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Abstract. This paper is concerned with the study of the system of Laplace operators
with perfect wall condition in the L, framework. Our study includes a bounded
domain, an exterior domain and a domain having noncompact boundary such as
a perturbed half space. A direct application of our study is to prove the analyticity
of the semigroup corresponding to the Maxwell equation of parabolic type, which
appears as a linearized equation in the study of the nonstationary problem concerning
the Ginzburg-Landau-Maxwell equation describing the Ginzburg-Landau model for
superconductivity, the magnetohydrodynamic equation and the Navier-Stokes equation
with Neumann boundary condition. And also, our theory is applicable to some
solvability of the stationary problem of these nonlinear equations in the L, framework.
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1. Introduction
1.1. Main results

In this paper we investigate the resolvent problem for the system of Laplace
operators with perfect wall condition on some domain Q = R", n = 2:

(L.1) m—Adu=f+V-F in Q
—(curl u)y = g + Fv, vou=20 on 0Q,

where 02 is the boundary of Q; v is the unit outer normal vector to 0€; the
resolvent parameter A is contained in the sector

2, ={0#zeC|largz| <m— ¢}, 0<e<m/2

f="fi, ) eLY(Q)", F = (Fy)eW, ()" and g = "(g1,...,9.) e W,}(Q)"
are the prescribed forces which satisfy the conditions:

* This work is partially supported by Grant-in-Aid for Scientific Research (B) 12440045, Ministry
of Education, Sciences, Sports and Culture, Japan.
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(1.2) V- (Fv)|;0=0 and V-glso =0.

To state our result precisely, at this point we outline our notation used
throughout the paper. Given vector or matrix M, ‘M means the transposed

M. Given Banach space X with norm || - |, we set
n
X' = {o="(on o)l € Xy el = Iyl
=1
n
X ={V = (Vy) | Vye X}, Wl = Willx:

i,j=1

and V = (V;) means the n x n matrix whose i-th column and j-th row
component is V. For the differentiation of the n x n matrix of functions
F = (Fy), the n-vector of functions g = ‘(g1,...,9,) and the scalar function f,
we use the following notation: 0;f = df'/0x;,

n U n n
Vf:t(alfa"'aanf)a Vg:za]gja V'F<ZajF1j7"'7Zaanj>a
Jj=1 Jj=1 j=1

Vg = (g95) with g; = 0;g;, curlg=Vg—"(Vg) = (g;) with g; = d,9; — 0;g;,

where the dot - denotes the inner-product of R”. For the functional space,
L,(8) denotes the usual L, space on Q with norm || - ||, o). Moreover, we set

W, (Q) = ue Ly(Q) [ ullwme) = ‘Z 10%ull @) < o ¢

o <m

W Q)" ={ge W (Q)"|v-glog =0},

W Q)" = {F e W, ()" v+ (FV)|sq = 0}.

Note that what F e I/Z,l ()" and what g € W[',l (Q)" imply that F and g satisfy
the condition (1.2), respectively. C = C(a,b,...) means that the constant C
depends on the quantities «,b,... in the parenthesis. Moreover, to denote
generic constants we use the same letter C, and therefore the constants C may
change from line to line. Given R > 0, we set

Br={xeR"||x| <R}, BR®=R"\B

We are interested in L,(Q2) estimates of the unknown vector u =
"(uy,...,u,). To describe our main results we formulate some assumptions on
the domain.
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Assumption 1.1. Let Q = R", n =2, be a domain with boundary 6Qe C?!

and suppose one of the following cases:

(1) € is bounded.

(ii) € is an exterior domain, i.e., there exists a compact set ¢ such that
Q= R"\0.

(i) £ is a perturbed half space, i.e., there exists an R >0 such that
QN BR =R NBX, where

R} = {x=(x1,...,x,) e R" | x, > 0}.
For the notational simplicity, we set

111/2
I, 2, Q) = [P [ull g + IVl 1, 0,

2 1 J11/2
I (u, 2,2) = |4 A7Vl

lull @) + L@ t IV 2ul L,(Q)
where

Viu = (0%u||o| = k), Viu=vu, Vou=u.
The following theorems are our main results.

Theorem 1.2. Let 1 < p<o0,0<e<n/2,0>0and Q<R", n=2, bea
domain satisfying the Assumption 1.1. Then, we have the following assertions:
(1) For every 2€Z, [eL,(Q)", FeW!'Q)"" and ge W' (Q)", the
problem (1.1) admits a unique solution u € %2(9)" which satisfies the estimates:

(1.3) 2 w,2,2) < CUA™ IS0 + IFNL@ + 127 gL oo}
(14) 7w, 4,Q) < C{ I, @ + 7 (F,9), 2, 2)},

where C = C(Q,p,&,0) >0 and |A| = 9.

(2) If f and F satisfy the conditions: V- f=0in Q andv-f =0 on 0Q,
and F +'F =0, respectively, and g =0, then V-u=0 in Q.

(3) If feWMQ)", FeW (@)™, ge W (2) and 32 e C">" for
some integer m = 1 additionally, then ue H{p”’*z(!))".

Remark 1.3. Noting the formula:
(1.5) Au=V - (curl u) +V(V - u), u="(u,...,u,),

by Theorem 1.2 (2) we know the unique existence of solution u € sz(.Q)" of the
resolvent problem corresponding to the parabolic Maxwell equation:

(1.6) Ju—V-(curlu) + Vo = f, V.u=0 in Q,

—(curl u)y =0, vou=0 on 0Q,
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where @ is a function corresponding to the Helmholtz decomposition of the
n-vector f, i.e.

f=h+V® with V-h=0in Q and v-h|,, =0.

Theorem 1.4. Let 1 < p < o0, 0 < ¢ < /2 and suppose that Q is a bounded
and simply connected domain in R®. Then, there exists a positive constant J,
such that if A€ C satisfies the condition: |A| <01, then for every f eL,,(.Q)3,
Fe VK,I(Q)3X3 and g€ VZ}(Q)% the problem (1.1) admits a unique solution
ue I/Ig,z(.Q)3 which satisfies the estimates:

(1.7) [l o) = CUN )L, @) + 191,00}
(1.8) [ull20) = CUS Mz, @) + 1F Do) }-

Moreover, if f and F satisfy the conditions: V- f=0in Qandv-f =0 on
02, and F +'F =0, respectively, and g =0, then V-u=10 in Q.

Finally, we consider the weak solution corresponding to (1.1). In view of
(1.5), by the divergence theorem of Gauss we have

(1.9) (—du,v)g = —((curl u)vag,v)y6 — (V - 4, vo6 - V)56

1
+ E(Curl u,curl v) s + (V-u,V-v)g,

where vy denotes the unit outer normal to the boundary dG of the domain
G. Here and hereafter we set

(,v)g = J u(x) - v(x)dx, (t,0) 56 = J u(x) - v(x)do,
G oG

where do is the surface element of 0G. By (1.9) we see that the variational

formula corresponding to (1.1) is the following:

(1.10)  Alu,v)q +%(Curl u,curl 0)o+V - u,V-v)g = (f,0)o—(F,Vv)o—(9,0) 0

for any ve Viﬁ (2)". Here and hereafter p’ denotes the dual exponent of p
such that 1/p+1/p’ = 1.

Theorem 1.5. Let 1<p< o, 0<e<n/2 and 6 >0. (1) Let Q < R",
n=2, be a domain satisfying the Assumption 1.1. Then, for every 1€ X,
feL,(Q)", FeLy,(2)"" and ge L,(0Q2)", the variational equation (1.10)
admits a unique solution u € Wpl(.Q)" which satisfies the estimate (1.3).

(2) Suppose that Q is a bounded and simply connected domain in R®.
Then, there exists a positive constant 6, such that if i€ C satisfies the con-
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dition: || £ 0y, then for every feLp(Q)3, Fe Lp(Q)3X3 and g eLp(éQ)3, the
variational equation (1.10) admits a unique solution u e %1 (Q)* which satisfies
the estimate (1.7).

(3) In addition, we assume that f and F satisfy the conditions: V- f =0
inQandv-f=0o0n0R, and F + 'F = 0, respectively, and that g = 0 in the both
case of (1) and (2). Then, V-u=0 in Q.

1.2. Motivation

In order to deal with some fundamental problems in mathematical physics,
we meet the parabolic Maxwell equation:

(1.11) w+VxVxu +u+Ve=F, V.ou=0 in Qr,

(V xu) xv|g =0, V-u

o0 =0, ”|t:0 =4,

where Q is some domain in R, y is a non-negative constant, Q7 = Q x [0, T)
and ¢ denotes the time variable.

