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Abstract. This paper studies the initial value problem of Boussinesq-type system
which describes the motion of water waves. We show the time local well-posedness
in the weighted Sobolev space. This is the generalization of Angulo’s work [1] from
the view of regularity. Our argument is based on the contraction mapping principle
for the integral equations after reducing our problem into the derivative nonlinear
Schrodinger system. To overcome the regularity loss in the nonlinearity, we shall
apply the smoothing effects of linear Schrodinger group due to Kenig-Ponce-Vega
[7]. The gauge transform is also used to remove size restriction on the initial data.
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1. Introduction

In this paper, we consider the initial value problem for the Boussinesq-type
system:

ou+oww+uou=0, x,teR,
(L.1) 6,v—af_u+6xu+8x(uv) =0, x,teR,
u(0,x) = up(x), v(0,x) = vo(x), xeR.

Kaup [5] proposed the system (1.1) as a model for the dynamics of the
water wave with the surface tension. In the above equations, u# and v stand for
the horizontal velocity of the fluid and the vertical displacement of the surface
from the equilibrium state, respectively. For detail on the physical background,
see e.g., Angulo [1] and Kaup [5].

As far as we know, there is only one well-posedness result about (1.1).
Angulo [1] obtained the local solution in Sobolev space H" x H:™1:0 (s > 3/2),
where

HE* = {f € 7' (R); [<)™D" [, < o0}

with {x>* = (1 +x2)“/2 and (D)’ = Z (¢>°%. His idea is based on the
energy method with the a priori estimate like
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d 3
E(””(t)”f{go + o(@)lI710) < CllOxu) ] (O 300 + [0(0)][77510)-

Therefore, one requires s > 3/2 at least so that ||0 u(?)]
Sobolev inequality.

Our concern at present paper is to construct a solution to (1.1) in the
function space with less regularity than the Angulo’s assumption. More
precisely, we show the time local well-posedness in X* = (H*" x H:~1.0)N
(H x HO9=bo) with s > sp + 0 > 1, sy > 1/2 and o > 1/2, where the well-
posedness stands for the existence, uniqueness of the solution and continuous
dependence on the initial data. From the view of regularity, this is the gen-
eralization of Angulo’s work and very close to the desired H!'? x L2 well-
posedness problem. Our idea is based on the contraction mapping principle of
the integral equation after deforming (1.1) into the system of nonlinear Schro-
dinger equations:

L 18 estimated by the

(1.2) i0,i® 4 %4® + id(u — 9)0,id® + @ (p,d® ")) =0,

where i is the imaginary unit, ¢ € C°(R) is independent of time variable, #(?
denotes 2 x 1 matrix whose components belong to C, f®(¢p,i#®, 1)) stands for
the nonlinear term which includes large order derivatives of ¢ and v') (mol-
lification of v) but does not cause the loss of derivative for #(?, and the matrix

A(u — @) is defined by
u—g 0
A(”_"’):( 0 Tw)

For the derivation of (1.2), we refer to section 2. Note that the pair of #* and
(/) is obtained by the invertible transformation of (u,v)".

To solve (1.2), we first transform it into the integral equation and apply
the contraction mapping priciple in the Banach space Yr which is defined in
section 5. Since the nonlinearity contains .#®, we encounter the difficulty
called “the loss of derivative”. To overcome it, we make use of the smoothing
property of the linear Schrodinger group U(f) = exp(it&i) due to Kenig-Ponce-
Vega [7] (This is introduced in section 3). In their work, however, one requires
the smallness on the initial data since, in the nonlinear estimate, the inclusion
LIL¥ - L*L% < L!L2 appears and the quantity || - ||L¢L;.g is not expected to be

v

small even when 7 | 0, where Hg||L¢LfTC = [|(sup;epo, 7719(t, X))l 1. To remove
this smallness condition, we take advantage of the explicit appearance of ¢ in
(1.2). More concretely speaking, when |[u — ¢l| L arises from the nonlinear
estimate by applying the smoothing property of U(¢), we take ¢ sufficiently
close to uy in H¥°NH* and T > 0 sufficiently small. Then, we can make
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||z — o] Lirz SO small that the contraction mapping principle successfully works.
We also note that the estimate of [[ull 1 Lz gives the regularlty and weight
conditions on the initial data. Although the nonlinearity /®(p,#®,v")) likely
diverges when ¢ is close to u, it is suitably estimated by fixing ¢ and then
taking 7 > 0 rather small. This is because we can explicitly derive the power
of T in the estimate of f®(p,#® v)).

Let us state our main theorem. (The notations are explained at the end of
this section.)

Theorem 1.1. (i) Let (up,vo) € (HS" x HS L) N (HS»M x HO—1a) = X9
with s > 51+ oy, s1 > 1/2 and oy > 1/2.  Then, for some T > 0, there exists a
unique solution to (1.1) such that (u(1),v(t)) € C([0,T); X*) and {x)™u e L2L%.
Furthermore, this solution satisfies the smoothing properties:

||D;71/26Xu“L§.~L§ + ||Di71/20||L§L2T < .

