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Abstract. R. Ikehata recently proved some integral estimate for the difference between
the solution of an abstract heat equation and the solution of an abstract wave equation
which results from the heat equation by a time singular perturbation. The estimate is
obtained if the initial values are chosen appropriately. We prove a pointwise estimate
which improves the above result for large times into several directions, and we also
establish the optimality of this estimate for the wave equation in an exterior domain.
Our proofs rely on the spectral theorem for unbounded self-adjoint operators.
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1. Introduction

The main objective of this work is to establish a global in time estimate of
the difference between a solution u of the abstract dissipative wave equation

(1.1) eu" +u' + Au =0,
and a related solution v of the abstract heat equation
(1.2) v+ Av = 0.

Here, the operator (4, D(A)) is a closed, self-adjoint, positive semidefinite
operator on a separable Hilbert space H.

Denote by u, and v, respectively, the mild solutions of the equations (1.1)
and (1.2) with initial conditions u,(0) = v(0) =: u’ € V := D(4'/?) and u/(0) =:
u'e H.

Then one may expect that the solution u, of equation (1.1) tends to the
solution v of equation (1.2) as ¢ — 0+. J. Kisynski proved that

V=0 u(t) = ()l < Vel A2y + el

see [9, Théoréme 3.2] or [6, Chapter VI]. This estimate implies uniform con-
vergence and gives also the rate of convergence.
Recently, under the additional assumption
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(1.3) v(0) = u,(0) =: u’ € D(A) and  u/(0) =u' = —4u°,

R. Ikehata proved in [7] the global integral estimate

o0 1/2
(L ||ug<t>—v<r>||€dr) < CVEI ] pgse.

where C >0 is a constant independent of u° e D(43/?) and ¢ e (0,1].

It is the purpose of this article to prove a pointwise estimate of
lu(z) — v(¢)||,, which improves both estimates above for large times (7> 1).
We obtain in fact a better rate of convergence. For small times, however, the
same rates of convergence do not seem to hold.

Throughout this article we will deal with mild solutions of the equations
(1.1) and (1.2). Existence of mild solutions for the equations (1.1) and (1.2) can
be shown by semigroup methods and is in fact well known.

The main result is the following.

Theorem 1.1 (Global estimate). Let u, and v, respectively, be the mild
solutions of the equations (1.1) and (1.2) with initial conditions as in (1.3). Then
there exists a constant C >0 independent of u® € D(A) and ¢ € (0,1] such that

Ce
Viz1 () —v(D)]ly < T(HHOHV + Vel|u® | pay)-
If A is invertible or if 0 is an isolated point in the spectrum o(A4), then we

have the following, stronger estimate.

Theorem 1.2 (Global exponential estimate). Assume that A is invertible or
that 0 € 6(A) is an isolated point in 6(A). Let u, and v, respectively, be the mild
solutions of the equations (1.1) and (1.2) with initial conditions as in (1.3). Then
there exist constants C >0, 6 > 0 independent of u’ € D(A) and ¢ e (0,1] such
that

Ce
Viz 1l u(2) —v(D)]y < g(l\uollv + Vel[u’ || pay)-

Theorem 1.1 is optimal in the following sense.

Theorem 1.3 (Optimality). If 0 belongs to o(A) and if 0 is not isolated in
a(A), then

. t
limsup sup  sup —|u.(¢) — v(t)||; > 0.
=0 £e(0,1] u'eD(A)
H"OHD(A)SI

For fixed initial values we have the following individual behaviour.
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Theorem 1.4 (Individual behaviour). Let u, and v, respectively, be the mild
solutions of the equations (1.1) and (1.2) with initial conditions as in (1.3). Then

.t
thm gHug(t) —v()]|, =0 uniformly in ¢ € (0,1].

2. Proof of the main results

In this and the following section, we denote by C > 0 a generic constant,
the value of which may vary from line to line but does not depend on u° € D(4)
and ¢ € (0,1].

We start by proving the following lemma.

