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Abstract. We study the existence of analytic solutions of systems of di¤erence

equations where we have vector valued functions y of e and ðeþ xÞ equals to vector

valued analytic functions F of e, x and y in a neighborhood of ð0; x�; y�Þ with

y� ¼ Fð0; x�; y�Þ. Under the assumption that the Jacobian of F with respect to y at

ð0; x�; y�Þ minus the idendity is invertible, we first show the existence of a unique

formal solution that is Gevrey-1. We also show, by applying a fixed point theorem,

the existence of analytic solutions having a Gevrey-1 asymptotic expansion in small e-

sectors. This requires the construction of some bounded right inverse operators on a

certain Banach space.
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1. Introduction

We consider a system of n di¤erence equations of the form

yðe; xþ eÞ ¼ Fðe; x; yðe; xÞÞ;ð1Þ

where x is a complex variable, e is a small complex parameter, and F is an

analytic function of e, x, and y in a certain domain. We look for solutions

yðe; xÞ of equation (1) that, as e ! 0, tend to some given slow curve f0ðxÞ of

equation (1) (i.e. a smooth function satisfying F ð0; x; f0ðxÞÞ ¼ f0ðxÞ). Such

solutions, if they exist, are so-called overstable solutions, in the sense that, as

e ! 0, they remain uniformly bounded with respect to x, in a full neighborhood

of some point x0. The existence of the solutions yðe; xÞ depends on the

Jacobian A0ðxÞ defined by

A0ðxÞ ¼
qF

qy
ð0; x; f0ðxÞÞ � I :ð2Þ

In this article, under the assumption that A0ðxÞ as well as A0ðxÞ þ I are

invertible at x0 and some other conditions to be described later, we show the



existence of overstable solutions yðe; xÞ of equation (1). The case where A0ðxÞ
is not invertible at x0 will be treated in a future work where a more general

version of equation (1) with an additional parameter aðeÞ will be considered.

We also show the existence of a formal solution of equation (1) that is Gevrey-

1, though the proof of the existence of overstable solutions does not rely on the

existence of a formal solution. The Gevrey-1 character of the formal solution

is used to prove that the overstable solution has a Gevrey-1 asymptotic

expansion.

Note here that our result on the Gevrey-1 character of the formal solution

(in dimension n) generalizes a result of Baesens [1] (in dimension 2). The proof

of Baesens is very long and one can imagine the complexity of its generalization

to dimension n. On the contrary, our proof is especially very short compared

to the proof found in [1]. This is principally due to the fact that we used the

Nagumo norms. We have indeed adapted a method of Canalis-Durand,

Ramis, Schäfke, Sibuya [3].

We mention related works of Fruchard, Schäfke [6, 7] which treat vector

di¤erence equations of the form

yðxþ eÞ � yðx� eÞ ¼ 2eFðx; yðxÞÞ;ð3Þ

and

yðe; xþ eÞ ¼ yðe; x� eÞ þ eFðe; x; yðe; xÞÞð4Þ

respectively. We also mention another related work of El-Rabih [4], where

di¤erence equations of the form

yðe; xþ eÞ ¼ xyðe; xÞ þ eFðe; x; aðeÞ; yðe; xÞÞð5Þ

were considered, but in the one-dimensional case, i.e. e > 0 small and

ðx; a; yÞ A C 3. More related works are those of Fruchard [5], Fruchard,

Schäfke [8], Sibuya [10] and Wasow [13].

2. Assumptions

Given the system of equation (1), where e is a small complex parameter.

We assume the following:

1. The (vector valued) function F : V �D ! C n is an analytic function,

where V ¼ Vða; b; e0Þ :¼ fe j a < arg e < b; 0 < jej < e0g and D :¼
Dr1ðx0Þ �Dr2ðy0ÞHC � C n; here DrðzÞ denotes an open disc or an

open polydisc of radius r > 0 with centre z.

2. F is Gevrey-1 asymptotic to the formal series
P

kb0 fkðx; yÞek as

V C e ! 0 uniformly for ðx; yÞ A D, where the functions fk are holo-
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morphic in D. This means that there exist positive constants A, C

such that for all ðe; x; yÞ A V �D and all N A N �

F ðe; x; yÞ �
XN�1

k¼0

fkðx; yÞek
�����

�����aCANGðN þ 1ÞjejN :

The infimum of all such constants A is called the type of the Gevrey 1

expansion. For more details about the Gevrey theory see the appendix

of [2].

3. Fð0; x0; y0Þ ¼ y0 for some y0.

4. The numbers 0, 1 are not eigenvalues of ðqF=qyÞð0; x0; y0Þ.

3. Formal solutions

We consider the holomorphic function f0ðxÞ satisfying Fð0; x; f0ðxÞÞ ¼
f0ðxÞ. The existence of it is guaranteed by assumptions 3 and 4 (above) and

the implicit function theorem. Replacing x by x0 þ x and y by f0ðxÞ þ y,

without loss of generality, we can assume as follows:

1. F is analytic for ðx; yÞ A Dr1ð0Þ �Dr2ð0ÞHC � C n.

2. F has a Gevrey-1 asymptotic expansion of type A in e A V .

3. Fð0; x; 0Þ ¼ 0 for x A Dr1ð0Þ.
4. ðqF=qyÞð0; 0; 0Þ � I is invertible.

Proposition 1. Under the above assumptions (observe that the invertibility of

ðqF=qyÞð0; 0; 0Þ is not needed here), equation (1) has a unique formal solution

ŷyðe; xÞ ¼
Py

j¼1 bjðxÞe j , where bjðxÞ are analytic in Drð0Þ; r < r1. Moreover, for

each ~rr < r, y is Gevrey-1 on D~rrð0Þ; i.e. there exist numbers M;B > 0 such that

supjxja~rrjbjðxÞjaMB jGð j þ 1Þ for all j A N .

