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1. Introduction

This paper is concerned with equations of the form

duðtÞ
dt

¼ AuðtÞ þ Fut þ f ðtÞ; t A R;ð1Þ

where A is the generator of a strongly continuous semigroup of bounded linear

operators ðTðtÞÞtb0 on a given Banach space X , F is a bounded linear operator

from the phase space C :¼ Cð½�r; 0�;XÞ to X , ut is an element of C which is

defined as utðyÞ ¼ uðtþ yÞ for �ra ya 0, and f is an X-valued continuous 1-

periodic function with Fourier coe‰cients:

~ffk ¼
ð 1

0

e�2ikptf ðtÞdt; k ¼ 0;G1;G2; . . . :

The main problem which we consider in this paper is to find conditions

for all solutions of Eq. (1) to be periodic or asymptotic periodic. This problem

has a long history and has been considered in part by many authors, see e.g.

[4, 5, 11, 13, 16, 29, 30, 35, 39] and the references therein. On the other hand,

it arises naturally from recent studies on the existence of (almost) periodic

solutions of evolution equations (see e.g. [6, 7, 10, 17, 20, 22, 24, 25, 26, 27, 31,

32, 33, 38, 39, 40]). By the superposition principle, it is closely related to the



conditions for the inhomogeneous equations to have at least one periodic

solution, and for all solutions of the corresponding homogeneous equations to

be (asymptotic) periodic solutions.

Our plan of the paper is first to prove a new criterion for Eq. (1) to have

a periodic mild solution. Next, using this result we can apply known results

on (almost) periodic C0-semigroups to the homogeneous equations. By the

superposition principle, the combination of these two steps allows us to study

the inhomogeneous equation (1). The obtained results Theorems 3.4, 3.7, 3.15,

3.16, 3.18 extend the known ones in [15, 17, 22, 29, 30] and complement the

ones in [4, 7, 10, 21, 27, 28, 31, 40, 41].

To prove the main results in this paper we will make use of the harmonic

analysis of bounded functions (see [1, 3, 23, 38] and the references therein for

more details). The applications of the method of sums of commuting operators

into the study of almost periodic solutions of functional di¤erential equations

can be consulted in [27]. This method is based on a result by Arendt, Rabiger,

Sourour [2] a summary of which is given in the next section. To study the

homogeneous equations we will need the splitting theorem of Glicksberg and

DeLeeuw. For the reader’s convenience we summarize some notions and

results in the Apprendix.

2. Preliminaries

2.1. Notation and Definitions. In this paper we use the following notations:

N ;Z;R;C stand for the set of natural, integer, real, complex numbers, re-

spectively; X will denote a given complex Banach space. If T is a linear

operator on X , then DðTÞ stands for its domain. Given two Banach spaces

Y ;Z by LðY ;ZÞ we will denote the space of all bounded linear operators from

Y to Z and LðX ;XÞ :¼ LðXÞ. As usual, sðTÞ; rðTÞ;Rðl;TÞ are the notations

of the spectrum, resolvent set and resolvent of the operator T . The notations

BUCðR;XÞ;APðXÞ will stand for the space of all X-valued bounded uniformly

continuous functions on R and its subspace of almost periodic functions in

Bohr’s sense (see, [23]); APðXÞ is a Banach space with supremum norm. We

will denote by B the operater acting on BUCðR;XÞ defined by the formula

½Bu�ðtÞ :¼ Fut, Eu A BUCðR;XÞ. We will denote by SðtÞ the translation group

on BUCðR;XÞ, i.e., SðtÞvðsÞ :¼ vðtþ sÞ, Et; s A R, v A BUCðR;XÞ with infini-

tesimal generator D :¼ d=dt which is defined on DðDÞ :¼ BUC 1ðR;XÞ. Let M

be a subspace of BUCðR;XÞ, A be a linear operator on X. We shall denote by

AM the operator M C f 7! Af ð�Þ with DðAMÞ ¼ f f A M j Et A R; f ðtÞ A DðAÞ;
Af ð�Þ A Mg. When M ¼ BUCðR;XÞ we shall use the notation A :¼ AM. For

translation invariant subspaces MHBUCðR;XÞ we will denote by DM the

infinitesimal generator of the translation group ðSðtÞjMÞt AR in M.
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Definition 2.1. A function f : R ! X is said to be asymptotic periodic if

there exists a periodic function f 1 : R ! X such that lim t!yð f ðtÞ � f 1ðtÞÞ ¼ 0.

A C0-semigroup ðTðtÞÞtb0 is called compact for t > t0 if TðtÞ is a compact

operator for every t > t0. ðTðtÞÞtb0 is called compact if TðtÞ is compact for

each t > 0.

2.2. Commuting Operators. In this subsection we recall the notion of two

commuting operators and some related results on the spectral properties of their

sum.

Definition 2.2. Let A and B be operators on a Banach space G with non-

empty resolvent set. We say that A and B commute if one of the following

equivalent conditions hold:

i) Rðl;AÞRðm;BÞ ¼ Rðm;BÞRðl;AÞ for some (all) l A rðAÞ, m A rðBÞ,
ii) If x A DðAÞ, Rðm;BÞx A DðAÞ and ARðm;BÞx ¼ Rðm;BÞAx for some (all)

m A rðBÞ.
For y A ð0; pÞ, R > 0 we denote Sðy;RÞ ¼ fz A C : jzjbR; jargzja yg.

Definition 2.3. Let A and B be commuting operators. Then

i) A is said to be of class Sðp=2þ y;RÞ if there are positive constants y;R

such that 0 < y < p=2, and

Sðp=2þ y;RÞH rðAÞ and sup
l ASðp=2þy;RÞ

klRðl;AÞk < y;ð2Þ

ii) A and B are said to satisfy condition P if there are positive constants

y; y 0;R; y 0 < y < p=2, such that A and B are of class Sðp=2þ y;RÞ;
Sðp=2� y 0;RÞ, respectively.