Lemma 2.1. Let u, be the mild solution of (1.1) corresponding to the initial
values u(0) = u’ € V and u'(0) = u' € H. Assume that A > 1/(16¢). Then, for
every t >0,

elluy (D7 + 14" 2D < 4e™ 1) (ellu [ + 142 7p).

Proof.  Assume first that u, is in fact a classical solution. Since ¢ € (0, 1]
is fixed, we may write for simplicity u := u,.
Let >0 and define for every te R,

e 1
H(1) = 5 By 5 14"l + el .

Then the function H is differentiable, and for every € R,

d
SH() = (' + Au)y + el |}y — Bl + Au)

< —(1 =o'y — Blu,u') g = BII A Pull7.

From the Cauchy-Schwarz inequality we obtain for every A >0

, 1 4¢
(2.1) |y ) | < 2" +47||u||12q < 'l +7||A1/2MH§1-
Hence, if we put
fi=— and A= 8e,

then we obtain

d L e o Lo 2
G0 <~ (S5, + 514, )
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Moreover,
H (1) < ellu' |3 + 114" ully
and, by using the following variation from (2.1),

8¢

2
7 Al/z””H?

A
') < 5 1017 +
we find
H) = 2 (E i+ arag).
—2\2 H' 9 H

In particular

%H(z) g—%H(z), teR,.
Hence,
H(t) <e /C%H(0), teR.,
so that
1

Lie e +l A2 ) < e=/O8) (el 12, 4 | AY20)2), (eR..

This implies the claim for classical solutions . The general claim follows
from this and by approximation of mild solutions by smooth solutions. [J

Proof of Theorem 1.1. By the spectral theorem for self-adjoint operators
([13, Theorem VIIL.4, p. 260]), the operator A is unitarily equivalent to a mul-
tiplication operator on some L? space. Therefore, it is sufficient to consider the
case when

H = [*(E, dp),
(Au)(x) = a(x)u(x), xeE, ue D(A),
where (E,u) is a measure space, a is a nonnegative u-measurable function,
D(A)={ueH:a-ueH}=L*E;(1+a*du),
and
V = L*(E; (1 + a)du).

So let H and A4 be as above, fix ¢€ (0,1], and let x € E.
If u, and v are solutions of the equations (1.1) and (1.2), respectively, then
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the functions u.(-,x) and v(-,x) (which will in the following for simplicity be
denoted by u and v) satisfy the ordinary differential equations
eu" +u' +a(x)u=0,
and
v +a(x)v=0.

For the restrictions of the solutions u, and v to the region {a(x) > 1/(16¢)}
the claim follows from Lemma 2.1 (see Step 3 below). It is therefore sufficient
to consider the case a(x) = w? < 1/(16¢).

Step 1: Assume that 0 < a(x) = @* <1/(16¢). Then we have the for-
mulas

vo(t) = e "y° and

with
0 0
( ) _ ou” —Uu 7£glzt giu —u 7&75[
0y — 0 o1 — 02 ’
where
-1+ V1 —4dw2 —1 = V1 — 4w
T and 0 = 2

Note that g; and g, are the two solutions of the equation
tot+o+w?=0.
Therefore, using the assumption (1.3),
w(t) = u(t) — v(z)

2 2
2 O'2+6() a2 01+a) a2
qu (ut( e ot et _

g — 0] 02 — 0]
) 2 )
_ quwZI( €0) (efealzt —1)— o to (efsaz“r _ 1))
0 — 0] g — 0]
We have the estimates
1 V1 —4w?e 3
(2.2) —ZJl—azz—zi,
e e &

and
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2w
2.3 o’ < |oy| = ‘— < o’
3) 7= | = 2
and
1 1
2.4 — < <-.
(24) S <lol<-
This implies
2
w7t |2
02 — 01 3
Hence, we obtain for every ¢ >0
2 2
2.5 P B ’ <e ' egdt
@23) e )| < et T
33 while "
<g )
2 t
and
_w?:1 01 +owr, 2,5 2¢
2.6 e @t LT (et ‘S U2 =
26) AL it )| s S0r 2
e 5 e’
<6 R P

