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Variational Properties of a Generic Model Equation
in Exterior 3D Domains
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Abstract. We study a generic model equation in an exterior domain. We assume the
case of a non-constant coefficient function. Using a variational approach we prove
existence and uniqueness theorems in anisotropically weighted Sobolev spaces. As the
main tool we derive and apply an inequality of the Friedrichs-Poincaré type.
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1. Introduction
1.1. A scalar model problem

In a three-dimensional exterior domain Q in R>, the classical Oseen prob-
lem [15] describes the velocity vector and the associated pressure by a linearized
version of the incompressible Navier-Stokes equations as a perturbation of
vy the velocity at infinity; v, is generally assumed to be constant in a fixed
direction, say the first axis, v, = |vy|e;. In the next we denote |v.| by k, and
we will write the convective term in the form kd;v. On the other hand it is
known that for various flows past a rotating obstacle, the convective term is
modified by some additional term «a - Vv, where a = a(x) is some concrete non-
constant coefficient function, e.g. w x x with a given vector w, see [6, 12]; in
view of industrial applications a(x) can also play the role of an experimentally
known standard, see [7].

This paper is devoted to the study of the following boundary problem:

(1.1) —vAu+kdu+a-Vu=f in Q,
(1.2) u=20 on 02,
(1.3) u—0 as |x| — oo,

where v and k are some positive constants, a = a(x) a given vector function,
f = f(x) a given scalar function.

The elliptic equation (1.1) can be taken as a scalar model equation for the
Oseen equations in the steady case:
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—vAv+kdw+a-Vo+Vp=f' in Q
V.o=0 in Q.

In the exterior domain £, the convective operators kd; and a-V cannot be
treated as perturbations of lower order of the Laplacian, this is well known.

A common approach to study the asymptotic properties of the solutions to
the Dirichlet problem of the classical steady Oseen flow (the case a(x) = 0) is
to use convolutions with Oseen fundamental tensor and its first and second
gradients for the velocity (or with the fundamental solution of Laplace equation
for the pressure), see e.g. [3, 10, 11, 8]. So, the situation is completely different
in the study of our model equation. But it is also crucial to understand the
anisotropic structure of the solutions near the infinity in this case using the
following weight functions

W) = n(x) = n3(x;0,8) = (14+01)*(1 +89)”,
r=r(x) = (x1+x2+x3)1/2, s=s(x)=r—x,

for x = [x1,x2,x3] € R?, £,0 >0, o,f e R. Discussing the range of the expo-
nents o and f the corresponding weighted spaces L?(Q;w) give the appropriate
framework to test the solutions to (1.1)—(1.3) also with a(x) # 0. This paper is
concerned with p = 2.

Let us mention that 75 belongs to the Muckenhoupt class 4> of weights in
R if -1<f<1land -3<a+p<3.

1.2. Basic notations and elementary properties

Let us outline our notations: The domain 2 is exterior to a body £,
Le. Q= R3\.Q¢., we assume £, to be compact with a Lipschitz boundary 0€2,.
Let 0 € Q. and denote by m > 0 the distance of 02, to the origin dist(0, 0Q,),
and by M >0 a real number such that B™ c Q, where BR = {xeR’
|x| > R}. We need to denote the special sets Qf = QNBR Qp = QN By,
where Br = {x e R>;|x| < R}, BY’ = BRNBg, QR =0QrNQ" for positive
numbers Ry < R.

Let L%(Q;w) be the set of measurable functions f(-) on @ such that

) 1/2
||f||2,.Q:w = (JQ |f‘ w dX> < 00.

We will use the notation L7 ;(Q) instead of L*(Q;n;) and |-,
instead of [/ - || 20, - Because (;7/‘}‘)71 is locally integrable, then, by Holder’s
inequality, it follows that L2 ﬂ(.Q) = L} (Q). Tt thus makes sense to talk about
weak derivatives of functions in Li 5(2). Let us define the weighted Sobolev
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space H'(Q; ’7[; ’77/; ') as the set of functions u € LDC By () with the weak deriva-
tives 6,AueLah/;1 (Q). The norm of ue H'(Q; ’7ﬁ ,'7/; ') is given by

1/2
e — 2 ap 2 o
el = (|, P x| v ax)

As usual, H' (Q; n/f ,nﬁ ') will be the closure of C;°(Q) in H'(Q; ’7/; »'I/; ). The
following proposition is proved exactly in the same way as in the non-weighted
case (see R. A. Adams [1, pp. 45-46]), when 7} € 4>.

Proposition 1.1. Let Q < R® be open set and r]ﬁ 777/3 € Ay. Then the
Sobolev spaces H'(LQ; 17/3 7’7/;) and H' (Q; ;7/3 ,ﬂﬁ) are Banach spaces, more
precisely Hilbert spaces equipped with the scalar product

(4, 0) 1 (0. 0 al):J v dx—l—J Vu-Vong' dx.

oy

For simplicity, we shall use the following abbreviations:
H'(Q) instead of H'(2;1,1)
H'(Q)  instead of  H'(2;1,1)
Lfﬂ(.Q) instead of LZ(Q;n;;)
I laap instead of - Liay
1;;’/3(9) instead of (.Q ng— 1»’7/;)
V., () instead of HI(Q;n)f M)

In fact we shall only use these last two Hilbert spaces for o >0, f >0,
a+f < 3. Concerning the weight functions 75, we will use two notations ng(x)
and ;7“‘5( ) taking the advantages of the following formulas and remarks:

0

Remark 1.2. Let us note that for 17“ and for any d;1,0,,¢;1,& > 0 one has

Cmin * 77[} ?,2 < 77/f fll < Cmax ° ']ﬁ ;2
where  ¢min = min(1, (61/6,)%) - min(1, (&1 /&2)"),
Cmax = max (1, (61 /52)%) - max(1, (& /&)P).