If in addition, an operator A satisfying (i) in the above definition has dense

domain, it generates an analytic (strongly continuous) semigroup. In this case

A is said to be sectorial.

As usual, Aþ B is defined by ðAþ BÞx ¼ Axþ Bx with domain

DðAþ BÞ ¼ DðAÞVDðBÞ.
In this paper we will use the following norm, defined by A on the space X ,

kxkTA :¼ kRðl;AÞxk, where l A rðAÞ. It is seen that di¤erent l A rðAÞ yields

equivalent norms. We say that an operator C on X is A-closed if its graph is

closed with respect to the topology induced by TA on the product X � X . In

this case, A-closure of C is denoted by CA.

Theorem 2.4. Assume that A and B commute. Then the following

assertions hold:

i) If one of the operators is bounded, then

sðAþ BÞH sðAÞ þ sðBÞ:ð3Þ
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ii) If A and B satisfy condition P, then Aþ B is A-closable, and

sððAþ BÞAÞH sðAÞ þ sðBÞ:ð4Þ

In particular, if DðAÞ is dense in X , then ðAþ BÞA ¼ Aþ B, where Aþ B

denotes the usual closure of Aþ B.

Proof. For the proof we refer the reader to [2, Theorems 7.2, 7.3]. r

2.3. Functional di¤erential equations.

Definition 2.5. Let A be a closed linear operator on X . An X-valued

continuous function u on R is said to be a mild solution of Eq. (1) on R if for

every s,

uðtÞ ¼ uðsÞ þ A

ð t

s

uðxÞdxþ
ð t

s

½Fux þ f ðxÞ�dx; Etb s:

If A is the generator of a C0-semigroup, by [20, Lemma 2.11] this condition

is equivalent to the condition that, for every s,

uðtÞ ¼ Tðt� sÞuðsÞ þ
ð t

s

Tðt� xÞ½Fux þ f ðxÞ�dx Etb s:

Consider the homogeneous equation of Eq. (1)

duðtÞ
dt

¼ AuðtÞ þ Fut:ð5Þ

One can define the solution semigroup ðVðtÞÞtb0 on C which is defined by

VðtÞf :¼ wt, f A C, where wð�Þ is the unique solution of the Cauchy problem

wðtÞ ¼ Tðt� sÞfð0Þ þ
Ð t

0 Tðt� xÞ½Fwx�dx; Etb 0;

w0 ¼ f:

(
ð6Þ

Let G be the generator of ðVðtÞÞtb0. The characteristic operator DðlÞ of Eq.

(5) is defined by

DðlÞx :¼ ðlI � A� Fel�Þx; x A DðAÞ:ð7Þ

Moreover, we define the sets

rðDÞ :¼ fl A C : bD�1ðlÞ A LðXÞg;

sðDÞ :¼ rðDÞc and siðDÞ :¼ fx A R : ix A sðDÞg.

Lemma 2.6.

siðDÞH siðAþBÞ :¼ fx A R : ix A sðAþBÞg:
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Proof. We will follow the manner in the proof of [34, Proposition 3.6].

Let il A rðAþBÞ. Set G ¼ ðil�A�BÞ�1. For f A BUCðR;XÞ, we set

uf ¼ Gf . Then

ðil�A�BÞuf ¼ f :

Since for all x A R, ASðxÞ ¼ SðxÞA and BSðxÞ ¼ SðxÞB, we have

ðil�A�BÞSðxÞuf ¼ SðxÞðil�A�BÞuf ¼ SðxÞ f :

Therefore SðxÞGf ¼ GSðxÞ f for x A R, f A BUCðR;XÞ. On the other hand, for

fl :¼ eil�x, ðx A XÞ, we have SðxÞ fl ¼ eilxfl. Thus, we have

dGfl

dt
ðtÞ ¼ lim

h!0

SðhÞGflðtÞ � GflðtÞ
h

¼ lim
h!0

G
SðhÞ flðtÞ � flðtÞ

h

¼ G lim
h!0

SðhÞ flðtÞ � flðtÞ
h

¼ G lim
h!0

eilhflðtÞ � flðtÞ
h

¼ ilGflðtÞ;

that is, GflðtÞ ¼ eilty for some y A X . Since Gfl A DðAÞ, GflðtÞ ¼ yeilt A DðAÞ
that is y A DðAÞ. From the definition of G it follows that Gfl ¼ eil�y satisfies

½ðil�A�BÞeil�y�ðtÞ ¼ eiltx, t A R. Hence we have

ily� Ay� Fðeil�yÞ ¼ x:

Thus DðilÞ is surjective. Let x ¼ 0. Then by using the relation eilty ¼ Geilt0,

we get y ¼ 0. Thus DðilÞ is injective. Consequently there exists DðilÞ�1 A
LðXÞ, i.e., il A rðDÞ. r

Lemma 2.7. Let A be the generator of a compact semigroup. Then,

isiðDÞ ¼ sðGÞV iR, which is a finite set.

Proof. For the proof we refer the reader to [42, Lemma 5.5] and [19,

Proposition 3.2]. r

2.4. Spectrum of a function. We denote by F the Fourier transform, i.e.

ðFf ÞðsÞ :¼
ðþy

�y
e�istf ðtÞdt

ðs A R, f A L1ðRÞÞ. The Beurling spectrum of u A BUCðR;XÞ is defined to be

the following set

spðuÞ :¼ fx A R : Ee > 0 b f A L1ðRÞ; supp Ff H ðx� e; xþ eÞ; f � u0 0g;ð8Þ

where f � uðsÞ :¼
Ðþy
�y f ðs� tÞuðtÞdt.
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Example 2.8. If f ðtÞ is a 1-periodic function with the corresponding

Fourier series f @
P

k AZ
~ffke

2ikpt, then spð f Þ ¼ f2kp : ~ffk 0 0g.

