
Funkcialaj Ekvacioj, 47 (2004) 187–204

Razumikhin-Type Theorems in the Problem on Instability of

Nonautonomous Equations with Finite Delay1

By

N. O. Sedova

(Ulyanovsk State University, Russia)

Abstract. The paper provides some theorems on complete instability of zero solution

relative to a set for nonautonomous nonlinear equations with delay. The right-hand

side of the equation is assumed to satisfy conditions, which provide standard existence-

uniqueness-continuous dependence-continuation theory for the equation, as well as

precompactness of the collection of translations in time of the right-hand side in a

functional space with a metrizable compact open topology. These assumptions allow

constructing limiting equations. Using conceptions of Lyapunov-Razumikhin func-

tions and limiting equations, new instability results are obtained, which are applicable,

in particular, to autonomous and periodic delayed di¤erential equations and generalize

some known results.
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1. Introduction

Stability of solutions of delayed di¤erential equations has been investi-

gated in the last few decades by numerous authors. For nonlinear equations

the main tool is Lyapunov’s direct method, which for functional di¤erential

equations divides into two lines: the first one employs functionals, the second

one uses Lyapunov-Razumikhin functions. Razumikhin-type conditions permit

the use of simple functions and allow us to circumvent the puzzle of devising a

functional and computing its derivative. The idea of exploiting functions rather

than functionals was found to be quite fruitful, and developed in di¤erent direc-

tions, in particular, for equations with infinite delay and Volterra equations

(see, for instance, [4, 6, 8, 17, 19, 21] and the references therein). Moreover,

Razumikhin-type conditions for the derivative are also employed to functionals

(for instance, [15, 22]).

Since constructing a suitable function with the prescribed properties in

applications may be quite di‰cult, e¤orts are repeatedly made to weak the
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requirements imposed on Lyapunov functions. Analogs of the classic theorems

are being extended in di¤erent directions. It’s possible to obtain one of such

extension with invariance principle for autonomous equations [7]. And for

nonautonomous equations we have the method of so-called limiting equations

and quasi-invariance principle [1]. The limiting equations in themselves provide

much information on asymptotic behavior of the original equation’s solutions

[1, 5, 11, 14, 16]. But when coupled with Lyapunov’s direct method, an

examination of limiting equations’ properties gives a better outcome. The

results of this kind for equations with delay can be found in [2, 3, 12].

There are not so many results in the literature regarding instability. It has

been argued on occasion that instability theorems are not so useful in appli-

cations. In fact, a solution, which is unstable relative to arbitrary perturba-

tions, may be found to be stable relative to real those. Instability theorem can

assure existence in any small neighbourhood of the solution in question at least

one initial point, which makes the solution leave the given neighbourhood. But

we can’t say what point it is and whether it is in the set of admissible pertur-

bations. From this viewpoint, theorems ensuring complete instability or though

instability relative to a set are more applicable. Actually, if for a particular

equation we proved complete instability of zero solution relative to a set S, and

intersection of a set of admissible initial points with the set S is nonempty, then

we can assert instability of zero solution relative to admissible perturbations.

The purpose of this paper is to provide such theorems for nonautono-

mous equations with delay while using ideas from [9] and results of [3]. The

right-hand side of the equation is assumed to satisfy conditions, which provide

standard existence-uniqueness-continuous dependence-continuation theory for

the equation, as well as precompactness of the collection of translations in time

of the right-hand side in some functional space with a metrizable compact open

topology. These assumptions allow constructing limiting equations. Using

conceptions of limiting functions and limiting equations, new instability results

are obtained, which are applicable, in particular, to autonomous and periodic

delayed di¤erential equations and generalize results of [9] for such equations.

The contents of this paper are as follows. Section 2 contains basic nota-

tions and assumptions about our equation, which are employed throughout. In

Sections 3 and 4 we study the complete instability of the zero solution of the

equation relative to sets of two types. Some examples are used to illustrate the

main results.

2. Preliminaries

First of all, we use the following standard notations.

Let CðX ;YÞ be the space of continuous mappings X !Y , Rn be the real

n-vector space with a norm j � j, Rþ ¼ ½0;þyÞ, r > 0 be a real number. We’ll
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denote by C the (Banach) space Cð½�r; 0�;RnÞ of functions j with the norm

kjk ¼ maxfjjðsÞj : �rc sc 0g. If x : ½a� r; aþ bÞ ! Rn ða A Rþ; b > 0Þ is a

continuous function and t A ½a; aþ bÞ, then xt A C denotes the segment of x at t

defined by the equality xtðsÞ ¼ xðtþ sÞ for �rc sc 0. If x A Cð½a� r;yÞ;RnÞ,
then the positive orbit of xt in C is the set gþðxtÞ ¼ fxt : td ag. Next, we

define the positive limit set of xt, denoted by oþðxtÞ, to be the set of all c A C

for which there exists a sequence tk ! þy with xtk ! c in C.