The parameters ¢ and ¢ are useful to re-scale separately the isotropic and
anisotropic parts of weight function ng. We also have the following elementary
inequalities for f > 0:

(1.4) 2min@FD11 4 (2 9)] < p? < 2mOFD[1 4 (e 5)]
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Remark 1.3. Obviously we have the explicit expressions:

oir = ﬂ:&, 61s:2,
ox; r r
Vr-Vr=1, Vs~Vr:§, Vs-Vs:é, Ar:As:%,
r r r
X s
(L.5) oy = {océ(l —|—8S)71—ﬂ8(1 —|—5r);};7/§‘11,
(1.6) Vg = {0d(1 + &s)Vr + e(1 +5r)Vs}77§:11,
1 +es s
1. o2 — 1,252 2
(1.7) Vgl {cx ) (1 +5r> +2aﬁ(58r
1 +0r\s _
2,2 o—1/22
+2pe <1+ss);}(”ﬁ‘l/2) ’
1 +es s
1.8 & — —1)0? =
(1.8) Ang {ot(oc 1)o (1+5r>+2aﬂ58r

+2ﬁ(ﬁ_1)82<1+5r)s

1+es r

+ 200(1 + ss)%Jr 2pe(1 +5r)i}n;;_}.

1.3. Main results

The weighted estimates of the solution to the stationary Oseen problem
were firstly obtained by Finn, see [4], and then improved by Farwig [2]. In the
case a(x) = 0, Farwig studied the model equation (1.1), the way he proposed in
[2] combines a variational approach with the application of the potential theory.

For the case of non-constant function a(-) we cannot follow the same
way because we have no expression of the fundamental solution. We are
also motivated by a Farwig’s remark ([2], Remark 2.8 p. 457) to improve his
variational result for positive o.

In solving the problem (1.1)—(1.3) by means of a pure variational approach,
we shall deal with the following equation:

k
(1.9) vJ |Vu|2wdx+vj uWu-Vwd ——J u?oyw dx
Q Q 2Jo

- lj u? div(wa)dx = J SJuw dx
2)o Q
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as we get integrating formally the product of (1.1) with wu (w is an appropriate
weight function). The left-hand side can be estimated from below by

2
(1.10) KJ \Vu|*w dxflj u? vm+k81w+div(wa) dx.
2 0 2 Q w

It is not difficult to observe the existence of sp > 0 such that —v(|Vw|*/w)—
koiw >0 for w=rnj and s> s0, (see Appendix A). Moreover, because this
term is known explicitly, we have the possibility to evaluate it from below by a
small negative quantity in the form —Cngjll without any constraint in s(-) (see
Lemma 3.1).

An improved weighted Friedrichs-Poincaré type inequality in I—OIO(l ﬂ(Q) is
necessary: it is the first main technical result of this paper. The obtained
inequality allows us to compensate by the viscous Dirichlet integral the “small”
negative contribution in the second integral of (1.10). We propose a similar
treatment to control the “small” negative contribution caused by «a-Vu in the
third integral of (1.10), under appropriate conditions on div(wa) (see Lemma
3.4). We finally prove the existence of a weak solution (1.1)—(1.3) in V; 4(R)
by the Lax-Milgram theorem.

The main results can be summarized in the following theorems (£ is an
exterior domain in R® and parameters «,f3,d,¢ are specified in Section 1.2):

Theorem 1.4. Let f > 0. There are positive constants Ry, ¢y, c1 depending
on ao,f,0,¢ (explicit expressions of these constants are given by Lemma 2.3,
essentially co = O(e2+072) and ¢, = O(e7'0™") for § and ¢ tending to zero)
such that

(1.11) ||v||§7‘171‘ﬂ71 < COJ |VU|277§ dx + ¢ Lz”o |Vv|2772C dx

Ro

for all ve I-(};ﬁ(Q)

Theorem 1.5. Let e (0,1]. Assume o€ 0, y1f), where y| is a certain
constant from the interval (0,1) (see Lemma 3.4 and Appendix B). Let
ae (CY(Q))* satisfy one of the conditions i), ii), iii) given by Theorem 3.9.
Then, for all f e L2 | ,(Q), there exists a unique weak solution ue V, 3(Q) to

o+1,5
problem (1.1)—(1.3) with
(1.12) [ull3 15+ IVull3 5 < CUFI. o1

for some positive constant C.

2. Friedrichs-Poincaré inequality

In this section we derive some inequality of the Friedrichs-Poincaré type in
weighted Sobolev spaces.
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Proposition 2.1. For arbitrary o, >0 we have

Anj(x) = 28 min(1, Bedn (x)
for all xe R®, x #0.

Proof. We introduce f* =min(f,1) in (1.8) for r >0 ie. x #0:

es
1+es

1 +es 1 +es N &
o _ 252 _ 2 z _ Z
Ang = {(oc 0 T5or o0 1 5r> +20¢ﬂ58r+2ﬁ(/)’ l)r(l +or)

1
+ 2a0%(1 +8s)(5_r+ (1-p* +/3*)2ﬁ§(1 +5r)}77§11,

for r > 0. We denote the five terms in { } by 7}, T»,...,Ts, and overwrite the
previous relation as

An;; ={[Th+ T4+ T+ [T5+ (1 — p")T5] Jrﬂ*Ts}ﬂ;;:ll.
Observing that Ts > 2fed, the proposition is trivial. O

Proposition 2.2. Let 0 >0, £ >0,0>0, ¢e>0 and x > 1. Then:

a) V(I < 2i0e(+ B) (13 (x))°

for xe R, |x| = |1/6 —1/(2¢)|/(x — 1).
Let >0, >0, and 6 and ¢ be arbitrary positive constants, such that
(B—a)(2e—0) =0. Then:

b) V(O < (a0 +26) (115 (x)
for xeR®, x #0.

Proof. 1f f =0 and o = 0 then the assertions a) and b) are valid. Let us
concentrate on the nontrivial case:
a) From (1.7) for r >0, s€[0,2r], we have

Vi) = g(s(x), () (2 06))°.

