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Blowup Behavior of Radial Solutions to Jiger-Luckhaus System
in High Dimensional Domains

By

Takasi SENBA

(University of Miyazaki, Japan)

Abstract. In this paper, we will consider the blowup and the time-global existence
of radial solutions to a simplified system of the so called Keller-Segel model in a
domain of three or more dimensional Euclidean space. In the two dimensional case,
the blowup solutions have a delta function singularity at each blowup point (see
[13]). However, in the three dimensional case, Herrero, Medina and Velazquez [7]
show that there exist self-similar blowup solutions and that the solutions have a
singularity which is different from a delta function singularity. In this paper, we will
consider the blowup criterion and the blowup self-similar solutions in the three or
more dimensional cases.
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1. Introduction

In this paper, we consider the blowup behavior of radial solutions to the
following system
(1) u,=V-Vu—uVv) inQx(0,7),

O0=Adv—u+p in Qx(0,7).
Here, u is a nonnegative constant, and Q = {xe RV ||x| <L} (0 < L < o0,
N =1,2,3,...). In particular, we consider the following case.

A
— f0< L < oo,

0 if L= o0.

In the case where 0 < L < oo, the initial condition and the boundary
condition

ou Ov
—=—=0 2 x (0, T
(2) av av on X ( ’ )5

u(-,0) =up 1inQ
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are imposed on the solutions. Here u, is radial, smooth, nonnegative and
nontrivial in Q, and v is the outer normal unit vector. Moreover, 4 = |juol|,
and |Q| = [, 1 dx.

Here and henceforth, we use the notation |||, for the L?(£2) norms of
functions.

Keller and Segel [9] introduced a system to describe the aggregation of
cellular slime molds. We refer to the system introduced by Keller and Segel as
the Keller-Segel model. The system (1) is introduced by Jdger and Luckhaus
[8] as a simplified Keller-Segel model. We refer to the system (1) as the Jager-
Luckhaus system.

Firstly, we describe the results for the system (1) and (2) with L € (0, c0)
and u= 1/|Q)|.

In Theorems 1 and 2, we describe the criterion of the blowup of the
solutions. Concerning this aspect, the following results are shown.

In the case where N =1, the blowup cannot occur. That is to say, the
solution to (1) and (2) exists and is bounded globally in time.

In the case where N =2, the blowup can occur. Jdger and Luckhaus [8]
find blowup solutions for 4> 1. Here, we say that the solution u blows up if
lim sup,_ 7 ||lu(-,?)||., = co for some T € (0,c0). Nagai [10] introduces a system
replacing the second equation (1) with 0 = A4v — v+ u. We refer to this system
as the Nagai system. Moreover, Nagai [10] shows that the radial solutions to
the Nagai system with (2) cannot blow up if 1 < 8z, and that the radial solution
blows up if 2>8z and |, |x|?uo(x)dx « 1. Nagai [11] and the author and
Suzuki [14] show similar results for the non-radial solutions to the Nagai
system. For non-radial and blowup solutions to the Nagai system with (2), the
author and Suzuki [13] show that there are a set 4 of finite points in  and a
L'-function f satisfying

u(-,0) =Y m(@)o,+f in MQ)  as t— Ty
qe:%

Here and henceforth, T, is the maximal existence time of the classical solution
and

(q) = 8n if ge Q,
T = an if g e 00.

By using a similar argument as the one in [10, 11, 14, 13], we can show that the
solutions to (1) and (2) have the same properties as those of the solutions to the
Nagai system with (2).

Then, in the two dimensional case, the blowup solution has a delta function
singularity at each blowup point ¢ € 4.
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In the case where N > 3, Nagai [10] finds blowup solutions to the Nagai
system with (2) for each 4 > 0.

Secondly, we describe the result for the system (1) with L = co. For any
C > 0, Herrero, Medina and Velazquez [6] find radial and blowup solutions to
(1) with N =3, L =00 and u =1 satisfying

J u(x, Tpax)dx — C r— 0.
|x|<r

Moreover, they [7] find radial and blowup solutions u to (1) with N =3,
L =00 and u =0 satisfying

C
(3) u(x, Tyax) ~ W as |x| — 0
X

for a constant C > 0, and there is a function # such that

I |x]
(4) u(x, 1) = - [u< T t> .

We refer to the function # in (4) as the self-similar solution of (1).

Therefore, in the three or more dimensional cases, we can expect that
several singularities appear in blowup solutions.

In this paper, we treat Jdger-Luckhaus system in the three or more
dimensional domain. In Theorems 1 and 2, we treat the criterion of the
blowup and the time-global existence. That is different from the one in [10].
In Theorem 3, we consider the blowup solutions having a singularity similar
to the one in (3), and self-similar solutions to (1) with =0 in RY (N > 3).

Our results are the following.

In Theorems 1 and 2, we assume that u is radial and that Q is a bounded
open ball.

Theorem 1. Let Q = {xe R"||x| < L},0< L < o0, N >3 and u=1/|Q|
For some k >0 and ¢ € (0,/%], suppose that ug satisfies

LoykrN i
< L
qu up(x)dx < = for 0 <r<L,

where

o 2N 4FIN DKL () 2N +4
" N+ (N-2)kL? N )

Then, the solution u to (1) and (2) exists globally in time and satisfies



250 Takasi SENBA

< 0.

sup [u(-, )

0<t

o0

Here, wy is the area of the unite sphere in R”.