For the proof of the theorem, we need the following two definitions:

Definition 2 ([3]). Given r A �0; r½ , we define a function d on Drð0Þ by

dðxÞ ¼ r� jxj if jxjb r;

r� r if jxj < r:

�

We consider the modified Nagumo norms introduced in [3]: For a nonnegative

integer p and a holomorphic function f on Drð0Þ, the Nagumo norm of f is

defined by

k f kp :¼ sup
jxj<r

ðj f ðxÞjdðxÞpÞ:

We restate [3] an important property of k kp:
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For f A HðDrÞ; we have k f 0kpþ1 a eðpþ 1Þk f kp:ð6Þ

Here HðDrÞ denotes the Banach space of the holomorphic functions on Dr.

Definition 3 ([3]). We say that a series g ¼
Py

k¼0 gkðxÞek is majorized

(‘‘f’’) by a series hðzÞ ¼
Py

l¼0 hlz
l if

kgjkj a hj j! for j ¼ 0; 1; 2; . . .

We also recall the following two properties ([3]):

If gf hðzÞ and ~ggf ~hhðzÞ, then

g~ggf hðzÞ~hhðzÞ; andð7Þ

e
d

dx
gf ezhðzÞ:ð8Þ

Proof of Proposition 1. For simplicity, we omit the ‘‘hats’’ in the following

proof. We first show the existence of such a solution. We rewrite equation (1)

as an equation for formal series (except for the term yðe; xþ eÞ � yðe; xÞ at the

moment)

A0ðxÞyðe; xÞ ¼ yðe; xþ eÞ � yðe; xÞ � ef1ðxÞ �
X

j~ppjþkb2

f~ppkðxÞy~ppðe; xÞek;

where
� Fðe; x; yÞ ¼

X
j~ppjþkb1

f~ppkðxÞy~ppðe; xÞek, and

� f1 ¼ f~001 and f~ppk are n-dimensional vectors, ~pp ¼ ðp1; . . . ; pnÞ, j~ppj ¼
p1 þ � � � þ pn and y~pp ¼ y

p1
1 . . . ypn

n where pi, k are nonnegative integers,

and yj is the jth entry of y.
� The entries of A0, f1 and f~ppk are holomorphic for jxj < r1.

We proceed as in [3], but we have also to expand the term

yðe; xþ eÞ � yðe; xÞ.

We have

yðe; xþ eÞ � yðe; xÞ ¼
Xy
r¼1

1

r!
e
d

dx

� �r

yðe; xÞ:

This gives

A0ðxÞyðe; xÞ ¼
Xy
r¼1

1

r!
e
d

dx

� �r

yðe; xÞ � ef1ðxÞ �
X

j~ppjþkb2

f~ppkðxÞy~ppðe; xÞek:ð9Þ
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Putting yðe; xÞ ¼
Py

j¼1 bjðxÞe j and looking at the coe‰cient of en,

n ¼ 0; 1; . . . , we note that the right hand side of the above equation has co-

e‰cient 0 for e0 and that the coe‰cient of e1 is �f1ðxÞ. Furthermore, we

easily see that the coe‰cients fbjgj AN of a formal solution are uniquely

determined.

Next, we show that the formal solution is Gevrey-1. To do this, we

construct a majorant equation of (9) having a unique series solution that is

convergent. We rewrite it as:

yðe; xÞ ¼ A0ðxÞ�1
Xy
r¼1

1

r!
e
d

dx

� �r

yðe; xÞ � A0ðxÞ�1
fðe; xÞð10Þ

� A0ðxÞ�1
Bðe; xÞyðe; xÞ � A0ðxÞ�1

X
j~ppjb2

f~ppðe; xÞy~ppðe; xÞ;

where

fðe; xÞ :¼
Xy
k¼1

fkðxÞek; Bðe; xÞ :¼
Xy
k¼1

BkðxÞek; f~ppðe; xÞ :¼
Xy
k¼0

f~ppkðxÞek:

The entries of fk are those of f~00k and the entries of Bk are those of f~ppk with

j~ppj ¼ 1. Note here that BkðxÞ, kb 1 are n� n matrices. We want to find a

majorant equation related to equation (10). For the majorization of series of

vectors, we use the maximum norm, and for that of series of matrices, we use a

compatible matrix norm. Then by applying the k kj= j! to the coe‰cients of e j

of equation (10), we can find majorant (scalar) series f̂fðzÞ, B̂BðzÞ, and f̂f~ppðzÞ of

fðe; xÞ, Bðe; xÞ and f~ppðe; xÞ respectively. Note here that we use the hypothesis

that F is Gevrey-1. It remains to treat the sum
Py

r¼1ð1=r!Þðed=dxÞ
r
yðe; xÞ.