In fact, A. Schmid [18] and L. P. Gor’kov and G. M. Eliashberg [10]
asserted that the non-stationary Ginzburg-Landau model for superconductivity
is described by the TDGLM (time dependent Ginzburg-Landau-Maxwell)
equation:

(1.12) Y, — iy = (V = id)*y + (1 = [y|*y) in Qr,
o(A, — VD) +V x (Vx A)+V x H=Jg, in Qr,
V-4=0 (Coulomb gauge) in Qr,

0Wloe =0, (VxA+H)xv|n=0, v-Alog =0,

(lp, A)|z:0 = (lp07 Ao),

where i/ is the complex-valued order parameter; @ is the scalar electric po-
tential; 4 is the magnetic vector potential, ¢ and x are positive physical
constants; H is the external magnetic field; d, = v-V; and

- J—

Jor. = =50V = iA)y = w(V = iA)p),

which is called the Ginzburg-Landau current. If we linearize (1.12) at the
constant state (y, 4, H) = (¥,,0,0) with |¥,| = 1, ¥, being a complex number,
then we have (1.11) with x> 0 from the second equation of (1.12) as a lin-
earized equation.

If we consider the magnetohydrodynamic equation proposed by T. G.
Cowling [5] or L. Landau and E. Lifshitz [11]:
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1 1 .
(1.13) u,+(V~u)u_—Vp—i—ReAquS(zV|H|2—(H-V)H>+F in Qr,

1 .
H,:(H-V)u—(u~V)H—ﬁV><(V><H) in Qr,
V-ou=0, V-H=0 in Qr,
Ulag =0, (V x H) xv[pg =0, v Hlzp =0,

(uv H)'t:O = (u07 HO);

where S, Re and Rm are positive physical constants, then we have (1.11) from
the second equation of (1.13) with # = 0 as a linearized equation at the constant
state.

If we consider the Navier-Stokes equation with Neumann boundary
condition:

(1.14) u+ u-Viu=Vp+vdu+ f, Vou=0 in Qr,
V X uxvjg =0, V-uyo =0, ul,_o =a,

where v is a positive physical constant, then we have (1.11) with =0 as a
linearized equation because of the formula: —Au=V x (V x u) —V(V - u) with
V-u=0.

To solve (1.12), (1.13) and (1.14) by using the usual contraction mapping
principle, it is important to show the analyticity of the semigroup corresponding
to (1.11). Therefore, according to the well-known analytic semigroup theory
(cf. Pazy [17]), it is the most fundamental point that we investigate the theory
for the resolvent problem (1.6), which follows from our main results in the
subsection 1.1.

Moreover, if we consider the stationary problem corresponding to (1.12):

(1.15) —idy = (V —id)y +x(1 — [y *)y in Q,
—VO+V x (VXA +VxH=Jg, V-A=0 in Q,
oo =0, (VxA+H) xv|=0, v-H|p =0,

where H = '(Hy, H,, H3) is a given external force, then as a linearized problem
at the constant state y =, € C with |,|] =1 we have

(1.16) A+Vx(VxA)+V xH=0, V-A4=0 in Q,
(VxA+H)xv[,o=0 v-Alyo=0.

The problem (1.16) is reduced to the equation (1.1) with A=1, f =0, g=0
and
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07 _H37 H2
F=1 Hj, 0, —H
_H27 Hlv 0

In fact, since H + 'H =0, Theorem 1.2 (2) guarantees the unique existence of
solution 4 to (1.1) which satisfies the condition: V-4 =0. And therefore, by
(1.5) we have =V x (V x A) =V - (curl A) = 44, which implies that 4 satisfies
(1.16). In view of Theorems 1.4 and 1.5, by using the contraction mapping
principle we will be able to solve (1.15) at least for small external forces.
In spite of these backgrounds, to the authors it does not seem to be known
the systematic study of the system of Laplace operators with perfect wall
condition. And the main results for the strong solutions to (1.1) stated in the
subsection 1.1 do not seem to be derived directly from the well-known general
theory of elliptic operators like the Agmon, Douglis and Nirenberg [2] and
Lions and Magenes [12], [13], [14]. We only know the work due to Miyakawa
[15], where he proved Theorem 1.2 with F = G = 0 for large |A| and proved the
local existence theorem of the Navier-Stokes equation with Neumann boundary
condition in the L, framework when the domain is bounded. In fact, he
noticed that (1.6) is reduced to (1.1) when f satisfies the condition: V- f =0
in 2 and v- f|,, =0, i.e. f is in the solenoidal space, and then he reduced the
problem to the model problem in the half-space to get some a priori estimate
and used Agmon’s trick [1] to get the resolvent estimate for large ||, which
is enough to show the analyticity of the Stokes semigroup. But, if we would
like to study the asymptotic behavior of solutions as time goes to infinity, it
is important to investigate the behavior of the resolvent operator near the origin.
Moreover, to consider the stationary solution and its stability concerning the
initial disturbance, it is important to show not only Theorem 1.2 but also
Theorem 1.5. Concerning the weak solution in the L, theory, to the authors
nothing seems to be known about (1.1) although the L, theory is rather well
known (cf. Sermange and Temam [19], Duvaut and Lions [6], Georgescu [9]).
In the case of Neumann or Dirichlet problem for the Laplace operator, Simader
and Sohr [20], [21] gave some new idea concerning the weak solution, which
gave us an extension of Garding inequality to the L, framework and seems to
be applicable also to (1.1) with 2 =0 only. But our approach is to drive the
estimates (1.3) and (1.7) to prove the existence of weak solutions, which seems
to be new and completely different from the idea due to Simader and Sohr [21].
Moreover, we think that it is important to consider (1.12), (1.13) and (1.14) in
the domains mentioned in Assumption 1.1 in view of several different physical
situations. Therefore, we think that it is worth while giving a self-contained
and very elementary independent proof of our main results stated in the sub-
section 1.1 in order to give a foundation of the study of nonlinear problems.



368 T. Axivama, H. Kasal, Y. SHIBATA and M. TsuTsuMi

After the preparation of the a priori estimates of solutions to the problem
(1.1) in the whole space and half-space in §2, we solve the problem (1.1) in the
bent half-space in §3, which is the main point in our approach. And, after the
discussion of the unique existence theorem of the weak solution in the L,(€Q)
framework in §4 and the discussion of the reduction of the problem to the
whole space, half-space and bent half-space problems in §5, following the
argument due to Farwig and Sohr [7] we prove Theorem 1.2 (1) by showing
the several lemmas in §6. What the solution u satisfies the divergence free
condition: V -u =0 follows from the special structure of the boundary con-
dition and (1.5) (cf. Lemma 6.7 below). To prove Theorem 1.4, our proof
relies on the result due to von Wahl [24] (cf. Proposition 4.3 below) which
guarantees the estimate:

IVull, @) < Clllcurl ull, g+ IV - ull, )} for any ue ' ()"

provided that Q is a bounded and simply connected domain in R*® and
1 <p<oo.

2. The whole space and the half-space problems
We start with the following theorem concerning the whole space problem.

Theorem 2.1. Let 1 < p< oo and 0 <e<mn/2. Then, for every A€,
feL,(R") and F ="(F,...,F,) € W(R")", there exists a unique ue W?*(R")
which solves the equation:

(2.1) A—ADu=f+V-F in R"

and satisfies the estimates:

(2.2) I, 2, R") < CLA2NF ey + IF Ly o}
(2'3) ‘%}2(u7;“>Rn) = C||f+V'FHL,,(R”)

for some constant C = C(g,p).
Moreover, if ue L,(R") satisfies the condition: (1 — A)ue L,(R") for some
le, and 1 < q < oo, then ue W (R").

Proof. To solve (2.1), we use the Fourier transform & and its inverse
transform .# . Since

(2.4) €17 + 21 2 (sin e/2)(1&]* + |4])

for any AeZX, and EeR", if we define u(x)=7 A+ F(f+
V- F)(&)](x), by the Fourier multiplier theorem (cf. Stein [22], Triebel [23]) we
see that u satisfies (2.1), (2.2) and (2.3), because
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(2.5) 02+ €)Y = Co12] + 1171

where C, . is a constant depending only on «,& and n. The uniqueness holds in
the class of the Schwartz’s tempered distributions when /4 € X, which is proved
by using the Fourier transform and (2.4). Moreover, the solution is given
exactly by using the Fourier transform, so that in view of the uniqueness in
the Schwartz’s tempered distribution class what (A — 4)u € L,(R") implies that
u=7 (1417 Z ) € WAR"), where f = (. Aue L(R"). [

Next, we consider the Neumann problem:
(26) (;L - A)u = f +V-F in Ri? a"u|x,,:0 = (_Fﬂ + g)|x,,:07
where F = (Fy,..., F,).