Theorem 2. Let Q = {xeR"||x|<L},0<L < o, N>3, u=./|Q| and
/> (2N +4)/N. There exist k>0 and 6 € (0,L) such that

for 0<r<o

/karN
>
J| B v

implies that Ty < oo for the solution to (1) and (2). Then, the solution u to (1)
and (2) blows up.

In Theorem 1, we observe that /* — (2N +4)/N as kL?> — 0. Then, we
can regard that (2N +4)/N in Theorem 2 is the best constant.
In the following theorem, we describe the existence of self-similar solutions

{#}j21 to (1),

We denote
1 . N-1
Vi(s) = WL ()T de and  Hi(s) = Vi (s)
for j=1,2,3,....

Theorem 3. Let Q =RY, N >3 and u=0.
There exists a radial and positive self-similar solution @, to (1) satisfying

Vi(s) >0 and H\(s) >0  for seR,

lim, .o, Vi(s) =4 and lim,_.,, H;(s) = 0.

In particular, in the case where 3 <N <9, there exist radial and
positive self-similar solutions {ii;};., to (1) satisfying lim,., Vj(s) € (0,2) and
lim,_.., Hi(s) =0 and the following.

For j =2, there exists s € R such that

Va(s) >0 and Hi(s) >0 for s <sy,

)
V(Sl) > 2 and Hz(S]) —0
Vo(s) >0 and Hy(s) <0 for s <s.

For each j =3, there exists {s;}> = R such that
—00 <8 <82 < --s<8m3 < 0,

Vi(s) >0 and H;(s) >0 for s <si and s < s < $i41,
Vi(s$2i-1) > 2 and H;(sy-1) =0,

Vi(s) >0 and Hi(s) <0 for sy_1 < s <8y and $-3 <,
Vi(s2i) € (0,2) and Hj(s2i) =0
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for i=1,2,...,j—2 and that
Vi(s2j-3) > 2 and H;(s7j-3) =0.
The self-similar solution # in Theorem 3 satisfies that
et;(e") = on{(N = 2)Vj(s) + H;(s)},

for each 7> 0

u(x, 1) = Tl—zu< 7|fc‘_ z)

is a blowup solution to (1) with 4 =0 and that u(x,T) = CJ/|x\2 with

G = lim y?a(y) = ox(N - 2) lim V(s).

y—00 §— 0

2. Proof of Theorems 1 and 2

In this section, we prove Theorems 1 and 2 by using the comparison
theorem and the following lemma.
Throughout this section, we assume that

A

Q={xeR"||x|<L}, N=3,4,5...,0<L< o and “= g

The following proposition and lemmas are shown for solutions to the

Nagai system with (2) in [10]. However, by using a similar argument as the

one in [10], we can show the following lemma for solutions to (1) and (2).
Hence, here we omit the proofs.

Proposition 1. The system (1) and (2) has the unique classical solution u in
Q x (0, Tpax).  Moreover, u is positive in Q x (0, Trpax)-

Then, the maximal existence time 7, of the classical solution is positive
or infinite.

Lemma 2.1. Let u be a solution to (1) and (2). If Tyux < o0, then u
satisfies that

im Afu(-, 1)

1= Tinax

Lemma 2.2. Let u be a solution to (1) and (2). Suppose that

(5) sup [|Vo(-, 1)l[, < 0.

0<t<Tnax
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Then it holds that

sup [[u(-, )., < oo.
0<t< T pax

By using Lemmas 2.1 and 2.2, if (5) holds, the solution exists globally in
time and is bounded.
Putting

U(r,t) = J u(x, t)dx, Virt) = J v(x, t)dx,

|x|<r |x|<r

U and V satisfy

0 1 oU 1 A ou
— N1 hihel _ =N 2
Ui=r or (er 6r>+a)NrN1 (U v’ ) or’

Lo 1 avN Ay
OZVNIE(;,NIE>_L_NV +U

(6)

Putting @ = U/(wyrV=2), @ satisfies

_ _ 2
o3, N"3g 2N 2)¢+1< ar

r r2 r_2 m){(NZ)@‘i’V@,}

— _ 2
R e e U,

r r2

){(NZ)f+rﬁ}-

Ckr?

Tre @ satisfies
¥

Proof of Theorem 1. Putting @ =

2.2
b, =———— an D, = - .
20kr i d 20k i 8/k“r :

(14 kr?) (1 + kr?) (1 + kr?)

Since we observe that

2k 8/k>r? } 2N = 3)lk 2N =2tk

@) = _{(1 +h)? (L+k2) [ (k) T4k

(e AN =k ok
wyLN 1+ kr? (1+kr2)*|’

then we have that
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(7 (1 +k?)’2(®)
= 2/k(1 4 kr?) + 84k2r* — 2(N — 3)/k(1 + kr?)
+2(N = 2)lk(1 4 kr?)? — £kr®{(N — 2)/k(1 + kr?) 4 20k}

Ar?
CONLN

= {2k — 2(N — 3)¢k + 2(N — 2)/k}

_|_

{(N = 2)0k(1 + kr?)* + 20k (1 + kr?)}

+ kr*{ =20k + 8¢k — 2(N — 3)/k + 4(N — 2)/k
—C[(N = 2)lk + 20k]} + K2r*{2(N = 2)¢k — (N — 2)/ %k}

r?

m{(zv —2)k(1 + kr?)? + 20k(1 + kr?)}

+

=1+ k™ IT+ k> 1T+ 1V
Combining (7) with
(8)  I=0, I =(k{2N+4—/N}, HI=/(k(N-2){2—/}.

and
9) V=0

implies that for 0 </ < /*

2.2
(1”‘]:2)3{[2N F4+ 2N - 2)kr?
+ kr

~ [N+ (N=2)kr*}(} =0  for 0<r<L.

