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1. Introduction and hypotheses

Let us consider the second order abstract differential equation
(1) u'(1) +2Bu'(1) + Au(r) = f(1),  1€(0,1),
together with the boundary conditions

{u(O) = uo,

@ u(l) = uy.

Here f is a continuous X-valued function on [0, 1], X being a complex Banach
space, ug,u; are given elements of D(A), the domain of 4, A and B are two
closed linear operators in X.

We seek for a strict solution u(.) to (1), (2), i.e. a function

ue C3([0,1; X)N C'([0,1]; D(B)) N C([0,1]; D(4)),

satisfying (1) and (2).

* The research was partially supported by Italian MIUR and by University of Bologna, funds for
selected research topics. It fits the program of GNAMPA.
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Our main goal is to give both an alternative approach with respect to
recent results due to El Haial and Labbas [4] and to improve the main result by
Favini, Labbas, Tanabe, Yagi [5]. To this end we will assume that

B?> — A4 is a linear closed densely defined operator in X and
(3) Viz=0, 3 +B*—A)"eL(X):
I(A + B> — A)71||L(X) < C/(1+4),

(it is well known that hypothesis (3) implies that — (B> —A)l/ % is the infin-
itesimal generator of an analytic semigroup {7(¢)}, t >0, in X),

) D(4) = D(B?),

(5) VyeD(B)  B(B*—A)'y= (B —A) By,

(6) A is boundedly invertible,

(7) D((B> = 4)"%) = D(B),

(8) +B — (B> - A)l/ ? generates an analytic semigroup on X.

Remark 1.

1. If X is a Hilbert space, B, B> — A are self-adjoint operators, B> — A
being positive, too, and in addition D(4) < D(B?), an easy modifi-
cation to Heinz Theorem (see [14], p. 44-46) shows that

D((B* — 4)) < D(B),

holds as well, so that (7) is satisfied.
2. In general case of operators defined in Banach spaces (7) implies that
for every p >0

VyeD(B*—A4)  ||Byll < C(p' |yl +p ' 2I(B* = A) ).
Conversely if, for some y €]0,1/2[ and every p = p, > 0, one has
¥yeD(B>—A4)  ||Byll < Clp’||yll +p" M (I(B> = A) ¥,
then
D((B*— 4)'?) = D(B),
(see [13], p. 73-74).

3. Let Ay and B be two closed linear operators in X commuting in the
resolvent sense with D(A4y) = D(B?), D(Ap) everywhere dense in X and
B?> — 4y a closed operator. If there exists some Ay < 0 such that

V>0
(Ao + 2ol = A1) < 1/2,
(B> +20) 7" < 1/4,
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then for any s >0

I((s + 20)T = (2ol + A) + B) |
= [(4o — B2 = sD)"|
<1/,
(see [3], p. 320). Therefore (3) holds for 4 = Ay + Aol.
4. Assumptions (3)~(4) yield
) B*(B* - 4)"" e L(X),
and
(10) AB* - A) ' e L(X).

5. As it is well known, the only assumptions (3), (5) do not imply (8).
However, sometimes some conditions easily verifiable, guarantee that
assumption (8) is satisfied without asking smallness of B with respect to
(B? —A)l/ 2. Here we recall the following one from Favini and
Triggiani [7], Theorem 1.1, p. 94.

Let L be a strictly positive self-adjoint operator on the Hilbert
space X and let M be another self-adjoint operator on X such that
D(L'?) = D(|M|"?) where |M| = (M?)"/?. Then —L + iM generate
analytic semigroups in X.

On the other hand, if one assumes D(L) = D(M) (= D(|M))),
then by the Corollary in Tanabe [14], p. 45, D(L'/?) < D(|M|"*) and
thus —L + iM generate analytic semigroups in X again. Assumption
(8) follows if we take B=iM and (B> —A)"? = L.

We give an example when all the assumptions (3)~(8) are satisfied.

Example 2. Take X = L*(R) with the usual inner product

fogd = L S(0)gdx,

and let 4 and B defined by

{D(A) = H*(R), Au=au" — cu,
D(B) = H'(R), Bu=bhu,

with @ > b?, b #0 and ¢ > 0. A is stricly negative self-adjoint operator and
B? — A4 coincides with

D(B* — 4) = H*(R), (B* — A)u = (b* — a)u" — cu.

Therefore B?> — A4 is a strictly positive self-adjoint operator on X. One then
knows that (B? — A)l/ % has the same property as well with
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D((B*— A)'*) = H'(R).

Now the operator H = %B, where

is self-adjoint. Then Remark 1, statement 4, applies and
—(B>—A)'* +iH =+B— (B> —4)"?

generates an analytic semigroup on X. Thus (8) holds. The assumptions
(3)~(7) are easily verified together.

We give a direct approach to problem (1)—(2), extending to the case B # 0,
the pioneering work by S. G. Krein [10], pp. 299-270. Moreover, we prove the
maximal regularity of the strict solution u, that is

u", Bu', Au e C([0,1]; X),

provided that f € C?([0,1]; X) and £(0), f(1), Aup and Au; verify conditions of
compatibility with respect to equation (1). Here C?([0,1]; X) denotes the space
of all X-valued Holder continuous functions on [0, 1] with exponent 6.

In fact, a representation formula of the solution is found taking into
account the basic properties of analytic semigroups.