(i) Let (u'(t),v'(t)) be a solution to (1.1) for the initial data (u),vy) with
I1(uf, v5) — (o, v0)|lys <O. If 6 >0 is sufficiently small, then there exists some
"€(0,T) such that

1’ 0") = (@, 0) | 2, s < Cl (g, v9) = (w0, v0) x5
1D 205 (" = )l 2, < Cllg,00) = (w0, vo)ll -
1D (0" = o)l 12, < Cll(ug, v5) — (o, v0) -

This paper is organized as follows. In section 2, we discuss the transfor-
mation of the system (1.1) into the coupled nonlinear Schrédinger equations.
In section 3 and 4, we state the preliminary estimates of linear Schrédinger
group U(¢) in weighted norm spaces. In section 5, the nonlinear estimates are
presented. In section 6-8, we show the existence, uniqueness and Lipschitz
continuity of the solution on the initial data.

We close this section by introducing several notations. The quantity || - ||,
denotes the norm of a Banach space X. %(X) denotes the bounded linear
operators on X. Let LZL} and L}L? be the function spaces LZ(R;L"(0,T))
and L"(0,T; L2(R)), respectively. The fractional order derivative DY stands for
FY¢°7. In addition, the modified fractional order derivative D? is defined
by D7 =7 '¢|”(1 —n(&))F with 5(¢) € Cf° (R) such that (&) =1 if [¢] < 1
and (&) =0 if |¢] > 2.

We often use 2 x 1 vector valued functions like £(¢,x) = (fi(1,x), f2(t,x))"
and we let I£1ly = Ilfilly + |2l y- The projection P; (j = 1,2) is defined by
Pif = J-
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2. Transformation of the system

In this section, we transform the system (1.1) into the nonlinear Schro-
dinger system. Let us proceed in three steps.

Step 1 Decomposition in the Fourier space. Let n(&) € Ci°(R) with (&) =1
if [£] <1 and 7(&) =0 if |¢] > 2. In addition, we let v') = 7 'y(¢&)Fv and
v =p—p). Then, from (1.1), it follows that

A+ 00" 4 udu+ 0,01 =0,
oW 4+ (1 = F T ) (—3u + du+ 0, (uv)) = 0,
5[0(/) + !97’1;797(—63;14 + Oyt + 0x(uv)) = 0.

Let w=0,"v"(=[" ov"(y)dy). Then, the first two equations in the above
system yield

@1 6,u+6§w+u€)xu+f: 0,
) ow — Qzu 4+ udyw+g =0,

where f = 0,0 and g = u+u') + F " 'yF (0*u — u — u(d,w +v\)). We ob-
serve that f and g do not cause the loss of derivative. Also, since the symbol
of 0.'771(1 — )7 does not have a singularity, we H* if ve H*. This
is why we require the decomposition in Fourier space. Since our aim is the
reduction of regularity of the solution, let us mainly consider the transformation
of u and w.

Step 2 Diagonalization. We next diagonalize the system (2.1). Set

G )= 1) () =#(2)

Then, (2.1) is transformed into the nonlinear Schrodinger system:

22) @(MU>+< 0 ol <wm>+u@<M”>+R(g>:<0>

(1) (1)
For the simple expression of (2.2), let #) = <M—> = Q(u(l)>. Then, #!)
satisfies Wil v
(2.3) 0V —io2aV + A(w)o, i@ + O =0,
u 0 - f 1
where A(u) = , f = R( ) and u=—(uV — iwh).
w=(y o) 7 =or(’ 5 )

Step 3 Gauge Transform. In this step, we further deform (2.3) by the
gauge transformation to make the heavy term A(u)0,i(") small. This kind of
transformation sometimes appears in the study of derivative nonlinear Schro-
dinger equations (see, e.g., Hayashi [3] and Hayashi-Ozawa [4]). In our case,
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however, the direct application of the known gauge transformation does not

work so well, since u# in A(u) is not a solution to the nonlinear Schrédinger

equation and we can not expect the suitable ellimination of the heavy term.
Let ¢(x) € C{°(R) and write (2.3) as

(2.4) 3,V —i02aV + A(p)adV + A(u — p)oadV + fO =0

To eliminate A(p)d,i") in (2.4), we make use of the gauge transform defined by

- et 02 0 - "
u(2)< 0 el i = K(pa®.

4

2 and v\

Consequently satisfy

25) {iazu + 0% 1 id(u — )0, + fC < e </>):6,

0\ — 0.7 T (0*u —u — u(@xw + ) =
where f@(p, 7@, 0)) = B(p,u)id® + iK(p) fV with

1 [ =2i0.p — ¢* + 29u 0
B((p?u) :_< -9 4 A = _> _)

We note here that the relation between (u,v) and (#®, v )) is invertible. In
fact, (u,w) = R’IQ’IK((/))_]EZ(Z) and hence (u,v) = (u, d,w +v\)) e C([0, T]; X*)
if and only if both #? and v/ belong to C([0, T]; HS N H>1).  This implies
that the solution to (2.5) with #®(0,x) = K(9p) QR (uo, 0" 7 (1 — ) Fvy)" and
v)(0,x) = Z'yFuvy is immediately transformed into the solution to (1.1).
Hereafter, let us mainly seek for the solution to (2.5).