Theorem 2.9. Under the notation as above, spðuÞ coincides with the set

consisting of x A R such that the Fourier-Carleman transform of u

ûuðlÞ ¼
Ðy
0 e�ltuðtÞdt; ðRe l > 0Þ
�
Ðy
0 eltuð�tÞdt; ðRe l < 0Þ

(
ð9Þ

has no holomorphic extension to any neighborhood of ix.

Proof. For the proof we refer the reader to [38, Proposition 0.5, p. 22].

r

We list some properties of the spectrum of a function, which we will need in the

sequel.

Theorem 2.10. Let f ; gn A BUCðR;XÞ, n A N such that gn ! f as

n ! y. Then

i) spð f Þ is closed,

ii) spð f ð� þ hÞÞ ¼ spð f Þ,
iii) If a A Cnf0g, spðaf Þ ¼ spð f Þ,
iv) If spðgnÞHL for all n A N , spð f ÞHL,

v) If A is a closed linear operator, f ðtÞ A DðAÞ Et A R and Af ð�Þ A BUCðR;XÞ,
then spðAf ÞH spð f Þ,

vi) spðc � f ÞH spð f ÞV supp Fc, Ec A L1ðRÞ.

Proof. For the proof we refer the reader to [38, p. 20–21]. r

As an immediate consequence of the above theorem we have the following:

Corollary 2.11. Let L be a closed subset of R. Then the set

LðXÞ :¼ fg A APðXÞ : spðgÞHLg

is a closed subspace of APðXÞ which is invariant under translations.

The following theorem is very important to derive main results in the next

section.

Theorem 2.12. A function f is 1-periodic if and only if spð f ÞH 2pZ.

Proof. For the proof we refer the reader to [3, Theorem 4.8.8]. r

3. Main results

3.1. Conditions for all solutions to be periodic. We begin this subsection by

proving a necessary and su‰cient condition for the existence of 1-periodic
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solutions to the inhomogeneous equation (1). We will extend the following

theorem for ordinary di¤erential equations, which is derived instantly by [17,

Theorem 1.2].

Proposition 3.1. Let L be a d � d matrix and f ðtÞ is a C d -valued, 1-

periodic continuous function. Then the equation _zzðtÞ ¼ LzðtÞ þ f ðtÞ has a 1-

periodic solution if and only if, for every k A Z , the equation

ð2ikp� LÞx ¼ ~ffk

has a solution x A C d .

To this purpose we will use the following two lemmas.

Let SðRÞ be the family of rapidly decreasing functions on R.

Lemma 3.2. Let A be a closed linear operator and f A SðRÞ. If u is a

bounded mild solution of Eq. (1) on R, then f � u is a classical solution to Eq. (1)

with forcing term f � f .

Proof. This lemma is proved in the similar manner in the proof of [20,

Lemma 2.12]. In fact, let us define

UðtÞ :¼
ð t

0

uðsÞds; EðtÞ :¼
ð t

0

½Fus þ f ðsÞ�ds; t A R:

Then, by definition, we have

uðtÞ ¼ uð0Þ þ AUðtÞ þ EðtÞ; t A R:

From the closedness of A, we have

ðf � uÞðtÞ ¼
ðy
�y

fðxÞdxuð0Þ þ Aðf �UðtÞÞ þ ðf � EÞðtÞ; t A R:

Since f is a rapidly decreasing function, all convolutions above are infinitely

di¤erentiable. From the closedness of A, we have that dðf �UÞ=dtðtÞ A DðAÞ,
t A R,

d

dt
Aððf �UÞðtÞÞ ¼ A

dðf �UÞ
dt

ðtÞ
� �

¼ Aððf � uÞðtÞÞ;

and

d

dt
ðf � uÞðtÞ ¼ Aððf � uÞðtÞÞ þ ðf � ðBuÞÞðtÞ þ ðf � f ÞðtÞ; t A R:
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By definition of Bu, we have

ðf �BuÞðtÞ ¼
ðy
�y

fðsÞFut�s ds

¼
ðy
�y

FðfðsÞut�sÞds

¼ F

ðy
�y

fðsÞut�s ds:

Since ut�sðyÞ ¼ uðt� sþ yÞ, y A ½�r; 0�, by the definition of a Riemann integral,

it follows that

ðy
�y

fðsÞut�s ds

� �
ðyÞ ¼

ðy
�y

fðsÞuðt� sþ yÞds

¼ ðf � uÞðtþ yÞ:

Hence, ðf � ðBuÞÞðtÞ ¼ F ððf � uÞtÞ, and

d

dt
ðf � uÞðtÞ ¼ Aðf � uÞðtÞ þ F ððf � uÞtÞ þ ðf � f ÞðtÞ: r

Lemma 3.3. If Eq. (1) has a 1-periodic mild solution u, then, for every

k A Z ,

Dð2ikpÞ~uuk ¼ ~ffk:

Proof. Let u be a 1-periodic mild solution to Eq. (1). If u is a classical

solution, it is easy to see that Dð2ikpÞ~uuk ¼ ~ffk. If u is not a classical solution,

we set w ¼ u � f, g ¼ f � f, where f is a rapidly decreasing smooth scalar

function f such that the Fourier transform Ff has support concentrated

on ð2kp� e; 2kpþ eÞ and is equal to 1 on a neighborhood of 2kp. Then by

Lemma 3.2, w is a classical solution to Eq. (1) with f replaced by g; hence

Dð2ikpÞ~wwk ¼ ~ggk. Moreover we have

~ggk ¼ Ffð2kpÞ ~ffk ¼ ~ffk;

and ~wwk ¼ ~uuk similarly. Consequently we have Dð2ikpÞ~uuk ¼ ~ffk. r

Theorem 3.4. Let A be the generator of an analytic semigroup. Then, Eq.

