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1. Introduction

This paper is concerned with equations of the form

(1) = Au(t) + Fu, + f(1), teR,

where A is the generator of a strongly continuous semigroup of bounded linear
operators (7(f)),-, on a given Banach space X, F is a bounded linear operator
from the phase space € := C([-r,0];X) to X, u, is an element of ¥ which is
defined as u,(0) = u(t+ 0) for —r <0 <0, and f is an X-valued continuous 1-
periodic function with Fourier coefficients:

1
Gio= | e roa k=0, 8142,
0

The main problem which we consider in this paper is to find conditions
for all solutions of Eq. (1) to be periodic or asymptotic periodic. This problem
has a long history and has been considered in part by many authors, see e.g.
[4, 5, 11, 13, 16, 29, 30, 35, 39] and the references therein. On the other hand,
it arises naturally from recent studies on the existence of (almost) periodic
solutions of evolution equations (see e.g. [6, 7, 10, 17, 20, 22, 24, 25, 26, 27, 31,
32, 33, 38, 39, 40]). By the superposition principle, it is closely related to the
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conditions for the inhomogeneous equations to have at least one periodic
solution, and for all solutions of the corresponding homogeneous equations to
be (asymptotic) periodic solutions.

Our plan of the paper is first to prove a new criterion for Eq. (1) to have
a periodic mild solution. Next, using this result we can apply known results
on (almost) periodic Cj-semigroups to the homogeneous equations. By the
superposition principle, the combination of these two steps allows us to study
the inhomogeneous equation (1). The obtained results Theorems 3.4, 3.7, 3.15,
3.16, 3.18 extend the known ones in [15, 17, 22, 29, 30] and complement the
ones in [4, 7, 10, 21, 27, 28, 31, 40, 41].

To prove the main results in this paper we will make use of the harmonic
analysis of bounded functions (see [1, 3, 23, 38] and the references therein for
more details). The applications of the method of sums of commuting operators
into the study of almost periodic solutions of functional differential equations
can be consulted in [27]. This method is based on a result by Arendt, Rabiger,
Sourour [2] a summary of which is given in the next section. To study the
homogeneous equations we will need the splitting theorem of Glicksberg and
DeLeeuw. For the reader’s convenience we summarize some notions and
results in the Apprendix.

2. Preliminaries

2.1. Notation and Definitions. In this paper we use the following notations:
N,Z R, C stand for the set of natural, integer, real, complex numbers, re-
spectively; X will denote a given complex Banach space. If T is a linear
operator on X, then D(T) stands for its domain. Given two Banach spaces
Y,Z by L(Y,Z) we will denote the space of all bounded linear operators from
Y to Z and L(X,X) := L(X). As usual, o(T),p(T),R(%, T) are the notations
of the spectrum, resolvent set and resolvent of the operator 7. The notations
BUC(R,X),AP(X) will stand for the space of all X-valued bounded uniformly
continuous functions on R and its subspace of almost periodic functions in
Bohr’s sense (see, [23]); AP(X) is a Banach space with supremum norm. We
will denote by % the operater acting on BUC(R,X) defined by the formula
[Bu)(t) := Fu;, Yue BUC(R, X). We will denote by S(¢) the translation group
on BUC(R,X), ie., S(t)v(s):=v(t+s), Vt,se R, ve BUC(R,X) with infini-
tesimal generator & := d/dt which is defined on D(%) := BUC'(R,X). Let ./
be a subspace of BUC(R, X), A be a linear operator on X. We shall denote by
o/, the operator 4 > f — Af(-) with D(o/,) ={f e 4 |VteR, f(t) e D(A),
Af(-) e #}. When .4 = BUC(R, X) we shall use the notation .« := .«Z,. For
translation invariant subspaces .# < BUC(R,X) we will denote by %, the
infinitesimal generator of the translation group (S(f)| ,),.g In 4.
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Definition 2.1. A function f : R — X is said to be asymptotic periodic if
there exists a periodic function f!: R — X such that lim,_.. (f(¢) — f1(#)) = 0.

A Cy-semigroup (7°(1)),s is called compact for t > to if T(¢) is a compact
operator for every t > ty. (T(t)),5, is called compact if T(t) is compact for
each 7> 0.

2.2. Commuting Operators. In this subsection we recall the notion of two
commuting operators and some related results on the spectral properties of their
sum.

Definition 2.2. Let 4 and B be operators on a Banach space G with non-
empty resolvent set. We say that A and B commute if one of the following
equivalent conditions hold:

i) R(4,A)R(u,B) = R(y, B)R(1,A) for some (all) 1€ p(A4), e p(B),
ii) If xe D(A), R(u,B)xe D(A) and AR(u,B)x = R(u,B)Ax for some (all)

we p(B).

For 0€(0,n), R> 0 we denote 2(0,R) ={ze C:|z| = R, |argz| < 0}.