The plan of the paper is as follows. Section 2 is devoted to the existence
and the uniqueness of the strict solution u for (1)—(2). In section 3 we prove
the maximal regularity of u. In section 4 we give some examples of application
to partial differential equations.

2. Existence and uniqueness of the strict solution
We shall establish the first result as follows.

Theorem 3. Under assumptions (3)~(8), if. in addition D(BA) < D(B?),
then for all fe C’([0,1];X), 0 <0< 1 and any ug,u, € D(A), problem (1)—(2)
has a unique strict solution on [0, 1].

For the proof of this Theorem, we need the following Lemmas.

Lemma 4. Under the hypotheses (3), (4) one has
1. Assumption (5) is equivalent to

{ D(B(B>— A4)) = D((B*>— A)B) and

() Vze D(B(B? — A)), B(B?— A)z=(B*— A)B:.
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2. Assumption (5) is equivalent to

Vye D(B), (B>—A)""?yeD(B) and
B(B* — A) 'y = (B> — 4)"'*By.

3. If (5) holds, then
(13) VyeD(4),  A(B*—A4)"Py=(B—4)"' 4y,
and if (5), (7) hold, then
(14) VyeD(A), B(B*—A4)"*y=(B>—4)"’By.
4. If (5), (6) hold, then
(15) VyeX, (B2—A)"Paly=a1(B>—4)""3y,
and if (5), (6), (7) hold, then
(16) VyeD((BX—A)'?), A (B —A)"*y=B*-4)Paly.

Proof.  Assume (3), (4).
1. If (5) holds, then for any z e D(B(B> — A)) = D(B) we have

(17) Bz=B(B*— A) (B> — A)z = (B> — A) 'B(B* - A):
so Bze D(B*— A) and ze D((B*> — A)B). Therefore
(B*> — A)Bz = B(B* — A):.
Conversely, assume (11) and let y € D(B). Then
(B2 — A) 'y e D(B(B? - )
and
B(B*— A)(B*— A) 'y = (B> — A)B(B>* — A)"'y
which implies
(B> — A)"'By = B(B>— A)"'y.
2. If (12) holds, then for any y e D(B) we have
B(B> — A) V(B — 4y = (B — A \PB(B? — 4)V2
= (B = A)(B - 4) By,

which implies (5).
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Conversely, assume (5). Let y e D(B), Aep(—(B>— A)) and set
2= (B> —A+)""y.
Then
(B* - A)z=y—Jjze D(B),
so that ze D(B(B*> — A4)). Now, in virtue of statement 1, we have
B(B*> — A+ \)z= (B> — A+ \l)B:z
and thus
(B2 = A+ M) "'By=B(B>— A+ ) 'y.

To conclude, let y € D(B). Then using a suitable curve y, we can write

. I . .
(B2 — 4) Wy:%J(_i) V282 _ 441"y do.
'J/

Now the integral
J B(—=A)""2(B> = A+ D)y da,
y

is convergent since

IB(=2)"2(B* = A+ A1)yl = |2I72)(B® — 4+ 21) ' By|

_ Bl
M|3/2 ’

thus (B?> — 4)""?y e D(B) and
B(B*— A4)™'?y = ZLJ B(—=2) V(B2 — A+ D)y di
Tl y

_ 12 2 o
_2m'J,,( VB = A+ D) By di

= (B> —4) "By,

from which (12) follows.
3. If (5) holds, then from (12) we get

VyeD(BY), BB —A)'y=(B"—4)"'BY,
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thus
VyeD(A),  AB>—A)'*y=(B*— 4)4y.

Suppose that (5) and (7) hold. Let ye D(A)= D(B>— A). Then
(B> — 4)"?y e D(B) and in virtue of (12) one has

B(B* — A) V2B — 4)\ 2y — (B> — 4)V2B(B® — 4)\/2),
which gives
(B>~ 4)'*By = B(B* — 4)'y.

4. Tt is enough to consider 47!y e D(A) and apply (13), (14). H

Lemma 5. Under assumptions (3), (4), (5) and (7) one has, for any z e
p(=B— (B> — A)"*) and any e p(B— (B> — 4)'/?)
(18) (zI + B+ (B> — 4)") " (B2 — 4)7!/?

= (B>~ A) P+ B+ (B2 - 4)'*)

(19) (JI — B+ (B> — A)'*)" 1 (B> — 4)”/?

— (BZ _A)fl/Z(lI_ B+ (B2 _[4)1/2)717

2.
(20) (zI + B+ (B> — 4) (B> — 4)'%y
= (B? —A)1/2(21+B+ (B2 _A)1/2)71y7
(21) (A= B+ (B> — 4)/A)7 (B2 = 4)')
= (B? —A)l/z(/lI—B—i— (B2 _A)l/z)fly7
where y e D((B* — A)l/Z).
Proof.

1. Consider £ € X and set
y=(B*— A"z +B+ (B> —4)"/*) "¢ e D(B> — 4) = D(A).

Now using (14) we have
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(B = A)' P+ B+ (B = 4)'?)y

= (zI + B+ (B> — A)"*)(B* — 4)"?y,

which implies (18). By the same way we obtain (19).
2. Is enough to apply (18), (19) to & € X such that y = (B2 — 4)"'/%¢. =

Lemma 6. Let us assume (3)~(7). Then
1.

2) {(B— (B2 = A)')(B+ (B — 4)/)a =1

2. For any ye D((B*— A)'?)
(23) (B— (B —4)'?) a7 (B+ (B - 4)'%)y
=(B—(B*=4)'*)(4'B—BA )y +y,
and
(24) (B+ (B = 4)') 47" (B~ (B> = 4)'7)y
=B+ B - A4 'B=BA Yy + .