(1) has a 1-periodic mild solution if and only if for every k A Z , the equation

Dð2ikpÞx ¼ ~ffkð10Þ
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has solutions x A X. If xk is a solution of Eq. (10) for k A Z , thenPy
k¼�y xke

2ikpt is the Fourier series of a 1-periodic mild solution of Eq. (1).

Proof. It is su‰cient to prove the su‰ciency. To this end, let us consider

the operator D�A�B as a sum of commuting operators D and �A�B (see

[34, Lemma 3.1]). By [20, Lemma 2.8], A is sectorial, and B is a bounded

linear operator. Hence by [36, Corollary 2.2], AþB is sectorial, so

siðAþBÞ is a bounded subset of R. Meanwhile, if L is a closed subset of the

real line, then sðDLðXÞÞ ¼ iL by [20, Lemma 2.6]. Moreover by [20, Theorem

2.8], it is seen that if sðDLðXÞÞV sðAþBÞ ¼ q, for every f A LðXÞ, Eq. (1) has
a unique solution u A LðXÞ. Let N be a natural su‰ciently large number such

that

siðAþBÞH ½�N;N �:ð11Þ

Thus, if spð f ÞHRn½�N;N �, then Eq. (1) has a unique solution u with

spðuÞH spð f Þ.
Therefore, we decompose f ¼ f1 þ f2 as follows:

f1ðtÞ :¼
XN
k¼�N

~ffke
2ikpt;

f2ðtÞ :¼ f ðtÞ � f1ðtÞ:

By the above remark, Eq. (1) with f replaced by f2 has a unique 1-periodic

mild solution u2 by Theorem 2.12. On the other hand, for every �Na kaN

there exists an ~xxk such that Dð2ikpÞ~xxk ¼ ~ffk by the assumption of this theo-

rem. Thus Eq. (1) with f replaced by ~ffke
2ikpt has at least one 1-periodic

solution ~xxke
2ikpt. Consequently, Eq. (1) with f replaced by f1 has at least one

1-periodic solution u1ðtÞ ¼
PN

k¼�N ~xxke
2ikpt. By the superposition principle, Eq.

(1) has at least one 1-periodic mild solution u ¼ u1 þ u2.

Let xk be a solution of Eq. (10), k A Z, and uðtÞ the 1-periodic mild

solution for Eq. (1) in the above. Since the relation (11) holds, siðDÞH
½�N;N � by Lemma 2.6; hence, if jkj > N xk ¼ ~uuk. Set

vðtÞ ¼
X
jkjaN

ðxk � ~uukÞe2ikpt:

Since Dð2ikpÞðxk � ~uukÞ ¼ 0, vðtÞ is a solution of the homogeneous equation of

Eq. (1). Thus, wðtÞ :¼ uðtÞ þ vðtÞ is a 1-periodic mild solution of Eq. (1). If

jkj > N, we have that ~wwk ¼ ~uuk ¼ xk. If jkjaN, we have that
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~wwk ¼ ~uuk þ ~vvk ¼ ~uuk þ xk � ~uuk ¼ xk:

Hence, ~wwk ¼ xk for every k A Z. r

Remark 3.5. Since siðDÞ is bounded, Eq. (10) should have solutions at

most at finitely many k A Z, jkjaN, where N depends only of A;F .

Remark 3.6. By the same argument we can prove the above theorem for

equations of more general form:

_xxðtÞ ¼ AxðtÞ þ
ðþy

�y
dBðhÞxðtþ hÞ þ f ðtÞ; t A R;ð12Þ

where A is the generator of an analytic semigroup. This result extends a main

result of [17] and [22] to the infinite dimensional case. The analyticity of the

semigroup generated by A cannot be dropped due to the failure of the spectral

mapping theorem for linear semigroups in the infinite dimensional case (see

e.g. [8], [36]). This theorem can be generalized to cover the general case of

functional equations discussed in [27]. For periodic functional equations with

infinite delay we refer the reader to [40] for a general criterion for the existence

of periodic solutions.

In the case that instead of an analytic semigroup the operator A generates a

compact semigroup, all conclusions of Theorem 3.4 hold true from the de-

composition of the variation of constants formula.

Theorem 3.7. Let A be the generator of a compact semigroup. Then,

Eq. (1) has a 1-periodic mild solution if and only if for every k A Z , the equation

(10) has solutions x A X . If xk is a solution of Eq. (10) for k A Z , thenPy
k¼�y xke

2ipkt is the Fourier series of a 1-periodic mild solution of Eq. (1).