Assume that yf hðzÞ, then by an idea of J. P. Ramis using property (8), we

have:

Xy
r¼1

1

r!
e
d

dx

� �r

yðe; xÞf
Xy
r¼1

1

r!
ðezÞrhðzÞ ¼ ðeez � 1ÞhðzÞ:

Also, kA0ðxÞ�1k0 fC1, where C1 is a constant. By these properties and those

given by equations (6), (7), (8) and Cauchy’s estimate for the coe‰cients of a

convergent power series, all these series have a common radius of convergence,

and
P

j~ppjb2 f̂f~ppðzÞgj~ppj is convergent if jzj and jgj are small enough. Then a

majorant equation of (10) is given by:

hðzÞ ¼ C1ðeez � 1ÞhðzÞ þ C1f̂fðzÞ þ C1B̂BðzÞhðzÞ þ C1

Xy
n¼2

X
j~ppj¼n

f̂f~ppðzÞhðzÞ
nð11Þ

317Local Analytic Solutions for Systems of Di¤erence Equations



As f̂fð0Þ ¼ B̂Bð0Þ ¼ 0, it is easy to see that this majorant equation has a unique

formal solution hðzÞ ¼
Py

j¼1 hjz
j with nonnegative coe‰cients. In the same

way as in [3] (i.e. essentially by induction), it follows that our formal solution

y of Proposition 1 satisfies yf hðzÞ. By the implicit function theorem, the

formal solution hðzÞ converges for z small enough and hence hj aMN j,

j ¼ 1; 2; . . . , where M, N are positive constants. Then yf hðzÞ for the formal

solutions y of equation (10) and h of equation (11). This means that

kynðxÞkn aMNnn!. By the definition of k kn, jynðxÞjaMNndðxÞ�n
n! for

jxj < r. For all d, 0 < d < r� r, we also have jynðxÞjaMNnd�nn! for

jxja r� d; i.e. y is Gevrey-1 uniformly on D~rrð0Þ for each ~rra r. r

4. Quasi-solutions

So far, we have shown that equation (1) has a unique fomal solution

ŷyðe; xÞ ¼
Py

j¼1 bjðxÞe j with

sup
jxja~rr

jbjðxÞjaMB jGð j þ 1Þ;

for some numbers M;B > 0 i.e. it is Gevrey-1. Recall that F is also Gevrey-1

asymptotic to
P

jb0 fjðx; yÞe j. Next, we take the Borel transform ~bbðt; xÞ of

ŷyðe; xÞ, i.e. we define:

~bbðt; xÞ :¼
Xy
j¼1

bjðxÞ
t j�1

ð j � 1Þ! ; x A D~rrð0Þ; jtj <
1

B
:

Let T ¼ 1=B. We define ~yyðe; xÞ to be the Laplace transform (with some

corrective term) of ~bbðt; xÞ. We put

~yyðe; xÞ :¼
ðT

0

~bbðt; xÞe�t=e dtþ e~bbðT ; xÞe�T=e:

Then, we know that ~yyðe; xÞ is Gevrey-1 asymptotic to ŷyðe; xÞ.

Theorem 4. As given above, ~yyðe; xÞ is a quasi-solution of equation (1), i.e.

there exists K > 0 such that

~RRðe; xÞ :¼ ~yyðe; xþ eÞ � Fðe; x; ~yyðe; xÞÞ

satisfies

j ~RRðe; xÞjaKe�T=jej; e A V ; e ! 0; x A D~rrð0Þ:

Proof. As ~yyðe; xÞ and Fðe; x; yÞ are Gevrey-1 in e, there exist a good

covering [9, 11, 12] Sj ¼ Sðaj; bj; e0Þ, 1a jam of the punctured disk Dð0; e0Þ
and functions yjðe; xÞ and Fjðe; x; yÞ defined for e A Sj and satisfying
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y1 ¼ ~yy; F1 ¼ ~FF ; jyjþ1ðe; xÞ � yjðe; xÞj ¼ Oðe�g=jejÞ; and

jFjþ1ðe; x; yÞ � Fjðe; x; yÞj ¼ Oðe�g=jejÞ;

for e A Sj VSjþ1, x A D~rrð0Þ and g some positive constant. The functions yjðe; xÞ
and Fjðe; x; yÞ can be chosen, similarly to ~yyðe; xÞ given in the previous section,

as truncated Borel-Laplace transforms of ŷyðe; xÞ and F ðe; x; yÞ on ½0;Te2jpi�.
Trivially, the same estimates still hold for yjðe; xþ eÞ if x A D~rr�eð0Þ, i.e.

jyjþ1ðe; xþ eÞ � yjðe; xþ eÞj ¼ Oðe�g=jejÞ; e A Sj VSjþ1:

Also, ~yyðe; xþ eÞ ¼ y1ðe; xþ eÞ. So, we have to reduce the x-domain D~rrð0Þ into

D~rr�eð0Þ. Let

Rjðe; xÞ :¼ yjðe; xþ eÞ � Fjðe; x; yjðe; xÞÞ:

Now, by using standard estimates, it follows that the di¤erences Rjþ1 � Rj

are also exponentially small:

jRjþ1ðe; xÞ � Rjðe; xÞj ¼ Oðe�g=jejÞ

for e A Sj VSjþ1, j ¼ 1; . . . ; n and x A D~rr�eð0Þ. The theorem of Ramis-Sibuya

implies that Rj, j ¼ 1; . . . ;m, have asymptotic expansions of Gevrey order 1

with a common right hand side. Since one of these Rj is ~RR in question,

this right hand side is ŷyðe; xþ eÞ � F̂Fðe; x; ŷyðe; xÞÞ ¼ 0, because ŷy is a formal solu-

tion of equation (1). It immediately follows that all Rj are exponentially

small. r

In the next sections, we show directly the existence of an analytic solution

of equation (1) by applying the fixed point theorem on some suitable Banach

space. We also show that this solution is exponentially close to the quasi-

solution ~yyðe; xÞ and is Gevrey-1 asymptotic to ŷyðe; xÞ.