3. Preliminary estimates

In this section, we introduce several key estimates to be frequently used
in this paper. In what follows, we use the brief notation GF for fot U(t-1r)-
F(t")dt'. The smoothing property of U(z) and G plays an important role in
recovering the regularity loss of the nonlinearity.

Lemma 3.1. Let pe[2,0] and q€[2,0). Then, we have

(3.1) IDY> P U012 < CT 7|
(3.2) |DYVGF gy < CTVFl s,
(3.3) 10<GF 212 < CIF |22

(3-4) ||D>1c/2GFHL;?L% = C”F”L}L;-
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Proof of Lemma 3.1. The estimates for the case p = co in (3.1), (3.3) and
(3.4) are proved in [7; Theorem 2.1, Corollary 2.2 and Theorem 2.3]. The
interpolation yields (3.1) and (3.2) (See [2; Proposition 2.3]). [

The following lemma is the well-known Strichartz inequalities.
Lemma 3.2. Let 0<2/r;=1/2—-1/q; <1/2, (j=1,2). Then, we have
(3.5) U@l Ly < ClidllLz,

(3.6) |GF]|

L = C”F"L;Z,Ljé’
where 1/ +1/r,=1/¢2+1/q}, = 1.
Proof of Lemma 3.2. See, e.g., [12, 14]. O

By interpolating Lemma 3.1 and 3.2, we obtain another type of smoothing
property of U(#) and G.

Lemma 3.3. Let pel[6,0). Then, we have

(3.7) IDY2 U@l 0 < Cl 2
(38) ||D,>l(_6/pGF| L,’Y’Li‘"/”"‘) < CT3/2P||F||L;L§'

Proof of Lemma 3.3. Let (i710,)" = #7'¢°7 = 7! exp(z Log é)Z with
ze C and Log ¢ =log|é| +iarg £, Then, by the analogous argument as in [7],
we have

(3.9) 100 U0l ez < Ce™|]l,2,
(3.10) G700 " GF |y < CMP|F||yys  for O€R.

On the other hand, by Lemma 3.2 with py =r; =6, pj =1 and r}, =4/3, we
see that

(3.11) (7 0x) " U (1)

(3.12) I 2.) " GF|

Lers = Cenw‘”(ﬁHLg’

rers = Cenw‘”GF“L;Lﬁ
< Ce™! ||F||L4/3L|
T X

< CeT V| F| i

Note that, to show'the first inequality of (3.12), we used the Fourier multiplier
theorem for (flax)"’. Applying Stein’s interpolation [11] to the combination of
(3.9) with (3.11), and (3.10) with (3.12), we obtain Lemma 3.3. [
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Let us call || f(-,x)] L “the maximal function of f(z,x)”. We next give
the estimates for the maximal function.

Lemma 34. Let 6> 1/2 and T € (0,1]. Then, we have

(3.13) 1Tl 215 < Cligll oo,
(3.14) IGF 2z < CTV2|IF| gz

Proof of Lemma 3.4. For the estimate (3.13), see [7; Theorem 3.1]. By
(3.13), we can show (3.14) since

T
1GFl 121 < J | U@ U VF () |2’

< C||F||L1,H:-°
< CT1/2||F|\L%H\_G<0. O

For the estimate of U(#) in weighted norm spaces, we often require the
commutator estimate of D7 = # '|¢|°(1 — )% and {x)*. This is described as

Lemma 3.5. Let o,00€0,1). Then, [ﬁ§,<x>“} belongs to B(L) and
B(LLLY) for p,re|l, o).

Proof of Lemma 3.5. The commutator [DN;’ ,{x>"] has the integral kernel
like

K(x,y) = (2n) 05 - je"<H>f|:|”<1 @)Y — (),

where Os— [ stands for the oscillatory integral. Since [{x)* —{y)*| <
Clx — y|, we see that

Clx— [ iflx—y <1,

K <
K(x, )] < { Cy|x — y|7N if [x—yl>1.

Hence, Young’s inequality yields Lemma 3.5. []
We next show the commutator estimate of D? and the gauge transform.

Lemma 3.6. Let pe([l,o], 0€(0,1) and ¢ € C{°(R). Then, we have
—1 N
(3.15) 1Dge"*f 1y < C™H (1 gl YA e + D21 1| 1o)

where ﬁ;l(p = ffoc o(y)dy.
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Proof of Lemma 3.6. We write D%’ ?f as
Dge™'f = e“DIf + (D, e = fi + o

It is easy to see that [|fi[|,» < e”w“@HD;fHL;C.
To estimate f,, we note that [D? ,ea§1¢] possesses the integral kernel like

K(x.y) = (20)' 05— [ e¥lel7de(x — ) M= 317
ool [| v o] e}

=y 7llolly i -yl <1,

This yields

K (x, y) < €l 1 .
|x—y 7 if x—yl/<1.

Applying Young’s inequality, we have |faf.» < CeMQ(l + el ) Nf
Hence, we obtain the desired result. []

L
When we apply the fractional order derivative to the nonlinear term, we

require Leibniz’ type rule described in the following.