Proof.
1. In virtue of (14), one has

(B2 —A)l/zBA*I = B(B _A)l/zAfl’
hence
(B— (B> = 4)*)(B+ (B~ 4)' )4

=B A7 — (B2~ 4)'PBA7 + B(B* - 4)' A7 — (B> — )47
= [,

and also

(B+ (B> = A)'"*)(B— (B> —4)/)a ' =1
2. Let ye D((B*—4)"%). Then
(25) (B— (B = 4)") A (B+ (B> - 4)'7)y
=BA'By— (B> — 4)'?A47'By + BA' (B> — 4)'?y

7(B27A)1/2A71(327A)1/2y.
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Now using (16), we get

(26) (B2 _A)I/ZA—I(BZ _A)l/zy — (B _A)l/z(Bz _A)I/ZA—ly
=B4"y—»,
and
(27) BA' (B> — 4)"%y = B(B* — 4)'*47y

= (B*—4)"/?Ba™'y.
Using (25), (26) and (27) we obtain
(B— (B> —4)") 4" (B+ (B - 4)'%)y
=BA'B—BA )y - (B*—A)*A'B—BA )y+y
=(B— (B = 4)) (4B~ BA )y +y.
Similarly we get
(B+ (B> = 4)) 47 (B~ (B>~ 4)'7)y
=BA'By+ (B> — 4)'?47'By — BA' (B> — 4)'?y
_ (32 —A)l/zA’l(Bz —A)l/zy
=B+ B A4 'B-B4 Yy+y. 1
Lemma 7. Under assumptions (3)~(7), B+ (B> — A) 2 has a bounded

inverse if and only if B — (B? —A)l/2 has a bounded inverse and then

(28) (B— (32 _A)1/2)—1 _ (B+ (BZ _A)l/z)A_17
(B+ (BZ _A)I/Z)—l _ (B— (B2 _A)I/Z)A,I'

Proof. Assume that B+ (B> —A)l/ ? is boundedly invertible. To prove
that B — (B> — A)l/ ? is boundedly invertible it is enough, in virtue of (22), to
show that this operator is one-to-one.

So let x e D((B%— A)"?) such that

(B— (B> —4)"*)x=0.
Due to (20), we can write
(BZ —A)71(32 _A)I/Z(B+ (BZ _A)I/Z)fl(BZ _A)l/zx
_ (B2 _A)fl(BZ _A)I/Z(BZ _ A)I/Z(B+ (BZ _ A)I/Z)flx

= (B+ (B —4)"*)x,
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which implies that (B + (B*— 4)"*)"'x e D(4) and thus
0=(B—(B>—A)")(B+ (B> —A)'"") A" A(B+ (B> — 4)"*)'x

=AB+ (B> - A" 'x.
Since A4 is one to one, x =0, as desired. H

Lemma 8. Under assumptions (3)~(7), the following assertions are
equivalent.
1. B+ (B*— Al)l/2 is boundedly invertible,
B— (B> — A)l/2 is boundedly invertible,
Vye D((B*— 4)"?) (B> — 4)"/*(4"'B—BA~")y =0,
Vye D(B) (A7'B—BA™ ")y =0,
D(BA) = D(BY).

wbkw D

Proof. From (22), B+ (B? —A)l/ > will be boundedly invertible if and
only if for any ye D((B*— A)'?)

(B— (B>~ A4)'") A (B+ (B~ 4)'*)y = y.

Therefore, due to (23), B+ (B* — 4)"/? is boundedly invertible if and only if for
any ye D((B>—4)'"?)

(29) (B—(B*—A)Y*)(A4'B—BA Yy =0.
Similarly B — (B> —A)l/ 2 s boundedly invertible if and only if for any ye
D((B> ~ 4)')
(30) (B+ (B> —4)/*)(4'B— B4 ")y =0.
On the other hand by Lemma 7, assertions 1 and 2 are equivalent and, in virtue
of (29) and (30), imply
(31) (B> — 4)"*(47'B— B4 ")y =0,
for any ye D((B* - A)l/z), i.e. assertion 3.
Now assume assertion 3 and let y € D(B). Then, from (12)
(B> —4) 'y e D(B),
and
(B> — A)'*(4'B— BA ") (B> — 4)'*y =0,

thus

(B2 _ A)1/2A71B<BZ _ A)*l/zy _ (BZ _ A)1/23A71(32 _ A)—I/Zy _ 07
so, by (12) and (15), we get

(B> — A)'*(B*— 4) 4 'By — (B> — 4) *(B>— 4)'*BA 'y =0

)
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and
(A7'B— B4y =0.

We then obtain assertion 4.

Now assume assertion 4. Then in virtue of (7), (29) holds. Hence
B+ (B? —A)l/ * is boundedly invertible, that is assertion 1.