These two estimates are independent of a(x) = w? < 1/(16¢).
Step 2: In the second step we still assume that a(x) = w? < 1/(16¢).
Since

4 1
2.7 sup s2e0 = — and sup se”* = —,
@7) szlg e? szro) e

the estimates (2.5) and (2.6) from Step 1 imply for every ¢ > 0
e (334 51
w(r)| < [\u |< 3 €2+\/§e

4
< —8|u0|.
t

This estimate is independent of a(x) = w? < 1/(16¢).
Step 3: Note that for fixed ¢ € (0, 1] the space

H, = {feH:suppr {a(x) >%}}
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is invariant under the dynamics of equations (1.1) and (1.2). The restriction of
the operator 4 to this space is strictly positive. In fact, 4 > I/(16g).

Lemma 2.1 applied to the orthogonal projection of the solution u, to the
space H, (note that this projection is the multiplication with the characteristic
function of the set {a(x) > 1/(16¢)}) implies for every >0

J{ (x)=1/(165)} |uﬁ(l’x)|2(1 +a(x))du(x) < Ce*f/(36€)(||A1/2u0H%1 +6||Au0\|§_1),
a(x)> .

Moreover, from standard theory of the linear first order problem follows
J (2, )] (1 + a(x))dpu(x) < @5, =0,
{a(x)=1/(165)}

Therefore, using the estimate (2.7), we obtain for every ¢ > 0

J (1, 3) — (2, %) 2(1 + a(x))da()
{a(x)>1/(16¢)}

& r —1/(362) (1,012 02
< €5 Lo 09 (a0l + ol )

2
e 2 2
< Cp(lluo\lv +ellu’ I pa)-

This estimate and the estimate from Step 2 imply for every 7> 0

llus(2) — v(2)[}
12
_ ( J (1, ) — (1, ) (1 —i—a(x))d,u(x))
E

1/2
s(] |w@mvmwfa+amwmm>
{a(x)>1/16}

1/2
+ j s(t,x) — o(t,2) (1 + a(x))dp(x)
{a(x)<1/16}

Ce
< T(””OHV + Vel u | pay)

12

C2e? i
+ J @)1+ ax))du(x)
{a(x)<1/16}

Ce
< T(”uO”V + Vel pay)-

This is the claim. O
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Proof of Theorem 1.2. In order to prove Theorem 1.2, we can proceed in
a way similar to the proof of Theorem 1.1.

First, by the spectral theorem for self-adjoint operators, we may again
assume without loss of generality that 4 is a multiplication operator, as in the
proof of Theorem 1.1.

With this identification, the assumption that A4 is invertible or that 0 € 6(A)
is an isolated point in o(A4) implies that there exists o« > 0 such that the set

{0 < a(x) < a}

has p-measure O.
Step 1: Assume that o < a(x) = w? < 1/(16¢), and let 6 € (0, ).
Then the estimates (2.5) and (2.6) together with (2.7) imply for every 7 > 0

[w(t,x)| = |u.(2,x) — v(¢, x)|

Ce 1 (w28
< E|u0|?(w412+w2l)e (w=—0)t
Ce

o0t

1
W)

<
In the above estimate we have used that w?> —J >a —J >0. The constant
C >0 depends on « and o —J, but it does not depend on u° and ¢e (0, 1].
The above estimate is independent of o < a(x) = w? < 1/(16g).
Step 2: Assume that a(x) = w?> =0. Then one will easily verify that
uy(t,x) = v(t,x) = u’(x). Hence,

w(t,)] = lu(£,%) — o(,) =0, 1> 0.