Lemma 3.7. Let g€ (0,1), a1,00 € [0,0] with 0 = g1 + 02. Also, let p,re
[1,00) and py, p2,r1,r2€ (1,00) with 1/p=1/p1+1/py and 1/r=1/ry + 1/r,.
Then, we have

(3.16) [[D7(f9) = (DIf)g = S (DI oy < CIUDT S Mo 1Dl o2z

Proof of Lemma 3.7. For the proof of this Lemma, see [8; Appendix]. [

4. Estimates in weighted norm spaces

We derive the Strichartz type estimate and the estimate of maximal func-
tion in the weighted norm spaces. It suffices to consider the case T € [0, 1].

Lemma 4.1. Let g€[0,1), ae[l/2,1), ¢’ >0+a and 0<2/r=1/2—
1/p <1/2. Then, we have

(4.1) 1D Ul zr < CT (I8l 400 + 1Bl o).

(4.2) [ DI<x>*GF|

LiLY =< CTl/z(HD;LI/zF”L;,L; + ||F‘|L2TH5")>

(4.3) [ DI<x>*GF|

L = CT1/2(HF||L?H;,,0 + |17

L%H:x)

For the case o < 1/2, we can show the following.
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Lemma 4.2. Let o€l0,1), 2€0,1/2) and 0<2/r=1/2—-1/p <1/2.
Then, we have

(4.4) IDTC U0l e < CTV2 (18]l oo + Il ges),s

(4.5) |IDI{x>*GF

1/2
Ly <CT / (IDZFl Lz + IF 2 pre),

(4.6) IDI{x>*GF

L = CTI/Z(\|F||L%H3+1/2_0 + HF”L;‘.H\‘,”“)'
Proof of Lemma 4.1. Let f(t,x) = U(t)¢(x). Then f satisfies

latf = _aif7
@7 {f<0,x> — 4.

Multiplying {x>* on both hand sides of (4.7), we have
i0,(Ce)7f) = = (D) + 20D OS + (8340 ).

Applying D? and rewriting the above relation by Duhamel’s principle, we see
that

(4.8) DI U ()¢ = U()DI{xy*$ = 2iGDI(0:(x)* 0. f) — iGD (030
= fi(t,x) + fo(t, x) + f3(¢,x).

By making use of Lemma 3.2, fi and f; are easily estimated as
Allz; 2 < Cliglges
1 Allz; 0 < CUDZ@2 U1

< CT 4l oo < CT |4l

As for the estimate of f,, we apply Lemma 3.2 and we have
(4.9) 1ll, 20 < CIDIECO U 1o
< CT'([|(0x<x>*) DZOU (D) 1212
+11DZ. >0 U (06 2.12)
< CT'2(ID70 U0l orz + TN ye0),

where 1/g € (o« —1/2,1/2). Note that, in the above estimate, the commutator
[DZ,0,{x)%] is the o — Ith order pseudo-differential operator. Using Lemma
3.1, we see that
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1allyze < CT2101] om0,
T H,

As a result, we obtain (4.1).
To prove (4.2), we first follow the analogous derivation of (4.8). Then, we
have

DI(x)*GF = G(DI(xY*F) — 2G(D(0,<x)7)0,GF)
— iG(DY(@2¢x)")GF)
= g1(t,%) + 9206, ¥) + g3 (£, ).
According to Lemma 3.2, we have
||gl||L;L': = C||D§<x>“F”L1TL§
< CT1/2||F||L;H§“’
g3l < CT||D§(5§<X>“)GF||L;L§
< CT*P||F 13 oo
< CT*P||F| 2y
It remains to estimate g,. Lemma 3.2 gives

(4.10) lg2|

Ly = CT1/2(||(6x<x>°‘)D£6xGF||L§L% + ||[D;=5X<x>a]axGF||L;Lg)
< CT'2||D30.GF || 972 + CT||GF || 1 oo,

where 1/ge€ (. —1/2,1/2). Applying Lemma 3.1 to the first term and Lemma
3.2 to the second, we have

||92||L;L£ = CTI/Z(HD;HMF”L;L; + HFHL;H;”)-

Hence, we obtain (4.2). The estimate (4.3) follows by using

T
1D20,GFlzi; < | 1020, U U1 )F ()]s
w < .

< CTHF”L?H:H/wl/z.o

in (4.10. 0O

Proof of Lemma 4.2. This is almost similar to the proof of Lemma 4.1
except for using the following estimates in (4.9) and (4.10):
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1Ml 0 < CTVA(IDZOU OBl e 12 + 1] o)
< CT'2||ll o120,
and
l92llz; 2 < CTl/z(HD;f&xGFHL%L% + ||GF||L;H:A°)
< CTV2(|DGF ||y + 1 Fl 2 o)
Hence, we obtain Lemma 4.2. []

We next prove the estimates of maximal function in the weighted norm
space. These estimates give the regularity constraint on the initial data.