Definition 2.3. Let 4 and B be commuting operators. Then
i) A is said to be of class Z(n/2 + 0, R) if there are positive constants ¢, R
such that 0 < 0 < /2, and

(2) ZX(n/2+40,R) = p(A) and sup IAR(4, 4)|| < oo,
/e X(n/2+0,R)

i) A and B are said to satisfy condition P if there are positive constants
0,0',R 0" <0<m/2, such that 4 and B are of class X(n/2+0,R),
X(n/2 —0', R), respectively.

If in addition, an operator A satisfying (i) in the above definition has dense
domain, it generates an analytic (strongly continuous) semigroup. In this case
A is said to be sectorial.

As wusual, 4+ B is defined by (4+ B)x=Ax+ Bx with domain
D(4 + B) = D(A)N D(B).

In this paper we will use the following norm, defined by 4 on the space X,
llx[l 7 := [[R(4, A)x||, where Aep(A4). It is seen that different 1€ p(4) yields
equivalent norms. We say that an operator C on X is A-closed if its graph is
closed with respect to the topology induced by 7,4 on the product X x X. In
this case, A-closure of C is denoted by C“.

Theorem 2.4. Assume that A and B commute. Then the following
assertions hold.
i) If one of the operators is bounded, then

3) o(A + B) < o(4) + o(B).



310 Takeshi NisHIkaAwA, NGUYEN Van Minh and Toshiki Narto

i) If A and B satisfy condition P, then A+ B is A-closable, and

4) o((A+ B)") c a(A) + a(B).

In particular, if D(A) is dense in X, then (A+ B)* = A+ B, where A+ B
denotes the usual closure of A+ B.

Proof.  For the proof we refer the reader to [2, Theorems 7.2, 7.3]. O
2.3. Functional differential equations.

Definition 2.5. Let 4 be a closed linear operator on X. An X-valued
continuous function u on R is said to be a mild solution of Eq. (1) on R if for
every s,

t t

w@de+ | [P+ @z, Vi

S

u(t) = u(s) + AJ
N
If A4 is the generator of a Cy-semigroup, by [20, Lemma 2.11] this condition

is equivalent to the condition that, for every s,

t

u(t) = T(t — s)u(s) +J T(1 — O)[Fuc + f(O)dE Vi>s.

S

Consider the homogeneous equation of Eq. (1)

(5) dz‘{(f) — Au(f) + Fu,

One can define the solution semigroup (¥(t)),., on % which is defined by
V(t)$p :=wy, ¢ €€, where w(-) is the unique solution of the Cauchy problem

) {wm = T(t - )$(0) + [y T(t — &)[Fwgdé, Vi=0,
wo = @.
Let 4 be the generator of (V(#)),.,. The characteristic operator 4(4) of Eq.
(5) is defined by
(7) A()x = (M — A — Fe*)x,  xeD(A).
Moreover, we define the sets
p(4) = {he C: 347 (3) e LX)},
a(4) :=p(4)° and o;(4) :={leR:ifea(4)}.

Lemma 2.6.

oi(d)coi(d+B)={,ecR:ilco(d+AB)}.
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Proof. We will follow the manner in the proof of [34, Proposition 3.6].
Let ilep(of +B). Set G=(iA—./ —B)"'. For feBUCR,X), we set
ur = Gf. Then

(i — oA — Buy = f.
Since for all £ e R, o/S(&) = S(&)o/ and BS(E) = S(E)AB, we have
(i — of — B)S(Euy = S(E)id — o — By = S(E).

Therefore S(&)Gf = GS(&)f for £ e R, f € BUC(R,X). On the other hand, for
fi=e"x, (xeX), we have S(&)f; = e”f;. Thus, we have
S(h)fi(1) = /(1)

dGf; S(h)Gfi(1) — Gfi(1)

g (= Jim I =/m G h
. S(h - fi et (1) — ,
G iy SOLO =0 _ i B0 =50

that is, Gf(t) = ey for some y e X. Since Gf; € D(#), Gf;(t) = ye'”' € D(A)
that is y € D(4). From the definition of G it follows that Gf; = ey satisfies
[(id — of — B)e™”y|(f) = ex, te R. Hence we have

ily — Ay — F(e”'y) = X.

Thus 4(iA) is surjective. Let x =0. Then by using the relation ey = Ge™0),
we get y=0. Thus 4(il) is injective. Consequently there exists A (ii)f1 €
L(X), ie., ilep(4). O

Lemma 2.7. Let A be the generator of a compact semigroup. Then,
io;(4) = a(9)NiR, which is a finite set.

Proof. For the proof we refer the reader to [42, Lemma 5.5] and [19,
Proposition 3.2]. n

2.4. Spectrum of a function. We denote by % the Fourier transform, i.e.
+00 )
(Ff)(s) = J e " (¢)dt
—0
(se R, feL'(R)). The Beurling spectrum of ue BUC(R,X) is defined to be
the following set

(8) sp(u):=={¢eR:V¥e>0 3f e L'(R),supp Zf = (& —¢&,&+¢), f *u#0},

where fxu(s) := [T f(s — tu(?)dt.



