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Abstract. We study the existence of analytic solutions of systems of difference
equations where we have vector valued functions y of ¢ and (¢ + x) equals to vector
valued analytic functions F of ¢ x and y in a neighborhood of (0,x*, y*) with
y*=F(0,x*, y*). Under the assumption that the Jacobian of F with respect to y at
(0,x*, y*) minus the idendity is invertible, we first show the existence of a unique
formal solution that is Gevrey-1. We also show, by applying a fixed point theorem,
the existence of analytic solutions having a Gevrey-1 asymptotic expansion in small &-
sectors. This requires the construction of some bounded right inverse operators on a
certain Banach space.

Keywords and Phrases. Difference equation, Difference operator, Inverse oper-
ator, Fixed point theorem, Gevrey asymptotic, Formal solution, Quasi-solution,
Nagumo norm, Borel-Laplace transform.

2000 Mathematics Subject Classification Numbers. 39A, 47B39.

1. Introduction

We consider a system of n difference equations of the form

(1) y(e x +¢) = F(e,x, (&),

where x is a complex variable, ¢ is a small complex parameter, and F is an
analytic function of ¢ x, and y in a certain domain. We look for solutions
(&, x) of equation (1) that, as ¢ — 0, tend to some given slow curve ¢y(x) of
equation (1) (i.e. a smooth function satisfying F(0,x,¢y(x)) = @o(x)). Such
solutions, if they exist, are so-called overstable solutions, in the sense that, as
& — 0, they remain uniformly bounded with respect to x, in a full neighborhood
of some point xo. The existence of the solutions y(e, x) depends on the
Jacobian Ay(x) defined by

oF
ey Ag(x) = 50,3, dy(3)) — 1.
Y
In this article, under the assumption that A¢(x) as well as Ay(x) + 1 are
invertible at xy and some other conditions to be described later, we show the
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existence of overstable solutions y(e, x) of equation (1). The case where Ay(x)
is not invertible at xy will be treated in a future work where a more general
version of equation (1) with an additional parameter a(¢) will be considered.
We also show the existence of a formal solution of equation (1) that is Gevrey-
1, though the proof of the existence of overstable solutions does not rely on the
existence of a formal solution. The Gevrey-1 character of the formal solution
is used to prove that the overstable solution has a Gevrey-1 asymptotic
expansion.

Note here that our result on the Gevrey-1 character of the formal solution
(in dimension n) generalizes a result of Baesens [1] (in dimension 2). The proof
of Baesens is very long and one can imagine the complexity of its generalization
to dimension n. On the contrary, our proof is especially very short compared
to the proof found in [1]. This is principally due to the fact that we used the
Nagumo norms. We have indeed adapted a method of Canalis-Durand,
Ramis, Schifke, Sibuya [3].

We mention related works of Fruchard, Schifke [6, 7] which treat vector
difference equations of the form

(3) y(x+e) — y(x — &) = 2eF(x, y(x)),
and
(4) y(e, x+¢&) = y(e,x —e) + eF(g,x, y(g x))

respectively. We also mention another related work of El-Rabih [4], where
difference equations of the form

(5) y(e,x+e¢) =xy(e,x) +eF (g x,a(e), y(e x))

were considered, but in the one-dimensional case, i.e. &¢>0 small and
(x,a,y) € C°. More related works are those of Fruchard [5], Fruchard,
Schifke [8], Sibuya [10] and Wasow [13].

2. Assumptions

Given the system of equation (1), where ¢ is a small complex parameter.
We assume the following:

1. The (vector valued) function F: V' x D — C" is an analytic function,
where V ="V(a,f,e) ={e|la<arge<f,0<|¢| <&} and D:=
D,,(x0) X Dy,(y0) = C x C"; here D,(z) denotes an open disc or an
open polydisc of radius r > 0 with centre z.

2. F is Gevrey-1 asymptotic to the formal series > .., fk(x, y)e* as
V' 3¢ — 0 uniformly for (x,y) e D, where the functions f; are holo-
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morphic in D. This means that there exist positive constants 4, C
such that for all (¢,x,y)e V' x D and all Ne N*

N-1
F(e,x,y) — ka(x, y)ek| < cANI(N +1)¢)".
k=0

The infimum of all such constants A is called the zype of the Gevrey 1
expansion. For more details about the Gevrey theory see the appendix
of [2].