Lemma 4.3. Let o€e0,1), ae[l/2,1), ¢’ >0+a and ¢" >a+1/2.
Then, we have

(411) D7 U(1)¢

L%L; S C(||¢||H\7/+1/2'0 + ||¢||H:_N°‘)’

(4.12) 1D7 < GF || 2y < CTYA(IDT Fll s + I1F | 2 o),
xX=T x=T T X
(413) DO GF iy < CTR(F L, s + IFl yor)

Proof of Lemma 4.3. We only prove the estimate (4.11) since the other
estimates in Lemma 4.3 follows similarly to the proof of Lemma 4.1. Ac-
cording to the derivation of (4.8), we see that

||D§<X>1U(t)¢||L§L; = HU(Z)D;<X>1¢||L%L¥ + 2”GD;(ax<x>a)axU(Z/)¢”L§L%
+GDI( ) Ul 12
=h+L+ 5.
By Lemma 3.4, it follows that
1< Clg o
L < CI@3D) U0z 107 o
< Cllgl .

On the other hand, applying Lemma 3.1, 3.4 and the fact that [(D>7", 3,{x)>?]
is the ¢” — 1th order pseudo-differential operator, we see that
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L < CIKD (0,00 U ()| 12 12

< C(|(0x<x>*) DY 20, U (1) g

2t ||¢||H;’v0)
< C(||D;+3/2+6U([)¢”L\4,L% + 191l o.0)

< Cllgll yerrveciis,

where 1/q > a— 1/2. Hence, we obtain (4.11). [

5. Estimates of nonlinearity

When we show the contraction mapping principle, we will require the
estirpates of HGA(u— (p)axﬁ(Z)'HL;‘(Hﬁ‘oﬂ.]{fl"‘1) and‘ ||Gf(2)||L;i(11§~°mg;'l'x1)' In this
section, we derive these nonlinear estimates. Since so many kinds of norms
appear in our argument, we first define new notations for the simple description.

Definition 5.1. Let |||g”| Yr — |HgH|initial + ”lg”lsmooth + |Hg|”10wer + |||g|||maxim’
where

Ngliniciar = ||9HL;H\Y-0 + Hg”L;H;‘"lv

I9lsmoom = 1123204l 2

+ sup [[DV* %0l 0 0600 with 6o >0 small,
oo<o<l x T
— —1/2/ N1/2—v ‘ o . §— 81 — 0

glhower = 103227 gll e + 1DV gl gy with v = 2—s)
lglmaxim = sup  [1DF<xD"gll 2

0<o<ay :

e suffix of || - [|.,:.,; suggests that this norm is for the functions whose target
The suffix of initial ts that th for the funct hose t
space coincides with that of the initial data. The norm || ||i,00m Causes the
smoothing effects as in Lemma 3.1 and 3.3. || - ||,owe is used for the lower
order derivatives and || - || ,axim 18 for the maximal functions. For the nonlinear
estimates, it suffices to see the following lemma.

Lemma 5.2. There exists some [ >0 such that
(5.1) 1D 2 (f o)1z < CI  fll 2 1D 205l 12

+CTPN flly, gl v,
(52) 1Dy 0 22 < ST Ny gl v,

(5:3) 1D (<> S 0x) 222 < CTP NS Ny, Nally, -
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When we apply the third inequalities in Lemmas 4.1-4.3 to
Gf (g, i?,v)), the estimate of | fP(p,u?,v))||; s Will appear. This
quantity is estimated as follows.

Lemma 5.3. We have
54 170,520 iy
< Cp(1+ 17 linigar + 10" Diniiia) (15 iniica + 1<D >0 i)
(55 WP @iy o) = 1P (0,87 057 i
<G (1 +_}?:1%72<(|||ﬁj(2)|||inma1 + [loz, s |||initia1)>

S2) S ‘ ‘
x (17 = 57 i + IO = o5 i)
where C, >0 is a constant which possibly diverges as ¢ — ug in HS° N H*

Proof of Lemma 5.2. We only prove (5.2) since the other inequalities
likewise follow. Applying Leibniz’s rule (Lemma 3.7), we see that

(5.6) 1Dy 2(foxg)llpare < 1D Poxgll ez + (D2 )0l i
+ CIDIfll 60 ye 1Dy 709 e g2

Note that the smoothing estimates (Lemma 3.3) is applicable to the last norm
on the right hand side of (5.6). By the simple application of Holder’s in-
equality, the first term on the right hand side of (5.6) is estimated as

(5.7) 17D 20xgl ey < I Mo 1DV 2050l 12
< ClI™ 2z 132059 1 13-

We next estimate the second term of (5.6). Holder’s inequality and Dy

D12 e B(LPLY) yield

(58)  I(Dy"21)augll i
< 1Dy 21)oxgll iz + (D2 = D7) 1)axg 12
< C (2D 2N 0 2z + CT V1 Nl 2 10+9 12
< CTVAID P D P £ e 191l 1o + €T Y21 Manasion 119 i

= CT'*I x L+ CT'?|| 1]

maxim ||| g ||| initial»