Proof. It su‰ces to prove the su‰ciency. To this end, we use the results

in the paper [19]. The space C is decomposed as

C ¼ SlU ; VðtÞSHS; VðtÞU HU ;

where S is a stable subspace for VðtÞ and U is finite dimensional. Let uðtÞ be

a mild solution on R of Eq. (1), and P S : C 7! S and PU : C 7! U be pro-

jections corresponding to the decomposition. The solution uðtÞ is a 1-periodic

solution if and only if P Sut and PUut are 1-periodic. Let yðtÞ be the S-valued

function defined in [21, p. 346]. Then yðtÞ is 1-periodic, and P Sut is 1-periodic

if and only if P Sut ¼ yðtÞ by [21, Propostition 4.1]. Hence uðtÞ is a 1-periodic

mild solution if and only if PUut is 1-periodic. Let dim U ¼ d, and F ¼
ðf1; . . . ; fdÞ be a basis vector of U . Then PUut ¼ FzðtÞ by a vector zðtÞ A C d .
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By [21, Proposition 4.2] there is a d-column vector x� ¼ colðx�
1 ; . . . ; x

�
d Þ,

x�
i A X �, i ¼ 1; . . . ; d, such that zðtÞ is a solution of the ordinary di¤erential

equation:

_zzðtÞ ¼ LzðtÞ þ hx�; f ðtÞi;ð13Þ

where L is a d � d matrix. Let N be a positive integer such that, if jkj > N,

then 2ikp B sðLÞ. Set

f1ðtÞ :¼
XN
k¼�N

~ffke
2ikpt; f2ðtÞ :¼ f ðtÞ � f1ðtÞ:

Consider Eq. (13) with f ðtÞ replaced by f2ðtÞ. Set gðtÞ ¼ hx�; f2ðtÞi. Then

~ggk ¼
0; jkjaN;

hx�; ~ffki; jkj > N:

�

Hence for every k A Z, the equation ð2ikp� LÞx ¼ ~ggk has a solution x A C d .

By Proposition 3.1, Eq. (13) with f ðtÞ replaced by f2ðtÞ has a 1-periodic

solution. Thus, Eq. (1) with forcing term f2 has a 1-periodic mild solution.

By repeating the argument of the proof of Theorem 3.4, Eq. (1) has at least

one 1-periodic mild solution. Hence Eq. (1) has at least one 1-periodic mild

solution.

Since siðDÞ is bounded by Lemma 2.7, the rest part is proved by repeating

the argument in the proof of Theorem 3.4. r

Remark 3.8. In the paper [21] the variation of constants formula is proved

under the following condition: F is represented as

Ff ¼
ð0

�r

dBðhÞfðhÞ; Ef A C;ð14Þ

where B : ½�r; 0� ! LðXÞ is of bounded variation with a given positive real

r > 0. Note that this result has been improved by dropping this condition in

the recent paper [28].

Let us consider conditions for all mild solutions of Eq. (1) to be 1-

periodic. We first consider conditions for all mild solutions of the equations

without delay to be 1-periodic. For this purpose we shall prove the following

lemma.

Lemma 3.9. Let A be the generator of a C0-semigroup ðTðtÞÞtb0, and f be

1-periodic. If all mild solutions of
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uðtÞ ¼ TðtÞuð0Þ þ
ð t

0

Tðt� xÞ f ðxÞdx; Etb 0;ð15Þ

are 1-periodic, all mild solutions of Eq. (15) on ð�y;yÞ are also 1-periodic.

Proof. Let u be a mild solution of Eq. (15) on ð�y;yÞ. Since u is a

mild solution of Eq. (15) on ½0;yÞ, uðtÞ ¼ uðtþ 1Þ for tb 0 from the as-

sumption of this lemma. Take a t0 < 0 arbitrary. We can choose n0 A N such

that t0 þ n0 b 0. Define a function vðtÞ :¼ uðt� n0Þ. Since f ðtÞ is 1-periodic,

the translated function vðtÞ is also a mild solution of Eq. (15) on ð�y;yÞ.
Hence, vðtþ 1Þ ¼ vðtÞ for tb 0. In particularly vðt0 þ n0 þ 1Þ ¼ vðt0 þ n0Þ,
which implies uðt0 þ 1Þ ¼ uðt0Þ. Therefore uðtÞ is also a 1-periodic for t < 0.

r

Theorem 3.10. Let A be the generator of an analytic semigroup. Then, it

is necessary and su‰cient for all mild solutions of Eq. (15) on ½0;yÞ to be 1-

periodic that the following conditions are satisfied:

i) For every k A Z the equation

ð2ikp� AÞx ¼ ~ffkð16Þ

has a solution x A X,

ii) sðAÞ ¼ spðAÞH 2ipZ , and the corresponding eigenvectors spans a dense

subspace in X .

Proof. Necessity: Since all mild solutions of Eq. (15) on ½0;yÞ are 1-

periodic, by Lemma 3.9 all mild solutions of Eq. (15) on ð�y;yÞ are also

1-periodic. By Lemma 3.3, for every k A Z, Eq. (16) is solvable. The

superposition principle yields that all mild solutions of _uuðtÞ ¼ AuðtÞ are 1-

periodic, i.e., ðTðtÞÞtb0 is 1-periodic. Hence, by [8, Theorem 2.26] sðAÞ ¼
spðAÞH 2ipZ and the set of all eigenvectors of A span a dense subset in X .

Su‰ciency: Since for every k A Z Eq. (16) is solvable, by Theorem 3.4,

Eq. (15) has at least one 1-periodic mild solution on the whole line. On the

other hand, since sðAÞ ¼ spðAÞH 2ipZ and the set of all eigenvectors of A is a

dense subset in X , by [8, Theorem 2.26], ðTðtÞÞtb0 is 1-periodic, i.e., all mild

solutions of _uuðtÞ ¼ AuðtÞ are 1-periodic. Hence, the superposition principle

yields that all mild solutions of Eq. (15) on ½0;yÞ are 1-periodic. r

Remark 3.11. However, if 1 < r, it is impossible that all mild solutions of

Eq. (1) are 1-periodic. In fact, if for f A C, VðtÞf ¼ Vðtþ 1Þf, Etb 0, then we

have f ¼ Vð1Þf. Then since 1 < r, we have ðVð1ÞfÞð�1Þ ¼ fð�1Þ. Since

Vð1Þf :¼ w1, where wð�Þ is the mild solution of Eq. (6), we have ðVð1ÞfÞð�1Þ ¼
wð0Þ ¼ fð0Þ. Thus we have fð0Þ ¼ fð�1Þ. In other words, if fð0Þ0 fð�1Þ,
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then Vð1Þf0 f. Hence ðVðtÞÞtb0 is not 1-periodic, i.e., there should be some

mild solutions which are not 1-periodic.

