

Our claim is proved if we show that zZ(n) is almost periodic. For this it is
sufficient to verify that given any sequence {n;} = Z, {Z(n+ n;)} contains a
subsequence which converges uniformly on Z (see [5]). We will show this by a
contradiction. So assume that {Z(n 4 n;)} contains no subsequences which con-
verge uniformly on Z. Then there exist a 6 > 0 and sequences {n,g)}7 {n,((z)} c
{m¢} and {m;} = Z such that

(21) |2(mk+n,(€1)) —é(mk+n§€2))| >0, for ke N.

Since {2(n+mk+n(j>)} is uniformly bounded in Z, one can assume that
limy—oo Z(n + my +nkj)) = 2U)(n) uniformly on any finite subset in Z for
some bounded functions 2()(n) on Z. Also since we may assume that
limy—.o, p(n+ ni) = q(n) and limg_,o, g(n + my) = r(n) uniformly on Z for some
almost periodic functions ¢ and r, we deduce that limy_., p(n + my + ng) = r(n)
uniformly on Z. By the same reasoning as in Step 1, we see that both (1) (n)
and 22 (n) satisfy

(22) 2(n+1) = Bz(n) + (&, &r(n))

for ne Z. Now set

Then, z*(n) satisfies Eq. (22) on Z, while z7(n) is a bounded solution of the
equation z(n+ 1) = Bz(n) on Z. In particular, z~(n) must be almost periodic.
Therefore we have inf,c 2|z~ (n)| > 0 since |z~ (0)| > 0 by (21). Noting [|z(V|| =
122 = py, we get
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25 ) + 2 () = 5 (120 ) + 127 () ) < i,

NI*—‘

so that ||z*]| < p,- By the same argument as the last paragraph in Step 1, we
may assume that limg_,., z*(n — my —n) = z*(n) for some z* € ¥. Thus we
arrive at ||z*|| = ||z7]] < py = ||Z]|, which contradicts to the definition of p,.

Step 3. Once the existence of an almost periodic solution of Eq. (16) is
guaranteed, one can obtain a solution with the desired property as follows:
Let Z(n) be the one in Step 2. We claim that

(23) (B—Na(k2) =0,  for ¢ ay(p).
Indeed,
(B~ Z)a(%:2) = lim Zi EN: (B— A)z(k)A™*
k=—N
~ lim — EN: {2k + 1) = ¥, p(k)y — 2z(k)} A
N—o 2N

—-N

_ . -N _ 4 N+l
]\;T}c 2N EN+1)2 Z(=N)A"T)

o)

= —(¥,8a(A

so that we have (B — A)a(4;2) =0 for 1 ¢ g,(p), as required. By virtue of (23)
we see that a(4;2) =0 for A ¢ o(B)Uoas(p), o(B) being the set of eigenvalues of
the matrix B. Now let w(n) := 3>, _ ;)\, (» @(4:2)4" and consider the function
z(n) = z(n) — w(n). We notice from (23) that

win+1)= Y Ja(k2)i"= > Ba(32)i" = Bw(n),
sea(B)\au(p) Zea(B)\ay(p)

and hence z(n) is a solution of (16). Moreover, by its definition z(n) satisfies
op(z) < gp(p). Consequently, the solution z(n), so obtained, is a desired one.

O

In view of Theorem 3 through Theorem 5, we get the following theorem.

Theorem 6. Let p(n) be an almost periodic function. If Eq. (1) has a
bounded solution on Z*, it has an almost periodic solution x(n) such that

ap(x) = ap(p).
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Proof. Let y(n) be a bounded solution of Eq. (1) on Z*. Since y, is
bounded in %7, it follows from Theorems 3 and 5 that there exists an almost
periodic solution z(n) of (16) with g(z) = g5(p). Notice that @z(n) is a %’-
valued almost periodic function such that o,(®@z) = 65(z) = g5(p). Let &(n) be
the one defined in the proof of Theorem 4. Then, it follows from Theorems 3
and 4 that x(n) := [@z(n) 4+ £(n)](0) is a desired solution. O

When it is the case where the zero soluiton of Eq. (2) is hyperbolic, that is,
no characteristic roots of Eq. (2) belong to the unit circle {|z| = 1}, the situa-
tion is quite simple. In fact, we can ensure the unique existence of bounded
solutions of Eq. (1).

Theorem 7. Suppose that the characteritic operator zI — Q(z) of Eq. (2) is
invertible in ¥ (X) for |z| = 1. Then we have:

(i) for any bounded function p:Z — X, Eq. (1) has a unique bounded
solution on Z, which is represented by the formula

n—1 0
(24) x(n)=| > Vin—k—=DIEpk)) =Y V"'(n—k—1)IT’(6p(k))|(0),
k=—c0 k=n

(i) if p(n) is periodic, then the solution x(n) is also periodic.

Proof. (i) Uniqueness. We first show the uniqueness of bounded solutions
on Z. Let x(n) be a bounded solution of Eq. (1). Then &(n) = IT%x, is a
solution of the stable part of VCF:

n—1

(05) &)= Vin-0)Ee)+ Y Vin—k-D(ép(k), =0
k=oc

Since x(n) is bounded, &(n) is also bounded on Z; and therefore by Theorem
4(1) we get

&)=Y Vn—k=1)(6p(k), neZ.