342 Naoyasu KiTa and Jun-ichi SEGATA
where 0 < v <v'. By Lemma 3.5, we have
(5.9) L < [P P fll g + N2, DA Sl s e

1/4
</ Mhower + CT 741 Miniar-

Also, by applying the interpolation H»° N H$* < H' with 1 = 0s+ (1 — 0)s
and v/ = (1 — )y for some 6 € [0,1], we see that

(5.10) 1 < C(lgll oo+ lgll o)
< Cllglinigiar-

Applying Lemma 3.5 to the third norm of (5.6), we have

(5.11) HD;:fHLg/(a—a)L;/a < Ta/3(||D§fHL§/(6*”>L; + HfHLﬁ/“””L;)

< CTP(|Kx>" DI f

L2LY + |||f|||maxim)
< CTJ/3”|f”|maxim'
Hence, by (5.6)—(5.11), we obtain Lemma 5.2. []

Proof of Lemma 5.3. The proof easily follows from the definition of
f@(p,d® v\)) (see section 2) and Lemma 3.6. []

6. Contraction mapping principle (proof of Theorem 1.1—existence)

We consider the integral equations:

(6.1)

where the initial data is given by ﬁ(z):K(go)QR(uo,ﬁ);l?’l(l—;7),971)0)’,
vo, =F 'nFuvy and (u,w) = R'Q'K(p) '#?@. We show that the map
(@,¥) is a contraction on S, , defined by

Su v.p = (ﬁ(Z)’ U(()); |Hﬁ(2) |!CYT + |||<D>(>U(/) |||initial < ZC({{OI’/ZO)’_)(Z) 7
0,20, 166> (= )l 21 < p and [[DY200P s < p

with the metric [[(@2, o)y, = @@y, + <D0 iy Where Cuo, 1) > 0
is a constant depending on the size of initial data. We note that S, , , # ¢, if
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¢ is sufficiently close to uy in H¥°NH* and p >0 is small enough. The
existence of the solution to (1.1) is the direct consequence of the proposition
given below.

Proposition 6.1. Let ¢(x) € Ci°(R) sufficiently close to uy in HS° N HM*
and p, T > 0 sufficiently small. Then, (®,¥) is a contraction map on Sy, y. -

To prove Proposition 6.1, we require several lemmas.

Lemma 6.2. There exist positive constants C(ug,vo), C,C, and f such that
(62) (@@, o), @, o)y,
< Clug, v9) + ClI<>™ (u = )| 2 1@, 0y
+ G TP (L4 1@ o)y NG, 0y
63) @@, o), w@”, o)) - (@@, "), v @, o))l
< C(IKD™ (w1 = )l 212

s— (2 ~2) (¢ ~2) (¢
+ 1D 20 | )N @, o) = @2, ),
(2 / —(2 / —(2 4
+ chﬂ(l o+ max |77, v >>||Y%)|||<u§ L) = @ o)y,

where C, may diverge as ¢ — ug in HSONH™,

Lemma 6.3. Let (i®,0)) € Sy u., with p >0 sufficiently small.  Then,
there exist p € Cy°(R) and T >0 such that

(64) [GoO™ (PR O K () 0@, 0)) = p)ll 2 <,
(6.5) 1Dy o @@®, ).y <.

Proof of Lemma 6.2. We only prove (6.2) since (6.3) likewise follows. By
Lemma 3.1 and 4.1, we see that

- / ~(2 - -

(6.6) [, ) i < CCiAS >||H;om:w + 1Dy A = p)0xid® | 12
1A~ )0, 3 o
+ TIF (9,72, 0) fia)-

Note that Lemma 5.2 yields
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©.7) DY 24— 9)0:i P s

< CIID* (=)l 1PNy, + CT U+ 1@P Ny ) E Ny,
and
(6.8) 14 = 9)0 2 3y < CTP A+ @y Py,
Combining (6.6)—(6.8) and Lemma 5.2, we have
(6.9) 12, o) lnigar < Cll(o, v0) L« + ClID™ (1 = @)l| 2 NE Iy,

+ C TP (L @2 o)y @, o)y, -

It is easy to see that
(6.10) KDY ¥ (i, 0') |lyigia
< Cli(uo, vo)llxs + CTA + 17y, + o' g 17> My, -

We next estimate [|@ (i), v))|| Note that, by Lemma 3.1(3.1) and

smooth*
3.3(3.8),
e p T - p
||| Gf(z) ((pv ﬁ<2>7 U(/))msmooth < JO H' U() U(_Z/)f(z) (¢7 ﬁ(Z)a U(/))msmoothdt/

T
< CJ 17 0.7, o

< CT||f(2)(¢a ﬁ(Z)a U(/>) HL“T’JH'\‘T‘O‘

Then, Lemma 3.1, 3.3, 5.3 and (6.7) give

(6.11) D@, o)l goos < CUT |00 + D524 — 0)0,d? 1112

llsmoot
+ T||J?<2)(§07 i, U(/))||L$H§v°)