Theorem 2.2. Let 1 <p< oo and 0<e<mn/2. Then, for every Ae X,
feL,(RY), Fe W\(R?)" and g e W,'(R'!), the Neumann problem (2.6) admits
a unique solution u € I/K,Z(Rj’r) which satisfies the a priori estimates:

27) A w4 RE) < CLAT IS Ny ey + IF N ey + 147 lg L ) oy 3

(2.8) &7 (w4 RY) < C{IS |11, ge) + 7 (F.9): 4 R,
for some constant C = C(g,p) > 0.

Proof. For the notational simplicity, we set h = f +V - F. Let us define
the even extension /¢ of h by

eron [ h(x) Xy, >0,
he(x) = {h(x’, —Xn) X, <0,
where x’ = (x1,...,x,-1). Let us define
(2.9) o(x) = Z GG+ %) F )] (%),

and then we have
(2.10) Ont|,—o = 0,
(2.11) S0, R") S Clf +V - Fllp gey-

In fact, (2.11) follows from (2.5) and the Fourier multiplier theorem.
Let us define the solution w(x) of the equation:

(2.12) (A—A)w=0 in R", 0wl —o = (=Fu + 9)l;, —o-

Applying the partial Fourier transform ' with respect to x’ to the equation
(2.12), we have the ordinary differential equation with respect to x;:
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[+ 1E7) = 017 (& x) =0, 20 >0,
F' (&, 0) = =F'[F](,0) + 7 '[9 (£, 0),

and therefore we have

e~V ;L+‘é/|2xn

VA+1E?
is the inversion formula of #’. In particular, if we set
(2.14) u(x) = v(x) + w(x),

then u solves (2.6). In order to estimate w we shall use the following lemma.

(2.13) w(x) = (7)) F[Fy = g)(&, 0) | (x).

Here, (7')"

Lemma 2.3. Let 1 <p<o0,0<e<n/2, /eR and ®(E', 1) be a function
in C*(R"N\{0}) for each )€ X, which satisfies the condition:

o ey
(2.15) |02 D&, 1) £ Cu A€

Sor any multi-index o' = (o, ..., 0,_1) with some constant Cy: . depending only on
o and ¢. For every L€ X, and k € VI{D‘(Rﬁ), we set

y(x) = (7) e VA e ) 7 K], 0))(x').

Then, there hold estimates:
/—1/2p .
(2.16) 190, ey < A2 O, oy

(2.17) V3l ey < CACIVEN L gey + 121211,

LR}
Proof. By (2.4) we have

(2.18) Re \/ A+ &' = 2¢,(1E')* + |a))

for any Ae %, and &' € R"™', where ¢, = (2v2) '(sin(¢/2))**. By (2.15) and
(2.18)

(219) [0 le VAT B(E 2| < Gl Al e T

1),

for any multi-index o’ = (ay,...,a,-1) and x, > 0, and therefore by the Fourier
multiplier theorem

o0
P _ P
(220) I ey = [, Do) g

o [ e
< C|A|p/ JO e~ pxn dx,,Hk( )HL e

/—1/2
< CoplA” PG O o
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which implies (2.16).
To prove (2.17), we take 0 > 0 in such a way that J = ¢,/4 and we set

y(x) = (F) e VI P (& 2) 7 () ()] (x')
where
F' s, xn) = e 7 [Kk](&,0).
By (2.19) we have
03T VAR M (& ]| < Gl 16T

for any multi-index o, and therefore by the Fourier multiplier theorem we
have

@21) vl < GIA Nl @, G=1in— L.
On the other hand, since
“20,E(x) = 20,7 [7(x) = (#) ), x>0

as follows from the integral formula of Cauchy in the theory of one complex
variable where E is the fundamental solution for the Laplacian, by the Agmon-
Douglis-Nirenberg lemma for the singular integral operator in the half-space (cf.
Agmon-Douglis-Nirenberg [2, Theorem 3.3], Galdi [8, 1.9, Theorem 9.6]), we
have

L&) = GV L, k),
which combined with (2.21) implies that
1020 ey < CodlA VK gy = 1een— L.

Observing the identity:

y(x) = —(F) Ve VI (4 1€ TV @(E ) F K€, 0)) ()

n—1
i e VAT Gy 112 P e )7 R(E 0)]()

Jj=1

and noting that (1+|&'|*)""2Vi®(E,2) and (A+ |1} E@(E,2) also
satisfy the condition (2.15), we have

(222) 12wyl oy = CoclAl (VKN gy + 12 PPk 0], g }-
Since

(2.23) TPV 0) ooty < ONVE gy + Clos )AL e
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for any o > 0 as follows from the interpolation inequality:

(2.24) 1, 0) L, oy < PPl g IV Fl e

L,(R")’

combining (2.22) and (2.23) implies (2.17), which completes the proof of the
lemma. (]

We continue the proof of Theorem 2.2. Applying Lemma 2.3 to (2.13)
and using (2.23), we have ﬂ;f(w,i,Ri) < Cfpl((F,,,g),/l,Rﬁ), which combined
with (2.14) and (2.11) implies (2.8).

To prove (2.7), we observe that

(2.25)
Fhe)(&) = Z[f](&) + szj —2F'[F)(E,0) + i&, T [(F)°](&),
where (F,)°(x) = F,(x',x,) for x, >0 and = —F,(x',—x,) for x, <0, ie.,

the odd extension of F, to the whole space. By using the integral formula of
Cauchy in the theory of one complex variable, we have

e~V /H"é/lzxn

\//Hlé'lzji

which combined with (2.25), (2.14), (2.13) and (2.9) implies that

MO+ 1P FENE0)(x) = 7 F)(E,0) ] (x),

u(x) = F 2+ 1D FU AN ) + Y7+ 1) G (F) Q)] (%)

e~ ViHE P x,
/;L + ‘é/|2

Applying Lemma 2.3 and the Fourier multiplier theorem with help of (2.4) and
(2.5), we have (2.7). This completes the proof of the theorem. O

A1) iET (B )] (x) — (7)) F'g1(&',0)| (x')

Now, we consider the Dirichlet problem:
(2.26) (A=—Mu=f+V-F in R}, ul, _g=

Theorem 2.4. Let 1 <p< oo and 0 <e<m/2. Then, for every A€,
feL,(RY})and F = "'(Fi,...,F,) € W(R'!)", the Dirichlet problem (2.26) admits
a unique solution u € %Z(Ri) which satisfies the estimates:

(2.27) SN, 2, RY) < C{A /]

L) HIF Nz, @b

(2.28) S (u, 2, RY) = CI(S V), ge)-
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Proof. Set k= f+V-F and u(x) =7 '[(|]* + 1) ' Z[k°)(&)](x), where
k¢ is the odd extension of k to the whole space. Then, we have u|, _, =0. In
view of (2.5), by the Fourier multiplier theorem we have (2.28). Since

n—1
FkE) = FULNE) + D i&FFF1(E) +i&, T [F{(&),

=1

in view of (2.5) by the Fourier multiplier theorem we have (2.27). This
completes the proof of the theorem. O

Finally, we consider (1.1) in the half-space R’:
(2.29) (—Mu=f+V-F in R,
—(curl u)vg = g + Fy, vo-u=20 on Ry,

where vp = (0,...,0,—1) and Rj = {(x',x,) e R"|x, =0}. Sincevy-u=u, =0
on R, we have

—(curl u)vg = "(Gpur, .. ., Optin_1,0) on Rj.

Therefore, if g, =0 and F,, =0 on Ry, then (2.29) is equivalent to the
problem:

(2.30) (h=Muy=fi+> 0Fu,  j=1,....n, in R",
k=1

anuj:gj_F}nv j:17...,l’l—1, on ng

u,=0 on Rj.

Then, combining Theorems 2.2 and 2.4, we have the following theorem.

Theorem 2.5. Let 1<p< oo and 0<e<mn/2. Then, the following
assertions hold.