Now consider the functional di¤erential equation with delay of the form

_xxðtÞ ¼ Xðt; xtÞ;ð2:1Þ

where X : Rþ � CH ! Rn with CH ¼ fj A C : kjk < Hg, 0 < Hcþy, is a

continuous functional. Assume that jX ðt; jÞjcm for ðt; jÞ A Rþ � Cq, where

0 < q < H, Cq ¼ fj A C : kjkc qg, m ¼ mðqÞ is a constant. Then for any

initial condition ða; jÞ A Rþ �CH there exists a noncontinuable solution xðt; a; jÞ
of (2.1) defined on ½a� r; bÞ, b > a, such that xaða; jÞ ¼ j, and if jxðt; a; jÞjc
q < H for all t A ½a� r; bÞ then b ¼ þy [10]. Suppose that Xðt; 0Þ1 0 so that

equation (2.1) admits the zero solution.

Let the following assumption hold:

Assumption 2.1. The functional X ðt; jÞ satisfies Lipschitz condition; that is

for every compact K HCH there is l ¼ lðKÞ > 0 such that for all j1; j2 A K and

t A Rþ

jX ðt; j2Þ � Xðt; j1Þjc lkj2 � j1k;ð2:2Þ

the functional Xðt; jÞ is uniformly continuous with respect to ðt; jÞ A Rþ � K for

every compact KHCH , that is for every e > 0 there exists d ¼ dðe;KÞ such that

for ðt1; j1Þ; ðt2; j2Þ A Rþ � K the inequalities jt2 � t1j < d, kj2 � j1k < d imply

jXðt2; j2Þ � Xðt1; j1Þj < e.

Now assume that a sequence fqng is such that 0 < q1 < q2 < � � � < qn ! H

as n ! y. We define for every qi the set Ki HC of all functions j A C, such

that for s; s1; s2 A ½�r; 0�

jjðsÞjc qi; jjðs2Þ � jðs1ÞjcmðqiÞjs2 � s1j:

Evidently, Ki is a compact. We set G ¼ 6y
i¼1

Ki. Note, that if xðt; a; jÞ is

a solution of (2.1) defined on ½a� r; bÞ, b > aþ r, then xtða; jÞ A G for

t A ½aþ r; bÞ. If j A G then xtða; jÞ A G for t A ½a; bÞ. So, if we study insta-

bility, it’s no di¤erence, whether Xðt; jÞ is defined on Rþ � CH or on Rþ � G .

Let FX be the space of continuous functionals mapping Rþ � G into

Rn. By Xt we mean a translation of a functional X defined by the equality
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Xtðt; jÞ ¼ Xðtþ t; jÞ. Obviously, for X A FX the collection of translations

fXt : t A RþgHFX .

We define a convergence on FX as the uniform one on every compact

K 0 HRþ � G . Namely, a sequence fX ðnÞgHFX converges to X A FX if for

every K 0 HRþ � G and any e > 0 one has jX ðnÞðt; jÞ � X ðt; jÞj < e, if n > N ¼
Nðe;K 0Þ and ðt; jÞ A K 0.

Notice, that according to the construction of the domain G this conver-

gence is metrizable, see for example [1].

Under Assumption 2.1 the collection of translations fXtðt; jÞ ¼ X ðtþ t; jÞ :
t A Rþg is precompact in the space FX and we can define a limiting equation

for (2.1):

_xxðtÞ ¼ X �ðt; xtÞ;ð2:3Þ

where a functional X � : Rþ � G ! Rn is a limiting one to X . What this means

is there exists a sequence tn ! y such that X ðnÞðt; jÞ ¼ X ðtþ tn; jÞ !
FX

X �ðt; jÞ.
Assumption 2.1 also provides the uniqueness of solution of (2.1) for an

initial condition ða; jÞ A Rþ � CH and the uniqueness of solution of (2.3) for

an initial condition ða; jÞ A Rþ � G . Also, if xðt; a; jÞ is a solution of (2.1)

defined and bounded on ½a� r;þyÞ (i.e., jxðt; a; jÞjc q < H), then oþðxtða; jÞÞ
is nonempty, connected, compact in C and contained in G , and gþðxtða; jÞÞ is

connected, and its closure in C is compact (for a proof, see, for example, [1]).

The following lemma relates solutions of (2.1) to those of (2.3):

Lemma 2.1 ([1]). Let X �ðt; jÞ be a limiting functional to Xðt; jÞ with

respect to a sequence tn ! þy and sequences fangHRþ, fjngHG be such

that an ! a, jn ! j as n ! y. Let xðt; tn þ an; jnÞ be the solutions of (2.1),

x�ðt; a; jÞ be the solution of (2.3) defined on ½a� r; bÞ. Then the sequence

fxðnÞðtÞ ¼ xðtþ tn; tn þ an; jnÞg converges to x�ðt; a; jÞ uniformly in t A ½a� r; g�
for any g < b.