312 Takeshi NisHIkaAwA, NGUYEN Van Minh and Toshiki Narto

Example 2.8. If f(f) is a l-periodic function with the corresponding
Fourier series f ~ >, ., fie?®™, then sp(f) = {2kn : f; # 0}.

Theorem 2.9. Under the notation as above, sp(u) coincides with the set
consisting of &€ R such that the Fourier-Carleman transform of u

(7 e (Re 4> 0)
u(4) = { _OJ"OOC e’u(—t)dt, (Re <0)

has no holomorphic extension to any neighborhood of i&.

©)

Proof. For the proof we refer the reader to [38, Proposition 0.5, p. 22].
U

We list some properties of the spectrum of a function, which we will need in the
sequel.

Theorem 2.10. Let f,g9,€ BUC(R,X), neN such that g,— f as
n— oo. Then

1) sp(f) is closed,
i) sp(f(-+h)) =sp(f),
iii) 1f %€ C\{0}, sp(f) = sp(/), )
iv) If sp(gn) = A for all ne N, sp(f) = 4,
v) If A is a closed linear operator, f(t) € D(A) Yt € R and Af(-) e BUC(R,X),

then sp(.Zf) = sp(f),
vi) sp(y * f) = sp(f) Nsupp Zy, Vi) € L'(R).

Proof. For the proof we refer the reader to [38, p. 20-21]. O
As an immediate consequence of the above theorem we have the following:

Corollary 2.11. Let A be a closed subset of R. Then the set
A(X) :={ge AP(X) : sp(g) = A}
is a closed subspace of AP(X) which is invariant under translations.

The following theorem is very important to derive main results in the next
section.

Theorem 2.12. A function f is l-periodic if and only if sp(f) = 2nZ.
Proof. For the proof we refer the reader to [3, Theorem 4.8.8]. O

3. Main results

3.1. Conditions for all solutions to be periodic. We begin this subsection by
proving a necessary and sufficient condition for the existence of I1-periodic
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solutions to the inhomogeneous equation (1). We will extend the following
theorem for ordinary differential equations, which is derived instantly by [17,
Theorem 1.2].

Proposition 3.1. Let L be a d xd matrix and f(t) is a C%-valued, 1-
periodic continuous function. Then the equation Z(t) = Lz(t) + f(t) has a 1-
periodic solution if and only if, for every k € Z, the equation

(2ikn — L)x = f;,
has a solution x e C*.

To this purpose we will use the following two lemmas.
Let S(R) be the family of rapidly decreasing functions on R.

Lemma 3.2. Let A be a closed linear operator and ¢ € S(R). If u is a
bounded mild solution of Eq. (1) on R, then ¢ x u is a classical solution to Egq. (1)
with forcing term ¢ x f.

Proof. This lemma is proved in the similar manner in the proof of [20,
Lemma 2.12]. In fact, let us define

t

U(t) := J u(s)ds, E(r) := JO[FuS + f(s)]ds, teR.

Then, by definition, we have
u(t) =u(0) + AU(t) + E(1), teR.

From the closedness of A4, we have
(¢=u)(t) = JOC $()d<u(0) + A(¢ = U(1)) + (¢ = E)(1),  teR.

— 0

Since ¢ is a rapidly decreasing function, all convolutions above are infinitely
differentiable. From the closedness of 4, we have that d(¢ « U)/dt(t) € D(A),
teR,

d d(¢=U)
A ) =a(" )

= A((¢ *u)(1)),

and

di(flﬁ xu) (1) = A(($ xu)(1)) + (d+ (Bu)(1) + (p+ /) (1),  teR.

t



314 Takeshi NisHIkaAwA, NGUYEN Van Minh and Toshiki Narto

By definition of %u, we have

Since u;_5(0) = u(t — s+ 0), 0 € [-r,0], by the definition of a Riemann integral,
it follows that

Um Pt ds] (H)ZF P(s)ult — s+ O)ds

— (g u)(t+0).
Hence, (¢« (%u))(t) = F((¢ *u),), and
%(éﬁ*u)(f):A(¢*M)(f)+F((¢*u),)+(¢*f)(t)' O

Lemma 3.3. If Eq. (1) has a l-periodic mild solution u, then, for every
keZ,

AQikn)iy = f,.