(1) For every 2eX, f="(fi,-..,fu) € L,(R})", F=(Fy)e W (RT)"™"
with Fl|, =0 and g="(g1,...,9,-1,0) € VK,I (RY)", the half-space problem
(2.29) admits a unique solution u € I/K,z(Rj’r)” which satisfies the estimates:

(2.31) ) (u, 2, RY) < C{|/U_l/2\|f||L,,(R:) +IFl L, e
+ A7 N9 (L0 e 3
(2.32) I3, 2, RY) < CLUS gy mry + 2, (Fr9), 2, R}

(2) Ifue %1 (R) satisfies the homogeneous variational equation:
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1
(2.33) Au, (D)Ri + 3 (curl u, curl cD)Rz +WV-uV- Q)Ri =0

for any @ € Vi{,',} (R")", then u=0 provided that )€ X,
(3) Let ue W]',l (R}) satisfy the variational problem:

(2.34) Au, @) gr + % (curl u, curl @) n + (V- u,V - D)

= (f7 ¢)Ri - (F7 @)Ri - (g7¢)R6x fOV any De %%(Ri)n

If feL,(RY)"NL(RY)", FeW'RD"™NWH R with Ful,_o=0
and g = (g1,---,9gn-1,0) € WHRD"NWI(RY)" for some 1< q< o, then ue
W2(R™)" N W2(R™)".

Proof. In view of (2.30), the first assertion follows from Theorems 2.2
and 2.4 immediately. The uniqueness assertion (2) follows from the solv-
ability of the dual problem with f e Cy°(R})", F=0 and g =0, which is
guaranteed by (1). Finally, we shall show (3). Since the solution to (2.29)
can be constructed by using the Fourier transform exactly, we see that there
exists a ve W2(R})"N W2 (RY])" of the equation (2.29). Since v also satisfies
the variational equation (2.34), the uniqueness assertion (2) implies that u = v,
which implies that u e W2(R')" N W (RY)". ]

3. The bent half-space problem

Let w:R"' — R be a function in #*(R""), where #*(R""") (k= 0)
denotes the set of all bounded functions whose derivatives up to k are also
bounded almost everywhere in R"'. Let H be the bent half space with
boundary 0H defined by

(3.1) H={x=(x,x)eR"|x,>ox),x" = (x1,...,X,_1) e R" '},

(3.2) 0H ={x=(x",x,) eR"|x, = w(x"),x" e R" '}

The unit outer normal v = ‘(vy,...,v,) of 0H is defined by

(33) v=V'o,-)/\/1+ Vo Vo=, . 0 0), =0/,
In this section, we consider the bent half-space problem:

(3.4) (A—MNu=f+V-F in H,

—(curlu)v]oy = (9 + Fv)ops veulpy =0,
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where F and g satisfy the condition:
(3.5) v-(Fv)lpp =0 and  v-g|;; =0.
Theorem 3.1. Let w(x') € #*(R™") and set

loll = " ozl gy, 05 =07 .00, o = (o, o1).
| <3
Let H be a bent half space defined by (3.1). Let 1 < p< oo and 0 < e <m/2.
Then, there exist constants K = K(p,e,n) € (0,1) and Lo = 2o(p,&,n,||o|) = 1
possessing the following properties:

(1) If Vol g1)SK, then for every ieZX, with |2 z5k, [=
Sy Ju) € Ly(H)", F=(Fy)e WHH)"™" and g="(g1,...,9.) € W,'(H)"
which satisfy (3.5), the bent half-space problem (3.4) admits a unique solution
ue %2(H)". This solution satisfies the a priori estimates (1.3) and (1.4) with
Q = H for some constant C = C(p,¢&,n,|o|) = 1.

(2) If we assume that [ € W,"(H)", F e W \(H)"™", ge W' (H)" and
we B3 (R") for some integer m = 1 additionally, then ue W,"**(H)".

Proof. Let u="'(uy,...,u,) be a solution to (3.4), which is written
conponentwise as follows:

(3.6) (b= My = fi+ > 0cFp in H,
k=1
(3.7) — > (Oku — dux)vi = g+ Y Fyxwe  on oH,
k=1 =
(3.8) kauk =0 on 0H,
k=1

where j=1,...,n and d; = J/0dx;. Since v, # 0, by (3.5) we see that the nth
component of equations in (3.7) is automatically satisfied if other boundary
conditions are satisfied. Therefore, as the boundary condition, we adopt (3.7)
with j=1,...,n—1 and (3.8), below. Using the change of variable:

(39) y/:x/7 jzlv"'an_la yn:xﬂ_w(xl):xﬂ_w(yl)a

we will reduce the problem in the bent half space H to that in the half-space.
In fact, since

0
(3.10) = —wj——, =101 =
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where ;= dw/dx;, if we set wi(x)=u(y), f(x)=f(y), Fyx) —F,j(y),
g;(x) :gj(y) and v;(x) = 7;(»), the problem (3.6), (3.7) with j=1,...,n—1
and (3.8) are reduced to the equation:

n—1
(311) (A= Miy = f,+ Y ok(Fpi — oxnily)

k=1
B n—1 B n—1
+ an F(n - Zka/k - Zwkakﬁ/ + |V/Cl)|2ani2/ in Ri,
k=1 k=1

n—1
(3.12)  Ouily = —7V,'G; + > ooyl —

+ Vol Onlj + ;0 (un Zwkukﬂ on R{,

n—1 n—1
F, — E o Fir — E 0k Ok
=1 =1

(3.13) ity — Y ey =0 on Ry,

where / =1,...,n, j=1,....,n—1, 0y = 62w/6yj6yk, 0; = 0/0y;, and we have
used the formula:

n—1
ajun:Z@(wkﬁk) on R for j=1,...,n—1,
k=1

which follows from (3.13). If we set
(3.14) g=iy, j=Ll..n—1  vy=iy— Y o,
k_

then (3.11) to (3.13) is reduced to the equations:

n—1 n—1 n—1
(3.15) (A= =fi+ > ok(Fx — wxbpvy) + 0y (F, = oiFi =Y oxdin;

k=1 k=1 k=1

+ |V’a)|26nvj + a)jﬁnvn> — a)jﬁﬁvn in R,

(3.16) vy =1/ 1+ |V'o| g,—i—Zw]kvk—

2
+ V0| 0,0, +cq,~6,,vn] on Ry,

—1 n—1

Fy — E o Fy — E WK OkY;
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—1
(A7) (A=, = f, - Zwkfk—&-ZOk{ nk—Zw/F/k—Zwkﬁ vn}

/=1
B n—1
+an an*Z F/11+Fn/ Zw/ka/k
/=1 k,/=1
n—1 n—1
) ~

+ Vol *opon+ Y oaFu— Y 2010040
k=1 k=1
n—1

+ (A @), + Z[Z(V’w;) - (V'vy) + (4" wy)v/] in R,

(3.18) v, =0 on Ry, on Ry,
where
n—1 n—
8,[21;,, = 621),,/6365, (V'wy) - (Vo) = (0rwy)orvy, Aw, = Z&iv/.
k=1

By (3.17) we write (1+|V'w|*)é;v, in terms of f£,F,G,Vv and Vv
(j=1,...,n—1) and we insert this formula into the right hand side of (3.15)
and (3.17). Using the fact:

n—1 n—1

(319)  Fu— > ox(Fuc+ F) + Y oxw/Firl,_g=v- (Fv)|py =0
k=1 k, /=1

which follows from (3.5), finally we arrive at the half space problem:

(320) (2 —A)v; = A;(f,F,v) +Zak By(F,v)] inR", j=1,....nm
k=1
Onvj = Ej(g,v) — Bju(F,v), on R, j=1,....n—1;
vy =0 on Ry,

where x; = w;(1 + Vo)

:

—1 n—1
a/’KJ F.,— § omF,
/=1 m=1

A(f,Fy) = f+'<]<fn Zm)
/=1

—1 —1
Z Kjw/m me — Kj(Avy) — Zﬁﬂcjawn + ZZ (0rkj)ws 0,0y

/,m=1 = /=1

n—1 n—1

_9 Z Kj@my OpUp + 1(A' )00, + K; 2{2 (V'wys) - (Vo) + (A'ws)vs}s
/,m=1 /=1
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n—1

n—1
An(f7F7 U) (1 + |V CU| [f;, Zw/f/ Z w(mFm/ - Z 2(1)/,77(1)/6,117,”

/,m=1 /,m=1

n—1
+ (A 0)owvn+ Y _{2(V'ey) - (V'vr) + (A'w/)v/}]

n—1 n—1 —1
- Z(ak(l + |VICU|2)1)< nk — Zw/F/k> + 22 (0x(1 + V') ok dpvn

k=1 /=1 k=1
n—1
+IV' (1 + Vo)™ (o) + D @Vl (1 + V'ol*) ™) dkww;
k=1

—1
Bjk(Fa U) /k + Kj ( Z /F/k> + Kj akvn 260/(611011) - wkanvj;

—_

n— n—1
Bjn<F, l)) = F}n - CO/FJ'/ - waa/vj + ‘V’COlzant + COjanl)n
1 /=1

~
I

n—1

n—1
F, — /Z]w/(F/n + Fn/) + /Z] wrOmFne
= / m=

)

+Kj

n—1

1|~ z : I ’2

Elk - C()/I:/k - 2wkanvn - |V C0| 6kvn‘| ;
(=1

By (F,v) = (1+ |V'o|*)

n—1

n—
an - ;w/(F/n + Fn/) + /Zl a)/men(

n—1
Ej(g,0) = \/1+ V'o*§+ Y o
/=1

and jk=1,....n—1.