Remark 3.12. If A is the generator of a compact semigroup, then from the

well known knowledge of abstract functional di¤erential equations it follows

that the solution semigroup VðtÞ is compact for t > r (see [42, Proposition 2.4]).

Consequently, since dim C ¼ y, the identity VðkÞf ¼ f, Ef A C, for some k A N

never holds, i.e., there should be some mild solutions which are not 1-periodic.

However, there may happen that all mild solutions of Eq. (1) are asymptotic

periodic as shown in the next subsection.

3.2. Conditions for all solutions to be asymptotic periodic.

3.2.1. Necessary conditions. We have the following necessary conditions for

all mild solutions to be asymptotic 1-periodic. To this purpose we will use the

following proposition.

Proposition 3.13. Let f be a 1-periodic function, and u an asymtotic 1-

periodic mild solution on ½0;yÞ of Eq. (1). If uðtÞ is decomposed as uðtÞ ¼
u0ðtÞ þ u1ðtÞ for tb�r such that lim t!y u0ðtÞ ¼ 0 and u1ðtÞ is 1-periodic on

ð�y;yÞ, then u0ðtÞ is a mild solution on ½0;yÞ of Eq. (5) and u1ðtÞ is a mild

solution on ð�y;yÞ of Eq. (1) respectively.

Proof. We will follow the manner in the proof of [1, Proposition 3.4].

Since u is a mild solution on ½0;yÞ of Eq. (1),
Ð t

0 uðxÞdx A DðAÞ, Et A ½0;yÞ
and

uðtÞ ¼ uð0Þ þ A

ð t

0

uðxÞdxþ
ð t

0

½Fux þ f ðxÞ�dx:

Take an n A N such that n > r. Then u0xþn A C for x > 0, and we have

u0ðtþ nÞ þ u1ðtÞ ¼ u0ðtþ nÞ þ u1ðtþ nÞ ¼ uðtþ nÞ

¼ u0ðnÞ þ u1ðnÞ þ A

ð tþn

n

u0ðxÞdxþ
ð tþn

n

u1ðxÞdx
� �

þ
ð tþn

n

Fu0x dxþ
ð tþn

n

Fu1x dxþ
ð tþn

n

f ðxÞdx

¼ u0ðnÞ þ u1ð0Þ þ A

ð t

0

u0ðxþ nÞdxþ
ð t

0

u1ðxÞdx
� �

þ
ð t

0

Fu0xþn dxþ
ð t

0

Fu1x dxþ
ð t

0

f ðxÞdx:
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Since A is closed and F is bounded, by taking the limit as n ! y we have thatÐ t

0 u
1ðxÞdx A DðAÞ and

u1ðtÞ ¼ u1ð0Þ þ A

ð t

0

u1ðxÞdxþ
ð t

0

Fu1x dxþ
ð t

0

f ðxÞdx; tb 0:

Therefore, u1 is a mild solution on ½0;yÞ of Eq. (1). However, since u1 and f

are 1-periodic functions, u1 is a mild solution of Eq. (1) on ð�y;yÞ. By

linearity, u0ðtÞ ¼ uðtÞ � u1ðtÞ, tb�r; is a mild solution on ½0;yÞ of Eq. (5).

r

Using Proposition 3.13 and the superposition principle, we derive the

following lemma.

Lemma 3.14. All mild solutions of Eq. (1) are asymptotic 1-periodic if and

only if the following conditions satisfied:

i) Eq. (1) has a 1-periodic mild solution,

ii) All mild solutions of Eq. (5) are asymptotic 1-periodic.

Proposition 3.15. Let A be the generator of a C0-semigroup. If all mild

solutions of Eq. (1) on ½0;þyÞ are asymptotic 1-periodic, the following conditions

hold:

i) For every k A Z , Eq. (10) has a solution x A X ,

ii) The solution semigroup ðVðtÞÞtb0 is uniformly bounded,

iii) spðGÞV iRH 2ipZ.

Proof. By Proposition 3.13 there exists a 1-periodic mild solution u on

R. Hence by Lemma 3.3, Condition (i) is satisfied.

Moreover by Lemma 3.14, all mild solutions of Eq. (5) are asymptotic 1-

periodic. For a given f A C, we denote by wðt; fÞ the solution of Eq. (5)

such that w0 ¼ f. Then wðt; fÞ is decomposed uniquely as wðt; fÞ ¼ w0ðt; fÞ þ
w1ðt; fÞ, for tb�r, such that lim t!y w0ðt; fÞ ¼ 0 and w1ðt; fÞ is a 1-periodic

function on R. Then by Proposition 3.13, we have

wiðt; fÞ ¼ wið0; fÞ þ A

ð t

0

wiðx; fÞdxþ
ð t

0

Fwi
xðfÞdx; tb 0; i ¼ 0; 1:

We set

D0 ¼ f A C : lim
s!y

VðsÞf ¼ 0
n o

; D1 ¼ ff A C : Vð1Þf ¼ fg:

Then D0 and D1 are subspaces of C and D0 VD1 ¼ f0g. Moreover it is

clear that VðtÞD0 HD0 and VðtÞD1 HD1. For any f A C, we set f0 ¼ w0
0
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and f1 ¼ w1
0 . Then we have lim s!y VðsÞf0 ¼ 0 and VðtÞf1 ¼ w1

t ¼ w1
tþ1 ¼

Vðtþ 1Þf1. Hence, f ¼ f0 þ f1, f0 A D0, f1 A D1.