< Cll(uo, v0)l e+ + ClI<™ (= @)l 22 172y,

+ G T+ G, O) )@, o)y,

Finally, by the simple application of Lemma 4.1-4.2 to ||@(#®,v\")) and

Lemma 4.3 to ||®(&@®?,v\")) we have

|” lower

|||maxim7

(612) (1@, 0 Nllhger + NPE, ) lipasion

< Cll(uo, vo)lly + C,T (L + 1@, )y @, o)y,

Hence, by combining (6.9)—(6.12), we obtain Lemma 6.2. [
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Proof of Lemma 6.3. Let L(p) = P, R"'O'K(p)”'. Lemma 4.3 and 5.2
yield

(6.13) 1™ (L(p) @@, 0') = 9) [ 210
< [ (Lp) U DS = 0210
+ Co TP+ 1@, o)y I ED, )y,
The first term on the right hand side of (6.13) is estimated as
1 (L) U@ = )l 1215 < IO LU @GS = F)] 1205
+ [ L) (U (1) = DFD | 21
=h+ Db,

where 3 = K(p)QR(p,d.' 7 1(1 —n)Zy)" with € C(R) sufficiently close
to v in HWONHS1# . Since Lemma 4.3 gives

—(2 -
Il < CHué ) — ¢(2>||H5,00Hi1-,9<17

we can take (¢,¥) e C° x C° close to (ug,vp) so that I} < p/3. Let us fix
(p,¢) hereafter. For the estimate of I, we observe that

I < I+ ) U) ~ DFl 1
< CT 32 0

with ¢ > 0 and o > 0 so large. Thus, for small 7" > 0, it is possible to see that
I, < p/3. Plugging these inequalities into (6.13) and taking 7 > 0 further small,
we have

1K (Lip)D@ED,0) = ) 1212 < 20/3 + Cpl1 + Clug, v0)) C(utg, v0) T
<p.

Hence, we obtain (6.4).
We next prove (6.5). By Lemma 3.1, 5.2 and 5.3, we see that

(6.14) (1D 20 @@, v )| 02 < [DIV20,U (0 1012
+ CC (= )| 2 D320, P | o2

+ CT (14 @2, o)y @D, o)y,
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We note that |DS'?0,U (t)ii(()2>||Lf 2 <p/3 for small T >0. Indeed, by
Lemma 3.1,
1Dy 20U ()it 112

<Dy 2o, U@ = 3oz + 1D 20U 0G| 11

< Cla" = 3 0 + CT PG o

<p/3.
Hence, (6.14) implies that

|DS7120, @ (U, v(/))||L§,L% < p/3+ Cp* + Cy(1 + C(ug, v0))C(uo, v0) T?
<p. O

Proof of Proposition 6.1. Let i e Sup,v0,p- Then, by using Lemma 6.2
and taking ¢ sufficiently close to up and p, T > 0 sufficiently small, we see that

I(@@®, o), ¥ @, o))y,
< C(uo, v0) + CpCug, vo) + C,T* (1 + C(ug, v0)) C(uo, o)
< 2C(uo, vo),

(@@, o), @, o)) — (@@ o)), v o Ny,
< (Cp+ C,TP (1 + Clug,vo)) (@, o)) — @, o)y,
< L@ o) - @0y,

Hence, (@, ¥) is a contraction map on Sy, s, [

7. Remark on uniqueness

Of course, the uniqueness result in Y. easily follows. This function space
is, however, so strict and complicated that we want to relax it for the simple
statement of Theorem 1.1. Let (u;,v;) (j=1,2) be the solutions to (1.1) in
C([0, T); X*) with <x>*'u; € L2L¥. According to the transformation as in sec-
tion 2, the uniqueness problem of (1.1) is reduced into that of the integral
equations (6.1). We remark that ¢ € C°(R) is not always close to uy but it
is taken as an approximation of u(7*) for some T* €[0,7]. Therefore, we
replace ¢ by ¢ at the present argument. Let T = sup{7T’ ;(ﬁ%z)(t),vm(t)) =

(iiéz)(l),vg/)(l)) for 0 << T'}, where (ﬁ](2>,vj<-/)) (j=1,2) are the solutions to
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(6.1). Note that (ﬁf),vy)) belongs to Z} defined by

Zp = {@?, o) @@, VN, < 0},
where

R ~ 1 JU
1@, 02, = 1P ot +1<PV i + <" PLRT QT K ()™ P | 2y

It is easy to see that Y} c Zj.
Our main concern in this section is to show that 7% = T by saying con-

tradiction. For this purpose, we first assume that 7% < 7. Then there exists

some 7 > 0 such that 7 =[T*,T*+1] < [0,T]. We try to measure ﬁf) - z'iéz)

and v(ll) - 0(20 with the metric of Z; defined by

z] = {@?, ) 1@, o)l 7y < o0},

where

|”(ﬁ(2>7v(/))m2;’ = ”ﬁ(Z)HLII(H’\!/Z-OQHS-1/2*")+||U(/>||L;“(H3/2v°ﬁ1-[;-1/2*">+Haxﬁ<2>”L§L,2

1/2—v= .
+ || u(z)HL?L;L with v > 0
defined in Definition 5.1. For the brief notation, we often write L'(I;X)

(resp. LE(R;L'(I))) as LjX (resp LPLY). The readers can check u;)e

LE(HYP 0 HE'P™), oy PP e LAL* and, in particular, 6vu lerLr L2,
Indeed, by applymg Lemma 3. 1 to the integral equation (6.1), we see that

(7.1) ol 2 < 1047 12

—(2 ~ —(2
< Cllg)l| o + CllAG = )03 |12

+ CTIf D@7 o) oo
Since
4G = @)0xi N g2 < T2 = D) e gy 1] oo < 0
and
17D @8, oDl im0 < Co1+ @ oG, oDl < o,

it follows from (7.1) that |0, H rzr2 < 0. Now we are ready to prove the
uniqueness result in Theorem 1 1.

