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Abstract. R. Ikehata recently proved some integral estimate for the di¤erence between

the solution of an abstract heat equation and the solution of an abstract wave equation

which results from the heat equation by a time singular perturbation. The estimate is

obtained if the initial values are chosen appropriately. We prove a pointwise estimate

which improves the above result for large times into several directions, and we also

establish the optimality of this estimate for the wave equation in an exterior domain.

Our proofs rely on the spectral theorem for unbounded self-adjoint operators.
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1. Introduction

The main objective of this work is to establish a global in time estimate of

the di¤erence between a solution u of the abstract dissipative wave equation

eu 00 þ u 0 þ Au ¼ 0;ð1:1Þ

and a related solution v of the abstract heat equation

v 0 þ Av ¼ 0:ð1:2Þ

Here, the operator ðA;DðAÞÞ is a closed, self-adjoint, positive semidefinite

operator on a separable Hilbert space H.

Denote by ue and v, respectively, the mild solutions of the equations (1.1)

and (1.2) with initial conditions ueð0Þ ¼ vð0Þ ¼: u0 A V :¼ DðA1=2Þ and u 0
eð0Þ ¼:

u1 A H.

Then one may expect that the solution ue of equation (1.1) tends to the

solution v of equation (1.2) as e ! 0þ. J. Kisyński proved that

Etb 0 kueðtÞ � vðtÞkH a
ffiffi
e

p
kA1=2u0kH þ eku1kH ;

see [9, Théorème 3.2] or [6, Chapter VI]. This estimate implies uniform con-

vergence and gives also the rate of convergence.

Recently, under the additional assumption



vð0Þ ¼ ueð0Þ ¼: u0 A DðAÞ and u 0
eð0Þ ¼: u1 ¼ �Au0;ð1:3Þ

R. Ikehata proved in [7] the global integral estimate

ðy
0

kueðtÞ � vðtÞk2Vdt
� �1=2

aC
ffiffi
e

p
ku0kDðA3=2Þ;

where Cb 0 is a constant independent of u0 A DðA3=2Þ and e A ð0; 1�.
It is the purpose of this article to prove a pointwise estimate of

kuðtÞ � vðtÞkV which improves both estimates above for large times ðtb 1Þ.
We obtain in fact a better rate of convergence. For small times, however, the

same rates of convergence do not seem to hold.

Throughout this article we will deal with mild solutions of the equations

(1.1) and (1.2). Existence of mild solutions for the equations (1.1) and (1.2) can

be shown by semigroup methods and is in fact well known.

The main result is the following.

Theorem 1.1 (Global estimate). Let ue and v, respectively, be the mild

solutions of the equations (1.1) and (1.2) with initial conditions as in (1.3). Then

there exists a constant Cb 0 independent of u0 A DðAÞ and e A ð0; 1� such that

Etb 1 kueðtÞ � vðtÞkV a
Ce

t
ðku0kV þ

ffiffi
e

p
ku0kDðAÞÞ:

If A is invertible or if 0 is an isolated point in the spectrum sðAÞ, then we

have the following, stronger estimate.

Theorem 1.2 (Global exponential estimate). Assume that A is invertible or

that 0 A sðAÞ is an isolated point in sðAÞ. Let ue and v, respectively, be the mild

solutions of the equations (1.1) and (1.2) with initial conditions as in (1.3). Then

there exist constants Cb 0, d > 0 independent of u0 A DðAÞ and e A ð0; 1� such

that

Etb 1 kueðtÞ � vðtÞkV a
Ce

edt
ðku0kV þ

ffiffi
e

p
ku0kDðAÞÞ:

Theorem 1.1 is optimal in the following sense.

Theorem 1.3 (Optimality). If 0 belongs to sðAÞ and if 0 is not isolated in

sðAÞ, then

lim sup
t!y

sup
e A ð0;1�

sup
u0 ADðAÞ

ku0kDðAÞa1

t

e
kueðtÞ � vðtÞkH > 0:

For fixed initial values we have the following individual behaviour.
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Theorem 1.4 (Individual behaviour). Let ue and v, respectively, be the mild

solutions of the equations (1.1) and (1.2) with initial conditions as in (1.3). Then

lim
t!y

t

e
kueðtÞ � vðtÞkV ¼ 0 uniformly in e A ð0; 1�:

2. Proof of the main results

In this and the following section, we denote by Cb 0 a generic constant,

the value of which may vary from line to line but does not depend on u0 A DðAÞ
and e A ð0; 1�.