(10) 2(P) >

From the assumption of this theorem, we have @(-,0) < @ in (0,L). Com-
bining this with (10), @(0,7) = @(0) = 0 and @(L, 1) = &(L,0) < ®(L), we have
that @ < @ in (0,L) x (0, Tpax) OF

N
Ulr, 1) < lkonr

< W in (O,L) X (0, Tmax)y

in the comparison theorem.
From this, (6) and wyv, = (r'"VV,),, we observe that
1 A N .
(11) |VU| = |Ur| < W L—NV +U; < C] m (O,L) X (07 Tmax),
where C) is a positive constant.
From this, Lemmas 2.1 and 2.2, we get this theorem. O
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For a positive constant 7, let ¢, be a smooth function in [0, 00) satisfying

0<p, <1, g, <0
and

_(9){0 if 145 <s< o0,
ok 1 ifo<s<l.

For a positive constant & we put ¢, .(x) = @3(|x| /€).

Lemma 2.3. Let u be a radial solution to (1) and (2). For 0 <& < L/2 and
0<n<1, it holds that

<G for 0 <t < Tay,

d
| a0y

where C, is a positive constant depending only on & and ||@,||c1 (o, o0))-
Proof. Noticing that dg, ,/dv =0 in 0Q, we observe that

d

(12) EJQ up, , dx = JQ V.Vu- qu)gow7 dx

= J ude, , dx + J uvv-Vo, , dx.
Q e

Since it holds that 0 < U </ in Q and that Vg, , =0 for [x| > (1 +n)e, we

have that
X X
ul{Vo-—||—=-Ve,, |dx
L ( MOQX ”0
2

<], P ) EI PN Py
=)o |N71 IN A Py = wyel Pyllci (o, 0))-

J uwuv-Ve,, dx
0 ,

a)le
From this and (12), we have this lemma. O
Proof of Theorem 2. For (2N +4)/N </ < ¢ and T >0, we put

(2
D(r,t) = lf—fgct()t)rz and k(t) = !

Combining (7) with
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implies that

(1 +k(0)r?) 2(@) = k' (0)r* (1 + k(0)r?) + T + k(0)r* I + k(0)*r* 1T + IV,

where I, II, III and IV are the terms I, II, Il and IV in (7) replacing k and /
with k() and 7/, respectively. Then, it follows from this and (8) that

(13) (1 +k(0)r?)? L (D) = k()r* VI + k()*r* VI,
where
k() | AINC -
(14) VI—/k(t) o T
= Zk(1)3 2/(T - t)+2N+4+;°—N(T— 0n? —/N
B wNLN
and
/ 1 _ 77 ) _ 7/ 2 .
(1s) vir = G0 ACN =2 AN =2k

k) T onLV on LV

2AT—1) 2(N-—1)4 ar? .
(N—-2) " (N—=2wyLV (T—0"+ oxIV T 2= /}'

=/(N - 2)k(t){

We take 6 > 0 such that

2, i
N CUNLN a

Noticing Z > (2N +4)/N, we obtain that ¥ <0 and VII <0 in (0,0) x (0, T)
for any sufficiently small 7> 0. Then, we have that

(16) L(@) <0 in (0,8) x (0,7)

for any sufficiently small 7 > 0.
By Lemma 2.3, we have that

(17) U((1+n)et)— U(e0) > J

. 1)g, (x)d — jg o (x),., (x)dx

td
= L@L u(x, S)%A,,?(x)dxds > —Oot.

We assume that for k¢ > 0
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2eonlkor™Y
(18) U(V7O)ZW for 0 <r <.

Putting 0 = \//// > 1, we take 5 > 0 satisfying
0/(1+n)" =¢.

Then, for any ko >0 and 0 < r < L, it holds that

2kor™ 0Zko(1 + )" r¥
U4 2kor? ™ 1 4 ko(1 4 5)°r2

Combining this with (17) and (18), for any 0 <& <d(1+#)"", we have that

- O0Zko(1 +n)NeV

(19) Ul men) 2 U 0) = Gt = 7m

— (st
g2

Since C, depends only on # and ¢, then for such #, ¢ and C,, we can take T > 0

such that

0/T2(1 +n)NeN T2(14n)VeN
(20) (1+n) L oTrs (1+n) e
14+ T72(1 4 n)€? 14+ T72(147n)%€

Putting ko = 72, we observe that
(21) D((1 +n)e, 1) = D((1 +n)e, 1) for 0 < ¢t < min(Tygy, T)
by (18) and (19).

Therefore, taking 6 >0, # >0 and ¢ > 0 such that

2 A = N o
_— —:O 1 — 7 0 <
N+wNLN , V(1 + 1) / and <s_—1+n,

and take T > 0 satisfying (20), V1 <0 at r=0 and that VII <0 at (r,7) =
(0,0).
For such 6 and T, we assume (18) with ko = 1/7%. Then, we have (16),
(21), @(0,1) =0=&(0,7) in (0,min(T ey, T')) and @(r,0) > &(r,0) in (0,0).
Combining those with the comparison theorem, it implies that
b= in (0,(1+#)e) x (0,min(T ey, T))

or

U(r,t) = oy 2d(r, ) in (0, (14 7)e) x (0,min(Tpuy, T)).