To conclude it is enough to prove that assertions 4 and 5 are equivalent.
To this end assume assertion 4, then for y € D(BA) we write

By = A"'BAy e D(A),

so Bye D(A) = D(B?) and y e D(B*). This gives assertion 5. Conversely if
assertion 5 holds then, from (5), we deduce

Vy e D(B(B* — A)), (B> — A)By = B(B> — A)y,
which implies
Vy e D(B*) N D(BA), B’y — ABy = B’y — BAy,
thus
Vy e D(BA), ABy = BAy,

from which assertion 4 follows. W

Proof of Theorem 3. Let us assume (3)~(8), and D(BA) = D(B?), let
feC?[0,1]; X), where 0 €]0,1[, and ug,u; € D(4). Our first step consists in
finding a particular solution #(.) to (1). We introduce i(.) by

(32) a(f) = —%J; V(- 5) (B2 — A)"f(s)ds

1 1
5| -0 -0 e
t
for 0 << 1, where V() and U(z) denote the analytic semigroups generated
by —B— (B> — A4)"/? and B — (B> — A)'*, respectively.

Then a(.) is strongly differentiable on [0, 1] and due to Lemma 5, we have

i (1) = _Jt V(t—s)(B+ (B> — 4)"*) (B> — 4)"'*f (s)ds

:l(B+(Bz—A)1/2)(32 A)l/zjtV(t 5) f(s)ds
2 0
+%(Bf(32fA)1/2)(32 A)’l/zj U(s — 1) f(s)ds
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Observe that

1 1
(B — 4)"(0) = ——j U(s)/ (s)ds

1 1!
= -3 J U(s)(f(s)—f(O))ds—EJ U(s)f(0)ds.

0

We recall that there exists C > 0 such that for any s €10, 1]

1B~ (B~ ) U)y = <,
therefore, since f e C?([0,1]; X), one has
(B — 4)a(0)
- %( AR5 - (8- )
1
<[ B @ - )" ) - r0)as
(B )8 (B~ )" (U(1) - U(0))£0),
it follows that
(33) 1(0) € D(B*> — A) = D(A).

By the same way we obtain
(34) u(l) e D(A).

Since f is Holder-continuous, we also deduce that a(.) is twice continuously
differentiable and

i"(t) = %(B+ (B> —4)'*)(B2— 4)"*(B+ (B> - 4)') J; V(t—s)f(s)ds
F3(B (B~ ) )8~ 4) 1 ()
(B (B ) )8~ 4) (B (B~ 4)'7) j Us = 0)f (s)ds

(B (B = ) P) (B — )V (1)
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90 - F0)ds

(B+ (5~ ) (B - )2 |
0

(B+ (B> = 4)'*)(B> = 4) 21 = V(1) /(1)

(B+ (B> = 4)'*)(B> = 4)" 1 (1)

_|_

1A
(B (8 - )8~ 4y | S 0(/6) - S(0)ds

; O0S

(B— (B>~ A)"*) (B> - ) AUl - 1) - D1 (1)

(B— (B>~ A4)"*)(B> - 4)"'1(1)

N = = = = = = N

=6 £0)ds

(B+ (B> —4)'/*)(B* - A)’I/ZJ
0

1A
s = 006) £ (a))ds

(B (5~ ) )8 - ) |

1

(B+ (B> = 4)*)(B> = A) V(o) f (1)

_|_
= = N

(B— (B> —4)*)(B> — ) U1 - ) (2).

Moreover in virtue of Lemma 5, a(7) € D(A4), Au(.) € C([0,1]; X) and

t 1
Ai(f) = %A(BZ —A)7? (L V(t—s)f(s)ds + J, U(s —1) f(s)ds)

=S4 ) B (8- ) 900 - o)
A~ A EB 1 (B~ ) - V() (1)
A = A) V(B (B~ )" jli—f@ —0)(f(s) = S (0))ds
S AB = ) VB (B~ ) U - ) - Df ()

= A8 =) P+ (8- ) [ () - rons

o 0§
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A B 8- ) [ ) - s
A = A B (B~ ) (1)
b3 AB = A) VB (B — )" (1)
A~ A) PB4 (B - )P V(1)
- %A(BZ —A)VB- B - U1 -01).
Now
SAB = A8 (B~ ) ) (B (82— ) )
= JAB Ay (B (B )P a7 (B (B~ 4)'P)a7)
:A(B2 A)fl/Z(BZ_A)l/ZA—l
=1,
and thus

A1) = (1) + 5 AGB — A) V(B4 (B — )" V(0 10

S AB = A B (B ) ) U - 01 ()

tov

S AB =) PB4 (B - ) | -9 - S0

0

Lou

S AB = )P B - (8 - ) [ - () - fo)s

1

(notice that A(B>— 4)"'?(B + (B> — 4)"*)"' e L(X)).
Since f is Holder-continuous and from (8), it is well known that

Jt V(t—s)f(s)dse D(B+ (B> — A)'*) = D((B* — 4)'/?)
0

Jl U(s— 1) f(s)ds e D(—B+ (B> — 4)"*) = D((B* - A)'%),

then @'(¢) e D(B) and
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Bil'(1) = —%B(Bz — )PV () f(n) + %3(32 — ) PU=10)f(1)

+%B(B+ (B2 — 4)/%)~!

<[ = B+ (8~ )Y B— ) ) S0
0

+ %B(B — (B —a)'/H)!