3. F(0,x0, y0) = yo for some yy.

4. The numbers 0, 1 are not eigenvalues of (0F/dy)(0,xo, yo)-

3. Formal solutions

We consider the holomorphic function ¢,(x) satisfying F(0, x,¢y(x)) =
#o(x). The existence of it is guaranteed by assumptions 3 and 4 (above) and
the implicit function theorem. Replacing x by xo+x and y by ¢y(x) + y,
without loss of generality, we can assume as follows:

1. F is analytic for (x,y) e D, (0) x D,,(0) =« C x C".

2. F has a Gevrey-1 asymptotic expansion of type A4 in ¢€ V.

3. F(0,x,0) =0 for x e D,(0).

4. (0F/0y)(0,0,0) — I is invertible.

Proposition 1. Under the above assumptions (observe that the invertibility of
(0F/0y)(0,0,0) is not needed here), equation (1) has a unique formal solution
y(e,x) = Zlﬁ] bj(x)e/, where bj(x) are analytic in D,(0); r <ri. Moreover, for
each ¥ <r, y is Gevrey-1 on Di(0); i.e. there exist numbers M,B > 0 such that
supjy<;lbj(x)| < MB/I'(j+ 1) for all jeN.

For the proof of the theorem, we need the following two definitions:

Definition 2 ([3]). Given p €]0,r[, we define a function d on D,(0) by

r—l|x| if |x| = p,
d =
() {r—p if |x| < p.

We consider the modified Nagumo norms introduced in [3]: For a nonnegative
integer p and a holomorphic function f on D,(0), the Nagumo norm of f is
defined by

171l == sup(lf (x)|d(x)").

|x|<r

We restate [3] an important property of || |[,:
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(6) For [ & #(Dy), we have ||f'|, ., <e(p+ DI,

Here #°(D,) denotes the Banach space of the holomorphic functions on D,.
Definition 3 ([3]). We say that a series g = > ;- gk(x)e* is majorized
(“«”) by a series h(z) = >, hz' if

lgill, < it for j=0,1,2,...

We also recall the following two properties ([3]):
If g<h(z) and § < h(z), then

(7) 9§ < h(z)h(z),  and
(8) e%g < ezh(z).

Proof of Proposition 1. For simplicity, we omit the “hats” in the following
proof. We first show the existence of such a solution. We rewrite equation (1)
as an equation for formal series (except for the term y(e,x +¢) — y(g,x) at the
moment)

Ao(x)¥(e,x) = plex+e) = y(ex) —edy(x) = D Suw(x)pP(e x)ek,

|Pl+k=2
where
Fle,x,y) = S fu()pP(e,x)e¥, and
|Bl+h>1
¢1 = f5 and fz are n-dimensional vectors, p = (pi,...,pa), |P|=
pi+ -+ p, and yP =y . P where p;, k are nonnegative integers,

and y; is the jth entry of y.
The entries of 4y, ¢; and f are holomorphic for |x| < ry.
We proceed as in [3], but we have also to expand the term

y({;‘,X—FS) - y({;‘,X).
We have

This gives

) A0 = 3% (o) pen) (0= 3 Sl 0t
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Putting  y(e,x) = Y7, bj(x)e/ and looking at the coefficient of &,
n=0,1,..., we note that the right hand side of the above equation has co-
efficient 0 for ¢° and that the coefficient of &' is —¢,(x). Furthermore, we
easily see that the coefficients {bj}je n of a formal solution are uniquely
determined.

Next, we show that the formal solution is Gevrey-1. To do this, we
construct a majorant equation of (9) having a unique series solution that is

convergent. We rewrite it as:

10)  plecn) = An(o)™ Sk (1) (o) = o)l
r=1""

— Ao(x) " B(e, x) (e, x) — Ag(x) ™" Z f3(e,x) yP (e, %),

[pl=2

o0

Bi(x)ek,  f3(e,x) Z

k=0

<-
—~
B

=
~—

I

gt

=
=
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The entries of ¢, are those of f; and the entries of By are those of f5 with
|P| = 1. Note here that By(x), k > 1 are n x n matrices. We want to find a
majorant equation related to equation (10). For the majorization of series of
vectors, we use the maximum norm, and for that of series of matrices, we use a
compatible matrix norm. Then by applying the || [|;/,! to the coefficients of &/
of equation (10), we can find majorant (scalar) series ¢(z), B(z), and f (z) of
#(e, x), B(e,x) and f5(e, x) respectively. Note here that we use the hypothesis
that F is Gevrey-1. It remains to treat the sum .7, (1/r!)(ed/dx)" y(e, x).
Assume that y « h(z), then by an idea of J. P. Ramis using property (8), we
have:

> (ear) stax f}l ~ (e = 1h(2).

r=1

Also, HAo(x)*lHO « Cy, where Cj is a constant. By these properties and those
given by equations (6), (7), (8) and Cauchy’s estimate for the coefficients of a
convergent power series, all these series have a common radius of convergence,
and Z‘ﬁlzzfﬁ(z)g‘ﬁ‘ is convergent if |z| and |g| are small enough. Then a
majorant equation of (10) is given by:

o0

(11)  h(z) = Ci(e” = Dh(z) + C1g(2) + CLB)h(z) + C1 > > f3(2)h(2)"

n=2 [p/=n
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As $(0) = B(0) =0, it is easy to see that this majorant equation has a unique
formal solution /h(z) = Z_,i] hiz/ with nonnegative coefficients. In the same
way as in [3] (i.e. essentially by induction), it follows that our formal solution
y of Proposition 1 satisfies y « i(z). By the implicit function theorem, the
formal solution /(z) converges for z small enough and hence /7; < MN/,
j=1,2,..., where M, N are positive constants. Then y « h(z) for the formal
solutions y of equation (10) and & of equation (11). This means that
|yu(x)]l, < MN"n!. By the definition of | |, |yu(x)] < MN"d(x)"n! for
|x] <r. For all 6, 0<d<r—p, we also have |y,(x)]< MN"6 "n! for
|x| <r—9; ie. y is Gevrey-1 uniformly on D;(0) for each 7 <r. O

4. Quasi-solutions

So far, we have shown that equation (1) has a unique fomal solution
P(e,x) =212, bj(x)e/ with
sup |b;(x)| < MB'T'(j +1),

x| <7

for some numbers M, B > 0 i.e. it is Gevrey-1. Recall that F is also Gevrey-1
asymptotic to > fi(x, y)e/. Next, we take the Borel transform b(t,x) of
(g, x), i.e. we define:

/-1
(j-nr

Let T=1/B. We define y(e,x) to be the Laplace transform (with some
corrective term) of b(z,x). We put

1
x e Dy{0), |i] < .

o0

b(1,x) := Z

J

bj(x)

T ~
y(e,x) = J b(t, x)e ™% dt + eb(T, x)e "2,
0

Then, we know that y(e, x) is Gevrey-1 asymptotic to y(e, x).

Theorem 4. As given above, y(¢,x) is a quasi-solution of equation (1), i.e.
there exists K >0 such that

R(gv X) = )7(87 X+ 8) - F(87 xvj}(& X))
satisfies
|R(e, x)| < Ke T/l eeV,e— 0, xe D:0).

Proof. As p(¢,x) and F(e,x,y) are Gevrey-1 in ¢, there exist a good
covering [9, 11, 12] S; = S(o;, B, ), 1 < j <m of the punctured disk D(0, &)
and functions y;(e,x) and Fj(e, x, y) defined for ¢ S; and satisfying
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y1 =7, Fi=F, | j1(e,x) = yi(e,x)| = O(e™/F),  and
|P}+1(87 X, y) - F}'({,‘? X, y)| = @(e—y/\e\)’

for e € ;N S;;1, x € D;(0) and y some positive constant. The functions y;(e, x)
and Fj(e,x, y) can be chosen, similarly to y(e, x) given in the previous section,
as truncated Borel-Laplace transforms of j(e,x) and F(e, x,y) on [0, Te¥™].
Trivially, the same estimates still hold for y;(e,x +¢) if x € D;_,(0), i.e.

yiri(ex+e) = yile,x +e)| = 071, ceSNS.

Also, y(¢,x +¢) = yi(e,x+¢). So, we have to reduce the x-domain D;(0) into
Df,g(O). Let

Rj(gv X) = yj(S,X+ 8) - F}'(87 Xy yj<87 x))

Now, by using standard estimates, it follows that the differences R;1; — R;
are also exponentially small:

|Rj11(e, %) — Ri(e,x)| = 0(e77/¥l)

for ee S;NSjt1, j=1,...,n and xe€ Dy_,(0). The theorem of Ramis-Sibuya
implies that R;, j=1,...,m, have asymptotic expansions of Gevrey order 1
with a common right hand side. Since one of these R; is R in question,
this right hand side is j(e, x + &) — F(&, x, (¢, x)) = 0, because j is a formal solu-
tion of equation (1). It immediately follows that all R; are exponentially

small. |

In the next sections, we show directly the existence of an analytic solution
of equation (1) by applying the fixed point theorem on some suitable Banach
space. We also show that this solution is exponentially close to the quasi-
solution y(e,x) and is Gevrey-1 asymptotic to y(e, x).