Proof. Let u be a 1-periodic mild solution to Eq. (1). If u is a classical
solution, it is easy to see that A(2ikn)ix = f,. If u is not a classical solution,
we set w=ux¢, g= f «x¢p, where ¢ is a rapidly decreasing smooth scalar
function ¢ such that the Fourier transform ¢ has support concentrated
on (2kn — ¢, 2kn+¢) and is equal to 1 on a neighborhood of 2kn. Then by
Lemma 3.2, w is a classical solution to Eq. (1) with f replaced by g; hence
A2ikm)wy = g,. Moreover we have

Gi = T2k fi = fi.
and v, = i, similarly. Consequently we have A(2ikn)iy; = f,. O

Theorem 3.4. Let A be the generator of an analytic semigroup. Then, Eq.
(1) has a 1-periodic mild solution if and only if for every k € Z, the equation

(10) AQ2ikm)x = f;
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has solutions xe X. If x; is a solution of Eq. (10) for keZ, then
S xke? s the Fourier series of a 1-periodic mild solution of Eq. (1).

Proof. 1t is sufficient to prove the sufficiency. To this end, let us consider
the operator & — o/ — # as a sum of commuting operators & and —.o/ — % (see
[34, Lemma 3.1]). By [20, Lemma 2.8], .« is sectorial, and % is a bounded
linear operator. Hence by [36, Corollary 2.2], o/ + % is sectorial, so
oi(o/ + %) is a bounded subset of R. Meanwhile, if A is a closed subset of the
real line, then ¢(Z(x)) = i4 by [20, Lemma 2.6]. Moreover by [20, Theorem
2.8, it is seen that if o(Zyx)) No(/ + B) = O, for every f € A(X), Eq. (1) has
a unique solution u € A(X). Let N be a natural sufficiently large number such
that

(11) oi(/ + B) < [N, N].

Thus, if sp(f) = R\[-N,N], then Eq. (1) has a unique solution u with
sp(u) = sp(f).

Therefore, we decompose f = fi; + f> as follows:

N
ﬁ(t) — Z ﬁcem’knt’

y—
S(0) = f(1) = /i(0).

By the above remark, Eq. (1) with f replaced by f, has a unique 1-periodic
mild solution u, by Theorem 2.12. On the other hand, for every —N <k < N
there exists an X; such that A(2ikn)%; = f, by the assumption of this theo-
rem. Thus Eq. (1) with f replaced by f,e2*™ has at least one 1-periodic
solution X;e?*™ Consequently, Eq. (1) with f replaced by fi has at least one
1-periodic solution u;(f) = Z]iv: _y Xke?®m By the superposition principle, Eq.
(1) has at least one 1-periodic mild solution u = u; + u;.

Let x; be a solution of Eq. (10), k€ Z, and u(¢) the 1-periodic mild
solution for Eq. (1) in the above. Since the relation (11) holds, ¢;(4) <
[-N,N] by Lemma 2.6; hence, if |k| > N x; =i. Set

o(t) = > (xi — i) e,

k| <N

Since A(2ikn)(xx — o) =0, v(f) is a solution of the homogeneous equation of
Eq. (1). Thus, w(?) := u(z) + v(¢) is a 1-periodic mild solution of Eq. (1). If
|k| > N, we have that Wy = = x;. If |[k| < N, we have that
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Wi = Uy + Uy = Uy + X — Uy = X.

Hence, Wy, = x; for every ke Z. [l

Remark 3.5. Since o;(4) is bounded, Eq. (10) should have solutions at
most at finitely many k € Z, |k| < N, where N depends only of A4, F.

Remark 3.6. By the same argument we can prove the above theorem for
equations of more general form:

—+00

(12) x(t) = Ax(1) + J dB(n)x(t+n)+ f (1), teR,

— o0

where A is the generator of an analytic semigroup. This result extends a main
result of [17] and [22] to the infinite dimensional case. The analyticity of the
semigroup generated by A cannot be dropped due to the failure of the spectral
mapping theorem for linear semigroups in the infinite dimensional case (see
e.g. [8], [36]). This theorem can be generalized to cover the general case of
functional equations discussed in [27]. For periodic functional equations with
infinite delay we refer the reader to [40] for a general criterion for the existence
of periodic solutions.

In the case that instead of an analytic semigroup the operator 4 generates a
compact semigroup, all conclusions of Theorem 3.4 hold true from the de-
composition of the variation of constants formula.

Theorem 3.7. Let A be the generator of a compact semigroup. Then,
Eq. (1) has a 1-periodic mild solution if and only if for every k € Z, the equation
(10) has solutions xe X. If xi is a solution of Eq. (10) for ke Z, then
S xke? ™ s the Fourier series of a 1-periodic mild solution of Eq. (1).