If v is a solution to (3.20), then defining # by (3.14) in terms of v and
setting u(x) = @(y) by (3.9), we see that u is a solution to (3.4). Therefore, we
shall solve (3.20) by the contraction mapping principle, below. To do this,
given v € I/K,z(Ri), we consider the half-space problem:

)

Bu(F,0) = (1+|V'w|*)™

(3.21) (A=Mw=A(f,F,v)+V - B(F,v) in R,
—(curl w)vy = E(g,v) + B(F,v)vy on Ry,
where vy = (0,...,0,—1),
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A(vavU) = t(A](f,F,U),...,An(f,F,U)), B(F,D) = (Bik(FaU))v
E(g,l}) = t(El (gvv)a e 7En—1(gav)70)'

For the notational simplicity, we set K; = ||[V/o)| LY J=1,2,3. Since we
will choose K small enough, we may assume that K; < 1. Since B,,(F,v) =0
on Rj as follows from (3.19), we can apply Theorem 2.5 to solve (3.21), and
therefore there exists a unique solution w e V%Z(Rﬁ)” of (3.21) which satisfies
the a priori estimate:

(322) £ (0.2 RL) = CU SNy + (1 K2 IE Iy + 17 lgl

L,(0H)
+ (K + AP K + A7 Ks)2) (v, 4, R s
S, A R) < LIS Ny + IV E @)y oy + Ko+ 12DIE. 9L, o
+ (Ky + 127Ky + |27 K3) 22 (0,4, RY) s

provided that |A] = 1, where we have used (2.23). Let us define the map G by
Gv =w, and set

My = CUf Ny + IV E Dl 1y + (Ko + 14 )(F, )

L,,(H)}-
If we choose K| >0 and 4p =1 in such a way that

(3.23) CK, <1/4,  COy"*Ky+ 5 K3) < 1/4,

then noting that the equation is linear, by (3.22) we have

(3.24) 92(Gu, A, R}) < 2M; provided that .#7(v, 2, R}) < 2M),

n 1 n
(3.25) I (Gv' — Gv*, A, R}) < E/j(u‘ —v%, 2, R"),
for any 1€ X, with |l| = Ao, which implies that G is the contraction map.
Therefore, there exists a fixed point v e I/I{,l (R})" with Gv =0, which solves
(3.20). Inserting v = w into the left hand side of (3.22) and using (3.23) we see
that

~1/2
A (0,4, RE) = CUMT Ny + 1l oy + 12

gl om
20,0, RY) < CLS Ny + 2 (Fo9), 2 H)Y,

for any 1€ X, with |A| = Ao(= 1), where C = C(p,n, ¢, K, K3).
To get the higher regularity of v, we use the following lemma.

Lemma 3.2. Let 1<p<ow and i=1,....n—1. (1) If ueL,(R})
satisfies the condition: ||[“L,11HL,,(R1) < C for any h with 0 < |h| =1 with some
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constant C independent of h, then du € L,(R") and ||0iul|, gy = C. Here and
hereafter, we set

he;) — i-th
) = SO oL )

(2) If ue W'(RY), then [ ill,mry = ll0wdll, gny for any h with O <|h| = 1.

In view of Lemma 3.2, if we consider the equation for [v],, (i=1,...,
n—1 and 0<|[h 1), then what fe W!(H), Fe W?(H), ge'%z(H) and
weB*(R"") implies that dpe W2(RY). If we write d*v/dy? by using the
equation (3.20), we see also that 631;/6y36L,,(R1). Repeated use of this
argument implies the higher regularity of », which completes the proof of
Theorem 3.1. U

For the later use, finally we shall show the following regularity theorem of
the weak solution.

Lemma 3.3. Let 1< p< 0,0 <e<n/2and set Ky = ming,_, ,» Ko(q,&,n) €
(0,1), where Ko(q,e,n) (¢ = p,p') are the same constants as in Theorem 3.1.
Let A e C and assume that ve I/K,l (H)" satisfies the variational equation:

(3.26)
v, D)y +%(curl v,eurl @)y + V-0,V - @)y = (f, D)y — (F,VD)y — (9, D) spy

for any & e Wi(H)". If feL,(H)", FeW!H)"", ge W\ (H), and F and g
satisfy (3.5), then ve W2(H)" provided Vol gy =K.

Proof. Let 2y = max,—, p Ao(q, & n, ||@|), where 4o(q, ¢ n, |o|) (¢=p,p’)
are the same numbers as in Theorem 3.1. Then v satisfies the variational
equation (3.26), where A and f are replaced by 4; and f + (1 — A)v, re-
spectively. By the existence theorem of the dual problem with A= 4;, we
see that the uniqueness of the variational equation (3.26) with A = 1; holds.
On the other hand, by Theorem 3.1 with 2= 4; we know the existence of
we %z(H )" which solves the equation (3.4), where 4 and " are replaced by A
and f + (41 — A)v, respectively. Since w also satisfies the variational equation
(3.26) where A and f are replaced by A, and f + (4 — A)v, respectively, the
uniqueness implies that v = w, which means that ve VI;,Z(H ). This completes
the proof of the lemma. O]

4. The unique solvability of the variational equation in the L, framework

In this section, we discuss the unique solvability of the variational equation
(1.10) in the L, framework. We start with the following two lemmas.
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Lemma 4.1. There exists a constant C = C(Q,n) > 0 such that
2 2 2 2
(4.1) ulliwg @) = 21V - ulll @) + lleurl ul| o) + Cllullz,q)

for any ue W(Q)".
Proof. See G. Duvaut and J. L. Lions [6].

Lemma 4.2. If Q is a bounded and simply connected domain in R®, then
there exists a constant C = C(2) > 0 such that

(4.2) Hu”%/VZI(Q) = C{HV'“Hiz(g) + ||cur1u||iz(9>} Jor any ue Wzl(g)n~

Proof. To prove Lemma 4.2, we need the following proposition due to
von Wahl [24].

Proposition 4.3. Let 1 < p < o0 and G be a bounded domain in R* with
0G e C'. Then, there exists a constant C > 0 such that

(4.3) ||Vu|

Ly(Q) < C{|v- ””L,,(Q) + [[curl u| L,)(Q)} Jor any ue Vif;l (2)"

if and only if the Betti number of Q is equal to zero.

In view of Lemma 4.1, to prove Lemma 4.2 it suffices to prove that there
exists a constant C = C(Q) > 0 such that

(4.4) ||“HL2(Q) =c{|v- uHLZ(Q) + [[curl u”LZ(Q)} for any u e Wzl Q)"

We shall show (4.4) by contradiction. Suppose that (4.4) does not hold.
Then, there exists a sequence {u;} in W, (2)" such that

(4.5) lujll @) =1,
(4.6) IV will @ + lleurl w0 < 1/).

Combining (4.5), (4.6) and (4.1) implies that ||uj||W21(Q) < M for any j with some
constant M independent of j. Since 2 is bounded, passing to the subsequence
if necessary, we may assume that there exists a ue W, ()" such that

4.7) w; — u weakly in W, (Q), u;j — u strongly in L,(£).

By (4.3), (4.5), (4.6) and (4.7), we see that Vu =0 and |[ul/;,o =1. What

Vu = 0 implies that u is a constant vector, which combined with the fact that

v ulpo =0 implies that u=0. This contradicts what |[[ul|,,o) =1, which

completes the proof of Lemma 4.2. O
Set

1
B;lu, @] = AMu, D), + 3 (curl u,curl @), + (V- u,V - D),
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and by Lemma 4.1 and (2.4) we see that for any J > 0 and 0 < ¢ < 7/2 there
exists a constant ¢ = C(J,¢,2) > 0 such that there holds the estimate:

(4.8) [Bifu,ull = clullfyy o) for any ie X, with |2 26 and ue W, (Q)".

Moreover, if Q is a bounded and simply connected domain in R*, then by
Lemma 4.2 we see that there exists constant J; > 0 and ¢ = ¢(2) > 0 such that
there holds the estimate:

(4.9) |B;lu,u)| = c||u|\%4/21<Q> for any 1 e C with |1 £J; and ue W) (Q)".