5. Analytic solutions

Theorem 5. Under the assumptions of Section 2, for each subsector
V= V(o?,/?, 1) of V having sufficiently small angular opening and with sufficiently
small & > 0, there exists an analytic solution y : V x D,(0) — C" of equation (1)
which is Gevrey-1 asymptotic to y(e, x), provided that r > 0 is sufficiently small.

The proof needs the following theorem:

Theorem 6. Given Ay,...,A, € C\{0,1}, there exist a neighborhood Q of
0 and bounded linear operators Ty : Hy(2,) — H»(2;) such that y;:= T,(g),
g € Hy(Q:) implies that yj(e,x+¢) = 4;y;(e,x) + g(x) whenever xe Q. and
X+e€eQ, Here Q. =Q+[—¢/2,¢/2] and #»(Q,) denotes the Banach space
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of the holomorphic bounded functions on Q. equipped with the supremum norm
IVl =sup,cp ceq ¥, )l with y=(y)i. Thus T,: A(Q:) — A (Qs)

defined by Ts(gj);’: { = (Téj(gj))_;’:l is a bounded right inverse of the operator

(12) (7)) (6 x) = (e, x + &) — 438, %))
Observe that the images of y, are not necessarily defined on all of Q..

The construction of this right inverse and the x-domain along with the
proof will be given in the next section.
As an application of Theorem 5 we have the following:

Theorem 7. Consider an analytic (matrix valued) function A :V x D,(xo)
— M, (C), where r >0 and V =V (a,f,&). We suppose that A has a Gevrey-1
asymptotic expansion Y, - L,(x)e" as V 3 & — 0 uniformly for x € D.(xq). We
write the matrices A(g,x) in blocks

— Al(g’x) AZ(S’X)
Ae,x) = (A3(g,x) Aa(e, x)>’

where A, Ay, Az and A4 are, respectively, m by m, m by n —m, n —m by m and
n—m by n —m matrices. We assume, furthermore, that A;(0,x¢) = A3(0,x¢) =
0 and that A(0,x¢) and A4(0,x¢) are invertible and have no common eigenvalues.
Then for all subsectors V = V(o?,ﬁ, e1) of V having sufficiently small angular
opening and with sufficiently small 0 < & < gy, there exist ry > 0 and an analytic
matrix function P:V x D, (xo) — M, ,(C) having a Gevrey-1 asymptotic ex-
pansion as V3¢ — 0 and an analogous block decomposition

I Pz(e,x)>’

Plex) = (p3(£, x) I

such that P(e,x + &) A(e,x)P(¢e,x) = B(e,x) is block diagonal with

([ Bi(ex) 0
Bz x) = ( 0 By(e, x) >’
and Bl (O, )C()) = Al(O,XO), B4(0,X0) = A4(O,X0).

Proof. The proof is analogous to the well known one for singularly
perturbed differential equations. We need to find a non singular matrix P such
that

A(e,x)P(e,x) = P(e,x + &) B(e, x).

This gives:
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B (¢,x) = A (e, x) + Aa(e, x)P3(e, x),
P3(e,x + &) Bi(e, x) = As3(¢, x) + Aa(e, X) P3(e, x),
Py(e,x + €)By(e, x) = Ar(e,x) + A1 (e, x) Pa(e, x),
By(e,x) = Aa(e,x) + As(e, x) P2 (e, x).
Thus P;(¢,x) has to satisfy:
(13)  P3(e,x+2) = (ds(e %) + Aale, ) P32, X)) (A1 (2, X) + Aa(e, X) Ps e, %))
which implies,
P3(g,x +¢&) = As(e,x) A7 (g, x) + Aa(e, x)P3 (g, x) A7 ' (&, x)
— Ay(e, ) AT (6, X) Aa (e ) P (6, ) AT (6,%) + O(PR).