Step 3: Proceeding as in the Step 3 of the proof of Theorem 1.1, Lemma
2.1 together with (2.7) implies for every 0 < 1/72 and every 7> 0

| (t.2) = (0,91 + alx))dut)
{a(x)=1/(162)}
C g

—1(1/(36¢)—26 012 012
< a2 @ VO + ellu )

C82 1 2 2
< S (I + el )
This estimate and the estimate from the preceding Steps 1 and 2 imply for
every 0 < min{1/72,0} and every ¢ > 1
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12
() — (D)l = ( || ) = 00+ a(X))dﬂ(X))
12
< (j ua(t,) — o6, %) 21 +a(X))dﬂ(X)>
{a(x)>1/16}

1/2
+ J (1) — o(t,2) (1 + a(x))dp(x)
{a(x)<1/16}

Ce
< g(lluollv + Vel pgy)

C?e? 12
" (J{ <1/16) €2 |”0(x)|2(1 +a(x))dﬂ(x)>
a<a(x)<

Ce
< g(lluollv + Vel pay)-

This is the claim. Ol

Proof of Theorem 1.3. By the spectral theorem for self-adjoint operators,
we may assume that A is a multiplication operator as in the proof of Theorem
1.1.

With this identification the assumption that 0 € g(A4) is not an isolated
point in the spectrum o(A4) is equivalent to saying that infinitely many of the

sets
1 1
E,=q—— < -
" {n+1_a(x)<n}
have positive p-measure.

If a(x) =w? <1/16, then, as we have seen in the proof of Theorem
1.1

b

2

2
01 —w?t 80’2 et 60'1
t)—vu(?)| = it 1) —
|us(1) = v(1)| = |u”le o1 — oy (e ) o1 —os

)

(efmzzt - 1)

where u, and v denote the solutions of the scalar equations of second and first
order, respectively.
If n>16, w>e[l/(n+1),1/n) and te [n+1,2n], then w?te[1,2] and

t 0 1 - 80‘% 2 80'12 2
—|u.(t) —v(2)| > [u’| — e | —2—(1 —e ") — —L—(1 — e~ %'
) =002 ]Sy - iy
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1 1 2 9w* 2e
> ‘”0|6w—2€_2 <Z(1 — ey - 8% 7‘%(1 _ e—2/(au;2)))

1 2 3V3
> O ,—2(_~ e 2-V <~ )
> |u'le <46602(1 e —ew 7 )

In the above sequence of inequalities we have used the estimates (2.2)—(2.4)
from the proof of Theorem 1.1.
Since the function

3V3
——=

1
. 1 _ —
s——( e) >

4s

is strictly positive on some interval [0, 1/ng] (no > 16), we see that there exists
a constant C > 0 such that for every n > n and every w? and ¢ as above

(1) = (o) = Clu.

Now, let u) :=1/y/u(Ey)y,, where yp is the characteristic function of the
set E, and u(E,) >0. Then [lu)]; =1 and ||u)||p4 <2

Let u! and v" be the solutions of the equations (1.1) and (1.2) corre-
sponding to the initial values u(0) = v(0) =« and u'(0) = —Au’.

Integrating the above estimate in x, we find for every 7€ [n+ 1,2n]

1/2
120 = 0l = (] eten) = 00,9 Pau))

n

chﬁW@W@uﬁﬂzc

The claim follows by letting n, and hence ¢, tend to oo. O

Proof of Theorem 1.4. By the spectral theorem for self-adjoint operators,
we may assume that A4 is a multiplication operator as in the proof of Theorem
1.1.

Consider the Banach spaces

X = {fe C([1,00) x (0,1]; V) : t>151‘1p(0 , 1 (e, < oo}

and

Xy = {feX : tlin; £ (¢, =0 uniformly in €€ (0, 1]},

both endowed with the natural supremum norm.
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By Theorem 1.1, the linear operator
D(4) — X,
MO d fuo,

where f,0(t,¢) := (u,(t) — v(¢))/e, and u, and v are the two solutions of the
equations (1.1) and (1.2), respectively, corresponding to the initial values u(0) =
v(0) = u® and u'(0) = —A4u®, is well defined and bounded.

By Theorem 1.2, this operator maps the set

M, = {u’ e D(A) : supp u® = {a(x) > 1/n}} U (Ker A)

into Xj.
Since the union | ) _\ M, is total in D(A), the claim follows. O

3. Applications and Remarks

3.1. Theorem 1.1 improves the global integral estimate from [7, Theorem 1.1]
and the uniform estimates from [9, Théoréme 3.2] and [6, Section VL5, Theo-
rem 5.5] (see also the Introduction) into several directions, at least for large
times.