Putting #(¢) = (1 +5)e\/1 — (¢/T), it holds that
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NU(r s ND(r , N&(r 7
)l = = N<r(<;)>N’> _NO((0).9) , NO(l0).0)

Y

Ntk(t) N/{T

1+ k(Or(1)®>  T(T —1)* + (1 +n)°X(T —1)

From this, we obtain that 0 < T, < 7. Here, we finish the proof of this

theorem. |

3. Proof of Theorem 3
In this section, we treat (1) with =0 and @ = RY (N > 3).
Recall that

1
D(r,t) = o2 U(r, 1), U(r,t) = J | u(x, t)dx.
x|<r

For T > 0, let as put

y= — 7= —log(T — 1) and Y(y,1) = D(r,1).

Then, ¥ satisfies that

N -3 2(N =2
M(Y) = YIT‘%’J}‘(T‘%)%""%W

— y_&l;{(N -2)¥+y¥,}1=0 in (0,00) x (—log T, o)

with
#(0,-) = ¥,(0,-) =0 in (—log T, c0).

The self-similar solution satisfies ¥; = 0 and .#(¥) = 0. Then, we consider the
problem

N-3 vy 2(N -2)
‘Pyy+(y—2>lpy_y2qj
(22) +y_q;{(N_2)91+yle}:0 in (0, 00),

For S e R and a solution of (22), putting s =log y — S, V(s) = ¥(y) and
H(s) = V'(s), then the problem (22) is equivalent to the problem
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V'=H in R,
H' = —(N—4)H+2(N-2)V

+ %e2<S+S>H —V{(N-=2)V+H} in R,
lim, o, V(s) =0, lim,._o H(s)=0.

Let € (0,1) be positive and sufficiently small and let S < (1/2) log e+
log(N —2).

Firstly, we prove the existence and uniqueness of the solution to (23) in the
set

(24) O, ={(V,H)e C'((~%,0)*|V >0,H >0,V(0) =,

[Vllg,1 = sup e V722V (s)| < 2e,
s<0
[H ||, = sup e ™ |H(s)| < (N — 1)e}.
' s<0

Let [|[(V, H)llo = IVlloq + [1Hlloy-
For (Vy, Hy) € O, we define (V,H) as the solution to

V'=H,

_ _ o1,
H' = —(N—4)H +2(N — 2)V+§e2<é+S>HO — Vo{(N = 2)Vy + Hy}

limg,_ o, V(s) =0, lime,_, H(s)=0, V(0)=e
Then, we define (V,H) = Z5(Vo, Hy).

Lemma 3.1. For any sufficiently small ¢>0 and S < (1/2)loge+
log(N —2), Fs satisfies that FsO, = O, and has a unique fixed point (V,H) in
O, satisfying

V(s) >0, and H(s) >0  for se(—00,0].

Proof. Putting

1
F(s) =5 Hy = Vo{ (N = 2)Vo + Hy},

we have that

s

- 1
V(S) _ C3e(N—2)s + Ne(N—2)s J e—(N—Z)fF(é)dé:

— 0

1 S
- Ne_sz e*F(&)dé = C3e ™2 + VI (s) — IX(s).
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Then, it holds that e = V(0) = Cs + VIII(0) — IX(0),

1 _ N-1 2(3N — 5) _
(N=2)s 2 2s 2 (N=2)s
< — R = 77
|VIII(s)| N ( ge™ + ee )

and that

1 N -1 3N -5
X < (N=-2)s 2,2s 2 (N-2)s )
[1X (s)] e —2(N+2)86 +7N718€
Therefore, for any sufficiently small ¢ >0, we can obtain that C; < 3g/2,
[V]lo, <2¢ and that V" is positive in (—o0,0).
We have that

H(s)=V'(s) = (N —2)CelN=25

N S
+ (N —2) e(N—Z)sJ e—(N—Z)g“F(é)dé_i_ge—ZsJ ezéF(f>df.
N o N .
Taking the smaller ¢ > 0, if necessary, and using an argument similar to the
above, we have that H(s) >0 for —o0 < s <0 and that ”HH@,I < (N -1e
Therefore, if Z has a fixed point (¥, H), then we obtain that ¥(s) > 0 and
H(s) > 0 for s e (—0,0] and that (V,H) € ¢,. For any sufficiently small & > 0

and any S < (1/2) log ¢ + log(N — 2) we define
(V,H) = Fs(Vo,Hy)  for (Vo,Hy) €0,

Then, for any sufficiently small ¢ > 0 and any S < (1/2) log & + log(N —2), Fs
is a map on C,.
For (Voi, Hyi) € O, (i =1,2), putting

(Vi, H)) = Fs(Voi, Ho),

1
F,= §e2<f+S>Ho,» — Voi(Hoi + (N = 2) Vi),

1(° . 1 (°
e —(N=-2)¢ . - 2
Gi=¢ Nj_we F,(f)dé—i—NJ_Ooe F(&)de¢,

we observe that

VQ(S) - " (S) = (C372 — C3,1)€<N72)S

+ %e(m J Jw e W2E(Fy(&) — Fy(&))dé
L J B - Fi(&)de
N . ’
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Hy(s) — Hi(s) = (N —2)(C3.5 — C3.1)eN 72