This equation satisfies the hypotheses of Theorem 5 because at ¢ =0,
X = X its linear part reduces to P; +— A4(0,x0)P3A1’1(0,x0). Neither 0 nor 1
are eigenvalues of this mapping by the assumption of our theorem. So, by
Theorem 5, for subsectors ¥ of ¥ as mentioned there, there exists an analytic
solution Ps : I7><D,.1 (x0) = My_m.m of (13) having a Gevrey-1 asymptotic
expansion. Similarly, we can solve the respective equation for P,. The in-
vertibility of the matrix P with blocks I, P,, P3, I for sufficiently small ¢ follows
from P,(0,x0) =0, P3(0,x9) =0. Put Bi(¢,x) = A;(e, x) + 42(¢,x)P3(e,x) and
By(e,x) = Aa(e,x) + As(e, x)P2(¢,x). Then the four equations equivalent to
A(e, x)P(e,x) = P(e,x + ¢)B(e,x) are satisfied and hence P has the properties
required in our theorem. |

6. Proof of Theorem 6
6.1. Construction of the operators T,

For simplicity, we prove the theorem only for ¢ > 0, ¢€]0,¢].
We consider a system of difference equations of the form

(14) Yi(e, x + &) = 2;y;(&, x) + g;(x),

where ;e C, 4;#0,1 for j=1,...,n and where g;(x) are some analytic
functions on certain horizontally convex x-domains Q2 to be described later.
On the Banach space #(Q,) of the holomorphic bounded functions on ,, we
construct bounded operators T;; such that y; := Tj;(g;) implies y,;(y;) = g;(x),
where 7,; is the operator defined by

(15) Vﬁjyj(b‘,)():){/(S,X+8)—}{/J{j(8,X).
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T, is related to a right inverse of the operator 4, given by

(16) 4,yi(&,x) :%(yj(a,ers) — (e, x)).

To see this, we define

_ log .
(17) Zj(e, x) = j‘j x/e p— exp(_ Ol(::; /lj X),

where the branch of log will be chosen later. Note that 1/Z;(¢,x) is the
homogeneous solution of y,;y;(e,x) = 0. We rewrite equation (14) as

(18) AS}N}](&-X) :gj(87x)7
where

j}j(gv X) = Zj(gﬂ x)yj(87 x)> g~j(87 x) = Zlii’/X) gj(gv x)'

We know that, on suitable spaces of analytic functions, equation (18) admits an
analytic solution y;(¢,x) of the form y;(e, x) = Vi(g;(¢, x)), where V., =S —¢U,
is a right inverse operator of A, [7]. Then equation (14) admits an analytic
solution y;(e, x) given by

e (S —elU)(@ex)
) WEN) = e T 2o
— 1 _ Z./(S’ x)g./(g’ x)
 Zi(e,x) S 8U6)( & )’
that is,
(20) yile,x) == Ty(g;(e, x)) = (hj + by + Iy)g;(&, x),
where
4 P Zi(e 9yl d)
(21) Iljgj(g, x) E SZJ‘(H, X) J1/3 J){\J T déd[a
I Zi(2,9)gj(e,¢)
I el I e L
R 4 18 Zj(ga é)g](& f)
(23) 131g1(87 X) o 8Zj(87 X) J_]/g Jy;t lj(l — e—(2in/£)(§_x)> dédt’
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* 7., is an ascending path joining x~ +eéf to x —¢&/2 (avoiding x — ¢ and
x) such that Im & is increasing as ¢ varies on it, and
7%, 1s an ascending path joining x —¢/2 to x* + ¢t (avoiding x — ¢ and
x) such that Im & is increasing as ¢ varies on it, and where
x~ and xt are points with minimal and maximal imaginary parts,
respectively, in the horizontally convex x-domain €.

6.2. Domain description

In order that all integrals [; for all i=1,2,3 and j=1,...,n define
bounded operators, the x-domain for which they are all bounded, must satisfy
restrictive conditions. As in [7, 6], the x-domain Q is some horizontally convex
domain, c-ascending (¢ to be determined) and with extreme points x~ and x* of
minimal and maximal imaginary parts respectively. However, 2 will be here
some rhombus to be described in more details below.

In order to see what further conditions we need to impose on our choice of
Q, we first discuss heuristically the boundedness of the integrals [;, [, and
I;. Then once that is done, we show the boundedness of those integrals in
details.

6.2.1. Heuristic estimation of /y;, I,; and Iy

We first consider I;; (see equation (21)). Note that

Zj(e, é)
Zj(e, x)

—exp( ;o i) - ) ).