In view of (4.8) and (4.9), by the Lax and Milgram theorem we have the
following theorem.

Theorem 4.4. Let 0 <e<7/2,5>0 and Q < R", n =2, be a domain sat-
isfying the Assumption 1.1.  Then, for every /. € X, with |1| =6, f € Wy ()" =
(WHQ)")', F e Ly(2)"™" and g € L1(0Q)", the variational problem (1.10) admits
a unique solution ue W (Q)".

Moreover, if Q is a bounded and simply connected domain in R®, then there
exists a constant 6, >0 such that for every i e C with |A| <8y, fe Wy, 1(Q)",
FeL,(2)"" and g€ Ly(0RQ)", the variational problem (1.10) admits a unique
solution ue W}(Q)".

5. Localization of the problem (1.1)

Let u be a solution to (1.1) and ¢ € C*(R") a cut-off function. Then, we
have

(5.1) (A—A)(pu) =A,+V -F, in Q,
(5.2) —curl(pu)v|,o = (By + Fyv)lon: v (pu)]so =0,
where

(5.3) A, =9f —F(Vo)+ (dp)u, F,=¢F —2u'(Vp), B,=pg—[(Vp)- v,

and v is suitably extended to the whole Q. In particular,
(54) v (Fpv)log = By - Vlog =0

which follows from (1.2) and the fact that v-u|,, =0. If supp ¢pNIQ = I,
then the problem (5.1) to (5.2) is the equation in R™:

(5.5) (A—A)(pu) =A,+V -F, in R".

If supp N0 = supp N R, then the problem (5.1) to (5.2) is the boundary
value problem in RY:



On a Resolvent Estimate of a System of Laplace Operators 383

(5.6) (A—=A)(pu)=A,+V - F, in R,

—curl(pu)volog = (B, + FWVO)‘R{)” Vo - ((/’u)|Rg =0.

Below, we discuss the case where supp ¢ N0Q is a really curved boundary.
In this case, we reduce the problem to that in the bent half space. Let xy € 0Q2
and # be a positive number determined later. Suppose that ¢ satisfies the
condition:

1 |x—x| <7,
5.7 =
(57) vl { 0 |x—xo| >2n.

Let T = (a;) be an orthogonal matrix such that (a,i,...,am) = —"v(xp). If
we set y = T(x — xp), then Vy =TV, with V, = /(d/0xy,...,0/0x,) and V,
"(@/dyr,...,0/0y,). Moreover, we see easily that the problem (5.1) to (5.2)
reduced to the following equation:

—_
w

(5.8) (A=A =TA,+V-[TE,'T]  in Q,
—(curl v)ul,5 = (TB, + [TF,'T|w)

o0 1o vla =0,

where  Q=T(Q—{xo}), 4y(y) =4y(x), Fy(y)=Fy(x), By(y)=B,(x),
u(y)=Tv(y) =Tv(x) and v(y) = Ta(y) = Tu(x). By the implicit function
theorem, we see that there exist small numbers &y, &; with 0 < ¢ <& =<1 and a
function p(y’) € C>'(B; (0)) such that

(5.9) QN B, (0) ={y= (¥, y) eR"[ yu=p(y'),y € B}, (0)},
QNB,(0) ={y= ()" yn) eR"|ys > p(y'),y € B, (0)},
w=Wp(y"), =D/ T+ IV Vip=(01p-- 0n1p),
p(0) =0 and (V'p)(0) = (0,...,0), where
B,(0)={yeR"|[yl<a}, B (0)={yeR""[|)]<al}
Let ¥(y') be a function in C(R"') such that y(y')=1 for |y/|<1/2
and ¥(y') =0 for |y'| = 1, and set w(y') =Y (y'/e2)p(y') for 0 <& <& < 1.
Then, we see that
(5.10) IV'ol,, gy e, ol £ e’
where
1
6h = (I 4317 ) 0 17000
2 [y<e

and c/f is a positive number depending on ||| and ||p| but independent of e;.
Under these preparations, we set
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(5.11) H={(),y:) €R" |y >(y'),y' e R},

OH ={(y",ya) eR" | yu=(y'),y' e R" '},

Y= V'w,-1)/\/1+|V'o|

If we choose # such as 0 < 45 < &, then by (5.7) to (5.9) and (5.11) we see that
v(y) = T(pu)(x) satisfies the bent half-space problem:

(5.12) (A—A)w=TA,+V-[TF,’T] in H,
—(curl V)uloy = (TBy + [TE,'T|) oy, pvloy = 0.
Moreover, it follows from (5.4) and the fact that ‘Tu =7 that
- (ITF, T\ oy = 1t~ (TBy)| oy = 0.

Finally, we consider the localization of the solutions to the variational
equation (1.10). Let ue I/Zf (Q) satisfy the variational equation (1.10). When
supp pNQ = &, gu satisfies the equation:

(5.13) (A= A)(pu) =A4,+V - F,

in the sense of tempered distribution in R”. When supp ¢ N2 = supp ¢ N Ry,
pu satisfies the variational equation:

1
(5.14)  Agu, ) +§(curl(¢u),curl P)gr + (V- (pu),V - ¥) g
= (Ap, V)gr = (Fp,V¥)go — (By, ¥)gy  for any ¥ e W) (RY).

When supp pN0Q2 is a really curved boundary, v(y) = Tu(x) satisfies the
variational equation:

(5.15) v, V) +%(curl vyeurl V), + V-0,V -¥)y

= (TA~¢’ SU)H - (TF(ﬂtT?VSy)H - (TBW W)JH

for any ¥ e VK,I,(H).

6. The proof of theorems stated in subsection 1.1

First, we shall show some a priori estimates of the solution u € %2(9)" to
(1.1). Let R be a positive large number such as Q\Br_; = R\Br_1 when Q
is a perturbed half-space and 0Q2 < Bg_; when Q is a bounded domain or an
exterior domain in R".
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Lemma 6.1. Let 1 <p< ow,0<e<n/2 and Q = R", n=2, be a domain
satisfying the Assumption 1.1. Let f e L,(Q)", F € Wp1 ()" and g € VZ,l ()"
Let ue %Z(Q)" satisfy the equation (1.1) for some e C. Then, the following
estimates hold:

(1) There exists a constant Ly = 1 such that

6.1) 2 w,2,2) = A PIS L@ + IFNL @ + 127 gL oo}
(62) 5 (,2,Q) < C{f 1,0 + % (F.9), 4 2)},

Jor L€ X, with |A| = Ao, where C = C(p,¢,2,n) > 0.
(2) When Q is an exterior domain or a perturbed half-space, for any
0 € (0,A] there exists a constant C = C(0, p,&,2,n) > 0 such that there hold

(6.3) lullwii@) = CUN Bl + 119l

ryee) Tl @0t
(6.4) [ull2i@) = CUS N, @) + 1E Do) + 14l L, 04,0}

for any Ae X, with 0 < |A| < Ao, where Qpri1 = QN Bry.
(3) When Q is a bounded domain, the estimates (6.3) and (6.4) also hold
Sor any L€ C with || < Ao, where C = C(p,e, 2,n) > 0.

Proof. First, we shall estimate u on Qg = QN Br. Given xy € Qg, let ¢
be a cut-off function whose support is contained in some neighborhood of xy.
We apply Theorem 2.1 to (5.5) when supp pN9Q2 = §; Theorem 2.5 to (5.6)
when supp ¢ N 0Q2 = supp N R’}; and Theorem 3.1 to (5.12) when supp ¢ NQ
is a really curved boundary. In the last case, we choose & so small that
C;EZ < K(p,¢&,n) in (5.10) where K(p,¢,n) is the constant given in Theorem 3.1.
Since

(6.5) HA(WHLP(Q) < Gll(f. F, u)”L,,(Q,,,)a [yl
IVEl L@ = Coll(F 1)1, 1Boll,00) = Colllgllz, o) + 1l consuppg)):
||BwHL,,(Q) < Gyll(g,u)|

L,(Q) < Gy|I(F, u)HL,,(Qw)v

L,(@Q,)’ IVByllL, @) = Coll(g: )10,

where Q, = QN supp ¢, by Theorems 2.1, 2.5 and 3.1 we see that there exist
positive constants A(xg) = 1 and C(xp) > 0 depending on xp such that

(6:6) 7 (pu 2,2) £ COO{IZ (11 1,0, + IF]

-1/
L, 14 o p>||g||L,,((7.Q)

—-1/(2
+ ull o,y + 27 ul

L,(620Nsupp ¢) }’