LV =2) v J e WDE(Ry () - Fy(&)de

Combining those with
[1F2 = Fillg,1 < 3él[Hoz — Hotllg,y + (BN = 5)e]|[ Voz = Vaulle
implies that

V2= Villo.y < Cae(|Vor = Vaillg,, + | Hoz — Hox

(7,1);
|1Hy — Hillo,, < Cse([|Voa = Voullo.y + |1Hoz — Hoillg 1),

Here and henceforth, C; (i =4,5,6,7,8) are positive constants depending only
on N. Then, we obtain that

(Vs — Vi, Hy — Hy)|lp < Ceel|(Voa — Vor, Hoo — Ho)ll

and that Zg is a contraction map on O, for any sufficiently small ¢ > 0 and
any S < (1/2) log ¢ +1log(N —2). Then, Zs has a unique fixed point (V,H)
in O,. Thus, we finish the proof of this lemma. |

From the definition of Zg, the fixed point of Zs is the solution to (23) with
V(0) =e.

For any sufficiently small ¢ > 0 and any S < (1/2) log e+ log(N — 2), we
define the fixed point of Zg in O, as (Vs, Hs). Moreover, we define

Fs(s) = %ezms)Hs(S) = Vs(s)(Hs(s) + (N = 2)Vs(s)),

0 . 1(° ..
C3(S) =& — —J e W2 pg(&)dE + ~ J e Fg(&)dé.
Then, the following holds.

Lemma 3.2. For any sufficiently small ¢ >0, (Vs, Hs) is continuous in O,
with respect to S e (—o,(1/2) log e+ log(N — 2)).
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Proof. We consider only any sufficiently small ¢ > 0 such that Lemma 3.1
holds. Let S; < (1/2) loge+log(N —2) for i =1,2. We assume that S| < S,
without loss of generality. For i = 1,2, putting

Vi= Vs, H; = Hs,, Fi=%s,  and
1 aies,
Fy =5 S H; — Vi(H; + (N = 2)V)),

we observe that

|F(s) — Fi(s)] < %ezs(ezs2 —eNH (s) + %ez(”S2)|H2(s) — Hi(s)|
+ [Va(s) = Vi(s)|(Ha(s) + (N = 2)Va(s))
+ Vi(s)([Ha(s) — Hi(s)] + (N = 2)[Va(s) = Vi(s)])

and that

|C3(81) = G3($2)] <

0
-0

vl e - Ao
1

+_

0
vl e - Rena

Then, by using a calculation similar to the one in Lemma 3.1, we have that
|(Va = Vi, Hy — Hy)||, < Cqle®S — &*2| + Cse||(Va — Vi, Hy — HY) |-

That implies the continuity of (Vs,Hs) in O, with respect to S for any
sufficiently small ¢ > 0 and S < (1/2) log ¢ + log(N —2). Thus, we have this
lemma. |

Here and henceforth, we consider only ¢ € (0, 1) such that Lemmas 3.1 and
3.2 hold.

Let (V_o,H_) be the fixed point of #_,,. Then, (V_,H_) satisfies
the following system.

V'=H in R,
(25) H =—(N—-4)H+2(N-2)V—-V{(N-2)V+H} in R,
limg, o V(s) =0, limg, ., H(s)=0, V(0)=e.

Biler, Hilhorst and Nadzieja [1] investigate the properties of the solutions to
(25). Then, we have the following lemma.

Lemma 3.3. The system (25) has a unique solution (V_., H_).
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(1) limg.e Vogo(s) =2, limy o, H ,(s) =0.
(2) In the case where 3 < N <9, there exists a sequence {s]}/oi | satisfying

—00 <8 < Sjp1 < 0,

Vo () >0 and H_.(s) >0 for s <sy and sy <s < $341,
V_y($2j-1) > 2 and H_,(s2-1) =0,

V_oy(s) >0 and H_.(s) <0 for sy <s< 58,

V_o(s27) € (0,2) and H_o(s57) =0

for j=1,2,3,....
(3) In the case where N > 10, it holds that V(s) >0 and H(s) >0 for
seR.

Here and henceforth, we regard (Vs, Hs) as the function in (—o0,$;uy),
where s, is the maximal existence time of (Vs, Hg). Then, it holds that
Smax € (0, o0].

The following lemmas are shown by using Lemma 3.2 and the continuity of
the solution to

V'=H in (0,00),
H =—(N—-4)H+2(N-2)V

+%62(S+S)H— V{(N-2)V+H} in (0,0)

with respect to 77(0), H(0) and S.

Lemma 34. For any S < (1/2)loge+1log(N —2) and any §< Spux =
s,mx(g), there exists a positive constant 0 such that §< sp.(S) for Se
(S—0,S+0) and that (Vs,Hs) is continuous with respect to (S,s) e (S—9,
S +0) % [0,5].

Here and henceforth, s;(S) (j=1,2,3,...) and $,.x(S) denote s; and the
maximal existence time of (Vs, Hg), respectively.

Lemma 3.5. As S — —0, spuux(S) tends to infinity and (Vs, Hs) uniformly
converges to (V_,H_.,) in (—c0,§| for any constant §.