8 J U (B (B — )Y B~ A) () — £
, 0s '

Therefore

%((,-) + (if) + (iid) + (iv)),

a"(t) + 2Bi' (1) + Au(t) = f(1) +
(i) = {-B(B>—A) "+ 1+ A(B*— 4" (B+ (B>~ 4)'*) "} v (0 /()
(i) = {B(B* = A) ' + 1 - A(B*— 4)'?(B— (B> - 4)'*) Y u(1 - 0)f (1),

(iii) = —{~B(B* = A) P + I+ A(B* — 4)""*(B+ (B> — 4)'/))7"}

| -6 - 10

0

(iv) = {BB*— A+ 1-A4B>*— 4)V*(B- (B2—4)"/)™}

1
<[ S = 006 - Sy

t

On the other hand
A(B? —A)71/2(3+ (B _A)1/2)71
— —(32 —A)I/Z(B+ (32 _A)l/z)—1
+B(B2 —A)fl/zB(B—k (B2 _ A)l/z)fl
= (B> - 4)'*(B+ (B> - 4)'/»)!
JrB(Bz 7A)71/2 — BB+ (32 7A)1/2)71

= B(B*— A" -1
Hence (i) = (iii) = 0.
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Analogously it is readily seen that (i) = (iv) =0. We have proved that
u(¢) is the unique strict solution of (1) satifying the boundary conditions

I N 2 -1/2

(0) = =5 | VOB — 4 r ),
N 2 -1/2
a(l) = _EL V(1 = 5)(B2 — A)"f(5)ds.

To conclude our proof, let us now consider the homogeneous problem
(35) 0" (1) + 2Bv' (1) + Av(r) = 0, tel0,1],

with non-homogeneous boundary conditions

(36) v(0) = xo, o(l) = xp,

where xg,x; € D(4). We have the lemma as follows.

Lemma 9. Assume (3)~(8) and D(BA) = D(B?). If xo,x1 € D(A), then
problem (35)—(36) has a unique strict solution.

Proof. 1t suffices to show that under the indicated assumptions, problem
(35)—(36) has one strict solution. To accomplish this, we in fact furnish an
explicit solution to it, precisely

(37) v(t) = V()& + U1 — 1)éy,
where
7 — e—z(BZ—A)l/2

&y =U-2)" (xo— U(1)xy)
& = -2)"(x1 = V(1)xo).

Notice that since the imaginary axis is contained in the resolvent set
(B> =)',
I — Z has a bounded inverse (see Lunardi [11], p. 60)

1 e2;
I-2)'=— | =+ B - d+1
G- =g | o Ay e,
where y4 =y, — 7, is a suitable curve in the complex plane (see Lunardi [11],
p. 59). On the other hand, since x¢,x; € D(A4) and in virtue of assumption (4),
there exists #7 € X such that
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(1 + (B> = 4)'%) " (xo = U(1)x1)
= (zd + (B>~ A)') (B - )y
= (B = A)'(zl + (B>~ 4)"*) 'y e D(4),
therefore & = (I — Z) ' (xo — U(1)x;) € D(A). Similarly &, € D(4).
From (20) of Lemma 5 it follows that for z e p(—B — (B> —A)l/z) and
y e D((B*— 4)'?) that
(38) (zI + B+ (B> — 4)"*)'By
— (zI + B+ (B*—4)'))™!
x ((z + B+ (B> — 4)'/?)y — zy — (B> — 4)'/%y)
—y—z(zI+ B+ (B> — A7y
— (B> = A)' Pzl + B+ (B>~ 4)'*) 7y
= ((zI + B+ (B> = A)"*) —z1 — (B> — 4)'/?)
x (zI + B+ (B> — 4)"/*)™ "y
— B(zI + B+ (B> — A)"*)7 'y,
Analogously
(39) (A =B+ (B> = A" 'By =B — B+ (B> = A)"»)7!y

for 2ep(B— (B*—A4)"?) and ye D((B*— 4)"?). Hence, again using the
second part of Lemma 5 one gets

(zZI+B+ (B>~ A)"*) ' (A-B+ (B> - 4)'P)y
= (= B+ (B = A)") (I + B+ (B2 — A)H)y,
which yields
(40) (A= B+ (B — )2zl + B+ (B — 4)'/2)!
= (A +B+ (B~ (- B+ (B - 4))".
It follows from (40) that U(¢) and V(¢f) commute, and

L W) = 208~ 0)2r () = 28~ ) UV (),
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which implies

in particular

Since
v -2z =u-2z"u,
on D(A) = D(B*>— A) (see Lemma 5), we have
v(0) =& + U(1)¢,
=(I—2) " (xo— Ul)xy) + U)I = 2Z) " (x1 = V(1)xo)
=(I-2)  xo—U)x))+ I —2)"'U)(x; — V(1)x0)
= Xo.

Analogousely
U(l) = X1.

We also have that v(.) is strongly differentiable for 7€ [0,1] and
v'(0) = =V ((B+ (B>~ 4)")& ~ UL = (B~ (B>~ 4)' ).,
Recall that since &y, &; € D(A), then
(B+ (B> — A)'*)(B— (B> — A)'/%)é = a8, ie{0,1}.
By virtue of (38) and (39) one has for y e D((B? —A)l/z)
BV (t)y = V(t)By, BU(1—-1t)y=U(1—1)By.
Therefore
(41) 2Bv'(1) = —V(1)2B(B — (B* — 4)'*) 7' 4¢&,

—U(1 = 1)2B(B+ (B* — 4)'?)7'4¢&;;
moreover, Lemma 5 guarantees that v is two times differentiable and
(42) 0" (1) = V(1)(2B* — 4+ 2B(B* — 4)'?)¢,

+ U(1—1)(2B* — A — 2B(B*> — 4)'%)¢&,.