If n A N , then

lim
n!y

VðnÞf ¼ lim
n!y

VðnÞf0 þ lim
n!y

VðnÞf1 ¼ f1

for every f A C; hence M :¼ supn ANkVðnÞk is bounded. For tb 0, we

have VðtÞ ¼ Vð½t�ÞVðt� ½t�Þ. Since 0a t� ½t� < 1, it follows that kVðtÞka
kVð½t�Þk kVðt� ½t�ÞkaM sup0as<1kVðsÞk. Thus Condition (ii) is satisfied.

Take an ix A spðGÞV iR. Then, we have Gf ¼ ixf, for some f A C, f0 0.

Thus

VðtÞf ¼ eixtf ¼ eixtf0 þ eixtf1:

Since D0 and D1 are subspaces of C, we have eixtf0 A D0 and eixtf1 A D1. On

the other hand, we can rewrite VðtÞf ¼ VðtÞf0 þ VðtÞf1, where VðtÞf0 A D0

and VðtÞf1 A D1. Therefore, VðtÞf0 ¼ eixtf0 and VðtÞf1 ¼ eixtf1. Since f0 ¼
lim s!y e�ixsVðsÞf0 ¼ 0, we have f ¼ f1. Consequently,

f ¼ f1 ¼ Vð1Þf1 ¼ eixf1 ¼ eixf:

Since f0 0, we have ix A 2ipZ; Condition (iii) is satisfied. r

3.2.2. Su‰cient conditions. For su‰cient conditions for all mild solutions to

be asymptotic 1-periodic we have the following results.

For compact semigroups ðTðtÞÞtb0, the conditions turn out to be simple as

follows.

Proposition 3.16. Let A be the generator of a compact semigroup. Assume

further that the following conditions are satisfied:

i) For every k A Z , Eq. (10) has a solution x A X ,

ii) The solution semigroup ðVðtÞÞtb0 is uniformly bounded,

iii) spðGÞV iRH 2ipZ.

Then, all mild solutions of Eq. (1) on ½0;þyÞ are asymptotic 1-periodic.

Proof. Condition (i) guarantees the existence of a 1-periodic mild solution

on the whole line. Since A is the generator of a compact semigroup, the

operator VðtÞ is compact for t > r. Hence, sðGÞV fl : Re lb 0g consists of

finite number of normal eigenvalues, l1; l2; . . . ; lp. Moreover, C is decomposed

as follows:

C ¼ SlU ; U ¼ U1 lU2 l � � �lUp;

where Uj ¼ NððG� ljIÞmj Þ, j ¼ 1; 2; . . . ; p, and S is the stable subspace of
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VðtÞ. Condition (ii) implies VUj ðtÞ is uniformly bounded for j ¼ 1; 2; . . . ; p;

thus, Re lj ¼ 0. Since, for f A Uj ,

kVUj ðtÞfk ¼
Xmj�1

k¼0

tk

k!
ðG� ljÞkf

�����
�����;

kVUj ðtÞfk is bounded if and only if ðG� ljÞf ¼ 0; that is mj ¼ 1, and

VUj ðtÞf ¼ elj tf. Since lj A 2ipZ by Condition (iii), ðVUj ðtÞÞtb0 is 1-periodic.

Hence, VðtÞf ¼ V SðtÞP Sfþ VUðtÞPUf is asymptotic 1-periodic. Therefore,

by Lemma 3.14, this shows that all mild solutions of Eq. (1) are asymptotic 1-

periodic. r

If ðTðtÞÞtb0 is an analytic semigroup, we need an additional condition. To

this purpose, we now prove the following lemma.

Lemma 3.17. Let z be a bounded mild solution of _zzðtÞ ¼ GzðtÞ. Then we

have spðzÞH siðGÞ :¼ fx A R : ix A sðGÞg.

Proof. We will follow the manner in the proof of [20, Lemma 2.21].

Since z is a mild solution of _zzðtÞ ¼ GzðtÞ, the Fourier-Carleman transform of z

satisfies

ðlI � GÞẑzðlÞ ¼ �zð0Þ;

where Re l0 0. Assume ix A rðGÞ. Then ðlI � GÞ�1 is holomorphic in a

neighborhood of ix. Hence ẑzðlÞ has a holomorphic extension on a neigh-

borhood of ix, i.e., x B spðzÞ. r

Theorem 3.18. Let A be the generator of an analytic semigroup. Assume

further that the following conditions are satisfied:

i) For every k A Z , Eq. (10) has a solution x A X ,

ii) The solution semigroup ðVðtÞÞtb0 is uniformly bounded,

iii) siðGÞH 2pZ ,

iv) For every o A siðGÞ the limit lim t!y t�1
Ð t

0 e
�iosVðsÞf ds exists for every

f A C; or RðG� ioÞ þNðG� ioÞ is dense in C for all o A siðGÞ.
Then, all mild solutions of Eq. (1) on ½0;yÞ are asymptotic 1-periodic.

Proof. First, the existence of a 1-periodic mild solution uð�Þ to Eq. (1) is

guaranteed by Condition (i). On the other hand, Condition (ii), (iii) and (iv)

imply that the semigroup ðVðtÞÞtb0 is asymptotic almost periodic by Theorem

3.21 in Appendix. By Theorem 3.22 in Appendix there exists a decomposition

of the space C ¼ C0 lC1 such that for every f A C0 lim t!y VðtÞf ¼ 0 and

C1 is ðVðtÞÞtb0-invariant and ðVðtÞjC1
Þtb0 can be extended to a bounded

group. For every f A C1 denote zðtÞ :¼ VðtÞjC1
f. Then, z is bounded and
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uniformly continuous on R. By Lemma 3.17, we have spðzÞH siðGÞ. Hence,

by Condition (iii) it is 1-periodic. Consequentry ðVðtÞÞtb0 is asymptotic 1-

periodic. By Lemma 3.14, this shows that all mild solutions of Eq. (1) should

be the sum of the 1-periodic mild solution uð�Þ and asymptotic 1-periodic mild

solution of Eq. (5). r

To illustrate the above abstract results we will give below an example in which

the conditions (ii) and (iii) in Prroposition 3.16 can be verified.