Here the rhombus is very close to a segment. Its interior angles at the points
xt are assumed to be small. We put xT=Ae¥ and x = —Ae'?,
A > 0. Observing that & varies from x~ +¢&f to x —¢/2, we may assume for
the moment that arg(x — &) ~arg(x — x™) ~arg(x™ —x7) = ¥. Here, we ob-
tain: (x — &) log 4; =~ |x — €| |log /"u_,-|i(y/+®’>, where @; = arglog 4;. Ij; becomes
bounded, as ¢ — 07, if Z;(¢e,£)/Z;(e,x) is. Observe that the imaginary part of
log 4; and hence its argument @; are not yet completely determined. For
the moment, we want that cos(¥? + @;) < 0 for all j, so that Re((x — &) log 4;)
is negative.
Next, we consider I; (see equation (22)). Since

1 2n
= etmaEs ¢ (e"p (? Im(c - x>> ) !

we have
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Zi(e, x) (?Eg;fz),-n/sx:x)) =0 (CXP (é Re((x — &) (log 4; + 2m)))> :

Here, we obtain: (x — &)(log 4; + 2in)) ~ |x — &|(|log A€ *®) + 2mei(+7/2)),
So, we want [log 4;| cos(¥ + @;) — 2z sin ¥ < 0. Since cos(¥ + @;) < 0, then
we restrict for the moment ¥ €10, x][.

Finally, we consider /3; (see equation (23)), where

7 x)(lz'i(ge’fzm/x)(éx)) =0 (exp (% Re((x — ¢)(log 4; — 2in))>>.

Putting (.l:>j = arg(log 4; — 2in), then, heuristically speaking, as ¢ varies from x to
x*, we have & — x~ |& — x|e’”. We want then cos(¥ + @;) >0 for all j, so
that Re((x — &)(log 4; — 2im)) is negative.

To sum up, heuristically, we need to choose ¥ and thus the x-domain 2 such
that the following are satisfied:

l. ¥e]0,n|,

2. cos(¥+ @;) <0 for all j, with @; = arglog 4;, and

3. cos(¥ + &) >0 for all j, with &; = arg(log /; — 2in).

We choose ¥ to be slightly bigger than n/2, say, ¥ = n/2 4 0;, where J; > 0 is
very small. We now choose log 4;, for j=1,...,n, such that:

1. Imlog ;€ [0,27],

2. @, =arglog 4; € [0,7n], (then Imlog 4; > 0 if Relog 4; < 0),

3. if Relog 4; >0, then Imlog A; < 27 (recall that A; # 0 for all j).
Then, Im(log /; — 2in) € [-27,0], and @&; = arg(log /; — 2in) € [-x,0[. With
such a choice of log 4;, the above conditions are satisfied if J; is chosen also
such that:

For @; = n— 6, with small 6, >0, J; —d» <0, or max; @; +J; < 7.
For (13] = —03 with small é;3 > 0, J; —dJ3 <0, or max; @j +0; < 0.

6.2.2. Choice of @

For arbitrary A4 >0, choose x* = Ae'? and x~ = —4e'?, and let the
rhombus ©Q (a c-ascending domain) be determined by x*, x~ and its interior
angles 20 at these points where max; @; 4 9J; +6 < n, max; @; +6; +J < 0, and
0<d <.

6.3. Completion of the proof of Theorem 6

We prove Theorem 6 with ©Q as described above and 0 < c¢ < 1/2. We
show that all /; are bounded for i =1,2,3 and j=1,...,n. Without loss of
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generality, we may assume that x € Q 4 [0,¢]. We write x — ¢/2 = X + u where
xeQ and pel—¢/2,¢/2]. We consider the following three cases:

l. Imx +ec/8 <Imx <Imx" —ec/8.

2. Imx <Imx™ +ec/8.

3. Imx > Im xt —ec/8.

Case 1: We describe the paths y;, and y,. Such a path y_, (respectively
y¥,) is chosen very close to y (respectively y1) joining x~ to x (respectively x to
xT) that we used in our heuristic estimation of the integrals Iy;, I, I5; and that
lead to the construction of the x-domain Q. Indeed, we select a c-ascending
path from x~ to X and modify it to a c-ascending path from x~ 4+ u to X+ u =
x —¢/2 and then complete with a horizontal segment from x~ +e&r to x~ + 4
Then the c-ascending path from x~ + x4 to x —¢/2 differs from that of x~ to ¥
at most by the order of e.