’ﬂpz(¢u7i?9) é C(XO){HI.HL,,(QV,) + ‘ﬂpl((F> g)>;“>Q§0> + ‘ﬂpl <u7;”7Q(ﬂ)}7
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where 1€ X, and |i| = Ao(xo). Since Qp is compact, there exists a finite
number of points x; € Qr, j=1,...,N, such that Qr = Uj]Lij' Set A =
max;<;<y Ao(x;) and C =max;<;<y C(x;). Since we may assume that
p(x) =1 on Q,, for some neighborhood Q,, of xo, we have fpj (u,2,2,) <
%’(gﬂu,/l,.()). And therefore, if we set

C=

(6.7) D= ' (2Nsupp ;) = Qg1

J

Il
=

then by (6.6) we have

A —1/2 —1/(2,
(6.8) Al (u,2,2r) < CLUAT 21, oy + I Ny oy + 127 lgll 1 o0

—1/(2,
+ [l oy + 127

“||L,,(amn)}>
3w, 2,Q8) £ C{UIS 10y + 7 (F9), 2, D) + 4 (u, 2, D)},

for AeZX, with |A| = 4, where C = C(p,e,n,R Q) >0. Next, given any
positive number 1, we consider the case when |A| < ;. Replacing A and f by
A1 and f+ (4 — A)u in the above argument, respectively, by (6.8) we have

(6.9)  lully (g = C{I, F)

[ully200 = CUS N, @) + I Do) + Nullwyi ) 3

L@ 19l o) + 1l o) + 14l 00np) b

for any 1€ C with |4] £ 4, where C = C(p,n,R,Q,7,) > 0.

Now, we shall discuss the estimate of u on QX =QNBR. Let ¢ be a
function in C*(R") such that ¢(x)=1 for |x]=Z R and ¢(x)=0 for
|x| £ R—1. Since Qr = 2 when Q is a bounded domain, the argument below
is necessary only for Q being an exterior domain or a perturbed half space.
Note that supp ¢ NQ =supp g R" when  is an exterior domain, and
supp N2 = supp ¢ N R} when Q is a perturbed half-space. Applying The-
orems 2.1 and 2.5 to (5.5) and (5.6), respectively, using (6.5) and noting that
pou=u on QF we have

(6.10) A}, 2,Q%) < COUM N, + 1l + 147 lgll,, o)

1—1/(2,
+ ||u||Lp(QRH> + |/L| . p)||MHLP(6~QHBR>l)}7

S0, 2,2%) = CORNS Ny + 4 (F.9), 2,2) + 5, (1, 2, Qri1)}

for 1€, with |1 =9, and therefore combining (6.8) and (6.10) and
inserting the estimates: |[ull, (ong,,,) = C||u||%1(QR+2) and jpl (U, 2, 2p41) =
|i|71/ 211,2(11,/1,91;“) into the resultant inequalities, we have
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—-1/2 —1/(2,
(6.11) A (2,1, 2) £ CUA IS @) + IF Il @) + 1A llgl 1, o)
—1/(2p) 41
+ |;"| v ‘fp (uv )"7 Q)}v
I, Q) = C{If |l + 7 (F29),2,2) + 121729 (u, 4, Qrin)

for A€ X, with |A]| 2 4; = 1. Choosing 4y (= 4;) so large that Clgl/(zp) <1/2
n (6.11), we have (6.1) and (6.2).

To complete the proofs of (2) and (3), first we note that for any small ¢ > 0
there exists a constant C = C(a, p,n,2) > 0 such that

(6.12) ull 1, 0np) = allVull,

)+ Cllull, g,

L,(2rs2)
(6.13) [u | W (Qrar) = U||“Hu;,2(g,z+2) + C||“HL,,(QM)-
In fact, (6.12) follows from the estimate of the trace operator:

1 1-1
(6.14) 1l eonpy < CIVull g, ull i ) + Cllul,

Ly(Qr+2)

which follows from (2.24). And, (6.13) follows from the classical interpolation
inequality:

1/2 1/2
(6.15) Il i@y < Cllullg o 1l g,

When Q is an exterior domain or a perturbed half-space, combining (6.8), (6.9)
and (6.10), inserting (6.12) and (6.13) into the resultant estimates and choosing ¢
small enough, we have (6.3) and (6.4) for any 1€ 2, with 0 < |A| < 49. When
Q is a bounded, combining (6.8) and (6.9), inserting (6.12) and (6.13) into the
resultant estimates and choosing ¢ small enough, we have also (6.3) and (6.4)
for Ae C with |A| £ Ap. This completes the proof of the lemma. O

In the course of the proof of main results, for the notational simplicity we
set

C(]B (Q) = {ve C*(Q)|supp v is compact}, k=0,
Cloy ()" = {F = (Fy) € Cpy(Q)"" | v+ (Fv)| 50 = 0},

C(IO),V(Q)n ={9="(g1,---:9n) € C(lo)((?)n |v-glag = 0}.

Lemma 6.2. Let 1<p<oo, 0<e<n/2 and Q<R", n=22, be a
domain satisfying the Assumption 1.1. Let f € C(OO)(Q)", Fe C(IO)‘V(Q)"X" and
ge C1 (Q)". Then, for any ieZX, the problem (1.1) admits a solution
ue Wz(.Q)

Moreover, if Q is a bounded and simply connected domain in R®, then the
problem (1.1) also admits a solution u € VZ)Z( )} when A e C and |} £ 61, where
01 is the same constant as in Theorem 4.4.
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Proof. 1In view of Theorem 4.4, the variational equation (1.10) admits a
unique solution u € W, (Q) for any A€ X,. Moreover, if  is a bounded and
simply connected domain in R®, then the solution ue W, () also exists for
|| £0;. What we have to prove is that the u belongs to VI@Z(Q). We start
with the case where 1 < p < 2. First of all, we shall prove that u e W,*(Qg)N
%Z(QR). In this case, from (1.10) it follows that u also satisfies the variational
equation:

1
(6.16) (u, D), + E(curl u,curl @), + (V-u,V - D),
=+ 0 =Du,®@),— (F,P)g— (9, D)0 for any @ ¢ VK,],(Q)

Let xo € Qr and ¢ be a cut-off function whose support is contained in some
neighborhood of xp. In view of (6.16), we replace 4, and . by A{;:
o(f + (1 = A)u) — F(Vp) + (4dp)u and 1 in (5.1) and (5.2), respectively. Then,
we apply Theorem 2.1 to (5.13) when supp pNQ2 = J; Theorem 2.5 to (5.14)
when supp ¢ N Q2 =supp p N R; and Lemma 3.3 to (5.15) when supp pNQ
is a really curved boundary. In the last case, we choose & >0 so small
that c/,lez < K; in (5.10), where K; is the same constant as in Lemma 3.3.
Therefore, we see that gu € W;*(Q2), which implies immediately that u € W,*(Qg).
Since Qg is bounded and 1< p <2, in particular we have ue W3 (Qg)N
W (Qgr). Especially, when Q is bounded we have ue W7 (Q)N W,*(Q), be-
cause Qr = Q.

When Q2 is an exterior domain or a perturbed half-space, we take ¢ €
C®(R") such a way that ¢(x) =1 for |x| = R and ¢(x) =0 for |x| £ R- 1.
Since we already know that u e W,*(Qg) and since both supp 4¢ and supp ke
are contained in Bg, we have 4, € L,(Q2)" N Ly(Q)", F, € W,'(Q)"" N W, (Q)""
and B, e W,'(Q)"N W) (Q)", where A4, F, and B, are the same as in (5.3).
Applying Theorems 2.1 and 2.5 to (5.13) and (5.14), respectively, we see that
pue Wi (Q)"NW?(Q)" for A€ X,. Therefore, we have u e W,*(Q2)" N W3 (Q)".

Next we consider the case where 2 < p < co. Let us set ¢ =2n/(n— 2)
when n =3 and ¢ =p when n=2. Since we know that ue W} (Q)" from
the previous argument, by Sobolev’s imbedding theorem we see that ue
Wl(Q)". Then, A),4,eL,(Q)"NLy(Q)", F,e W)™ NW}(Q)"" and
B, e qu (Q)"N W} (2)". Employing the same argument as above, by Theo-
rems 2.1 and 2.5, and Lemma 3.3 we see that ue W2(Q)"NW3(Q)". In
particular, we have the lemma when n=2 or 2< p=<g¢q and n=3. When
n=3 and g < p< oo, we set g =2n/(n—3) when n =4 and g, =p when
n=3. Since we already know that ue W?(Q)" N W2(Q)", by Sobolev’s im-
bedding theorem we see that ue qul (Q)". Therefore, repeating the same

argument as above, we see that u e quz(Q) NWE(Q)". In particular, we have
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the lemma when n=3 or ¢ < p<¢q; and n=4. Repeated use of this ar-
gument finally implies that ue %2(!)). This completes the proof of the
lemma. ]

Lemma 6.3. Let 1 < p < oo and Q = R", n = 2, be a domain satisfying the
Assumption 1.1. Let ue I/If]l (2)" satisfy the homogeneous equation:

(6.17) Au, D) g +%(Curl u,curl @) + (V-u,V- D), =0
for any @ e VW/(.Q)". If 7€ C\(—00,0], then u=0.