Proof. 1t suffices to prove the sufficiency. To this end, we use the results
in the paper [19]. The space % is decomposed as

c=SeoU, V@HS<S, VHUcU,

where S is a stable subspace for ¥ (¢) and U is finite dimensional. Let u(z) be
a mild solution on R of Eq. (1), and I7%:%4 +— S and I1Y : 4 — U be pro-
jections corresponding to the decomposition. The solution u(¢) is a 1-periodic
solution if and only if 175, and ITVu, are 1-periodic. Let y(¢) be the S-valued
function defined in [21, p. 346]. Then y(z) is 1-periodic, and IT5u; is 1-periodic
if and only if 775u; = y(¢) by [21, Propostition 4.1]. Hence u(¢) is a 1-periodic
mild solution if and only if I7Vu, is 1-periodic. Let dim U =d, and & =
(¢y,...,4,) be a basis vector of U. Then ITYu, = ®z(t) by a vector z(t) € C*.
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By [21, Proposition 4.2] there is a d-column vector x* = col(xj,...,x}),
x;eX* i=1,...,d, such that z(z) is a solution of the ordinary differential
equation:

(13) (1) = Lz(1) + 7, f (1)),

where L is a d x d matrix. Let N be a positive integer such that, if |k| > N,
then 2ikn ¢ o(L). Set

filt)= Y L™ f) = 0) - ().

Consider Eq. (13) with f(¢) replaced by f2(7). Set g(¢) = {x*, f2(¢)>. Then

~ {0, [kl < N,
g = . 7
L o, k>N

Hence for every k € Z, the equation (2ikm — L)x = §, has a solution x e C¥.
By Proposition 3.1, Eq. (13) with f(¢) replaced by f>(r) has a 1-periodic
solution. Thus, Eq. (1) with forcing term f; has a 1l-periodic mild solution.

By repeating the argument of the proof of Theorem 3.4, Eq. (1) has at least
one l-periodic mild solution. Hence Eq. (1) has at least one 1-periodic mild
solution.

Since 0;(4) is bounded by Lemma 2.7, the rest part is proved by repeating
the argument in the proof of Theorem 3.4. O

Remark 3.8. In the paper [21] the variation of constants formula is proved
under the following condition: F is represented as

0
(14) Fo=| asmgin.  vhes,

where B:[-r,0] — L(X) is of bounded variation with a given positive real
r > 0. Note that this result has been improved by dropping this condition in
the recent paper [28].

Let us consider conditions for all mild solutions of Eq. (1) to be I-
periodic. We first consider conditions for all mild solutions of the equations
without delay to be l-periodic. For this purpose we shall prove the following
lemma.

Lemma 3.9. Let A be the generator of a Cy-semigroup (T(t)),~,, and f be
1-periodic. If all mild solutions of
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t

(15) u(t) = T(1)u(0) +j T(— &f(©)de, V=0,

0
are l-periodic, all mild solutions of Eq. (15) on (—o0, ) are also 1-periodic.

Proof. Let u be a mild solution of Eq. (15) on (—o0,c0). Since u is a
mild solution of Eq. (15) on [0,00), u(f) =u(t+1) for >0 from the as-
sumption of this lemma. Take a #y < 0 arbitrary. We can choose ny € N such
that 7o +n9 > 0. Define a function v(z) := u(t —ng). Since f() is 1-periodic,
the translated function v(7) is also a mild solution of Eq. (15) on (—o0, c0).
Hence, v(r+1)=0v(¢) for t+>0. In particularly v(to+no+ 1) = v(t + no),
which implies u(z + 1) = u(#). Therefore u(z) is also a 1-periodic for 7 < 0.

O

Theorem 3.10. Let A be the generator of an analytic semigroup. Then, it
is necessary and sufficient for all mild solutions of Eq. (15) on [0,0) to be 1-
periodic that the following conditions are satisfied.
i) For every ke Z the equation

(16) (2ikn — A)x = f,

has a solution x e X,
i) o(4) =0,(4) < 2inZ, and the corresponding eigenvectors spans a dense
subspace in X.

Proof.  Necessity: Since all mild solutions of Eq. (15) on [0,c0) are 1-
periodic, by Lemma 3.9 all mild solutions of Eq. (15) on (—o0, ) are also
l-periodic. By Lemma 3.3, for every ke Z, Eq. (16) is solvable. The
superposition principle yields that all mild solutions of u(f) = Au(f) are 1-
periodic, i.e., (T(t)),5, is l-periodic. Hence, by [8, Theorem 2.26] o(4) =
0,(A) = 2inZ and the set of all eigenvectors of 4 span a dense subset in X.

Sufficiency: Since for every k€ Z Eq. (16) is solvable, by Theorem 3.4,
Eq. (15) has at least one 1-periodic mild solution on the whole line. On the
other hand, since o(A4) = 6,(A4) < 2inZ and the set of all eigenvectors of A4 is a
dense subset in X, by [8, Theorem 2.26], (7'(#)),-, is 1-periodic, i.e., all mild
solutions of u(f) = Au(t) are l-periodic. Hence, the superposition principle
yields that all mild solutions of Eq. (15) on [0, c0) are l-periodic. O

Remark 3.11. However, if 1 < r, it is impossible that all mild solutions of
Eq. (1) are 1-periodic. 1In fact, if for ¢ € €, V(t)¢p = V(t + 1)¢, Vi > 0, then we
have ¢ = V(1)¢. Then since 1 <r, we have (V(1)¢)(—1)=¢(—1). Since
V(1)¢ := wy, where w(-) is the mild solution of Eq. (6), we have (V' (1)¢)(—1) =
w(0) = ¢(0). Thus we have ¢(0) = ¢(—1). In other words, if ¢(0) # ¢(—1),
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then V(1)¢ # ¢. Hence (V' (t)),5, is not l-periodic, i.e., there should be some
mild solutions which are not 1-periodic.