5. Analytic solutions

Theorem 5. Under the assumptions of Section 2, for each subsector
~VV ¼ Vð~aa; ~bb; e1Þ of V having su‰ciently small angular opening and with su‰ciently

small e1 > 0, there exists an analytic solution y : ~VV �Drð0Þ ! C n of equation (1)

which is Gevrey-1 asymptotic to ŷyðe; xÞ, provided that r > 0 is su‰ciently small.

The proof needs the following theorem:

Theorem 6. Given l1; . . . ; ln A Cnf0; 1g, there exist a neighborhood W of

0 and bounded linear operators Tej : HbðWeÞ ! HbðWeÞ such that yj :¼ TejðgÞ,
g A HbðWeÞ implies that yjðe; xþ eÞ ¼ lj yjðe; xÞ þ gðxÞ whenever x A We and

xþ e A We. Here We ¼ Wþ ½�e=2; e=2� and HbðWeÞ denotes the Banach space
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of the holomorphic bounded functions on We equipped with the supremum norm

kyk ¼ supe AV ;x AWe
jyðe; xÞj, with y ¼ ðyjÞnj¼1. Thus Te : H

n
b ðWeÞ ! Hn

b ðWeÞ
defined by TeðgjÞnj¼1 ¼ ðTejðgjÞÞnj¼1 is a bounded right inverse of the operator

geððyjÞ
n
j¼1Þðe; xÞ ¼ ðyjðe; xþ eÞ � lj yjðe; xÞÞnj¼1:ð12Þ

Observe that the images of ge are not necessarily defined on all of We.

The construction of this right inverse and the x-domain along with the

proof will be given in the next section.

As an application of Theorem 5 we have the following:

Theorem 7. Consider an analytic (matrix valued ) function A : V �Drðx0Þ
! MnnðCÞ, where r > 0 and V ¼ Vða; b; e0Þ. We suppose that A has a Gevrey-1

asymptotic expansion
P

nb0 LnðxÞen as V C e ! 0 uniformly for x A Drðx0Þ. We

write the matrices Aðe; xÞ in blocks

Aðe; xÞ ¼ A1ðe; xÞ A2ðe; xÞ
A3ðe; xÞ A4ðe; xÞ

� �
;

where A1, A2, A3 and A4 are, respectively, m by m, m by n�m, n�m by m and

n�m by n�m matrices. We assume, furthermore, that A2ð0; x0Þ ¼ A3ð0; x0Þ ¼
0 and that A1ð0; x0Þ and A4ð0; x0Þ are invertible and have no common eigenvalues.

Then for all subsectors ~VV ¼ Vð~aa; ~bb; e1Þ of V having su‰ciently small angular

opening and with su‰ciently small 0 < e1 < e0, there exist r1 > 0 and an analytic

matrix function P : ~VV �Dr1ðx0Þ ! Mn;nðCÞ having a Gevrey-1 asymptotic ex-

pansion as ~VV C e ! 0 and an analogous block decomposition

Pðe; xÞ ¼ I P2ðe; xÞ
P3ðe; xÞ I

� �
;

such that Pðe; xþ eÞ�1
Aðe; xÞPðe; xÞ ¼ Bðe; xÞ is block diagonal with

Bðe; xÞ ¼ B1ðe; xÞ 0

0 B4ðe; xÞ

� �
;

and B1ð0; x0Þ ¼ A1ð0; x0Þ, B4ð0; x0Þ ¼ A4ð0; x0Þ.

Proof. The proof is analogous to the well known one for singularly

perturbed di¤erential equations. We need to find a non singular matrix P such

that

Aðe; xÞPðe; xÞ ¼ Pðe; xþ eÞBðe; xÞ:

This gives:
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B1ðe; xÞ ¼ A1ðe; xÞ þ A2ðe; xÞP3ðe; xÞ;

P3ðe; xþ eÞB1ðe; xÞ ¼ A3ðe; xÞ þ A4ðe; xÞP3ðe; xÞ;

P2ðe; xþ eÞB4ðe; xÞ ¼ A2ðe; xÞ þ A1ðe; xÞP2ðe; xÞ;

B4ðe; xÞ ¼ A4ðe; xÞ þ A3ðe; xÞP2ðe; xÞ:

Thus P3ðe; xÞ has to satisfy:

P3ðe; xþ eÞ ¼ ðA3ðe; xÞ þ A4ðe; xÞP3ðe; xÞÞðA1ðe; xÞ þ A2ðe; xÞP3ðe; xÞÞ�1;ð13Þ

which implies,

P3ðe; xþ eÞ ¼ A3ðe; xÞA�1
1 ðe; xÞ þ A4ðe; xÞP3ðe; xÞA�1

1 ðe; xÞ

� A3ðe; xÞA�1
1 ðe; xÞA2ðe; xÞP3ðe; xÞA�1

1 ðe; xÞ þ OðP2
3Þ:

This equation satisfies the hypotheses of Theorem 5 because at e ¼ 0,

x ¼ x0 its linear part reduces to P3 7! A4ð0; x0ÞP3A
�1
1 ð0; x0Þ. Neither 0 nor 1

are eigenvalues of this mapping by the assumption of our theorem. So, by

Theorem 5, for subsectors ~VV of V as mentioned there, there exists an analytic

solution P3 : ~VV �Dr1ðx0Þ ! Mn�m;m of (13) having a Gevrey-1 asymptotic

expansion. Similarly, we can solve the respective equation for P2. The in-

vertibility of the matrix P with blocks I , P2, P3, I for su‰ciently small e follows

from P2ð0; x0Þ ¼ 0, P3ð0; x0Þ ¼ 0. Put B1ðe; xÞ ¼ A1ðe; xÞ þ A2ðe; xÞP3ðe; xÞ and

B4ðe; xÞ ¼ A4ðe; xÞ þ A3ðe; xÞP2ðe; xÞ. Then the four equations equivalent to

Aðe; xÞPðe; xÞ ¼ Pðe; xþ eÞBðe; xÞ are satisfied and hence P has the properties

required in our theorem. r

6. Proof of Theorem 6

6.1. Construction of the operators Tej

For simplicity, we prove the theorem only for e > 0, e A �0; e0�.
We consider a system of di¤erence equations of the form

yjðe; xþ eÞ ¼ lj yjðe; xÞ þ gjðxÞ;ð14Þ

where lj A C , lj 0 0; 1 for j ¼ 1; . . . ; n and where gjðxÞ are some analytic

functions on certain horizontally convex x-domains W to be described later.

On the Banach space HbðWeÞ of the holomorphic bounded functions on We, we

construct bounded operators Tej such that yj :¼ TejðgjÞ implies gejðyjÞ ¼ gjðxÞ,
where gej is the operator defined by

gej yjðe; xÞ ¼ yjðe; xþ eÞ � lj yjðe; xÞ:ð15Þ
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Tej is related to a right inverse of the operator De given by

De yjðe; xÞ ¼
1

e
ðyjðe; xþ eÞ � yjðe; xÞÞ:ð16Þ

To see this, we define

Zjðe; xÞ :¼ l
�x=e
j :¼ exp � log lj

e
x

� �
;ð17Þ

where the branch of log will be chosen later. Note that 1=Zjðe; xÞ is the

homogeneous solution of gej yjðe; xÞ ¼ 0. We rewrite equation (14) as

De ~yyjðe; xÞ ¼ ~ggjðe; xÞ;ð18Þ

where

~yyjðe; xÞ ¼ Zjðe; xÞyjðe; xÞ; ~ggjðe; xÞ ¼
Zjðe; xÞ
elj

gjðe; xÞ:

We know that, on suitable spaces of analytic functions, equation (18) admits an

analytic solution ~yyjðe; xÞ of the form ~yyjðe; xÞ ¼ Veð~ggjðe; xÞÞ, where Ve ¼ S � eUe

is a right inverse operator of De [7]. Then equation (14) admits an analytic

solution yjðe; xÞ given by

yjðe; xÞ ¼
~yyjðe; xÞ
Zjðe; xÞ

¼
ðS � eUeÞð~ggjðe; xÞÞ

Zjðe; xÞ
ð19Þ

¼ 1

Zjðe; xÞ
ðS � eUeÞ

Zjðe; xÞgjðe; xÞ
elj

� �
;

that is,

yjðe; xÞ :¼ Tejðgjðe; xÞÞ ¼ ðI1j þ I2j þ I3jÞgjðe; xÞ;ð20Þ

where

I1jgjðe; xÞ :¼
4

eZjðe; xÞ

ð1=8

�1=8

ð
g�x; t

Zjðe; xÞgjðe; xÞ
lj

dxdt;ð21Þ

I2jgjðe; xÞ :¼
�4

eZjðe; xÞ

ð1=8

�1=8

ð
g�x; t

Zjðe; xÞgjðe; xÞ
ljð1� eð2ip=eÞðx�xÞÞ dxdt;ð22Þ

I3jgjðe; xÞ :¼
4

eZjðe; xÞ

ð1=8

�1=8

ð
gþx; t

Zjðe; xÞgjðe; xÞ
ljð1� e�ð2ip=eÞðx�xÞÞ dxdt;ð23Þ

with
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� g�x; t is an ascending path joining x� þ et to x� e=2 (avoiding x� e and

x) such that Im x is increasing as x varies on it, and
� gþx; t is an ascending path joining x� e=2 to xþ þ et (avoiding x� e and

x) such that Im x is increasing as x varies on it, and where
� x� and xþ are points with minimal and maximal imaginary parts,

respectively, in the horizontally convex x-domain W.

6.2. Domain description

In order that all integrals Iij for all i ¼ 1; 2; 3 and j ¼ 1; . . . ; n define

bounded operators, the x-domain for which they are all bounded, must satisfy

restrictive conditions. As in [7, 6], the x-domain W is some horizontally convex

domain, c-ascending (c to be determined) and with extreme points x� and xþ of

minimal and maximal imaginary parts respectively. However, W will be here

some rhombus to be described in more details below.

In order to see what further conditions we need to impose on our choice of

W, we first discuss heuristically the boundedness of the integrals I1j , I2j and

I3j. Then once that is done, we show the boundedness of those integrals in

details.