1+es s 1+0r\s
= {2 2 24 2p%° -
g(s,r) {oc& <1+5r>+ ocﬂéer—f— fe e r[

dg
g(& r)>0 for s€0,2r].

So, ¢(s,r) is increasing as a function of s and
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, 1L +0r

1 4 2er
G(r) = =g(2r,r) = «%0°
(1) = max g(s,r) = g(2r,r) = T

s€|0,2r] 1+ or

+ dafide + 4%

< 2r(a+ ﬁ)zée

for k> 1 and r>|1/0 —1/(2¢)|/(x — 1). So, inequality a) is proved.
b) To justify second inequality b), we observe that for the given values of
o,f,0,¢ and for r >0, G(r) < G(0). O

Next we derive an inequality of the Friedrichs-Poincaré type in the space
H; ﬁ(.Q). It is necessary for our aim to get expressions of constants in this
inequality. Let us recall that H} 4(2) is a completion of C°(£2) in the norm

vn—>J vnﬂ 1dx—l—J \Vol*n% dx

It follows from Proposition 2.1
Lemma 2.3. Leta>0,>0,a0+p<3, kx>1. Letd ande boe arbitrary
positive constants, such that (ff —a)(2e —3J) > 0. Then for all ue Ho}’ﬂ(Q)

2
MJ \Vu|2;7 dx

(2.13) BB e JQ uzngjll dx < BF o

(e + f)* J
+— Vu X,
Bp oF Vulnj d
where Ry > |1/6 —1/(2¢)|/(kx — 1). Moreover, if 6 = 2¢ then

(2.14) el a1 s < (};ﬂ)nwnw

Proof. Due to the density of Cj°() in FOI; 5(€2) it is sufficient to prove
the inequality for all ue C;°(£2). From Proposition 2.1 it follows that for
ve Cy(Q)

Zﬁ[)’*éej 17277;;:11 dx < J vzdn‘/? dx = —2J wWu- Vg dx
Q Q Q

)

< *53J ol gl dx + J R HE

-1

hence, we have:

1 Vg
BB JQ vyl dx < Jg |\7u|2|'7—f1 dx.
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From Proposition 2.2 with Q = Qg UQR, Ry > [1/6 — 1/(2¢)|/(xx — 1) we get:

5+ 2pe)?

S

21c(o 4 f)*
BB

In particular, if 6 = 2e it follows from this relation the inequality [[ul[ , | 4 <

ﬁﬁ*dej vzngjll dx <
Q

0

+ J |Vv|277/°)f dx.
QR

161/2((95+[)’)/([3/?*,9))|\Vu||27%/f for all x > 1. So, we get the relation (2.14). O

Remark 2.4. In the next we will use Lemma 2.3 in the form given by
Theorem 1.4 in Introduction, i.e. (1.11) with

00 + 2fe 2 2 (oo + f 2
coo=\|—F1, co=—\|—=+1-
pp*oe oe \ pp
Let us observe that if additionally J < 2¢ and 1 < x < (2¢)/0 +J/(2¢) — 1 then

cop = Cy.

Remark 2.5. The usefulness of > 0 arises not only from possibility to
justify the previous weighted Friedrichs-Poincaré type inequality, but also from
the properties of 075.

Remark 2.6. From the Hardy’s inequality, one can derive

ully, 5 5 < clVully0 4

for > 0, i.e. another Poincaré type inequality which will be of interest to prove
the coercivity in Section 3.3, for “small” div(ary).

Let us recall the Hardy’s inequality we will use (for the proof see [9], p. 33):

Proposition 2.7. Let 1 <p<oo, e#p—1. Let u=u(t) be a function
differentiable a.e. in (0,00) such that

o0
J (1) dt < oo,
0

tl_iﬁu(t)zO for e<p—1, Iginsou(t):o for e>p—1.
Then the following inequality is satisfied:
NP e R Y
JO ()77 dt < (W) L lu' ()7t dt.

For an arbitrary function ¢ € C;°(22) we will use in the proof of the next
lemma the same notation for the extension of the function by zero on R>.
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Because 0 ¢ supp ¢ (see section 1.2), ¢ =0 in some neighbourhood of point 0.
We obtain:

Lemma 2.8. For >0 and an arbitrary function ¢ € C°(Q) the following
relation is satisfied:

|
(2.15) J # g deZZHI*mJ V20 d.
e x| Q

Proof. Let us denote @(r,p,¥) = ¢(rsin y,r cos ¢ cos ,r sin ¢ cos ¥),
rel0,,), ¢el0,2n), Y e[-n/2,n/2]. Let p=2, e=2+p, f>—1. From
Hardy’s inequality it follows

© 0 2
J &P dr < 4 ZJ (d—é) 4B dr,
0 (14p)"Jo \ dr

and after integration with respect to ¢ and  we have

NI

L (e e)i-morensal

So, in Cartesian coordinates we get:

ZL ] 4 4
Lfﬁ MR (1+/3)2JQV (1+8)

Repeating the consideration for f = 0 and using elementary inequality (1.4) we
get the assertion of the lemma. O

r P dr) (1 —sin y)” cos y dlp‘| do

0

2
st dx <

C— % zsﬂ dx.
N L' /!

3. A model equation with non-constant coefficient functions
3.1. The model problem in Q2

We will study in this section the existence of a weak solution of the
problem (1.1), (1.2) in a bounded domain Q. We will need some technical
lemmas.

Let us define a function F, g(s,r;v) by the relation:

|2
|V77/)’|
o

B

—_—

(3.16) Fyp(s,rsv)ng—y = —v — koing.

The following lemma gives the evaluation of F, g(s,r;v) from below.
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Lemma 3.1. Let 0<a<pf, k>1, 0<e< (1/(2x))- (k/v)- ((f—a)/p%)
and 6,v,k > 0. Then

(3.17) F, p(s,r;v) — (l - i)kés(ﬁ —a)s > a5k<l +l:ot6>
Sor all r >0 and s€[0,2r].