Remark 3.12. 1f A is the generator of a compact semigroup, then from the
well known knowledge of abstract functional differential equations it follows
that the solution semigroup V(¢) is compact for ¢ > r (see [42, Proposition 2.4]).
Consequently, since dim % = oo, the identity V' (k)¢ = ¢, V¢ € €, for some k € N
never holds, i.e., there should be some mild solutions which are not 1-periodic.
However, there may happen that all mild solutions of Eq. (1) are asymptotic
periodic as shown in the next subsection.

3.2. Conditions for all solutions to be asymptotic periodic.

3.2.1. Necessary conditions. We have the following necessary conditions for
all mild solutions to be asymptotic 1-periodic. To this purpose we will use the
following proposition.

Proposition 3.13. Let f be a l-periodic function, and u an asymtotic 1-
periodic mild solution on [0,0) of Eq. (1). If u(t) is decomposed as u(t) =
ul(t) +u'(t) for t > —r such that lim, ., u’(t) =0 and u'(t) is 1-periodic on
(—o0, 00), then u’(t) is a mild solution on [0, 0) of Eq. (5) and u'(t) is a mild
solution on (—o0,00) of Eq. (1) respectively.

Proof. We will follow the manner in the proof of [1, Proposition 3.4].
Since u is a mild solution on [0,00) of Eq. (1), f(; u(&)dé e D(A), Vte 0, )
and

t t

u(E)dé + j Fue + f(&)de.

0

u(t) = u(0) + AJ

0

Take an ne N such that n>r. Then ug n €€ for £ >0, and we have

u(t+n)+u'(t) = u’(t+n) +u'(t+n) = u(t+n)

n n

— W) + ul (n) + 4 (JM WO(E)dé + J ! (é)dé)

t+n t+n

Ful de +J 1(E)dé

n

t+n
+J Fu d§+J

n n

t

=u’(n) +u'(0) + A(J

0

0 ! 1
u (é+n)dé+Lu (f)dé>

+ J; Ful,, dé+ J; Fuj dé + J f(&)de.

t
0
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Since A4 is closed and F is bounded, by taking the limit as n — oo we have that
su'(€)dé e D(4) and

1 _ul !
ul (1) = (0)+AJ0

t t
u‘(é)déJrJ Ful de +J F&de, 1=0.
0 0
Therefore, u' is a mild solution on [0, ) of Eq. (1). However, since u! and f
are l-periodic functions, u! is a mild solution of Eq. (1) on (—o0,0). By
linearity, u°(¢) = u(¢) —u'(¢), t > —r, is a mild solution on [0, 0) of Eq. (5).
0

Using Proposition 3.13 and the superposition principle, we derive the
following lemma.

Lemma 3.14.  All mild solutions of Eq. (1) are asymptotic 1-periodic if and
only if the following conditions satisfied:
i) Eq. (1) has a 1-periodic mild solution,
i)  All mild solutions of Eq. (5) are asymptotic 1-periodic.

Proposition 3.15. Let A be the generator of a Cy-semigroup. If all mild
solutions of Eq. (1) on [0,400) are asymptotic 1-periodic, the following conditions
hold:

1) For every ke Z, Eq. (10) has a solution x € X,
ii) The solution semigroup (V (1)), is uniformly bounded,
iii) 0,(9)NiR < 2inZ.

Proof. By Proposition 3.13 there exists a I-periodic mild solution u on
R. Hence by Lemma 3.3, Condition (i) is satisfied.

Moreover by Lemma 3.14, all mild solutions of Eq. (5) are asymptotic 1-
periodic. For a given ¢ €@, we denote by w(z,¢) the solution of Eq. (5)
such that wy = ¢. Then w(t,¢) is decomposed uniquely as w(t, ¢) = wO(z, $) +
wl(¢,¢), for t > —r, such that lim, ., w°(z,¢) =0 and w'(z,¢) is a 1-periodic
function on R. Then by Proposition 3.13, we have

wi(t,¢) = w'(0,¢) + A waf(g, P)dE + Jtng(qﬁ)dé, t>0,i=0,1.
0 0
We set
Do = {¢ et lim V(s)p= 0}, Di={pe%:V()p=4)

Then Dy and D; are subspaces of ¥ and DyND; = {0}. Moreover it is
clear that V({)Dy = Dy and V(t)D; = D;. For any ¢e%, we set ¢° = w)
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and ¢' =w). Then we have lim, ., V(s)¢’ =0 and V(t)p' =w! =w},, =
V(t+1)¢'. Hence, ¢ =¢°+¢', ¢° € Dy, ¢' € D;.
If ne N, then

lim V(n)¢ = lim V(n)¢’ + lim V(n)¢' = ¢'
for every ¢e€%; hence M :=sup,.n||V(n)|| is bounded. For ¢>0, we
have V()= V([{])V(¢—[f]). Since 0 <t—[f] <1, it follows that ||V (7)| <
VANV (=[] < M supg<,q ||V (s)]]. Thus Condition (i) is satisfied.