Proof of Theorem 1.1 (Uniqueness). Note that "'[(,2) = ﬁ§2> — ﬁéz) and vfj/) =
0 _ (%)

vy’ — vy  satisfy
t
i == | Ul O - 92 + A~ )0

—i(7O@ ")~ fD g7, e’
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Then, by Lemma 3.1, we have
(7.2) DY 2 + 110 e
< CllA(u - @)axﬁg(lz)HL‘.Lz + CllA(u — ”Z)axﬁéz)HL;L}
+ Gl @ o) - 700" )

=L+5L+5L.

Hoélder’s inequality and the interpolation (HZ®NH/ < H?’ with o=
Oay + (1 — O)ag, £ =04+ (1 —0)4 for 0€]0,1]) yield

I < CIIKx>™ (uy — @”L%Uinaxud ||L7L27

oo gr1/2,0
7 X

L < Ct'/4||Kxyt/3- "* |\L4Lo, 1<x> 0, |

s

< o' VY i} |||Z,T (with v < v/).

By using the representation like  u10yw; — up0ywy = () — up)0 w1 +
Ox(ua(w1 — wy)) — (Oxti2) (w1 — wy), we see that

—(2 4 —(2 ’
<es%0+ggmﬁkéw4ywwmﬂywwﬁw

LfHS/Z’O)'
Plugging the estimates of I;,I, and I into (7.2), we have

(2
(7.3) nuwwmqg+w@wnmy

< C|[<x>* (uy — @) (ud o )|||z~

(2 / G
+%ﬂ0+pgwﬁhéw4ﬁwd,hmp
On the other hand, by Lemma 4.2, we observe that
v7(2 ~(2) (¢ —(2) (¢

14 1V g s < Gort (1 max 1o, Y-
From (7.3) and (7.4), it follows that

—(2 3 o ~ —(2
(7.5) M@ o)y < ClGO™ (= @)l M@ 05

—(2 3
+%ﬁ0+ggméhéhmgmd,%>y

We take @eCyP(R) close to w(T*) in HYNH*™ so that

Cl[<x>* (ur = @)l 20 < 1/4 for small 7> 0. Then, by fixing qo and letting
further small in (7.5), we see that [|(@, o/ Mz < A/2NGE, 65, and,
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hence, (11';2)(1), v§/>(t)) = (ﬁéz)(t),v(;)(t)) for t € [T*, T* +]. This contradicts to
the definition of 7*. [

8. Lipschitz’ continuity of data-solution map

Let (u},vy) € X* be the initial data of Boussinesq system with (u),v)) €
Bs(uo, v0) = {(ug, v5); I (ug, vy) — (4o, v0)||y <J}. Then, the existence of the
time local solution to this system follows from the same argument as in section
6. We denote this solution by (u(¢),v'(¢)) for t € [0,T’]. We transform (u',v')
as in section 2, i.e.,

ﬁ/(z) - K R u/’a—.lgy—] 1— yvl and v/(/) — f—l gjvl.
¢ . 7 g

Note that, in this transformation, ¢ € C;°(R) is not an approximation of u; but
is close to uy in Hf*oﬂH s Then, #'?) satisfies the integral equation:

@' = U(Z) — G{AW — )0 — if O (p,#® 0" )},
where uo(z) (x) =@'®(0,x). Taking the subtraction with the integral equation
of i, we see thdt il” = @@ — 4@ satisfy

@.1) @Y = v@ @ —al?) — G{Au — )0l + A’ —u)o i@}

+IGLFO (g, 01 = 7O g, o)},

Let us prove the stability of the solution in Theorem 1.1.

Proof of Theorem 1.1 (Continuous dependence on the initial data). Ap-
plying Lemmas 3.1, 4.1-4.3 to the first term on the right hand side of (8.1) and
employing the nonlinear estimate similar to Lemma 6.2, we observe

(2 4
@, o)y, < Cll(ug = wo, v = vo)lly-
+ CI™ (= )l gz, + 10 D 2 @, o)y,
+ T+ @, 0 )y,
TI

- / =(2) (¢
+ 1@, 6Nl M@ o)y,

where vy) v") — ) Since, by the proof of Lemma 6.3, there exists 7' > 0
such that C||0,#'? ||L9;L2’ < 1/6 for (u),v)) € Bs(up,vo) if 6 >0 is sufficiently
small, we have o

L) (¢ Lo «
N@, o)y, < Cllut — o, v — o)Ly + 3 G o)y, -

This implies the stability of the solution. []
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