By our assumption it follows that E¢ = {0}, so that #(n) = IT"x(n) satisfies the
unstable part of VCF:

n—1
n(n) =V*n—ojn(o)+>_ Vin—k—1)I"(ép(k), nx=o.
k=0

In view of Theorem 1 (iii), we see
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(26) n(o) = V(e —n)V(n—a(o)

(]

=Vio— ”){’7(”) -3 Vin—k - 1)17“(@@17(16))}

=
Il

a

n—

= V(o —n)y(n) = V(o — k - DIT"(6p(k))

ag

e
Il

By the same reasoning as the argument for £(n), we deduce that

170 — myp(w)]| < Ke -7 (sup ||xa||) 0, asn— o
oce”Z

and
S V(o — k= DI (Ep(k)|| < co.
k=o

Hence, letting n — oo in (26), we get
in particular

We thus have

Xp = é(}’l) + 77(”)

n—1 0
:ZVS(nfk ZVsnf —1)(é&pk)) neZ,
k=—o0 k=n
consequently
n—1 0
x(n) = x,(0) = | S" Vi(n—k — VI (6p(k Z Vin—k—=1DI'(&p(k)) | (0).
k=0 =n

Existence. Next let us show the existence of a bounded solution of Eq.
(1). To do this, consider a function {:Z — %’ defined by

Z Vin—k—1)(ép(k)) — Z “n—k—1)(épk)), neZ.

k=—m k=n
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We notice that sup,.,||{(n)|| < oo since

n—1

1)) < §3Ke“”k“wr£(ggmwn>

k=—o0

,
+ 3 ke s (sup (o)
ne

k=n

K(1+e%)
s—;;—wm+m%6wwm0 nez.
neZ

Since the first and the second terms of {(n) satisfy the stable and the unstable
parts of VCF, respectively, we conclude from Theorem 2 that z(n) := [{(n)](0)
gives a bounded solution of Eq. (1).

(i) If p(n) is a periodic function, {(n) is also periodic, and hence so is

z(n). U

Corollary 1. Suppose that zI — Q(z) is invertible in L(X) for |z| =1.
Then, for any almost periodic function p: Z — X, Eq. (1) has a unique almost
periodic solution x(n), which is given by the formula in Theorem 7. Furthermore,
the relation ap(x) < ap(p) holds.

Proof. By Theorem 7 Eq. (1) has a unique bounded solution x(n) on Z,
which is given by (24); in particular Theorem 6 implies that Eq. (1) has an
almost periodic solution x'(n) with op(x’) = gp(p) as well. Since an almost
periodic solution is necessarily bounded on Z, x'(n) must coincide with x(n).
This completes the proof. O

Acknowledgement. The author would like to express his sincere gratitude
to Professor S. Murakami for valuable advices and useful comments.

References

[1] Edmunds, D. E. and Evans, W. D., Spectral Theory and Differential Operators, Oxford
Science Publications, Clarendon Press, Oxford, 1987.

[2] Elaydi, S., An Introduction to Difference Equations, Springer, Berlin, New-York, 1996.

[3] Elaydi, S. and Murakami, S., Asymptotic stability versus exponential stability in linear
Volterra difference equations of convolution type, J. Difference Equations and Appl., 2
(1996), 401-410.

[4] Elaydi, S. and Murakami, S., Uniform asymptotic stability in linear Volterra difference
equations, J. Difference Equations and Appl., 3 (1998), 203-218.

[5] Fink, A. M., Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer,
Berlin, New-York, 1974.



290

[7]

(8]
[9]

(10]

(11]

Yutaka NAGABUCHI

Furumochi, T., Murakami, S. and Nagabuchi, Y., Volterra difference equations on a Banach
space and abstract differential equations with piecewise continuous delays, Japan. J. Math.,
30, No. 2 (2004), 387-412.

Furumochi, T., Murakami, S. and Nagabuchi, Y., A generalization of Wiener’s lemma and
its application to Volterra difference equations on a Banach space, J. Difference Equations
and Appl., Vol. 10, No. 13-15 (2004), 1201-1214.

Furumochi, T., Murakami, S. and Nagabuchi, Y., Stabilities in Volterra difference equations
on a Banach space, Fields Institute Communications 42 (2004), 159-175.

Hino, Y., Murakami, S. and Naito, T., Functional differential equations with infinite
delays, Lecture Notes in Math., 1473, Springer, Berlin, New-York, 1991.

Levitan, B. M. and Zhikov, V. V., Almost Periodic Functions and Differential Equations,
Moscow Univ., Moscow, 1978. [English translation by Cambridge Univ. Press, Cambridge,
UK, 1982.]

Massera, L. L., The existence of periodic solutions of systems of differential equations,
Duke Math. J., 17 (1952), 457-475.

nuna adreso:

Department of Applied Science
Okayama University of Science
1-1 Ridaicho, Okayama 700-0005
Japan

E-mail: nagabuti@mdas.ous.ac.jp

(Ricevita la 26-an de majo, 2005)
(Reviziita la 11-an de oktobro, 2005)