6.2.1. Heuristic estimation of I1j, I2j and I3j

� We first consider I1j (see equation (21)). Note that

Zjðe; xÞ
Zjðe; xÞ

¼ exp
1

e
ðlog ljÞðx� xÞ

� �
:

Here the rhombus is very close to a segment. Its interior angles at the points

xG are assumed to be small. We put xþ ¼ AeiC and x� ¼ �AeiC ,

A > 0. Observing that x varies from x� þ et to x� e=2, we may assume for

the moment that argðx� xÞAargðx� x�ÞAargðxþ � x�Þ ¼ C . Here, we ob-

tain: ðx� xÞ log ljA jx� xj jlog ljj iðCþFjÞ, where Fj ¼ arg log lj . I1j becomes

bounded, as e ! 0þ, if Zjðe; xÞ=Zjðe; xÞ is. Observe that the imaginary part of

log lj and hence its argument Fj are not yet completely determined. For

the moment, we want that cosðC þFjÞ < 0 for all j, so that Reððx� xÞ log ljÞ
is negative.

� Next, we consider I2j (see equation (22)). Since

1

1� eð2ip=eÞðx�xÞ ¼ O exp
2p

e
Imðx� xÞ

� �� �
;

we have
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Zjðe; xÞ
Zjðe; xÞð1� eð2ip=eÞðx�xÞÞ ¼ O exp

1

e
Reððx� xÞðlog lj þ 2ipÞÞ

� �� �
:

Here, we obtain: ðx� xÞðlog lj þ 2ipÞÞA jx� xjðjlog ljjeiðCþFjÞ þ 2peiðCþp=2ÞÞ.
So, we want jlog ljj cosðC þFjÞ � 2p sin C < 0. Since cosðC þFjÞ < 0, then

we restrict for the moment C A �0; p½.
� Finally, we consider I3j (see equation (23)), where

Zjðe; xÞ
Zjðe; xÞð1� eð�2ip=eÞðx�xÞÞ ¼ O exp

1

e
Reððx� xÞðlog lj � 2ipÞÞ

� �� �
:

Putting ~FFj ¼ argðlog lj � 2ipÞ, then, heuristically speaking, as x varies from x to

xþ, we have x� xA jx� xjeiC . We want then cosðC þ ~FFjÞ > 0 for all j, so

that Reððx� xÞðlog lj � 2ipÞÞ is negative.

To sum up, heuristically, we need to choose C and thus the x-domain W such

that the following are satisfied:

1. C A �0; p½,
2. cosðC þFjÞ < 0 for all j, with Fj ¼ arg log lj, and

3. cosðC þ ~FFjÞ > 0 for all j, with ~FFj ¼ argðlog lj � 2ipÞ.
We choose C to be slightly bigger than p=2, say, C ¼ p=2þ d1, where d1 > 0 is

very small. We now choose log lj , for j ¼ 1; . . . ; n, such that:

1. Im log lj A ½0; 2p�,
2. Fj ¼ arg log lj A ½0; p½, (then Im log lj > 0 if Re log lj < 0),

3. if Re log lj b 0, then Im log lj < 2p (recall that lj 0 0 for all j).

Then, Imðlog lj � 2ipÞ A ½�2p; 0�, and ~FFj ¼ argðlog lj � 2ipÞ A ½�p; 0½. With

such a choice of log lj, the above conditions are satisfied if d1 is chosen also

such that:
� For Fj ¼ p� d2 with small d2 > 0, d1 � d2 < 0, or maxj Fj þ d1 < p.
� For ~FFj ¼ �d3 with small d3 > 0, d1 � d3 < 0, or maxj ~FFj þ d1 < 0.

6.2.2. Choice of W

For arbitrary A > 0, choose xþ ¼ AeiC and x� ¼ �AeiC , and let the

rhombus W (a c-ascending domain) be determined by xþ, x� and its interior

angles 2d at these points where maxj Fj þ d1 þ d < p, maxj ~FFj þ d1 þ d < 0, and

0 < d < d1.

6.3. Completion of the proof of Theorem 6

We prove Theorem 6 with W as described above and 0 < c < 1=2. We

show that all Iij are bounded for i ¼ 1; 2; 3 and j ¼ 1; . . . ; n. Without loss of

324 Abir El-Rabih



generality, we may assume that x A Wþ ½0; e�. We write x� e=2 ¼ ~xxþ m where

~xx A W and m A ½�e=2; e=2�. We consider the following three cases:

1. Im x� þ ec=8 < Im x < Im xþ � ec=8.

2. Im xa Im x� þ ec=8.

3. Im xb Im xþ � ec=8.

Case 1: We describe the paths g�x; t and gþx; t. Such a path g�x; t (respectively

gþx; t) is chosen very close to g�x (respectively gþx ) joining x� to x (respectively x to

xþ) that we used in our heuristic estimation of the integrals I1j, I2j, I3j and that

lead to the construction of the x-domain W. Indeed, we select a c-ascending

path from x� to ~xx and modify it to a c-ascending path from x� þ m to ~xxþ m ¼
x� e=2 and then complete with a horizontal segment from x� þ et to x� þ m.