Take an i€ € 6,(9) NiR. Then, we have 9¢ = ié¢, for some ¢ € €, ¢ # 0.
Thus

V(l‘)¢ _ eiét¢ _ eiéz¢0 + eiét¢1,

Since Dy and D; are subspaces of %, we have e®'¢° € Dy and e“'¢' € D;. On
the other hand, we can rewrite V(t)¢p = V(1)¢° + V(1)¢', where V(1)¢" € D°
and V(f)¢' € D'. Therefore, V(1)¢° = e*'¢° and V(1)p' = e“'¢'. Since ¢° =
lim,_., eV (s)¢° =0, we have ¢ = ¢'. Consequently,

p=9 = V()¢ =gl =5y,
Since ¢ # 0, we have i¢ € 2inZ; Condition (iii) is satisfied. O

3.2.2. Sufficient conditions. For sufficient conditions for all mild solutions to
be asymptotic 1-periodic we have the following results.

For compact semigroups (7'()),., the conditions turn out to be simple as
follows.

Proposition 3.16. Let A be the generator of a compact semigroup. Assume
further that the following conditions are satisfied:
1) For every ke Z, Eq. (10) has a solution x € X,
ii) The solution semigroup (V(t)),s, is uniformly bounded,
iii) 0,(9)NiR c 2inZ.
Then, all mild solutions of Eq. (1) on [0,+00) are asymptotic 1-periodic.
Proof. Condition (i) guarantees the existence of a 1-periodic mild solution
on the whole line. Since A4 is the generator of a compact semigroup, the
operator V() is compact for ¢ >r. Hence, o(49)N{41:Re 1> 0} consists of

finite number of normal eigenvalues, 41, 42,...,4,. Moreover, % is decomposed
as follows:

C=S®U, U=U0U0La- - @U,

where U;=N((9 —AI1)"™), j=1,2,...,p, and S is the stable subspace of
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V(t). Condition (ii) implies V'Y (z) is uniformly bounded for j=1,2,...,p;
thus, Re 4; =0. Since, for ¢ e U,

|[VU(r)g| is bounded if and only if (¥ —A)$=0; that is m; =1, and
VU(r)g =e*'¢. Since 4 €2inZ by Condition (iii), (V' Y(1)),o, is 1-periodic.
Hence, V()¢ = VS(OIT5¢+ VV(1)I[TY¢ is asymptotic 1-periodic. Therefore,
by Lemma 3.14, this shows that all mild solutions of Eq. (1) are asymptotic 1-
periodic. ]

mi—1

S L@k

k=0

VY (ngll =

If (T'(¢)),5, is an analytic semigroup, we need an additional condition. To
this purpose, we now prove the following lemma.

Lemma 3.17. Let z be a bounded mild solution of 2(t) = 9z(t). Then we
have sp(z) c 0/(9) :={(eR:ie€a(¥9)}.

Proof. We will follow the manner in the proof of [20, Lemma 2.21].
Since z is a mild solution of z(¢) = ¥z(¢), the Fourier-Carleman transform of z
satisfies

(A — 9)3()) = —z(0),

where Re 2 #0. Assume i€ p(%). Then (Al —%)' is holomorphic in a
neighborhood of i¢. Hence Z(A) has a holomorphic extension on a neigh-
borhood of i, ie., &¢sp(z). O

Theorem 3.18. Let A be the generator of an analytic semigroup. Assume

further that the following conditions are satisfied:

1) For every ke Z, Eq. (10) has a solution x € X,

ii) The solution semigroup (V(t)),s is uniformly bounded,

iii) 0:/(¥%) <2nZ,

iv)  For every weai(9) the limit lim, ., t~! J}; eV (s)p ds exists for every
peF or R(Y —iw)+ N(9 —iw) is dense in € for all we c;(9).

Then, all mild solutions of Eq. (1) on [0,00) are asymptotic 1-periodic.