We start by proving the following lemma.

Lemma 2.1. Let ue be the mild solution of (1.1) corresponding to the initial

values uð0Þ ¼ u0 A V and u 0ð0Þ ¼ u1 A H. Assume that Ab I=ð16eÞ. Then, for

every tb 0,

eku 0
eðtÞk

2
H þ kA1=2ueðtÞk2H a 4e�t=ð36eÞðeku1k2H þ kA1=2u0k2HÞ:

Proof. Assume first that ue is in fact a classical solution. Since e A ð0; 1�
is fixed, we may write for simplicity u :¼ ue.

Let b > 0 and define for every t A Rþ

HðtÞ :¼ e

2
ku 0k2H þ 1

2
kA1=2uk2H þ beðu; u 0ÞH :

Then the function H is di¤erentiable, and for every t A Rþ

d

dt
HðtÞ ¼ ðu 0; eu 00 þ AuÞH þ beku 0k2H � bðu; u 0 þ AuÞH

a�ð1� beÞku 0k2H � bðu; u 0ÞH � bkA1=2uk2H :

From the Cauchy-Schwarz inequality we obtain for every l > 0

jðu; u 0ÞH ja lku 0k2H þ 1

4l
kuk2H a lku 0k2H þ 4e

l
kA1=2uk2H :ð2:1Þ

Hence, if we put

b :¼ 1

18e
and l ¼ 8e;

then we obtain

d

dt
HðtÞa� 1

18e

e

2
ku 0k2H þ 1

2
kA1=2uk2H

� �
:
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Moreover,

HðtÞa eku 0k2H þ kA1=2uk2H
and, by using the following variation from (2.1),

jðu; u 0ÞH ja
l

2
ku 0k2H þ 8e

l
kA1=2uk2H ;

we find

HðtÞb 1

2

e

2
ku 0k2H þ 1

2
kA1=2uk2H

� �
:

In particular

d

dt
HðtÞa� 1

36e
HðtÞ; t A Rþ:

Hence,

HðtÞa e�t=ð36eÞHð0Þ; t A Rþ;

so that

1

2

e

2
ku 0k2H þ 1

2
kA1=2uk2H

� �
a e�t=ð36eÞðeku1k2H þ kA1=2u0k2HÞ; t A Rþ:

This implies the claim for classical solutions u. The general claim follows

from this and by approximation of mild solutions by smooth solutions. r

Proof of Theorem 1.1. By the spectral theorem for self-adjoint operators

([13, Theorem VIII.4, p. 260]), the operator A is unitarily equivalent to a mul-

tiplication operator on some L2 space. Therefore, it is su‰cient to consider the

case when

H ¼ L2ðE; dmÞ;

ðAuÞðxÞ ¼ aðxÞuðxÞ; x A E; u A DðAÞ;

where ðE; mÞ is a measure space, a is a nonnegative m-measurable function,

DðAÞ ¼ fu A H : a � u A Hg ¼ L2ðE; ð1þ a2ÞdmÞ;

and

V ¼ L2ðE; ð1þ aÞdmÞ:

So let H and A be as above, fix e A ð0; 1�, and let x A E.

If ue and v are solutions of the equations (1.1) and (1.2), respectively, then
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the functions ueð� ; xÞ and vð� ; xÞ (which will in the following for simplicity be

denoted by u and v) satisfy the ordinary di¤erential equations

eu 00 þ u 0 þ aðxÞu ¼ 0;

and

v 0 þ aðxÞv ¼ 0:

For the restrictions of the solutions ue and v to the region faðxÞb 1=ð16eÞg
the claim follows from Lemma 2.1 (see Step 3 below). It is therefore su‰cient

to consider the case aðxÞ ¼ o2 a 1=ð16eÞ.
Step 1: Assume that 0a aðxÞ ¼ o2 a 1=ð16eÞ. Then we have the for-

mulas

vðtÞ ¼ e�o2tu0 and

uðtÞ ¼ e�o2tzðtÞ;

with

zðtÞ ¼ s2u
0 � u1

s2 � s1
e�es2

1
t þ s1u

0 � u1

s1 � s2
e�es2

2
t;

where

s1 ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4o2e

p

2e
and s2 ¼

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4o2e

p

2e
:

Note that s1 and s2 are the two solutions of the equation

es2 þ sþ o2 ¼ 0:

Therefore, using the assumption (1.3),

wðtÞ :¼ uðtÞ � vðtÞ

¼ u0e�o2t s2 þ o2

s2 � s1
e�es2

1
t � s1 þ o2

s2 � s1
e�es2

2
t � 1

� �

¼ u0e�o2t �es2
2

s2 � s1
ðe�es2

1
t � 1Þ � s1 þ o2

s2 � s1
ðe�es2

2
t � 1Þ

� �
:

We have the estimates

1

e
b s1 � s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4o2e

p

e
b

ffiffiffi
3

p

2e
;ð2:2Þ

and
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o2
a js1j ¼

2o2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4eo2

p
����

����a 3

2
o2;ð2:3Þ

and

1

2e
a js2ja

1

e
:ð2:4Þ

This implies

es2
2

s2 � s1

����
����a 2ffiffiffi

3
p :

Hence, we obtain for every tb 0

e�o2t es2
2

s2 � s1
ðe�es2

1
t � 1Þ

����
����a e�o2t 2ffiffiffi

3
p es2

1 tð2:5Þ

a e
3
ffiffiffi
3

p

2

o4t2e�o2t

t
;

and

e�o2t s1 þ o2

s2 � s1
ðe�es2

2
t � 1Þ

����
����a e�o2t 5

2
o2 2effiffiffi

3
pð2:6Þ

a e
5ffiffiffi
3

p o2te�o2t

t
:

These two estimates are independent of aðxÞ ¼ o2 a 1=ð16eÞ.
Step 2: In the second step we still assume that aðxÞ ¼ o2 a 1=ð16eÞ.
Since

sup
sb0

s2e�s ¼ 4

e2
and sup

sb0
se�s ¼ 1

e
;ð2:7Þ

the estimates (2.5) and (2.6) from Step 1 imply for every t > 0

jwðtÞja e

t
ju0j 3

ffiffiffi
3

p

2

4

e2
þ 5ffiffiffi

3
p 1

e

 !

a
4e

t
ju0j:

This estimate is independent of aðxÞ ¼ o2 a 1=ð16eÞ.
Step 3: Note that for fixed e A ð0; 1� the space

He :¼ f A H : supp f H aðxÞ > 1

16e

� �� �
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is invariant under the dynamics of equations (1.1) and (1.2). The restriction of

the operator A to this space is strictly positive. In fact, Ab I=ð16eÞ.
Lemma 2.1 applied to the orthogonal projection of the solution ue to the

space He (note that this projection is the multiplication with the characteristic

function of the set faðxÞ > 1=ð16eÞg) implies for every tb 0ð
faðxÞb1=ð16eÞg

jueðt; xÞj2ð1þ aðxÞÞdmðxÞaCe�t=ð36eÞðkA1=2u0k2H þ ekAu0k2HÞ:

Moreover, from standard theory of the linear first order problem followsð
faðxÞb1=ð16eÞg

jvðt; xÞj2ð1þ aðxÞÞdmðxÞa e�t=ð8eÞku0k2V ; tb 0:

Therefore, using the estimate (2.7), we obtain for every t > 0ð
faðxÞb1=ð16eÞg

jueðt; xÞ � vðt; xÞj2ð1þ aðxÞÞdmðxÞ

aC
e2

t2
t2

e2
e�t=ð36eÞðku0k2V þ eku0k2DðAÞÞ

aC
e2

t2
ðku0k2V þ eku0k2DðAÞÞ:

This estimate and the estimate from Step 2 imply for every t > 0

kueðtÞ � vðtÞkV

¼
ð
E

jueðt; xÞ � vðt; xÞj2ð1þ aðxÞÞdmðxÞ
� �1=2

a

ð
faðxÞ>1=16g

jueðt; xÞ � vðt; xÞj2ð1þ aðxÞÞdmðxÞ
 !1=2

þ
ð
faðxÞa1=16g

jueðt; xÞ � vðt; xÞj2ð1þ aðxÞÞdmðxÞ
 !1=2

a
Ce

t
ðku0kV þ

ffiffi
e

p
ku0kDðAÞÞ

þ
ð
faðxÞa1=16g

C2e2

t2
ju0ðxÞj2ð1þ aðxÞÞdmðxÞ

 !1=2

a
Ce

t
ðku0kV þ

ffiffi
e

p
ku0kDðAÞÞ:

This is the claim. r
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Proof of Theorem 1.2. In order to prove Theorem 1.2, we can proceed in

a way similar to the proof of Theorem 1.1.

First, by the spectral theorem for self-adjoint operators, we may again

assume without loss of generality that A is a multiplication operator, as in the

proof of Theorem 1.1.

With this identification, the assumption that A is invertible or that 0 A sðAÞ
is an isolated point in sðAÞ implies that there exists a > 0 such that the set

f0 < aðxÞ < ag

has m-measure 0.

Step 1: Assume that aa aðxÞ ¼ o2 a 1=ð16eÞ, and let d A ð0; aÞ.
Then the estimates (2.5) and (2.6) together with (2.7) imply for every t > 0

jwðt; xÞj ¼ jueðt; xÞ � vðt; xÞj

a
Ce

edt
ju0j 1

t
ðo4t2 þ o2tÞe�ðo2�dÞt

a
Ce

edt
ju0ðxÞj 1

t
:

In the above estimate we have used that o2 � db a� d > 0. The constant

Cb 0 depends on a and a� d, but it does not depend on u0 and e A ð0; 1�.
The above estimate is independent of aa aðxÞ ¼ o2 a 1=ð16eÞ.
Step 2: Assume that aðxÞ ¼ o2 ¼ 0. Then one will easily verify that

ueðt; xÞ ¼ vðt; xÞ ¼ u0ðxÞ. Hence,

jwðt; xÞj ¼ jueðt; xÞ � vðt; xÞj ¼ 0; tb 0:

Step 3: Proceeding as in the Step 3 of the proof of Theorem 1.1, Lemma

2.1 together with (2.7) implies for every d < 1=72 and every t > 0

ð
faðxÞb1=ð16eÞg

jueðt; xÞ � vðt; xÞj2ð1þ aðxÞÞdmðxÞ

a
C

e2dt
e2

t2
t2

e2
e�tð1=ð36eÞ�2dÞðku0k2V þ eku0k2DðAÞÞ

a
Ce2

e2dt
1

t2
ðku0k2V þ eku0k2DðAÞÞ:

This estimate and the estimate from the preceding Steps 1 and 2 imply for

every d < minf1=72; ag and every tb 1
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kueðtÞ � vðtÞkV ¼
ð
E

jueðt; xÞ � vðt; xÞj2ð1þ aðxÞÞdmðxÞ
� �1=2

a

ð
faðxÞ>1=16g

jueðt; xÞ � vðt; xÞj2ð1þ aðxÞÞdmðxÞ
 !1=2

þ
ð
faðxÞa1=16g

jueðt; xÞ � vðt; xÞj2ð1þ aðxÞÞdmðxÞ
 !1=2

a
Ce

edt
ðku0kV þ

ffiffi
e

p
ku0kDðAÞÞ

þ
ð
faaaðxÞa1=16g

C2e2

e2dt
ju0ðxÞj2ð1þ aðxÞÞdmðxÞ

 !1=2

a
Ce

edt
ðku0kV þ

ffiffi
e

p
ku0kDðAÞÞ:

This is the claim. r

Proof of Theorem 1.3. By the spectral theorem for self-adjoint operators,

we may assume that A is a multiplication operator as in the proof of Theorem

1.1.

With this identification the assumption that 0 A sðAÞ is not an isolated

point in the spectrum sðAÞ is equivalent to saying that infinitely many of the

sets

En :¼
1

nþ 1
a aðxÞ < 1

n

� �

have positive m-measure.

If aðxÞ ¼ o2 a 1=16, then, as we have seen in the proof of Theorem

1.1,

jueðtÞ � vðtÞj ¼ ju0je�o2t es2
2

s1 � s2
ðe�es2

1
t � 1Þ � es2

1

s1 � s2
ðe�es2

2
t � 1Þ

����
����;

where ue and v denote the solutions of the scalar equations of second and first

order, respectively.