Then the c-ascending path from x� þ m to x� e=2 di¤ers from that of x� to ~xx

at most by the order of e.
� Consider I1j (see equation (21)). On the segment from x� þ m to

x� e=2, we have

Zjðe; xÞ
Zjðe; xÞ

¼ O exp Re
log lj

e
ð~xx� ~xxÞ

� �� �� �

¼ O exp
1

e
j~xx� ~xxj jlog ljj cosðC þFj þ ~mmÞ

� �� �
;

where ~xx ¼ x� m, C ¼ argðxþ � x�Þ and argð~xx� ~xxÞ ¼ C þ ~mm, ~mm A ½�d; d�. Then,

Zjðe; xÞ
Zjðe; xÞ

¼ O exp � a

e
ðj~xxj � j~xxjÞ

� �� �
;ð24Þ

where

a ¼ min
j; j~mmjad

ðjlog ljj jcosðC þFj þ ~mmÞjÞ > 0:ð25Þ

Hence, the integral part of I1j from x� þ m to x� e=2 denoted by eI1jI1j satisfies

j eI1jI1jja
kgjk

e min
j

jlj j

ð ~xx

x�
exp � a

e
ðj~xxj � j~xxjÞ

� �
dðjxjÞð26Þ

a
Kkgjk

e

ðy
0

e�ða=eÞt dta
Kkgjk

a
< y;

where K is a constant. On the horizontal part from x� þ et to x� þ m,

equations (24), (25) still hold and hence the integral part of I1j which corre-

sponds to this horizontal part is also bounded.
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� Next, we consider I2j (see equation (22)). As above, we divide the

integration path of I2j into two parts:

I2j :¼ I2j-horizontal þ I2j-ascending;

where

I2j-horizontalgjðe; xÞ :¼
�4

eZjðe; xÞ

ð1=8

�1=8

ð x�þm

x�þet

Zjðe; xÞgjðe; xÞ
ljð1� eð2ip=eÞðx�xÞÞ dxdt

and

I2j-ascendinggjðe; xÞ :¼
�4

eZjðe; xÞ

ð1=8

�1=8

ð x�e=2

x�þm

Zjðe; xÞgjðe; xÞ
ljð1� eð2ip=eÞðx�xÞÞ dxdt:

i – First, we consider I2j-horizontal . We have: Im x ¼ Im x� þ et ¼ Im x�

and Imðx� xÞ ¼ Imðx� x�Þ > ec=8. Then

1

1� eð2ip=eÞðx�xÞ

����
����a epc=4

epc=4 � 1
a

1
pc
8

<
4

c
.

Since equations (24), (25) still hold in this case, I2j-horizontal is bounded.

ii – Next, we consider I2j-ascending. Since ðIm ~xx� Im ~xxÞb cj~xx� ~xxj for ~xx, ~xx

defined above, we have:

1

1� eð2ip=eÞðx�xÞ

����
���� ¼ O exp

2p

e
Imðx� xÞ

� �� �

¼ O exp
2p

e
Imð~xx� ~xxÞ

� �� �

a exp � 2pc

e
ðj~xxj � j~xxjÞ

� �
:

Here also equations (24), (25) remain valid. Then,

I2j-ascending a
kgjk

e min
j

jljj

ð ~xx

x�
exp � 2pcþ a

e

� �
ðj~xxj � j~xxjÞ

� �
dðj~xxjÞ

a
kgjk

ð2pcþ aÞ min
j

jljj
< y:

This shows that I2j is bounded.
� Similarly, we can show that I3j (see equation (23)) is also bounded

(Indeed the same estimations hold except that a has to be replaced by ~aa

depending on ~FFj instead of Fj).
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Case 2: The above estimations still hold for I3j. However those of I1j
and I2j fail and the above path g�x; t is no longer su‰cient for the estimates.

Some polygonal path must be instead considered. We choose this paths exactly

as in [7], and we can show the boundedness of I1j and I2j in the same way. We

refer the reader there for a detailed discussion.

Case 3: Here the estimations of case 1 still hold except that of I3j . Also,

some polygonal path must be considered exactly as in [7] and we refer the reader

there for a detailed discussion. This shows that Tej (see equation (20)) is

bounded for all j ¼ 1; . . . ; n on HbðWeÞ. Then Te is also bounded on Hn
b ðWeÞ

and kTegkaLkgk, with kgk ¼ maxjjgjj.

Corollary 8. Equation (14) has an analytic solution ðyjðe; xÞÞnj¼1 bounded on

Hn
b ðWeÞ given by ðyjðe; xÞÞnj¼1 ¼ ðTejðgjÞÞnj¼1.

7. Proof of Theorem 5

For simplicity, we consider e > 0. In equation (1), we write Fðe; x; yðe; xÞÞ
¼ Aðe; xÞyðe; xÞ þ f ðe; xÞ þHðe; x; yðe; xÞÞ, where Aðe; xÞ ¼ ðqF=qyÞðe; x; 0Þ,
f ðe; xÞ ¼ Fðe; x; 0Þ, and H is the remaining part of F . To solve equation (1),

we rewrite it as a fixed point equation on a certain closed subset of a Banach

space to be constructed later. This invokes the use of the right inverse Te that

we constructed earlier. Let d be some positive number < 1=ð6LÞ (recall that

L ¼ kTek). There exists a constant matrix P such that Bðe; xÞ ¼ P�1Aðe; xÞP,
and that Bð0; 0Þ ¼ bldiagðB1ð0; 0Þ; . . . ;Bnð0; 0ÞÞ, na n has block diagonal form

with Bjð0; 0Þ ¼ ljIj þNj,

Nj ¼

0 d 0 � � � 0

..

. . .
. . .

. . .
. ..

.