Commutativity of the involved operators yields that for 7€ [0, 1], v(¢) € D(A)
and
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(43) Av(t) = V(1) A&y + U(1 — 1) A,
Summing (41), (42) and (43) we get by Lemmas 7 and 8
0" (1) + 2Bv' (1) + Av(r)
= V()[2B(B+ (B> — 4)'*) = 2B(B— (B* — 4)'*)7' 4)¢,
+ U =0)[2B(B— (B> — A)'*) —2B(B+ (B> — A)"*) 7' 4¢,
=0,
for any re€(0,1]. W
To conclude the proof of Theorem 3, note that due to (33), (34)
ug — u(0) € D(A), u; — (1) e D(A).
Now, let # the strict solution of problem (35)-(36) with
xo = ug — u(0), x1 =u —u(l),
then it is a simple matter to recognize that
u(.) =a(.) +a(.),

is the unique solution to problem (1)—(2).

3. Maximal regularity of the strict solution
In this section we will prove the following maximal regularity theorem.

Theorem 10. Under assumptions (3)~(8), if, in addition D(BA) < D(B?),
then for all fe C%([0,1];X), 0<0 <1 and any ug,u; € D(A) satisfying

Sf(i), Auj € D_ g2 4y(0/2,0) = (D(A),X)lf(,/zm, i=0,1,

the unique strict solution u to problem (1)-(2) has the maximal regularity
property:  u", Bu', Aue C?([0, 1]; X).

Here, D_(p_4)(0/2,00) is the well known real interpolation space
(D(B* = 4),X)_gp2, o
characterized by

D—(BZ—A)(H/z; +OO)

= {go € X :sup r'||(B* — A)(rl + B> — 4) '¢||y < oo}.

>0
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Proof. We recall that
u(t) =V ()& + U(l — )&

- ay [ V- |

t

1

U(s— l)f(s)ds)
where

Go=UI~2)" (o — U)uy)

—_—

b -2y (B - Ay (j U(s)f (s)ds — U(1) j V(- S)f(S)dS)»

&= -2)" (w — V(1)up)

1

NI =

P -z (B = ) (Ll V(1= 5)f(s)ds — V(1) J

0

U(s)f(s)ds).
(See section 2).
One writes

A= (B+(B2_A)1/2)(B_(B2_A)1/2)

=(B— (B> - 4)"*)(B+ (B> - )",
and
Au(t) = (V() A + U(1 — 1)A4&)
1

s (—ga -2 (] vie- s+ |

t

Uls =01 ()ds) )

=(I)+ ).
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(B(B> —A)"2 =D f (1)) +5(BB - 4) 2 =DV (1) /(1)

N = N =

(BB2—=A) "2+ D) f(t) — = (B(B* — A)">+ NU( = )£ (1)

+
N = N = N =

Lov
S =) = £(0)ds

(B(BZ _ A)71/2 _ I)J
0

1
— 5B -7 [ - 070 - S (0)ds

: 0S

1

+ /(1) +5 (B(B* — AP =Dy (0) = £(0)

~

(B(B>—A)"'? =DV ()£ (0)

+

(B(B> — A)"'?+ DU - 0)(f (1) — f(1))

D= N—= =

BB*— A+ DU =0nrQ).

Therefore, (1I) e C?([0,1]; X) provided that f e C?([0,1]; X) and
JO)eD_p g 42(0,00) =D_ g 4y12(0,00) = D_p2_4)(0/2, 0)
J()eDy g g112(0,0) = D_ o y112(0,0) = D_(p2_4)(0/2, 0),

(see [2], Proposition 1.3 and Theorem 1.4, pp. 360-361).
We turn to (/). One has

(I)=I—-2)""V(t)dug— (I — Z) " UQ) V(1) Auy

_|_

—

I—2)"'U(1 =) Auy — (1= Z)"' V(1) U(1 = 1) Aug

(I-2)"'V()A(B* — 4)" '/ J; U(s)f(s)ds

N —

+

(I-2)""W(Uu1)A(B* — 4)~'? JOI V(1 —s)f(s)ds

(=2 U(1 - )AB — 4) " Jl V(1 — 5)f(s)ds
0
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Since Aug, Auy € D_(p2_ 4(0/2,0), then (), (L) e C?([0,1]; X). Write

A(BY — 4)12 Jl U (s)f (s)ds
0

Now, it is known that

1
|, B =B =02 U = O € Dy e pe0.20),
see [2], Theorem 1.4, p. 361. Thus

V) | (B (8 =) U6 ~ O (0,11 ).
On the other hand, the assumption on f(0) implies ¥ (7)f(0) e C([0,1]; X).
Then (I3) e C?([0,1]; X).

Concerning (I4), one writes

A(B*— 4)71? J; V(1 —s)f(s)ds

= (B(B* = 4)""? —D)(B+ (B - 4)'?) Ll V(I =9)(f(s) = f(1))ds

+ (BB —A)* — 1)(B+ (B — 4)'?) Lj V(1 —s)f(1)ds

= (B(B*—4)"'" —1)jl<B+ (B2 —A)"?) V(1= 9)(f(s) — f(1))ds
0
+ (BB~ AP D)1 - V(1) £(1).

The same arguments used below imply (I3) € C?([0,1]; X).
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As well (I5) and () are handled analogously by changing ¥V (f) to
U(1 — ). Therefore, under the preceding assumptions, Au(.) e C([0,1]; X).
On the other hand

Bu'(1) = =V (t)B(B + (B? —A)]/z)éo —U(1-0B(B— (B _A)l/z)fl

+%B(BZ - /1)‘1/2{(134r (B2 - 4)'?)