Proof. Expressing the function F, s(s,r;v) explicitly we get

1 +es K 1+0r\s
F, . — 242 2 22 2,2 2
p(s,13v) Voo (1 5r> - voc[f&cr —2vf%e Toes) 7

~ kad(1 +£s)r;rs+kﬂs(1 +5r)§.

For convenient use we subtract (1 —1/x)koe(f —a)s from F,g(s,r;v). We
observe (see Appendix A) that, for the given «, f, ¢, «, for all J,v,k > 0 and for
r>0,

Fop(s,ryv) — (1 - i) koe(p — a)s = Fy (0,75v),

which immediately gives inequality (3.17). O
Let us recall the model problem on Qg:

(3.18) —vAu+kdu+a-Vu=f in Qg,

(3.19) u=20 on 0Qp = 0Q2.U JBg.

We show the existence of a weak solution ug € H '(Qg) of this problem. Fol-
lowing (1.9), (1.10) again with w = ;720, By € (0,1], using notation (3.16), let us
introduce a continuous bilinear form Q; (-,-) on H'(Qg) x H'(QR):

Oi1(u,v) = J wWu - V(vngo)dx + kJ 61u(vnﬁ00)dx
Qr Qr

+ LR (a- Vu)(vﬂgo)dx,

v

1
(3.20) 0i(v,v) > EJQ |VU|27720 dx—l——J V2 Fo g, (5,73 \/)775‘)'71 dx

2 Jan

0

1 2 gi 0
_ EL)R v= div(n, a)dx.

We need a certain smallness of the positive part of div(ngoa). We will ask for
estimate of this term from above in the following form with appropriate con-
stants  Cj,Cy, C3 > 0: div(y) a) < Cuggl | + Canf) /x> + G3 |V |*/nf, . The
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corresponding integrals to the first two terms could be estimated using (2.13)
and (2.15) respectively. The third term can be covered by the expression
Fop,(s,r; v) for « =0 we have from Lemma 3.1 that Fyg (s,7; V)ﬂ/f
C3|V77/j0| /17/;0 = Fop,(s,r;v + C;);yﬁ > 0. So, let us make the following as-
sumption on a:

f (0 (ﬁo) Yo ’720
(3.21) div(nga) < A—— — 77,; L+ (1-4) PES Ay
Vg, |2
+ v( ) ﬁ() ,
j,
for some N>1, 0<A<l, O0<vw<v, ¢ <(1/2)-(k/(vN))-(1/By),
nﬂo = ”ﬁmgo

Lemma 3.2. Let 0 < f, <1 and ae (C' (.QR))* satisfying condition (3.21).
Then, for all fele_ﬁO(QR) there exists ug € H' (QRr), the unique solution of

(3.22) O (ug,v) = J fvngo dx

Qp
Sor all ve H! (Q2Rr).

Proof. There exists a constant of coercivity C = C(R) > 0 such that
(3.23) 01(v,0) > Cllvlf?,

where || -] is here the norm in the space H '(Qr). Indeed, using condition
(3.21) we have from (3.20) (x > 1):

1\ v

324 0002 B2 =(1- 1) 5| Wl s

Afv 2.0 2V0([”0)28% -1
+§ (;JQR Vo g, dx — JQRU f”ﬂo | dx

1—A (v 20 02 Vo 77/)’0
+2<"sz Vel dX7J 23 |x? dx

1 _ Vg,
+§J 02<F0,/;0(s,r;v)17ﬂ01l—v(N— ) ﬁo )dx.

Qr }7/)'0

If 1 <x<v/v, d=¢p, 1 <k<3/2, we have from Remark 2.4:

(3.25) J vzwn_l dx < KJ Vol ?n9 dx
: O 4 Bo—1 K O Bo ’
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If 1 <x<v/v, it follows from Lemma 2.8:

> v L v 2.0
(326) JQR U m W”ﬁo dx < KJQR |VU| ;7/50 dx

Because ¢y < (1/2) - (k/(vN)) - (1/f,) there is a constant x satisfying all pre-
vious conditions and additionally ey < (1/(2x)) - (k/(vN)) - (1/B,). We get:

Vi) |°

0
(3.27) J UZ<F0,ﬂ0(S7V§V)77ﬁ_011_V(N — 1) g >dx
Qr ’7/5’0

1
= J v2Fy g, (5,73 vN)iyl}OL1 dx > <1 - —) keé[)’OJ vznﬂ_OLls dx.
.QR K QR

From the relations (3.24)—(3.27) we get

1 k
01 (v,v) > (1 ——) B |VU|27720 dx + g;ﬁo JQ vzr]ﬁoll(sos)dx}
R

K Qg

Using Lemma 2.3 and Remark 2.4 we derive:

K

I\ v 2.0 Vgﬁlééj 2, -1
>(1 V n dx+ n d
Ql(vv U) = < ) I 4 J . | D| Bo 16 . v Bo—1 x

keofy 2 1
> LzRU ng,—1(€08)dx|.

The sum of the second and the third integrals can be estimated by an integral of
v, because nyl +npt (e0s) = g (1 +eos) = mp s

1 1 2
(3.28) O (v,v) > (1 —;)2 min{l,zgé 2, kﬂoﬁo}

v

. Vv 2170 dx—i—J vyt dx)
([, werng, ax+ | o

Hence, we get (3.23) with C = (1 — 1/x) v/4 min{1, 22 /4, 2kpye0/v} (1 + &oR) ",
and the inequality (3.23) is proved. Using Lax-Milgram theorem we get that
there is ug € H'(Qg) such that (3.22) is satisfied. O

+

Remark 3.3. An arbitrary function @ € H '(Qgr) can be expressed in the
form ¢;720, where ¢ is a function from H'(Qg). Therefore we have also for ug

(3.29) O(ur, d) = JQ [ dx,

for an all @eI-OII(QR), where by the definition Q(MR,¢)EQ(HR,¢7720)E
Ql(u7¢)'
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3.2. Uniform estimates of up

Our next aim is to prove that the weak solutions ug of (3.22) are uniformly
bounded in V, 4(2) as R — +oo. To prove this, we need some additional
asymptotic property of function a: Let y=1y(p) be a nonnegative non-
increasing continuous function defined on interval [m,+oc0) with the limit
lim, ., y(p) =0, and the function « satisfies the following condition:

(3.30) div(yj(x)a(x)) < y(x))nj= (x),

o,0

for all xe Q (nj =n;;, 6>0, ¢>0).