Proof of Theorem 3. For N >3, we obtain that
4y?
Y(y) ="
W =3w=+,

satisfies (22). Since there exists a self-similar solution corresponding to ¥, then
for N > 10 we get this theorem.
Therefore, we consider only the case where 3 < N < 9.
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Putting
4¢25(1)
TN —2) 1 e
262(S+S<1)) N =2
VS(I)(S) — /( ) and HS(I)(S) = Vé(1>(S)7

[+ 255/ (2N — 4)

S(1) satisfies S(1) < (1/2) log & +log(N — 2) and (Vs(1), Hg(y)) is the fixed point
of Fgqy in O,.

We shall show the existence of {S(j)};ﬁl < (—o0,(1/2) log ¢ + log(N — 2))
such that (Vs(j), Hg(;)) is the fixed point of Fg; in O,.

Step 1. For any sufficiently small S, there exist s; and s, with s <s;

such that

Vs(s) > Hg(s) >0, for s <si,
Vs(s1) > Hs(s1) = 0,

Vs(s) > Hs(s) <0 for s; <s<s2,
Vs(s2) € ( 2), Hs(s2) =0,

by Lemmas 3.3 and 3.5. Let

(26)

S ={S < S(1)|(Vs,Hs) has s; and s, satisfying (26)}.

Since any sufficiently small S is in %, the unbounded connected component of
% exists. Let the supremum of the unbounded connected component of %, be
S(2).

In order to prove S(2) ¢ ¥, we assume that S(2) € &,. Since it holds that

H)(52) = (N = 2)Vs)(s2){2 = Vs (s2)} > 0,
we observe that s, < 5,4, and that
Vs@)(s) >0 and Hg)(s) >0 for 0 <s—sy « 1.

Combining this with Lemma 3.4 implies that (Vs, Hg) satisfies (26) for 0 <
S —8(2) « 1. Tt contradicts the definition of S(2). Then, we have S(2) ¢ %,
and that the unbounded connected component of %, is (—o0,S(2)).

In order to prove S(2) < S(1), we assume that S(2) = S(1).

For any S < S(2), (Vs,Hs) has a constant s; =s;(S) and s2 = 52(S)
satisfying (26) by the definition of S(2). By using S(2) = S(1), we shall show
that

(27) s1(S) — oo as S /7 S(1).

In order to prove (27), we assume that liminfyg ~g1) 51(S) < 0.
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Since there exists {S,} = (—o0,S(1)) such that

lim S, = S(1), lim 51(S,) = 51, < 00,

n— o0 n— o0
we have that

0= ’111}310 Hg, (s1(Sn)) = Hg(1y(s14),

by Lemma 3.4. It contradicts Hg) >0 in R. Then, we get (27).

Let Vsay(o0) = limyo Vs()(s),

1 12 (4 1,5\

/1 :E(Vs(U(OO)'FZ) and /2:—(N—2) / (3—/12+3f]3> .
For S < S(1) with |S—S(1)|« 1, we can find s <s; such that Vs(s) >4
by Lemma 3.4 and Vggy(oo) =4. It holds that Vs(s1) > 7 for § < S(1) with
IS —S(1)] « 1, since Vg(s) = Hs(s) >0 for s < sy.

By doing this and (27), we can find 7, € (s1,52) satisfying
(28)
%ez<f]+s)/2 +2(N-2)<0, %e%l*s) ~(N=4)—4>0 and Vs(t)) =4
for any S < S(1) with |S —S(1)| « 1, since V¢ = Hgs <0 in (s1,s52).

From (28), we get that

1

(29) Hi < ~ S Hg +2(N —2)Vs — (N —2) V2, Vi=Hs  in [11,s].

Multiplying Hg = V¢ for the first equation of the above system and integrating
over [r1,s], we have that for s € [t,s2)

1 1
602 = v -2 () - 5136 ) - (B -3 ) |
Since Hg <0 in (s1,s52) and Vs(sz2) € (0,2) for S < S(1) with |[S—S(1)] « 1,
then we can find 7, € (71,s2) such that Vs(tp) =2. Then, (Vs, Hs) satisfies
(Hg(12))* = (Vi(12)) = /2. Combining this with (28) implies that
1
(30) Ze2<fz+S>HS(f2) +(N -2) <0.
Since Vs(s) € (0,2] for s € [12,52] and (29), we have that

(31) H(s) < ~e* TS Hg(s) + (N —2) for s € [12,52].

=
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Then, we have that H((s) <0 in [t2,52). In fact, we assume that
73 = sup{s € [12,2) | Hg(&) < 0 for &€ [ra,5)} < 2.

Since H{(2) <0, by (30) and (31), then we have that 73 > 7,. That is to say,
Hg decreases in [12,73]. This means that

1 1
Hé(‘[g,) < Zez(T3+S>H5(T3) (N 2) — (12+S>Hs(1'2) + (N - 2) <0.

.lk

It contradicts the definition of 73. Then, we have that H{(s) <0 in [12,57).
This means that Hg(sy) </ < 0. It contradicts the definition of s,. There-
fore, we get S(2) < S(1).

Step 2. In order to prove that the orbit {(Vsq)(s), Hs(2)(5))}y,  Crosses
the right half V-axis, we assume that the orbit does not cross the right half V-
axis.

Combining this with Vg, (s) = Hs(3)(s) > 0 for s« —1 implies that

(32) V) (8) = Hs)(s) >0 for 5 < Sy
or
(33) lim Vi(5) € (0,

We assume that limg g, Vso)(s) = VS( )(smax) < 2. Then, we have that
Smax = 00 and that liminfy ... Hg)(s) = It follows from (32) that

Hg(z) (5) = (N = 2)Vs2)(8)(2 — Vs2)(5)) for any sufficiently large s.