: Jl V(e=s)(f(s) = f(0)ds+ (I - V(t))f(t)}

0

+%B(32 - A)I/Z{(B — (B> - A)'?

t

1
| wts= 000 - s+ wa o - I)f(t)}
= (J1) + (N2) + (J3) + (Ja).

The previous arguments apply to (J3) and (J4). Moreover, since &y, & € D(A),
we get

B(B+ (B*—4)'*) A7 4¢y = B(B— (B> — 4)'/*) ' 4¢,

B(B— (B> — A)*)A7'4¢, = B(B+ (B> — 4)/*) ' 4¢,.
But we already know that V(.)4& e CY([0,1]; X), U(1 —.)A4& e C/([0,1]; X).
|

4. Examples

Example 1 (Periodic boundary conditions).
Take X = L?(0,1) and let us introduce an operator T:D(T)c X — X
defined by

{D(T) ={feH'(0,1): f(0) = f(1)}
Tf = if".

It is well known that T is self-adjoint and its spectrum is o(7T) = 2nZ, (see [12],
p. 75). So that T2, where

{D(T% = {f e H(0,1): (0) = f(1), f(0) = f'(1)}
T = ",
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is positive self-adjoint. We then introduce B = —iT and A defined by

{D(A) = D(T?)
Af = (2T —al) f =2" — df

(where a > 0). Then B> — A = T?+al with domain D(T?) is positive self-
adjoint. Therefore D(T) coincides with the complex interpolation space
[X,D(T?)],, (see [15], p. 143), and (T? +al)'? is positive self-adjoint. We
have from Remark 1, statement 5, that +B — (B> — A)l/ % generates an analytic
semigroup in X.

It follows that we can solve the boundary-value problem

2y 2 2

0 u u

7( ) (X t)+2a 2()(,[)—(1”()6,2‘)
:f( )7 (X,Z)G(O,l) (071)7

u(x,0) =up(x), 0<x<l,

ulx,1)=u(x), 0<x<1l,

u(0,0) =u(l,r), 0<r<l,

%(0 1) a—u(l 1), 0<r<l1

ax ) _ax ) ) )

ou ou

E(O’I) E(l’t)’ 0<r<l,

with uo,u; € D(4) = D(T?), provided that f e C?([0,1]; L*(0,1)).

Example 2 (Degenerate parabolic operators).
Let ae C'([0,1]) be a real valued function which is strictly positive on
(0,1), a(0) =a(l) =0. Let us define the differential operator

d ( du
Tu:a<aa), ue D(T),

where
D(T) = {ueL*0,1):
u is locally absolutely continuous in (0,1) and au’ e Hy(0,1)}.

Then it shown (see [1], Lemma 2.7 and Theorem 2.8), that 7 is self-adjoint and
generates an analytic semigroup with angle /2 and bounded in L3(0,1). Let

{ D(B) =D(T)
B=iT,
and
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{ D(A) = D(T?) = {ue L*0,1):au’ € H}(0,1) and a(au’)" € H}(0,1)}
A=—aT?—cI

where > 1 and ¢ >0
Since

B> —A=(a—1)T?+cl,

B> — A is a positive self-adjoint operator. Then (B> —A)l/ 2 s positive with
domain D(T) and thus by Remark 1 (statement 5) +B — (B> — A)l/ ? generates
an analytic semigroup in X, with domain D(7). Hence we can handle the
boundary-value problem

0*u

0 o*u
e (x, 1) + 215 (a(x) xar (x, l‘))

0 i du
—as (a(x) pre (a(x) P (x, t)>> — cu(x,1)

= f(xv [)7 (X, t) € (07 1) X (07 1)7
=up(x), 0<x<l,
=u(x), 0<x<l,

Ou ou
<a&) 0,1) = (“&)(1,1) =0, 0<t<1,

o Ou ? [ ou
<a§<a5)>(071):<aﬁ<a5)>(l,t):07 0<[<17

*u o*u
(am>(0,t)—<am>(l,l)—0, O<l‘<17

with ug,u; € D(A) provided that f e C’([0,1]; L%(0,1)).

Example 3.

To begin with, we recall that if M is a non-negative self-adjoint operator
in the Hilbert space X, then M has the imaginary power M e L(X) and
|[M"|| < C for |¢f| <& where ¢ C are suitable positive constants (see [15], p.
143). Therefore the complex interpolation space [X,D(M™")] , coincides with
D(M™) for all m,ne N, m <n (see [15], p. 103).

Take B a strictly positive self-adjoint operator in X and let 4 = —B>.
Then

m/n

B'—A=B+B =8+ (B)"

is strictly positive self-adjoint, and
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D((B*> - A)'*) =[x, DB
(( )7) =X, D(B%)], ),
= D(B*?).

—(B? - A)l/ 2 generates of course an analytic semigroup. Moreover there exists
a constant C > 0 such that

| Bull < Cllull"| B2 *?
< Cllul)P|BY(B* — 4)7 (B2 — 4) )P,

for ue D(B¥?), so that +B is bounded with respect to — (B> — 4)'/? and has
a (B> — A)"* bound equal to 0. It follows that +B — (B> — A)'/? generates
an analytic semigroup in X. In this case D(A4) < D(B?), however all our
assumptions are satisfied.