Consider Ij; (see equation (21)). On the segment from x~ +u to
x —¢/2, we have

R e

1 N ~ ~
= 0(exp(§ - Ellox 4 cos(w + 4. ).

where & = & — u, ¥ = arg(xt —x ) and arg(X — &) = ¥ + i, jie [-0,0]. Then,

Zj(67é) —m %o z
(24) 2o = C(ow(=5051-18)).
where
(25) o= 41‘1}i26(|10g Ajl lcos(¥ + @; + fi)]) > 0.

Hence, the integral part of [j; from x~ + u to x —¢/2 denoted by ITj satisfies

(26) i < " exp (=2 151 - 18D )aqe)

e m.in MI“ X
j g
)

. e .
< K“g/”J ef(oz/z:)t dt < Kng||<OO
& 0 o

where K is a constant. On the horizontal part from x~ +é&f to x~ + u,
equations (24), (25) still hold and hence the integral part of I;; which corre-
sponds to this horizontal part is also bounded.
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+ Next, we consider I (see equation (22)). As above, we divide the
integration path of I,; into two parts:

12j = IZj-horizontal + IZj-ascendingy

where
4 (VS 76, E)gi(e, E)
Dichorizontal 9 = EANRALRA: TR dédt
2j=horizontal 9 (&, x) eZ;(e, x) J—I/S Jerst 2(1 — e(2m/s)(éfx)) <
and
—4 1/8  px—g/2 Z-(e f)g‘(s f)
I‘— ndin i\ Gy = —— 20 »] ,v d dt'
2j-ascend, ggj(‘g x) SZ./(87 X) JI/S Jx+,u /1](1 _ e(2m/8)(§7x)) ¢
1 — First, we consider Dj-jorizoniar. We have: Im & =1Im x~ +ef =Im x~

and Im(x — &) =Im(x — x7) > ec/8. Then

enc/4 1
< —
= mefd _ 1 T ze
enc/ 1 <

4
<-.
C

1
'1 — o in/e)E)

Since equations (24), (25) still hold in this case, Dj-torizontal is bound~ed. )
ii — Next, we consider DLj-gscending- Since (Im X —Im &) > ¢|x — & for X, &
defined above, we have:
1
1 — eQin/o)E)

Here also equations (24), (25) remain valid. Then,

i < exp(—(z”"+ “)ufc - |5>)d<|£|>

e 1’1’111’1|/1]| X~ é
J

. lal
= (2nc+ o) min | 4]

< 00.

This shows that I is bounded.

Similarly, we can show that I3; (see equation (23)) is also bounded
(Indeed the same estimations hold except that o has to be replaced by &
depending on <15j instead of @;).
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Case 2: The above estimations still hold for f3;. However those of Ij;
and I fail and the above path y_, is no longer sufficient for the estimates.
Some polygonal path must be instead considered. We choose this paths exactly
as in [7], and we can show the boundedness of /j; and I; in the same way. We
refer the reader there for a detailed discussion.

Case 3: Here the estimations of case 1 still hold except that of I3;. Also,
some polygonal path must be considered exactly as in [7] and we refer the reader
there for a detailed discussion. This shows that 7, (see equation (20)) is
bounded for all j=1,...,n on #}(Q.). Then T, is also bounded on #}'(2,)
and || 7,g]l < Lligll, with [lg]l = max;lg;].

Corollary 8. Equation (14) has an analytic solution (y;(e, x))};1 bounded on
Ay (Q:) given by (y;(e,x)); = (T(9)))j2-

7. Proof of Theorem 5

For simplicity, we consider ¢ > 0. In equation (1), we write F(e, x, y(¢g, x))
= A(e,x)y(e,x) + fe,x) + H(e, x, y(e,x)), where A(g,x) = (0F/dy)(e, x,0),
f(e,x) = F(e,x,0), and H is the remaining part of F. To solve equation (1),
we rewrite it as a fixed point equation on a certain closed subset of a Banach
space to be constructed later. This invokes the use of the right inverse 7, that
we constructed earlier. Let 6 be some positive number < 1/(6L) (recall that
L =||T,|). There exists a constant matrix P such that B(e,x) = P~'A(e, x)P,
and that B(0,0) = bldiag(B,(0,0),...,B,(0,0)), v <n has block diagonal form
with B;(0,0) = A;1; + N,