Then, it holds that H 5(2) (s) > 0 for any sufficiently large s. Combining this
with  Hgp)(s) >0 in R implies that lim,.. Hgpo)(s) >0. It contradicts
liminf, .., Hg)(s) = 0. Therefore, we have that V) (smax) € (2, 00].

By using this and the argument of Step 1 replacing V() and /1 by Vs
and min((Vs)(Smax) +2)/2,3), respectively, we get that

Hs(s2) < <0 for 0 < S—S12)«1.

It is a contradiction.
Therefore, we obtain that the orbit {(Vsw)(s), Hs@2)(s))},,, . crosses the
right half V-axis. That is to say, there exists s; = s51(S(2)) satisfying

Vsy(s1) > 2,  Hgp)(s1) =0,
Vs)(s) >0, Hgpo(s) >0 for s <si.

Step 3. It holds that
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(34) Smax = Smax(S(2)) = o0,
VS(Z) (S) >0 and HS(Z) (S) <0 for s> 5.

We shall show (34). As is mentioned in Step 1, it holds that S(2) ¢ %». Then,
(Vs(2), Hs()) does not have s3 € (51, 8max) satisfying

Vs (s) >0, Hgp)(s) <0 for 51 <5 < 9,
Vs)(s2) € (0,2), Hgp)(s2) = 0.
If it holds that for 7 e (s1,Smax)
Vs >0, Hg) <0 in (s1,7),

then it holds that 0 < Fy()(s) < Vs)(s1) for se (s;,7) and that
1
Ho () > Ee2<5+5<2>>1ﬁrs(2)(s) — (N =2)Vsay(s1)>  for s <s <.

Then, putting
T4 = SuUp{7 € (51, Smax) | Vs2)(5) > 0 and Hgp(s) <0 for sy <s <1}
and assuming 74 < Spax < 00, (Vs(2), Hg(z)) satisfies
Vs2)(z4) = 0, Hg)(14) <0.

Since  (Vs2), Hs2)) = (0,0) is the equilibrium point, then it holds that
T4 = Smax = 0. It contradicts 74 < Spar < 00. Therefore, we obtain that
Hg5)(t4) < 0. That is to say, we have that

Vs@)(s) <0, Hgp)(s) <0 for s > 14 with 0 <s— 14 < 1.

Combining this with Lemma 3.4, implies that for any S < S(2) with
S —S(Q2)] <1 (Vs,Hs) has a 74 = 14(S) < spax(S) satisfying

Vs(ta) =0, Hs(tq) <0,
Vs(s) > 0, Hg(s) <0 for 51 < s < 4.

It contradicts the definition of S(2). Then, we have that 74 = 5,5 = 00 or (34).

Step 4. We shall show
(35) lim VS(Z) (S) € (0,2)7 lim HS(2) (S) =0.

§— 00 §— 00

By (34), Vs is positive and decreasing in (s, c0). Then, there exists
lim;_.o, Vs2)(s) and the limit is nonnegative.

We assume that limy ., Vgo)(s) =2 or Vg (s) >2 for any s> s.
Combining this with
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1
H§(2)(s) = {Eez(ws(z)) — (N —4) - VS(z)(S)}HS(z)(S)

+ (N =2)(2 = V) (5)) Vs (s)

1 o .
< Zez(”s(z))H s)(s) <0 for any sufficiently large s

implies that Hg) decreases for any sufficiently large s. By this and (34), we
have that lim, .., Hgp)(s) = —oo and that
Vs,(z) () <—1 for any sufficiently large s.

This implies that V) (s) <O for any sufficiently large s. It contradicts (34).
Then, we obtain that lim, .., Vg (s) € [0,2). Combining this with (34) implies
that limsup, . Hgp)(s) = 0.

We assume that limy ., Vgp)(s) =0. Since it holds that

(36) %eﬂ”s@) > (N —3), Vs)(s) € (0,1)  for any sufficiently large s,

then for s satisfying (36) we have that
I 5
Hg)(s) < ZEZOJFS(Z))HS(Z)(S) +2(N = 2)Vs) ().

Putting 4 = ¢25?) /4, & =¢* and p(&) = V) (s), p satisfies that

4 1 (N -2)
() re(@ = (3¢ )0 = O57
Then, for any ¢ with 4/4>1/¢ and ¢>e*, it follows from pe(¢) =
e*Z“‘HS(z)(s)/2 < 0 that

P(&).

pe(@) 5 pe(e) s B 57

p(&).
Multiplying e 4</4, integrating this over [¢,Z] for ¢ < Z and using that Vy
decreases in [s;, 00), we get that for any sufficiently large &

N -2 £ . 2(N =2 =
< PO Mot ap < A2 et o2 ),

Combining this with limsupz ., pe(Z)ZE = limsup, ., Hgo)(s)/2 =0 implies
that
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2(N —2)

_e’Af/4p€,(é) < Afz

e A4y (&) for any sufficiently large ¢&.