As an example, take 4, B defined in X = L*(Q) by

D(B) = H}(Q)NH*(Q), B=—4,

D(A) = {ue H(Q);up0 = Aupo = Aujp0 = 0}, A=A,
where 2 is a bounded domain in RY, ¢ > 1, with a smooth boundary 0Q.
One can then handles the boundary problem in a cylinder
a2 (X, l) - 2A6_(xa l) + A3U(X, l) = f(xv l)7 (X, l) €02 x (07 1)7
(

u(x,0) = up(x), u(x,1) =u(x), xeg,
2

u(o,t) = Au(o, t) = A“u(o,t) =0, (o,t) € 02 x (0,1),

provided that f e C’([0,1];L*(Q)); uo,u; € D(4). Maximal regularity of
solutions is correspondingly treated.

Example 4.

Let K be the infinitesimal generator of an analytic semigroup of angle 7 in
the complex Banach space X, i.e., K is closed linear, densely define and for each
¢ €]0,7/2[ there exists an M, > 1 such that

— Mz:
121 = K&)' < R

for all Ae X, ., where

Zre={zeC";largz| < m—¢}.
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Suppose that 0 e p(K) too. Then for all ne N*, —K?" also generates an
analytic semigroup of angle n. Indeed it suffices to prove this statement for
n=1. Let 2=re" where r >0, 0e[0,n[U]n,2n]. One writes

A+ K* = re’T + K* = (el ™02 _ g)(\/re 3012 _ K.
Now
O0el0,n]= (n+0)/2¢€[n/2,7] and 3z +60)/2 € [37/2,2x],
0€ln,2n] = (n+0)/2 €|n,3n/2] and (3n+60)/2 € [2n,57/2],
and thus the assumption yields easily the conclusion. Take B= —K, 4 = —K?'
so that B> — 4 =K?>+K?. Let r>2 and assume —K to admit bounded

imaginary powers. It follows that B> — A has bounded imaginary powers.
Therefore

D((B? — 4)"/?) = [x, D(B — )], = X, DK, = DK,

(see [15], p. 151). —(B? —A)l/2 generates an analytic semigroup in X.
Moreover, moment’s inequality yields that +B is (B> —A)l/ % bounded with
bound equal to 0 (see [8], p. 65, whose proof is readily extended to arbitrary Cy-
semigroup). Then +B — (B? —A)l/ % generates an analytic semigroup and all
our results work.

Concerning this example, take X = L?(Q2), 1 < p< oo, when Q is a
bounded domain in R", n > 1, with a smooth boundary 0Q. If B= —4 with

D(B) = W>(Q)N W, (),
and A = —A4* with
D(A) = {ue WS (Q) : Aupo =0 for j=0,1,2,3},

then our conditions apply.
Take also B = —4+ kI with

D(B) = {ue W2r(Q) :Z—Z: 0 on aQ},

and k strictly positive. Consider 4 = —4* with

.(Mju

D(A4) = {ue W (Q) =0 on 0Q for j:0,1,2,3}.

Then we are in the situation described above, again.

Example 5.
Let B be the generator of a bounded analytic semigroup (therefore B is of
negative type) and suppose 0 € p(B). Observe that
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(B2 = _B.
Take A = bB?, when b < 0. Then
B*—A4=(1-b)B,
yields
(B 2P = (178
and thus
+B— (B2 )P =+B+(1-b)"B=(1-p">+1)B

generates an analytic semigroup. Since all other assumptions (3)~(7) hold
together with D(BA) = D(B?), our results work.

As an example, if X = LP(Q), 1 < p < o0, Q is a bounded domain in R”,
n > 1, with a smooth boundary 0Q, B = A4 with

D(B) = WP (Q) N Wy7(Q),
and A = bA%, b <0, with
D(A4) = {ue WHQ) : uq = Aujpq = 0},
we can handle the boundary value problem

0“u ou
- oA

(X, 1) + bAu(x, 1) = f(x,1), (x,0) e x (0,1),
(x,0) =up(x), xeQ,

u(x,1) =u(x), xeQ,
(

u(x,t) = Au(x,1) =0, (x,7) €02 x (0,1),

E(xal):(L (x,l)ea.Qx (071)7

provided that f e C/([0,1]; L?(RQ)); uo,u; € D(A).
Maximal regularity is obtained using Theorem 10.

Example 6 (Degenerate parabolic equations, continued).
Refering to Example 2, take

B=i(T—bI), D(B)=D(T),
when b is a positive real number, and let 4 be the operator defined by

{D(A) = D(T?)
A=—aT?—cl,
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when o > 1, ¢>0. Then D(4) = D(B?*) and

B> — A= (0—1)T?+2bT + (c — b*)I

is self-adjoint.

Notice that T is a negative operator so that —(—T )l/ 2 generates a bounded

analytic semigroup in X = L?(0,1), with

||e—t(—T)‘/z||L(X> <1, t>0.

Take u e D(A) and evaluate

(B> = A)u,uy = (o — 1)||Tul|* = 26]|(=T)"*ul|* + (c — b)||ul?
> (o — )| Tull> — 4b|| Tul| |Jul] + (c — b)|ul|®

> (00— 1 — 2be) || Tul|* + (¢ — b> — 2b/¢e) ||ul|

for all ¢ > 0. (See [8], Theorem 9.9, p. 65). Take ¢= (o —1)/2b.

To conclude, we see that if

a+3

b2
c > r—1

then B> — A4 is a strictly positive operator. Since all assumptions (4) ~(8) hold
(see Remark 1.4), our results apply as well.

(8]
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