Let y; be the unique real solution of the algebraic equation 4y3 + 8y +
5y —1=0. Itis easy to verify that y; € (0,1). We will also explain later, why
the control of «/f by y; is necessary.

Lemma 34. Let 0<f<1,0<a<yf, fel] 4(Q)andac (cH(@))?
such that conditions (3.21), (3.30) are satisfied. Then, as R — +o0, the weak
solutions ug of (3.22) given by Lemma 3.2 are uniformly bounded in V, p(£2).
There is a constant C > 0, which does not depend on R, such that

(3.31) JQ agny " dx + JQ |V51R|217,§C dx < CJQ |f|2772‘+l dx

for all R greater than some Ry > 0, tig being extension by zero of ur on Q\Qg.

Proof. First, we derive estimate of ug on a bounded subdomain
Qp, = Qr, where 0 < M < Ry < R; The choice of R will be given in the next
part of the proof. Our aim is to get an estimate with a constant not depending
on R. Let us substitute ¢ = ug into (3.22). Hence, it follows from (3.28):

G <J Vur|*np, dx+J gy, dx) < Qi (ur,ur) = J fugnp, dx,
Qr Qr Qp

with the constant C; >0 stated in (3.28). Let Ry be some fixed positive
number such that 0 < M < Ry < R. We get

(3.32) J Vgl dx—l—J wdni ! dx < czj 1/ gl b,
Qr, Ro Qr
where the constant C, = Cy(1 +¢&Ro)*(1 + 2£0R0)‘ﬂ7ﬂ"‘ depend on k,v,a,p,
Bos €0, Ro, x, but does not depend on R.
Now, we are going to derive an estimate of ugz on domain Q. Using the
test function @ = urnj = ug(l +0r)*(1 4 &s)” el-}l(.QR) in (3.29) we get after
integration by parts:
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k
2 o o
VJQR [Vug| g dx + VL;R ugVug -V dx — EJ ujzz(?mﬁ dx

Qr
1 J .
—— | diviyta)ud dx = J furn? dx.
2o, B¥ITR O B
So, taking condition (3.30) into account we get for some x > 1:

(3.33) lj Vurl 3 dx
Qr

2K
-|-1 1 —l J |VuR|277°‘ dx — J uzy(|x|)17°"1 dx
2 K Qxr B Qr R p-1

1 _ ‘
b3 | kFas ol des | Ul a
QR QR

Let Ry be a positive constant such that

1 w&ax—l(ﬁﬁ*)z'

1 1
d (R
won R <=0

334) Ry> |~ ——
(3.34) 0—‘5 2¢

We will use the notation Q1§° = QRN Qg assuming R > Ry. We are going
to estimate the left hand side in (3.33) from below. For our aim it is only
necessary to express coefficients of integrals taken over Qﬁ(’, while coefficients of
integrals over Qg, we will denote by C; >0, i=1,2,..., verifying only that
these constants do not depend on R.

Using Lemma 2.3 and relation (3.34) we have:

J = dxsj (]! dx+JRy<Ro>uin;:% dx
Qr QRO .QRO

szq(J u,%ng:}dwrj |VuR2,7[;dx>
'QRO

2y(Ro)x (o + B ZJ 2 4
+ 5o (ﬁﬂ* oo \Vur|“ng dx.

Due to the choice of Ry we have (1—1/k)v/2—7p(Ro)x/(0¢) - ((a+p)/
(BB*))* = 0. So, the second term in (3.33) can be estimated

1 1 . o
(3.35) 3 [v(l - E) JQR Vug|*nj dx — JQR ugy(|x)ni=1 dX}

> -3 (J upng| dx—i—J |VL¢R|2;72C dx).

0 Ro
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Using Lemma 3.1 (with 0<a<p, e<(1/(2x))-(k/v)-((f—«)/B*) and
Lemma 2.3 (with ¢ < 2¢), the third term in (3.33) can be estimated:

J unFy p(s,7; v)ngill dx
Qr

> —aok (14 5)2—’“ 2BV e d
> —u %) 5 55 ) Joro ug|ng dx

+ (1 - l)k&e(ﬁ - oc)J . uéiy;‘js dx — 2C4J |VuR|2772C dx.
K QR() g,
Denote Cs = (1/2)adk(1 + xadv/k)(2/(0¢)) (o + B)/(BB))*. Tt is clear that
Cs <v/(2x?) < v/(2K) if 1+ xadv/k <K (ie. d < (k/v)-((x—1)/(x-pB))) and
a< (1/2c%) - (v/k) - (BB)/(o+ B))*e.  We have from (3.33)

1 2 4 1 1 2 o—1
3 (1 — ;) LR Vur|“n dx+3 (1 K>k58(ﬂ o) L?R Ugllp—ys dx

- céj wdi) dx — c7j Vurl 3 dx < j | luwl d.
QRO QR

QRO

We overwrite the integrals computed on the domain Qg to the right hand side
estimating them by inequality (3.32). Before using the mentioned inequality
we should re-scale it with respect to new values ¢,0, see Remark 1.2. The new
constant in (3.32) after re-scaling we denote C;. So, we get from the preceding
inequality:

v .
E| g koo - ) | il < [l

Qg

where Cg = 2{1 4 C; max(Cs, C7)}(1 —x 17" We use Lemma 2.3 and Re-
mark 2.4. So, if 6 <2¢ and 1 <x < (2¢)/0+J/(2¢) — 1 we get

v (BB \P [ 5 . v J -
— < — o
2K (O(é + 2ﬁ8) JQR uerﬂfl dx = K o |VUR| r][} dx7

LJ Vanl2s dv 2 (LB 2J W2pit d
2K Jo, RIp 2 \od +2Pe) ), R

+ koe(f — oc)J u%ng:}s dx < CgJ |/ lurlng dx.