Then, for a sufficiently large &, it holds that

p(&) > exp (@ (S éol))p(éo) for &> &
or

lim Vg)(s) = lim p(&) > exp

§— 00 {—oo

(_M

ot o

It contradicts limy_.,, Vg)(s) =0. Then, we have that

§—00
In order to prove lim, .., Hgp)(s) =0, we assume that

Mo, = lim inf HS(Z) (S) <0

§—00

or that there exits a sequence 7, with limy_.., 7, = oo satisfying
1
(39) HS(Z)(ﬂk) < E%OQ for k> 1.

From this and the second equation of (23), we have that

1
Hy)(ng) < 162(”"”(2))%@0 +2(N =2) sup Vspls)

0<s<o
< éez(”ﬁsu))cﬁw for any sufficiently large K.

We shall show that
(40) H(s) < éez<’71<+5(2)>%90 for s > .

In fact, if this is not the case, then s>#g such that H éa)(s) =
e +S@) g /8. Let 5, be the minimum of such s. Since Hgp) decreases
in [ng,n.], we have that Hgpy)(s) < #., /2 for se [ny,n.] by (39). Then, we
obtain that Hg, satisfies (40) at »,. It contradicts the definition of #,. Then,
we get (40). This implies that Vgp)(s) =0 for some s> 5g. It contradicts
(34). Then, we have that lim,_.., Hg)(s) = 0. By this and (38), we have (35).

Step 5. By Lemmas 3.3 and 3.5, for any sufficiently small S(Vs, Hs) has
s; (i=1,2,3,4) satisfying
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—00 <851 <8 <83 <854 <00,
Vs(s) >0 and Hg(s) >0 for s <s; and s < s < s3,
Vs(s:) >2 and Hg(s;)) =0 for i=1,3,
Vs(s) > Hg(s) <0 for sy <s<s and s3 <5 < 81,
Vs(si) € ( 2) and Hs(s;)) =0 for i=2,4.

(41)

Then, we define %5 and S(3) as
{S < S(2)|(Vs,Hs) has s; (i=1,2,3,4) satistying (41)}

and the supremum of the unbounded connected component of ¥, respec-
tively. By using similar arguments as those in Steps 1, 2, 3 and 4, we have
that the unbounded connected component of %3 is (—o0,S(3)), S(3) < S(2),
Smax = 00, limg_,, Vgi3)(s) € (0,2) and that limy ., Hgs)(s) =0. Moreover,
(Vs@3), Hs3)) has s; (i=1,2,3) satisfying

—00 <85 <85 <s53 <00,

Vsa)(s) >0 and Hgs)(s) >0 for s <sp and 55 <5 <53,
Vs@ay(si) > 2 and Hgsy(s)) =0 for i=1,3,

Vs@)(s) >0 and Hgg3 ()<O for s; <s<sy and s3 <,
VS(3)(S2) ( ) and HS(3)(S2) =0.

Step 6. By using arguments similar to the above, we can find {S( j)}jf;4
with S(j) < S(j—1) (j=4,5,6,...) satisfying the following properties.

For each j>4, (Vg Hg;) satisfies smm(S(j)) =00, limy ., Vy;)(s) €
(0,2) and limy ., Hg(;(s) =0 and has {s, 3 satisfying

—00 <51 <82 < -o- <83 < 00,

(H(8) >0 and Hg;(s) >0 for s <s; and sy <5 < 82141,
(j)($2i-1) > 2 and Hgj)(s2i-1) = 0,
VS(/)(S) >0 and HS ( ) <0 for 55,1 <s< sy and §2j-3 < S,
VS(,)(Sz) ( ) and HS(_/‘)(SZI‘) =0

for i=1,2,3,...7—2, and
VS(j) (S2j73) >2 and HS(j) (S2j73) =0.

Then, we can find the self-similar solutions corresponding to {(Vs(;), Hs( j))};’;l.
Since (Vs(j), Hs(j)) # (Vs(jry, Hs(jry) for j# j', we can find infinite self-similar
solutions.

Step 7. We shall show that the corresponding self-similar solution # to
(Vs(j)» Hs(j)) is positive. Recall y =r/v/T —t and s =log y — S(j). Then, it
holds that
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or

Voo
Hy(j)(s) + (N =2)Vs(j)(8) = ——it;()-
N
In order to prove the positivity of i#;, we assume that the existence of s is
satisfying
Hy(j)(ts) + (N = 2)Vs(;)(t5) = 0.
Since it holds that limy_., Vg (s) € (0,2) and that limy ., Hgg(s) =0, we
observe that

Hgj(s) + (N = 2)Vs(j(s) >0 for any sufficiently large s.

Then, we can define 74 € R as

sup{s € R| Hg(j)(s) + (N — 2)Vs(;)(s) < 0}.

Since

(42) Hyg(j(t6) + (N —2)Vs(j(16) = 0

and Hgj(s) + (N —2)Vs(;(s) > 0 for s> 76, then it holds that
(43) Hg(j)(t6) <0, Vs(j(t6) >0,

(44) Hy ;) (t6) + (N = 2) Vg (z6) = 0.

and that

(45) Hy ) (t6) = <%62(T6+S(j>) — (N - 2)) Hy(j)(%6),

by (42) and the second equation of (23). By (44), (45) and Vg ) = Hg;), we
have that

1 .
0< Hé(j)(%) + (N -2) I/S/(j)(f6) = §e2<76+s('/>)HS<j)(T6>

or Hgj(t6) = 0. It contradicts (43). Then, we have the positivity of the self-
similar solutions {#};”;.
Thus, we conclude the proof of this theorem. |
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