If nb 16, o2 A ½1=ðnþ 1Þ; 1=nÞ and t A ½nþ 1; 2n�, then o2t A ½1; 2� and

t

e
jueðtÞ � vðtÞjb ju0j 1

eo2
e�2 es2

2

s1 � s2
ð1� e�es2

1
tÞ � es2

1

s1 � s2
ð1� e�es2

2
tÞ

� �
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b ju0j 1

eo2
e�2 1

4
ð1� e�eo2Þ � e

9o4

4

2effiffiffi
3

p ð1� e�2=ðeo2ÞÞ
� �

b ju0je�2 1

4eo2
ð1� e�eo2Þ � eo2 3

ffiffiffi
3

p

2

 !
:

In the above sequence of inequalities we have used the estimates (2.2)–(2.4)

from the proof of Theorem 1.1.

Since the function

s 7! 1

4s
ð1� e�sÞ � 3

ffiffiffi
3

p

2
s

is strictly positive on some interval ½0; 1=n0� ðn0 b 16Þ, we see that there exists

a constant C > 0 such that for every nb n0 and every o2 and t as above

t

e
jueðtÞ � vðtÞjbCju0j:

Now, let u0n :¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
mðEnÞ

p
wEn

, where wEn
is the characteristic function of the

set En and mðEnÞ > 0. Then ku0nkH ¼ 1 and ku0nkDðAÞ a 2.

Let un
e and vn be the solutions of the equations (1.1) and (1.2) corre-

sponding to the initial values uð0Þ ¼ vð0Þ ¼ u0n and u 0ð0Þ ¼ �Au0n .

Integrating the above estimate in x, we find for every t A ½nþ 1; 2n�

t

e
kun

e ðtÞ � vnðtÞkH ¼ t

e

ð
En

jun
e ðt; xÞ � vnðt; xÞj2dmðxÞ

� �1=2

bC

ð
En

ju0nðxÞj
2
dmðxÞ

� �1=2
¼ C:

The claim follows by letting n, and hence t, tend to y. r

Proof of Theorem 1.4. By the spectral theorem for self-adjoint operators,

we may assume that A is a multiplication operator as in the proof of Theorem

1.1.

Consider the Banach spaces

X :¼ f A Cð½1;yÞ � ð0; 1�;VÞ : sup
tb1; e A ð0;1�

tk f ðt; eÞkV < y

( )

and

X0 :¼ f A X : lim
t!y

tk f ðt; eÞkV ¼ 0 uniformly in e A ð0; 1�
n o

;

both endowed with the natural supremum norm.
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By Theorem 1.1, the linear operator

DðAÞ ! X ;

u0 7! fu0 ;

where fu0ðt; eÞ :¼ ðueðtÞ � vðtÞÞ=e, and ue and v are the two solutions of the

equations (1.1) and (1.2), respectively, corresponding to the initial values uð0Þ ¼
vð0Þ ¼ u0 and u 0ð0Þ ¼ �Au0, is well defined and bounded.

By Theorem 1.2, this operator maps the set

Mn :¼ fu0 A DðAÞ : supp u0 H faðxÞb 1=nggU ðKer AÞ

into X0.

Since the union 6
n AN Mn is total in DðAÞ, the claim follows. r

3. Applications and Remarks

3.1. Theorem 1.1 improves the global integral estimate from [7, Theorem 1.1]

and the uniform estimates from [9, Théorème 3.2] and [6, Section VI.5, Theo-

rem 5.5] (see also the Introduction) into several directions, at least for large

times.

First, we estimate the value tkuðtÞ � vðtÞkV uniformly on the interval ½1;yÞ.
Second, the convergence rate is of the order OðeÞ. Third, the estimate holds

uniformly for u0 in bounded subsets of DðAÞ.
We do not obtain the convergence rate OðeÞ (uniformly for bounded subsets

in DðAÞ) for small times. On the other hand, it is not clear if the weaker esti-

mates from [9] or [6] are optimal. This question is, however, not the purpose

of this article.