.QR QR

So we get
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JQ |VuR|217§ dx+2jg uRnjl dx+28J upnjo)s dx
'R R

Qp

zj |VuR\2n;;dx+2j w2y dxscmj gl d,
Qr Qr Qr

where  Cjg= Cs/Co and  Cy = min(v/(2x), (v/2k)((pB*de) /(a0 + 2P¢))?,
ko(p—a)/2). We have:

! 2 ol 1 2 ot
Cio JQR |f | |urlng dx < Cio (EJQ URMg dx‘f'zjgf ng o odx ).

So, if we choose = 2Cj' then we get

J Vurl*nj dx—i—J ugny~ " dx < CJ [ d,
Qr Qr

R

where C = C120 /4. Tt can be easily shown that the all conditions on «,f,0,¢&,x
used in the proof are compatible if 0 < o < y;f5, sce Appendix B. O

3.3. The model problem in 2
Let y; be the same as in Lemma 3.4.

Theorem 3.5 (Existence and uniqueness). Let 0<f <1, 0<oa< yp,
fell, ;(Q) and ae (CO(@)). Let y=y(p) be a nonnegative non-increasing
continuous function defined on interval (m,+o0) with the limit lim,_. ., y(p) =0,
and the function a satisfies in Q the following two conditions:

- W(B) g 20,
(3.36) div(ng a) < A?”ﬂrl + (1 - 14)237/}O 2
v |?
NENLL
g,

Jor some N>1, 0<A<1 O<w<v, 0<fy<l, &<(1/2)-(k/(VN))-
(1/Bo). nf =ng.,-

(3.37) div(yj(x)a(x)) < y(IxD)nj=i (x),

for ng = 77;? with some 6,e > 0. Then there exists a weak solution u e V, 3(Q)
of the problem

(3.38) —vAu+koju+a-Vu=f  in Q,
(3.39) u=0 on 0Q,
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such that

Hu”z a1, 1Vull3 ap = C||fH2 a1, f

If moreover condition (3.36) is satisfied with 0 < f, < and —a-Vr < const,
(const € R) then there is a unique weak solution of problem (3.38), (3.39).

Proof. Existence. Let R, < R, R, > M, ne N be a sequence converging
to +o0. Let ug, be the weak solution of (3.18), (3.19) on Qg,. Extending ug,
by zero on Q — Qp, to a function #, € V, s(Q) we get a bounded sequence {,}
in V, 3(Q). Thus, there is a subsequence u, of #, with a weak limit u in
V. p(R). Obviously, u is a weak solution of (3.38), (3.39) and

2 2 s ~2 a—1 ~ 2
< liminf d. » d.
[ll3, 51, + VUl 5 p < limin (Lzun,ﬁ/; erJg Vi, |“ng X)

J P d.

Uniqueness. In order to show uniqueness in V, 3(2) we will prove that
the solution is unique in Vo 43,(2) o V, p(2). Let ue V, 3(Q) — Vo p,(2) be a
weak solution of (3.38), (3.39) with f =0. Let @ = ®(z) e C;°([0,+0)) be a
non-increasing cut-off function such that @(z) =1 for z < 1/2 and @(z) =0 for
z>1. Let |®'| <3. Let @ = Pp(x) = D(r/R) = D(|x|/R) for x € 2. We
have |V®gr| < 3/R and |0;®Pr| < 3/R on QR/z. Let {R;} € R be an increasing
sequence of radii with the limit +oo. So we have that u; = u®g, € H! (2). So,
{u;} is a sequence of functions with limit « in the space V, 4(£2). Using the test
functions ¢ = u®@g nj = u;Pr (1 + 605)" e H'(Q) in (3.29) we have:

3.40 v Vu-V(udd g )dx +k ﬁlump no dx
R;'1 By Rl By
Q

+ JQ a- Vuud%zajngo dx = 0.

Using in (3.40) relations
Vu- V(u@,zzjn(ﬁ)o) = |Vu;|21720 —Vaoy, ~V<15R.u2172 +Vu- V’72 difz/_u,
uVu - 71720@12{/ =uVu; - Vﬂgo ZV@R V"ﬂo Dp;,

integrating by parts, we get after some evident rearrangements and (3.36):

k 1
(u,,.QR) ZJ 261¢R 15, dx—|—§JQ “2’7/300 . Vdj%e/- dx

VJQ \V@R,.|2u27720 dx + VJQ quéRj . Vng()@R/ dx,
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where E(v, Qr) was defined by (3.24). Let us show the estimate of the integral
(1/2) [qu*ng a-V®y dx, (the other integrals on the right hand side can be
estimated similarly but more simply by the integral jQR,/z “2’7/}01 dx):
&
1

1 r 1
2.0 2 _ 2.0 /
*J\ u n/foa . V@R/_ dx = *2J\ (Lt 7’]/);0(1) . |:2¢R,¢ <R/) ijV }":| dx

1

< ' 2,0 1\, _ : .
< 3JQ]1:/{_/2 <u n Rj)( 1) min(0,a - Vr)dx

<3c JQRJ/Z(uZ;y/}()I) max(0, —a - Vr)dx = 3¢ JQRJ/Z uzﬂ/}Ol [a-Vr]_dx,
Ry R;

where [y]_ means the negative part of a real number y, i.e. [y]_ = max(0,—y).
(In the first inequality we used @' <0, |[@|<3, &g >0 on Q,0'=0 on

.Q\.Q,I;"/z, the second inequality follows from 1/R; <c¢/(1+Jr) on Qg/’f/z for

c>0dif Ry >1/(c—9).) So, estimating E(u;, 2g) from below as in the proof
of Lemma 3.2, we get:

1\ v 5 1 1 .
(1 - E) EL) |V 7720 dx + 3 (1 - ;) kedp, JQ ufznﬁol_ls dx
<C J 2 uzn/;ol dx + J 2 uzn/}(]l [a@-Vr]_dx
QR/f_ QR;
For j— oo we get (—a-Vr < const):

v JQ |Vu|277'2(J dx + kelp, JQ uznﬂ*o!s dx <0

So, the uniqueness was proved. O

Remark 3.6. The right hand side f in (3.38) in Theorem 3.5 can be chosen
from the dual space of V,4(Q): Let f e H,!(Q) be a functional such that
Hfol,x.,ﬂ < +o0, where

10l —1,0, 5 = sup{[<f 5000 € Vi p(R), 0]l 1,5 + IV

One can get in this case the estimate ||u\|§7a,17ﬁ+ HV“”;W < C/Hf”z—l,a,[}'

2,0, = 1}

3.4. Sufficient conditions on a(-)

Conditions (3.36), (3.37) are given in the form which is appropriate for
the proof. Now, we will formulate simpler sufficient conditions ensuring these
relations. We shall denote in the next lemma z; = ;7/‘}‘11
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Lemma 3.7. Let a e C\V)(Q) satisfies at least one of the conditions A)—C):
A) There are K >0, d >0 and 0 < vy <v such that in Q

Vs —3/4—d Vo 1
a.WgKn71/4+d, dlva_24 T2
B) Thereare K >0,0<d <1/2and 1 < < [1 + (v/(kK))"*1* such that in
Vs _3/4-4 . krx—1 _
Kn 33 dlva£§ 2 no1.

a'WS N _1savar
C) There are A >0, B>0, A+ B <1 such that in Q

k By k2
|g | <Am1n<,b’0v >17 }ﬁ, diva< — 16 mln<4ﬁg7 >77%

Then condition (3.21) is satisfied.

o, &0

Proof.  A) Let in this proof ng = U Expressing explicitly terms of the
relation (3.36) we get

, w(f;)’ed
np, diva+ (a-Vs)Bocony < 4 0 =

0
Vo 77p ) 2S
+(1- A)—237,30 r—2°—|— (N — 1)ﬁ08%7772072.

It is clear that the following conditions (3.41) and (3.42) imply (3.36):

. vofoco Y 0
(3.41) a ngB(A 4 ny +(1- A)4.21/foﬁogor2’71>

2s
VN = Dfggo =1,

: vo(BE)%ed Vo
(3.42) diva < (1-B) (Afl0;7_%+(1—A)4.21_/}0r2

with 0<A4 <1, 0<B<1. Taking 4=1/2—-2d with 0 <d <1/4 we esti-
mate the right hand side in (3.41) using the inequality F'G'~' <tF + (1 — )G
for F,G>0, 0<r<1:

voPoco i Vo 0 2s
(3.43) B(A R Gl A)wﬂ1)+v(]\’—1)ﬁoﬁo7’71

1/2 1o\ 1/2-2d 25\ —1/2-2d )~ 1/4+d
= [B(N - l)vov] 215, (/3080) 7 77—1/4+d

1/2 1 L/4+d 1/2-2d
= [B(N_ l)v()v] / (21p0> (/3080) /-

1/2+2d) —3/4—d.,1

- |Vs| min(1, &, N 1ard 1
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Let us take some x > 1 and N = N(gy) = (1/2) - (k/(xvey)) - (1/B,), so the con-
dition ¢y < (1/2) - (k/(vN)) - (1/p,) is satisfied. Evidently, for ¢ — 0 we have
(N = 1)'"2(Byeo)/* > — +00. Hence for arbitrary B>0, K >0, 0 <f, <1
there is ¢ >0 and N = N(g) > 1 such that the expression (3.43) can be
estimated from below:

3/4—d,1
> KVsln_ 1§4+d 1

Hence, the sufficient condition for (3.41) is

Vs ~3/4—d,1
<Kpn_ -
|V | 1/4+d,1

We estimate now the right hand side in (3.42). Because, B >0 can be
taken sufficiently small and 4 = 1/2 — 2d, we have:

<1—B>< U8 <1—A>ﬁ>

1 V0
ST I

So, sufficient condition for (3.42) is

. Vo
divea< ——.
= 242

Analogously we can get conditions B) and C). O

In the next lemma we will present the sufficient condition ensuring con-
dition (3.30) of Lemma 3.4

Lemma 3.8. Let ae (CY(Q))* and let y, = py(p) be a nonnegative non-
increasing continuous function defined on interval [m,+o0) with the limit
lim, .., y(p) =0, and the function a satisfies the following conditions:

. _ Vs -1/2 Vr
diva < ! < v < 0
va < y(r)n_y, @Iy = vo(rn_y)5,  a-Vr= @I = Yo(r)inZy
Then condition (3.30) is satisfied.
Proof. We proceed analogously as in the proof of Lemma 3.7. O

From Theorem 3.5, Lemma 3.7 and Lemma 3.8 follows
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Theorem 3.9. Let 0<f<1,0<a<yp, fel}, 4(Q)andac (CH(@))*.
Let yy = y(p) be a nonnegative non-increasing continuous function defined on
interval [m,+o0) with the limit lim,_ . yo(p) =0. We assume one of the
Jollowing cases, (nj = ;7511 , const € R):

1) There are K >0, d >0 and 0 < vy <v such that in Q:

Vo

Vs _3/4—d
< K 24——ﬁ r_27

a-W_ N\ jard> diva <

const <a-Vr < V0(|x|)770—1'

ii) There are K>0, 0<d<1/2 and 1<x <[l + (v/(kK)"** such that
in €

Vs —3/4—d
a'WSK”—lfud? const < a-Vr < yy(rn°,
. lx—1 .
diva < 3 Kvknj, diva < yy(r)n_;

iii) There are A >0, B>0, A+ B <1 such that in Q:
Vs . k —-1/2 . By . 2 k2 1
a.W gAmm([}v,Z)n_l/z, diva < 16 min | 45 a2 -y,

. _ Vs ~1/2
diva < yo(r)n7i, a- Iz < Vo(r)’l,lfz» const < a-Vr <y,(rn’,.