Moreover, when Q is a bounded and simply connected domain in R*, if . e C

"

Al £ 61, then u=0, where 6, is the same constant as in Theorem 4.4.

Proof.  Given f ="(f1,...,f,), f;€ C;°(£), by Lemma 6.2 there exists a
® e W7 (2)" which solves the equation:

and

6.18) (A—M®=f inQ,  —(cul @), =0, v |, =0.

Using (6.17) and (6.18), we have
0= (Au, @), —|—%(curl u,curl @) + (V-u,V-DP)g = (u,(A — A)D)p = (u, ),

which combined with arbitrariness of choice of f implies that u = 0. O

Lemma 64. Let 1 <p<oo,0<e<n/2,0>0and QcR", n=2 be a
domain satisfying the Assumption 1.1. Let fe€L,(2)", Fe I/Vpl ()" and
ge Wpl(.Q)". Let ue W2(Q)" satisfy the equation (1.1).  Then, there hold the a
priori estimates (1.3) and (1.4) for any A € X, with || = & with some constant C =
C(p,e,0,Q2,n) > 0.

Moreover, if Q is a bounded and simply connected domain in R*, then for
A€ C with |A| £, there hold the a priori estimates (1.7) and (1.8), where 0, is the
same constant as in Theorem 4.4.

Proof. 1In view of Lemma 6.1, (1.3) and (1.4) hold for 4 € X, with |1| = Ao,
where 49 = 1 is the constant given in Lemma 6.1.  Therefore, since [|g([, (aq) =

C|\g||%1(g) as follows from (2.23), in view of (6.3) and (6.4) it suffices to prove
that there exists a constant C such that

(6.19) el (@) = CUISF, Gl @) + 19112, 00

for any 1€, with 6 < |1] =19. We shall show (6.19) by contradiction.
Suppose that (6.19) does not hold. Then, there exist sequences {4;} — X,
with 0 < |4] < 4o, {u} = WA(@Q)", {f} « L(Q)", {F} = W}(2)"" and ¢, =
WPI(Q)" such that u; solves (1.1) with /= f;, F=F; and g =g;, and



390 T. Axivama, H. Kasal, Y. SHIBATA and M. Tsutsumi

(6.20) ||14i||L,)(QR+2) =1,
(6.21) (i Fis Gl o) + 194111, 00) < 1/7-

By (1.1), u; satisfies also the variational equation:
1
(6.22) Muj, @) + 3 (curl uj,curl @), + (V- u;,V - @),
=(f;,P)g — (F;,VP)g + (9j, P) oo for any @ ¢ Wpl,(Q).

By (6.20), (6.21) and (6.3) we have ||uj||%1(9) < M for any j with some constant
M > 0 independent of j, which implies that passing to subsequences if nec-
essary, we may assume that there exists a 1e X, with d <[4 <y and a
ue W(Q)" such that

(6.23)  u; — u weakly * in Wz;l ()", w; — u strongly in L,(Q), 4 — A

as j — oo. Passing j to oo in (6.22) and using (6.21) and (6.23), we see that
u satisfies (6.17), which combined with Lemma 6.3 implies that ¥ =0. On
the other hand, by (6.20) we see that |ul|, (o, =1, which contradicts what
u=0. Therefore, (6.19) holds.

When Q is a bounded and simply connected domain in R*, in view of
Lemma 6.3 employing the same argument as above we also see that (6.19) holds

for 2 € C with || £0;. This completes the proof of the lemma. O
Since Cfg)(2)", Cy) ,(2)" and Cj, ,(2)"" are dense in L,(Q)", whQ)"

and Wp1 (9)"", respectively, combining Lemmas 6.2 and 6.4 we see easily the
unique existence of solutions to (1.1) which satisfy the estimates (1.3) and
(1.4) for any A e X, with |1 =J. Moreover, when Q is a bounded and simply
connected domain in R?, we also see the unique existence of solutions to (I.1)
which satisfy the estimates (1.7) and (1.8) when 1€ C and || £ J;, where J;
is the same constant as in Theorem 4.4. Since Cj°(Q)" and Cj°(2)"" are
dense in L,(2)" and L,(2)"", respectively and since given g e L,(dQ) with
v-glao =0 we can construct a sequence {g;} < VI@I (2) such that v-gj|,o =0
and g; — g in L,(2) as j — oo, by (1.3), (1.7) and Lemma 6.3 we see easily
the unique existence of solutions to the variational equation (1.10) having the
estimates (1.3) and (1.7).

What we have to prove finally is that the conditions: V-f =0 in Q,
V-flao =0 and F+'F =0 imply that V-« =0 in  when g =0. Note that
what F 4 ‘F =0 implies that F satisfies the condition in (1.2), and therefore
the existence theorems which we have already proved hold under the assump-
tion that F+'F=0. To prove that V-u=0, we start with the following
definition.
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Definition 6.5. Let 1 < p < oo and 1€ C. We say that the domain Q is
(4, p)-unique if the following uniqueness assertion holds: Let u € %1 (Q) satisfy
the homogeneous equation:

(6.24) (A—Au=0 in Q  dul,n=0.

When 2 is a bounded domain, in addition we assume that
(6.25) J udx=0.
o

Then, u = 0.

Remark 6.6. (1) As we know well (cf. Miyakawa [16]), when ve L,(Q)"
and V-ve L,(2), the trace v-u|,, to the boundary 02 is well-defined and
belongs to Wpfl/” (0Q2). Moreover, we have the generalized Gauss formula:

(6.26) (v, )ag = (V-0,0)g+ (1,Vh)g  for any ¢ e C()(Q).

(2) When 1 < p < oo and 1 e C\(—o0,0], if 2 is one of domains stated in
Assumption 1.1, then @ is (4, p)-unique. Moreover, if Q is a bounded domain,
then there exists a constant d, such that @ is (4, p)-unique for 1e C with
|A| £0,. These results were proved by many authors (cf. Galdi [8], Farwig and
Sohr [7], Simader and Sohr [21]).

Lemma 6.7. Let 1 < p < oo and .e C. Assume that Q is (1, p)-unique.
Let feL,(Q)", Fe WNQ)"" and g =0 in the equation (1.1). Assume that
V.f=0in Q v-fl,o=0 and F+'F=0. Then, the solution u of (1.1)
satisfies the property: V-u=0 in Q.

Proof. By the assumption we have

(6.27) A=V -u)y=V-(f+V-F)=0 in Q,
because
voweoR) =Y °F _,
_j’kzl 0x;0x -

as follows from the antisymmetricity of F. To prove that 0,(V -u)|;o =
(v-V)(V-u);o=0, we take any ¢e Cy°(02) and consider the form:
(v-V)(V-u),0),0. Let y be a function in C(zo)(ﬁ) such that y|,, =¢. By
(6.26) we have

(v VIV -u),0)p0 = ((V-V)V-u),¥h)g + (V(V-u), Vi),
= AV -u),¥)g+ (du—V - (curl u),Vi),
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where we have used (6.27) and (1.5). Since v-u|,, =0 and (curl u)v|,, =
—Fv|;o, we can proceed as follows:

=—((A=Du, V) + (Fv,Vf) 0 + (curl u, V(VY))
~(f+V-F,V)q+ (Fv,V{)ag,

where we have used the antisymmetricity of curl # which implies that (curl u,
VVy))o=0. Since V-f=01in  and v- f|,o =0, we have (f,Vy), =0.
On the other hand, since (F,V(Vy)), = 0 as follows from the antisymmetricity
of F, we have (V- F, V), = (Fv,V{),o, and therefore ((v-V)(V -u), ), =0
for any ¢ e C;°(0L2). This implies that (v-V)(V -u)|,o =0. When Q is a
bounded domain,

J V~udx:J v-udo=0,
Q

0Q

which follows from the fact that v-u|,, =0. Therefore, the (4, p)-uniqueness

of Q implies that V-u =0 in ©. This completes the proof of the lemma.
Combining Remark 6.6 and Lemma 6.7, we can complete the proof of

Theorems 1.2, 1.4 and 1.5. O]
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