0 6 0 0
N; = 0
RN

o --. 0

By the transformation y(e, x) = PY (g, x), equation (1) becomes:
Y(e,x+¢) = B(e,x)Y(e,x) + P ' f(e,x) + P"'H(e,x, PY (e, x))
= DY(&,x)+ (B(e,x) — D) Y(&,x) +f(e,x) + H(e, x, Y (e, x)),
where D = diag(Ay,...,4,). This gives a system:

(27) v Yi(e; x) = [B(e,x) — DY (¢, x)]; —I—f;(é‘, x) + Hy(e, x, Y (&, x)),
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where j=1,...,n, and 7, Y;(e,x) = Yj(e,x + &) — 4;¥j(e,x). Note here that H;
is a function of ¢, x and Y = (Y,...,Y,). We denote the right hand side of
equation (27) by O; and our system is now

7 Y& X) = Oj(e, x, Yi(e,x), ..., Yaule, X)) =: Qj(e, x, Y).

Earlier, we constructed a right inverse 7;; of y,; on the Banach space #(;).
So, it is sufficient to solve

Y(e,x) =T.0(g,x,Y),

where Q= (01,...,0,), Th=(Tahi,...,Teh,) and ||T.h|| < L||A|, with
|\h|| = max;|h;|. We want to show that 7.0 is a contraction on a certain closed
subset of a Banach space 4. Let # be the set of all functions Y(g,x) (with
values in C") analytic and bounded for x € Q and ¢ € ]0, ], where 0 < ¢ < g is
to be determined. Considering the maximum norm of Y and with the usual
addition and scalar multiplication, 4 becomes a Banach space. Next, let M be
the closed subset of # of all Y(¢, x) satisfying || Y| < p (to be determined) and
such that H(e, x, Y (¢, x)) is defined for x € 2, €]0,¢], | Y] < p. Note that M
is non empty. Now, we show that 7,0 has a fixed point on M if p, Q are
sufficiently small. We have

1
Ole,x, W) — Q(e,x, V) = (L g—)Q/(a,x, V41w - V))dt)(W - V).

Recall that

O;(e,x, Y) = [B(e,x) — D]; Y (e, x) +]§(e, x) + Hy(e, x, Y (&, x)).

We can choose our domain £ such that the Lipschitz constant of
H(e,x, Y(g,x)) is not too large and max, | B(e,x) — B(0,0)|| <J. Then, we
have:

00

W(E,x, V 4+ t(W —V))dt| < max ||B(e,x) — D|| + k({),
with { = sup||p|| and some function k({) that tends to 0 as { — 0 (Indeed
k() < Cp for some C > 0). Choosing p < J/C, it follows then by our choice
of 0 < 1/(6L) that

1
190G, x, W) = Qe,x, V)| <77 IW = VI and hence  [[TQ(W — V)| <

N =

Next, as Q(0,x,0) =0 for all xeQ, we can also choose & such that for
0<e<e, ||Q(x,0)|| <p/(2L). This implies that 7,0 : M — M is a con-
traction with a contraction factor at most 1/2. Thus there exists Y e M
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satisfying 7.QY = Y, namely there exists y an analytic solution of equation (1).
It remains to show that this analytic solution y differs from the quasi-solution,
constructed by taking the Borel Laplace transform of p, by an exponentially
small function, and that it is asymptotic to y. To see this, note that d(e, x) =
(e, x) — y(e,x) satisfies

(28) d(e,x+¢&) = G(e, x,d(g,x)),

with
G(e, x,d(e,x)) = F(e, x, 5(¢,x) + d(e, x)) — F(e, x,5(e,x)) — R(e, x),

where R(e,x) is the exponential function in Theorem 4. Moreover, d(e, x) =0
is a quasi-solution of equation (28), i.e. G(¢,x,0) is exponentially small. In the
same way as we did for equation (1) of y, we can show that equation (28) has
an analytic solution d. Since G(eg, x,0) is also exponentially small, we can
show in addition that equation (28) has indeed an analytic solution & that is
exponentially small. In fact, it suffices to apply the fixed point theorem on a
Banach space as we did above for the y equation but where the supremum
norm is replaced by the weighted norm ||y| =sup,cy cco |y(e x)|e*/F.
Finally, since exponentially small functions are Gevrey-1, it follows that the
analytic solution y(e, x) of equation (1) is also Gevrey-1 and that its asymptotic
expansion is the formal solution j(e, x).
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