It is not possible to estimate tkuðtÞ � vðtÞkV uniformly on ½1;yÞ for

an arbitrary choice of initial values u0 ¼ uð0Þ ¼ vð0Þ A V and u1 ¼ u 0ð0Þ A H.

Theorem 1.1 fails for example for A ¼ 0, u0 A V , and u1 A H di¤erent from 0.

In this case,

kueðtÞ � vðtÞkH ¼ eð1� e�t=eÞku1kH ! eku1kH as t ! y:

3.2. If the initial value u0 is more regular in the sense that u0 A DðAaÞ for

some a > 1, then, under the assumptions of Theorem 1.1,

Etb 1 kueðtÞ � vðtÞkDðAa�1=2Þ a
Ce

t
ðku0kDðA a�1=2Þ þ

ffiffi
e

p
ku0kDðA aÞÞ;

where Cb 0 is a constant independent of e A ð0; 1� and u0 A DðAaÞ.
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3.3. It follows from the proof of Theorem 1.3 that for every kb 0

lim sup
t!y

sup
e A ð0;1�

sup
u0 ADðAkÞ

ku0k
DðAk Þa1

t

e
kueðtÞ � vðtÞkH > 0:

In order to see this, one may again assume that A is a multiplication

operator and observe that the norms k � kDðAkÞ are equivalent to the norm k � kH
on the subspace

fu0 A L2ðE; dmÞ : supp u0 H faðxÞa 1gg:

3.4. We may apply our abstract results to the dissipative wave equation

eutt þ ut � Du ¼ 0 in Rþ �W;

u ¼ 0 in Rþ � qW;

uð0; �Þ ¼ u0; utð0; �Þ ¼ Du0;

8<
:ð3:1Þ

and to the heat equation

vt � Dv ¼ 0 in Rþ �W;

v ¼ 0 in Rþ � qW;

vð0; �Þ ¼ u0;

8<
:ð3:2Þ

in a domain WHRn. In fact, these equations are special cases of equations

(1.1) and (1.2) if A :¼ �DD
W is the Dirichlet-Laplace operator on H ¼ L2ðWÞ

with domain

DðAÞ :¼ fu A H 1
0 ðWÞ : �Du A L2ðWÞg:

Note that DðA1=2Þ ¼ H 1
0 ðWÞ, and if W has a smooth boundary, then

DðAÞ ¼ H 2ðWÞVH 1
0 ðWÞ. We thus obtain the following corollary of Theorems

1.1 and 1.3.

Corollary 3.1. Let ue and v be the solutions of the equations (3.1) and

(3.2), respectively. There exists a constant Cb 0 independent of u0 A DðAÞ and

e A ð0; 1� such that for every tb 1

t

e
kueðtÞ � vðtÞkH 1

0
ðWÞ aCðku0kH 1

0
ðWÞ þ

ffiffi
e

p
ku0kDðAÞÞ:

This estimate is optimal if W contains balls of arbitrarily large radius, e.g. if

W is an exterior domain.

Remark 3.2. The estimate in the above Corollary 3.1 is not optimal if W is

a bounded domain, or, more generally, if W is a domain for which the first

Poincaré inequality
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ð
W

u2 a c

ð
W

j‘uj2;

holds for all u A H 1
0 ðWÞ and for a uniform constant cb 0.

In fact, the first Poincaré inequality holds if and only if the Dirichlet-

Laplace operator is a strictly positive operator on L2ðWÞ. Thus, if the first

Poincaré inequality holds, then, by Theorem 1.2,

Etb 1
edt

e
kueðtÞ � vðtÞkH 1

0
ðWÞ aCðku0kH 1

0
ðWÞ þ

ffiffi
e

p
ku0kDðAÞÞ:

3.5. We remark that there are results in the spirit of Theorem 1.1 in the

context of nonautonomous, inhomogeneous or nonlinear wave and heat equa-

tions; the estimates are, however, only valid on compact time intervals. For

results in this direction we refer to H. Bellout and A. Friedman [1], K. J. Engel

[3], H. S. Nur [12], H. O. Fattorini [6], B. Najman [10, 11] and B. F. Esham

and R. J. Weinacht [4, 5]. Higher order equations have been studied by J. A.

Smoller [14].
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