Example 3.19.

Consider the equation

wtðx; tÞ ¼ wxxðx; tÞ þ wðx; tÞ � ðp=2Þwðx; t� 1Þ þ f ðx; tÞ;
0a Exa p; Etb 0;

wð0; tÞ ¼ wðp; tÞ ¼ 0; Et > 0;

8<
:ð17Þ

where wðx; tÞ; f ðx; tÞ are scalar-valued functions. We define the space X :¼
L2½0; p� and AT : X ! X by the formula

AT y ¼ y 00 þ y;

DðATÞ ¼ fy A X : y; y 0 are absolutely continuous; y 00 A X ;

yð0Þ ¼ yðpÞ ¼ 0g:

8<
:ð18Þ

We define F : C ! X by the formula FðjÞ ¼ �ðp=2Þjð�1Þ. In this case the

evolution equation we are concerned with is the following

duðtÞ
dt

¼ ATuðtÞ þ Fut þ f ðtÞ; uðtÞ A X;ð19Þ

where AT is the infinitesimal generator of a compact and analytic semigroup

ðTðtÞÞtb0 in X (see [42, p. 414]). Moreover, the eigenvalues of AT are 1� n2,

n ¼ 1; 2; . . . ; and since the set siðDÞ is determined from the set of imaginary

solutions of the equation

lþ p=2e�l ¼ 1� n2; n ¼ 1; 2; . . . ;ð20Þ

a simple computation shows siðDÞ ¼ f�p=2; p=2g ¼: L. As is shown in

[42, Lemma 5.8], ðG� lIÞ�1 has simple poles at L, where G is the genera-

tor of the solution semigroup ðVðtÞÞtb0. The space C is decomposed as

C ¼ NðG� ip=2ÞlNðGþ ip=2ÞlQL, where QL ¼ RðG� ip=2ÞVRðGþ ip=2Þ.
There exsist positive K and o such that kVðtÞfkaKe�otkfk for f A QL;

VðtÞf ¼ eGipt=2f for f A NðG� ðGip=2ÞÞ. Hence, ðVðtÞÞtb0 is asymptotic 4-

periodic. Let f ðx; tÞ be 4-periodic. Then spð f ÞH pZ=2 (here we consider f

as the function t 7! f ðtÞ :¼ f ð� ; tÞ A X). By our theory, it is necessary and
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su‰cient for all mild solutions of Eq. (19) to be asymptotic 4-periodic that the

following equations are solvable

Dðip=2Þu ¼ 1
4

Ð 4
0 e

�ipt=2f ðtÞdt;
Dð�ip=2Þu ¼ 1

4

Ð 4

0 e
ipt=2f ðtÞdt:

(

Moreover, if u1; u�1 are solutions of equations in the above, respectively, then

u1e
ipt=2 þ u�1e

�ipt=2 þ 1

4

X
k0G1

eikpt=2D�1ðikp=2Þ
ð4

0

e�ikpt=2f ðtÞdt

is the Fourier series of a 4-periodic mild solution of Eq. (19).

Appendix

In this Appendix for the reader’s convenience, we collect some known

notions and results on asymptotic almost periodic semigroups and the splitting

Theorem of Glicksberg and DeLeeuw which we have used above (more details

can be found in [35, Chap. 5, § 7]).

Definition 3.20. A C0-semigroup ðTðtÞÞtb0 on X is said to be asymptotic

almost periodic if for each x A X the set fTðtÞx; t A ½0;þyÞg is relatively

compact in X . (Originally, in [35, Chap. 5] this notion is referred to as the

notion of almost periodic semigroups. To distiguish this notion from our

mentioned one we refer to it as the notion of asymptotic almost periodic

semigroups.)

Theorem 3.21 ([35, Theorem 5.7.10]). Let ðTðtÞÞtb0 be a uniformly

bounded C0-semigroup on a Banach space X , with generator A, and assume that

sðAÞV iR is countable. Then the following assertions are equivalent:

i) ðTðtÞÞtb0 is asymptotic almost periodic,

ii) For every io A sðAÞV iR the limit lim t!y t�1
Ð t

0 e
�iosTðsÞx ds exists for

every x A X ,

iii) For every io A sðAÞV iR, RðA� ioÞ þNðA� ioÞ is dense in X .

The following is referred to as the splitting Theorem of Glicksberg and

DeLeeuw.

Theorem 3.22 ([35], Theorem 5.7.7]). Let ðTðtÞÞtb0 be an asymptotic al-

most periodic C0-semigroup on a Banach space X . Then there exists a direct

sum decomposition X ¼ X0 lX1 of ðTðtÞÞtb0-invariant subspaces, where

X0 ¼ x A X : lim
t!y

kTðtÞxk ¼ 0
n o

Takeshi Nishikawa, Nguyen Van Minh and Toshiki Naito324



and X1 is the closed linear span of all eigenvectors of the generator A with purely

imaginary eigenvalues. Moreover, the restriction of ðTðtÞÞtb0 to X1 extends to

an almost periodic C0-group on X1. If ðTðtÞÞtb0 is contractive, this group is

isometric.
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