Then there exists a unique weak solution u € V, 3(Q) of the problem (1.1), (1.2)

such that

2 2 2
Nullz, 1.5+ VUl p < ClUSN2 04150

Appendix A

Let us recall the definition of function F, g(s,r;v), r >0, s€[0,2r]:

L - _
F, p(s,m;v) = (v ;75 — kg ;7/?_11
B

Lemma 3.10. Let 0 <o < f. Then, (for a sufficiently small 6 > 0) there
exists so > 0 such that

(3.44) F, p(s,r;v) =0

for all r>0, s>s5 >0. Let moreover x>1, 0<e<(1/(2x))-(k/v)-
((B—a)/B*) and 3,v,k > 0. Then
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(3.45) Fyp(s,r5v) — (1 - %) koe(f — a)s > —oc&k(l + %m)

Sor all r >0 and s€|0,s).

Proof. First, let us assume o« > 0. We have:

1+es

N2 B s o ool 4dr\s
F, p(s,r;v) = —va"o (1+5r> 2vocﬂ58r 2vfe (l—i-es .

— koo(1 + es)ﬂ + kpe(1 +(5r)§,
r

where x; =r —s. So, the expression of r(1+0r)(1 + &s)F, g(s,r;v) is the poly-
nomial of R =1+ dr with coefficients being polynomials of S =1+ &s:

(14 6r)(1 + es)F, g(s,r;v) = AR* + BR + C,
where A=k(f —a)S? + (—2vp% — kB)S + 2vf’%e,
9 J 2
B= koch + | ko 1 e Voo (26 + o) | ST+ 2vafos,
C = va®5S?%.

Note that the discriminant D of polynomial A is positive for all «,f,0,¢,v,
k> 0. We can see that C > 0, B> 0 for ¢ small enough (if ka > vad(2f + o)),
and 4 >0 if S> Sy, where Sy = (1/(2k(f — 2)))[2vp% + kfi +/D]. Finally,
let us denote so = (Sp — 1)/e, then

F, p(s,r;v) =0

for all r>0, if s>sy. Let us mention that if ¢ is small enough, ie. if
0 <& <k/(2vp), we have so < (a/(e(f — )))(1 + 2vkpe/(k — 2vfe)?). Indeed,

Sy = m[(zvﬁzﬁkﬁ) +VD] = ﬁ [(%4‘%)

1 vBe 8vkea S 2vkeo
* (z - 7) T 2vﬂs)2] = B—a) [1 e ZVﬁE)Z] ’

o 1 2vkfe
0= £<SO b= e (f—a) (1 +(k—2vﬁs)2>'

Relation (3.45) follows from an estimate of the derivative of function Fj:
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Filsor) = Fuploorin) = (1= ) ou(p — s

0 1 1 1+5r 1
—_F — 0202  2vaBde— — 2vR2e2
pH 1(s,7) v 81 or vouf er 2vf°e a +es)2

1 1
— koc58+koc5;(1 + 2es) + kpe(1 +5r);

(1-2)usi—o.

EFl(s,r)zds{l k(g—l—'l—;)—voc —2vaff —2 e 1
0s ¥

+ [—2vﬂza FLk(p- oc)] }

We have ko/e>va® +2vaf, kB/0>2vp%/d, k(B —oa)/x=>2vp% if e<
k(f —a)/(2xvB?). Hence, if & < k(f — o)/(2xvp*) then

%Fl (s,7) = 0.

So, we get immediately:

1 v
= — —_ 2 2— — -
Fi(s,r) = Fi1(0,r) = —kod — va“o T or > oc&k(l +ka5>. O

Appendix B

Let us show that all conditions on o, 5,0, ¢,k used in the proof of Lemma
3.4 are compatible if 0 < <1, 0<a< y;f. Let us collect these assump-
tions: 0<d <21 <K< (2)/0+6/(2)—1,0<a<p,e<(1/(2x?))- (k/v)-
(B=0)/B), 6 < (k/v) - (c = D)/ (B), 2 < (1/(26)) - (v/K) - (BB /(2 + B) e

From o< (1/(2k*))- (v/k) - (BB"/(a+ )%, and &< (1/(262)) - (k/v)-
(B—a)/B) we get o< (1/(4%)) - (B)2(B— )/ (x+B)>. So we get (x> I,
B<1): aff<(1/(4x)(1 —a/B)/(14a/B)*. By substitution y = a/f we get
the inequality

(3.46) 43 + 8y +4y+ by —1) <.

Taking into account the condition 0 < o < f# we seek for solutions from
[0,1). It is clear that the equation 4y>+48y? +4y+x %y —1)=0 has a
unique real solution y, € (0,1) for x> 1. It is also clear that arbitrary
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v €[0, y,) solves (3.46). The value y, as a function of x is decreasing. For
x — 1 we get the inequality 4y3 4+ 8y? +5y —1 < 0. This respective equation
has a unique solution y; = (v13/(6V/6) + 53/216)'° + (1/30)(v/13/(6V/6) +
53/216)71/ . Approximately, with an error less than 10~® we have y; =
0.1582981 (y1 > 1/7). 1If 0 <o < y1f then there is x > 1 sufficiently close to
number 1, such that 0 < o < y,f8, so the relation o < (1/(4x®)) - (f*)*(f — «)/
(x4 B)* is satisfied. Then we can define ¢ = (1/(2x2))- (k/v)- (8 — a)/B%).
The relation ¢ < (1/2x)- (k/v)-(1/p) is satisfied. Then we take sufficiently
small 6 > 0 such that 0 <J <2¢ and 1 <x < (2¢)/0+J/(2¢) — 1. Hence, all
conditions which we assume in the proof of Lemma 3.4 are satisfied.
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