First, we estimate the value f|u(f) — v(?)||,, uniformly on the interval [1, 00).
Second, the convergence rate is of the order O(g). Third, the estimate holds
uniformly for #° in bounded subsets of D(A4).

We do not obtain the convergence rate O(¢) (uniformly for bounded subsets
in D(A)) for small times. On the other hand, it is not clear if the weaker esti-
mates from [9] or [6] are optimal. This question is, however, not the purpose
of this article.

It is not possible to estimate ¢||u(¢) —v(¢)||,, uniformly on [l,c0) for
an arbitrary choice of initial values u® = u(0) = v(0) e ¥ and u' = u'(0) € H.
Theorem 1.1 fails for example for 4 =0, u° € V, and u' € H different from 0.
In this case,

lue(r) = 0(Oll 7 = &1 = &) |||y — el |l as £ — 0.

3.2. If the initial value u° is more regular in the sense that u®e D(4*) for
some o > 1, then, under the assumptions of Theorem 1.1,

Ce
Vi1 [z () = V()| pgo-12) < T(H”O||D(A1—1/2) + \/§||u0||D(A,)),

where C >0 is a constant independent of ¢e (0,1] and u® € D(A4%).
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3.3. It follows from the proof of Theorem 1.3 that for every k>0

_ t
limsup sup  sup  —|lu.(t) — v(t)||; > 0.
=0 ¢e(0,1] u'eD(4¥) ¢

0
1 iy <1

In order to see this, one may again assume that 4 is a multiplication
operator and observe that the norms || - [[5 4« are equivalent to the norm || - ||,
on the subspace

{u® e L*(E;dy) : supp u° = {a(x) < 1}}.
3.4. We may apply our abstract results to the dissipative wave equation
ey +u; — Au =10 in R, x Q,
(3.1) u=0 in R, x 0Q,
u(0,) = u°, u,(0,-) = Au®,
and to the heat equation
v,—Av=0 in R, x Q,
(3.2) v=20 in R, x 0Q,
U(Oa ) = MO,
in a domain 2 = R". In fact, these equations are special cases of equations
(1.1) and (1.2) if 4:= —A42 is the Dirichlet-Laplace operator on H = L*(Q)
with domain
D(A) :={ue H}(Q): —Aue L*(Q)}.

Note that D(4'?) = H}(Q), and if 2 has a smooth boundary, then
D(A) = H*(Q)N H}(2). We thus obtain the following corollary of Theorems
1.1 and 1.3.

Corollary 3.1. Let u, and v be the solutions of the equations (3.1) and
(3.2), respectively. There exists a constant C > 0 independent of u’ € D(A) and
g€ (0,1] such that for every t>1

t
;H“s(f) — 0l 0) = C(HMOHHU'(Q) + Vel pigy)-

This estimate is optimal if Q contains balls of arbitrarily large radius, e.g. if
Q is an exterior domain.

Remark 3.2. The estimate in the above Corollary 3.1 is not optimal if € is
a bounded domain, or, more generally, if Q is a domain for which the first
Poincaré inequality
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J u? SCJ Vul?,
Q Q

holds for all u e H}(Q2) and for a uniform constant ¢ > 0.

In fact, the first Poincaré inequality holds if and only if the Dirichlet-
Laplace operator is a strictly positive operator on L>(2). Thus, if the first
Poincaré inequality holds, then, by Theorem 1.2,

eét

Vil —u(t) — v(0)llgy e < Clllu’ (@) + Vellu'llpay)-

3.5. We remark that there are results in the spirit of Theorem 1.1 in the
context of nonautonomous, inhomogeneous or nonlinear wave and heat equa-
tions; the estimates are, however, only valid on compact time intervals. For
results in this direction we refer to H. Bellout and A. Friedman [1], K. J. Engel
[3], H. S. Nur [12], H. O. Fattorini [6], B. Najman [10, 11] and B. F. Esham
and R. J. Weinacht [4, 5]. Higher order equations have been studied by J. A.
Smoller [14].
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