Proof. First, the existence of a 1-periodic mild solution u(-) to Eq. (1) is
guaranteed by Condition (i). On the other hand, Condition (ii), (iii) and (iv)
imply that the semigroup (¥(7)),., is asymptotic almost periodic by Theorem
3.21 in Appendix. By Theorem 3.22 in Appendix there exists a decomposition
of the space ¥ = %y ® % such that for every ¢ e %y lim, ., V()¢ =0 and
%, is (V(1)),so-invariant and (V(7)|4,);»o can be extended to a bounded
group. For every ¢ €%, denote z(¢) := V(t)|4,¢. Then, z is bounded and
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uniformly continuous on R. By Lemma 3.17, we have sp(z) < ¢;(¢9). Hence,
by Condition (iii) it is 1-periodic. Consequentry (V(f)),., is asymptotic 1-
periodic. By Lemma 3.14, this shows that all mild solutions of Eq. (1) should
be the sum of the 1-periodic mild solution u(-) and asymptotic 1-periodic mild
solution of Eq. (5). O

To illustrate the above abstract results we will give below an example in which
the conditions (ii) and (iii) in Prroposition 3.16 can be verified.

Example 3.19.
Consider the equation

wi(x, 1) = wyr (X, 1) + w(x, 1) — (m/2)w(x, 1 — 1) + f(x,1),
(17) 0<Vx<m V=0,
w(0,¢) =w(m,t) =0, Vt>0,

where w(x, 1), f(x,t) are scalar-valued functions. We define the space X :=
L?[0,7] and A7 : X — X by the formula

Ary=y"+y,
(18) D(Ar) ={y€e X :y,y' are absolutely continuous, y” € X,

¥(0) = y(m) = 0}.
We define F:% — X by the formula F(p) = —(n/2)p(—1). In this case the
evolution equation we are concerned with is the following

du(t)

(19) I

= Aru(t) + Fu, + f(2), u(t) e X,

where Ar is the infinitesimal generator of a compact and analytic semigroup
(T(1)),50 in X (see [42, p. 414]). Moreover, the eigenvalues of A7 are 1 — n?,
n=1,2,..., and since the set g;(4) is determined from the set of imaginary
solutions of the equation

(20) itnf2et=1-n*  n=12...,

a simple computation shows o;(4) ={-n/2,7n/2} =: 4. As is shown in
[42, Lemma 5.8], (¥ —AI)"' has simple poles at A, where % is the genera-
tor of the solution semigroup (V(¢)),.,. The space % is decomposed as
€ =N(%—in/2) DN(Y +in/2) ® Q4, where Q4 = R(%9 —in/2) N R(% + in/2).
There exsist positive K and o such that ||V (1)¢| < Ke ||| for ¢ e Qu;
V(i) = et™2$ for ¢ e N(9 — (+in/2)). Hence, (V(1)),5, is asymptotic 4-
periodic. Let f(x,¢) be 4-periodic. Then sp(f) = nZ/2 (here we consider f
as the function ¢ — f(¢) := f(-,#) € X). By our theory, it is necessary and
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sufficient for all mild solutions of Eq. (19) to be asymptotic 4-periodic that the
following equations are solvable

Ain)2)u = [ e~/ (1)L,
A(—in/2)u =L [ e™/2f (1)dt.

Moreover, if u;,u_; are solutions of equations in the above, respectively, then

, o - -
e 4o -3 3 e 247 ik )2) L e *mI2f (1) dt
k#+1

is the Fourier series of a 4-periodic mild solution of Eq. (19).

Appendix

In this Appendix for the reader’s convenience, we collect some known
notions and results on asymptotic almost periodic semigroups and the splitting
Theorem of Glicksberg and DelLeeuw which we have used above (more details
can be found in [35, Chap. 5, §7)).

Definition 3.20. A Cj-semigroup (7(¢)),., on X is said to be asymptotic
almost periodic if for each xe X the set {T(f)x,1€[0,400)} is relatively
compact in X. (Originally, in [35, Chap. 5] this notion is referred to as the
notion of almost periodic semigroups. To distiguish this notion from our
mentioned one we refer to it as the notion of asymptotic almost periodic
semigroups.)

Theorem 3.21 ([35, Theorem 5.7.10]). Let (T(t)),», be a uniformly
bounded Cy-semigroup on a Banach space X, with generator A, and assume that
a(A)NiR is countable. Then the following assertions are equivalent:

i) (T(1),s¢ is asymptotic almost periodic,
ii) For every iwea(A)NiR the limit lim, ., t~' [je ™ T(s)x ds exists for

every x € X,

iii) For every iwea(A)NIR, R(A —iw)+ N(4 — iw) is dense in X.

The following is referred to as the splitting Theorem of Glicksberg and
DeLeeuw.

Theorem 3.22 ([35], Theorem 5.7.7]). Let (T(t)),., be an asymptotic al-
most periodic Cy-semigroup on a Banach space X. Then there exists a direct
sum decomposition X = Xo @ X1 of (T(t)),s-invariant subspaces, where

Xo = {x X : lim | T(1)x| = o}



Asymptotic Periodic Solutions 325

and X\ is the closed linear span of all eigenvectors of the generator A with purely
imaginary eigenvalues. Moreover, the restriction of (T(t)),., to X1 extends to
an almost periodic Co-group on Xy. If (T(t)),s, is contractive, this group is

isometric.
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