0

. .
.

d

0 � � � 0

0
BBBBBBB@

1
CCCCCCCA
:

By the transformation yðe; xÞ ¼ PY ðe; xÞ, equation (1) becomes:

Yðe; xþ eÞ ¼ Bðe; xÞYðe; xÞ þ P�1 f ðe; xÞ þ P�1Hðe; x;PY ðe; xÞÞ

¼ DY ðe; xÞ þ ðBðe; xÞ �DÞYðe; xÞ þ ~ff ðe; xÞ þ ~HHðe; x;Y ðe; xÞÞ;

where D ¼ diagðl1; . . . ; lnÞ. This gives a system:

gejYjðe; xÞ ¼ ½Bðe; xÞ �DY ðe; xÞ�j þ ~ffjðe; xÞ þ ~HHjðe; x;Y ðe; xÞÞ;ð27Þ
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where j ¼ 1; . . . ; n, and gejYjðe; xÞ ¼ Yjðe; xþ eÞ � ljYjðe; xÞ. Note here that ~HHj

is a function of e, x and Y ¼ ðY1; . . . ;YnÞ. We denote the right hand side of

equation (27) by Qj and our system is now

gejYjðe; xÞ ¼ Qjðe; x;Y1ðe; xÞ; . . . ;Ynðe; xÞÞ ¼: Qjðe; x;YÞ:

Earlier, we constructed a right inverse Tej of gej on the Banach space HbðWeÞ.
So, it is su‰cient to solve

Y ðe; xÞ ¼ TeQðe; x;YÞ;

where Q ¼ ðQ1; . . . ;QnÞ, Teh ¼ ðTe1h1; . . . ;TenhnÞ and kTehkaLkhk, with

khk ¼ maxj jhj j. We want to show that TeQ is a contraction on a certain closed

subset of a Banach space B. Let B be the set of all functions Yðe; xÞ (with

values in C n) analytic and bounded for x A W and e A �0; e1�, where 0 < e1 < e0 is

to be determined. Considering the maximum norm of Y and with the usual

addition and scalar multiplication, B becomes a Banach space. Next, let M be

the closed subset of B of all Yðe; xÞ satisfying kYka r (to be determined) and

such that ~HHðe; x;Yðe; xÞÞ is defined for x A W, e A �0; e1�, kYka r. Note that M

is non empty. Now, we show that TeQ has a fixed point on M if r, W are

su‰ciently small. We have

Qðe; x;WÞ �Qðe; x;VÞ ¼
ð1

0

qQ

qY
ðe; x;V þ tðW � VÞÞdt

� �
ðW � VÞ:

Recall that

Qjðe; x;YÞ ¼ ½Bðe; xÞ �D�jYðe; xÞ þ ~ffjðe; xÞ þ ~HHjðe; x;Y ðe; xÞÞ:

We can choose our domain W such that the Lipschitz constant of
~HHðe; x;Yðe; xÞÞ is not too large and max e;xkBðe; xÞ � Bð0; 0Þka d. Then, we

have:

qQ

qY
ðe; x;V þ tðW � VÞÞdt

����
����a max

e;x
kBðe; xÞ �Dk þ kðzÞ;

with z ¼ supk~yyk and some function kðzÞ that tends to 0 as z ! 0 (Indeed

kðzÞaCr for some C > 0). Choosing r < d=C, it follows then by our choice

of d < 1=ð6LÞ that

kQðe; x;WÞ �Qðe; x;VÞk <
1

2L
kW � Vk and hence kTQðW � VÞka 1

2
:

Next, as Qð0; x; 0Þ ¼ 0 for all x A W, we can also choose e1 such that for

0 < e < e1, kQðe; x; 0Þka r=ð2LÞ. This implies that TeQ : M ! M is a con-

traction with a contraction factor at most 1=2. Thus there exists Y A M
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satisfying TeQY ¼ Y , namely there exists y an analytic solution of equation (1).

It remains to show that this analytic solution y di¤ers from the quasi-solution,

constructed by taking the Borel Laplace transform of ŷy, by an exponentially

small function, and that it is asymptotic to ŷy. To see this, note that dðe; xÞ ¼
yðe; xÞ � ~yyðe; xÞ satisfies

dðe; xþ eÞ ¼ Gðe; x; dðe; xÞÞ;ð28Þ

with

Gðe; x; dðe; xÞÞ ¼ Fðe; x; ~yyðe; xÞ þ dðe; xÞÞ � Fðe; x; ~yyðe; xÞÞ � ~RRðe; xÞ;

where ~RRðe; xÞ is the exponential function in Theorem 4. Moreover, dðe; xÞ ¼ 0

is a quasi-solution of equation (28), i.e. Gðe; x; 0Þ is exponentially small. In the

same way as we did for equation (1) of y, we can show that equation (28) has

an analytic solution d. Since Gðe; x; 0Þ is also exponentially small, we can

show in addition that equation (28) has indeed an analytic solution d that is

exponentially small. In fact, it su‰ces to apply the fixed point theorem on a

Banach space as we did above for the y equation but where the supremum

norm is replaced by the weighted norm kyk ¼ supe AV ;x AWe
jyðe; xÞjea=jej.

Finally, since exponentially small functions are Gevrey-1, it follows that the

analytic solution yðe; xÞ of equation (1) is also Gevrey-1 and that its asymptotic

expansion is the formal solution ŷyðe; xÞ.
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[ 7 ] Fruchard, A. and Schäfke, R., Analytic solutions of di¤erence equations with small step

size, J. of Di¤erence Equations and Applications, 7 (2001), 651–684.
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