Proof. Let X ðnÞðt; jÞ ¼ Xðtþ tn; jÞ. Then xðnÞðtÞ ¼ xðtþ tn; tn þ an; jnÞ is

the solution of the equation _xxðtÞ ¼ X ðnÞðt; xtÞ. Taking into account the prop-

erties of the functional Xðt; jÞ and the definition of the limiting functional

X �ðt; jÞ, it is easy to verify that the conditions of the continuous-dependence

theorem [10] hold for the sequences fX ðnÞðt; jÞg and fxðnÞðtÞg. r

A function V A C1ðRþ � GH ;RÞ, GH ¼ fx A Rn : jxj < Hg, with Vðt; 0Þ ¼ 0

is said to be a Lyapunov function. Its derivative with respect to (2.1) is a

functional V 0 : Rþ � CH ! R, defined by

V 0ðt; jÞ ¼ qVðt; jð0ÞÞ
qt

þ
Xn

i¼1

qVðt; jð0ÞÞ
qxi

Xiðt; jÞ:
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We also assume that for V and its partial derivatives properties below hold:

Assumption 2.2. The function Vðt; xÞ is bounded and uniformly con-

tinuous on sets of the form Rþ � Gq, Gq ¼ fx A Rn : jxjc qg, that is for any

q, 0 < q < H, there exists m ¼ mðq;VÞ such that jVðt; xÞjcm for ðt; xÞ A
Rþ � Gq, and for every e > 0 there is d ¼ dðe; q;VÞ > 0 such that for

ðt1; x1Þ; ðt2; x2Þ A Rþ � Gq the inequalities jt2 � t1j < d, jx2 � x1j < d imply

jVðt2; x2Þ � Vðt1; x1Þj < e.

Assumption 2.3. The partial derivatives

qV

qt
;
qV

qx1
; . . . ;

qV

qxn
ð2:4Þ

are all bounded and uniformly continuous on sets of the form Rþ � Gq,

0 < q < H.

Under Assumptions 2.1–2.3 the functional Uðt; jÞ ¼ V 0ðt; jÞ is uniformly

continuous and bounded on a set Rþ � K for every compact KHCH .

Hence the collections of translations fVtðt; xÞ ¼ Vðtþ t; xÞ : t A Rþg and

fUtðt; jÞ ¼ Uðtþ t; jÞ : t A Rþg are precompact in corresponding spaces FV ¼
CðRþ � Rn;RÞ and FU ¼ CðRþ � G ;RÞ with metrizable compact open top-

ologies [20], [1]. So we can define a family of limiting functions to V , any one

of which we’ll denote by V �, and a family of limiting functionals U �.

3. Complete instability of the zero solution

In this section we introduce the concept of complete instability relative to a

set for the zero solution of equation (2.1) with the assumptions given in the

previous section. We provide several instability theorems, which are more

universal, than the results of [3], [9]. We’ll use the following definition for

short:

Definition 3.1. Functionals X � A FX , V
� A FV , U

� A FU form a limiting

complex if they are limiting those to X A FX , V A FV , U A FU , respectively, for

the same sequence tn ! þy.

Note, that for a sequence tk ! þy, which defines a limiting complex

ðX �;V �;U �Þ and the limit point c ¼ limk!y xtk of the solution xðt; a; jÞ, and
for the solution x�ðt; 0;cÞ of the equation _xxðtÞ ¼ X �ðt; xtÞ we have x�

t ð0;cÞ A G

for all td 0 and
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U �ðt; x�
t ð0;cÞÞ

¼ lim
k!y

Uðtþ tk; xtþtk ðtk; xtk ða; jÞÞÞ ¼ lim
k!y

V 0ðtþ tk; xtþtk ða; jÞÞ

¼ lim
k!y

"
q

qy
Vðtþ tk; xðtþ tk; a; jÞÞ

þ
Xn

i¼1

q

qxi
Vðtþ tk; xðtþ tk; a; jÞÞ � Xiðtþ tk; xtþtk ða; jÞÞ

#

¼ lim
k!y

"
q

qy
Vðtþ tk; xðtþ tk; tk; xtk ða; jÞÞÞ

þ
Xn

i¼1

q

qxi
Vðtþ tk; xðtþ tk; tk; xtk ða; jÞÞÞ � Xiðtþ tk; xtþtk ðtk; xtk ða; jÞÞÞ

#

ðby Lemma 2:1Þ ¼ q

qy
V �ðt; x�ðt; 0;cÞÞ þ

Xn

i¼1

q

qxi
V �ðt; x�ðt; 0;cÞÞ �X �

i ðt; x�
t ð0;cÞÞ

¼ q

qs
V �ðs; x�ðs; 0;cÞÞ

����
s¼t

(here V ¼ Vðy; x1; . . . ; xnÞ). That is,

U �ðt; x�
t ð0;cÞÞ ¼

q

qs
V �ðs; x�ðs; 0;cÞÞ

����
s¼t

:ð3:1Þ

Let

Pt
MðVÞ ¼ ðt; jÞ A Rþ � CH : 0 < Vðt; jð0ÞÞ ¼ max

�rcsc0
Vðtþ s; jðsÞÞ

� �

(if Vðt; xÞ1VðxÞ then we use the set PMðVÞ ¼ fj A CH : 0 < Vðjð0ÞÞ ¼
max�rcsc0 VðjðsÞÞg [9]). The set Pt

MðVÞV ½Rþ � Cd� will always assumed to

be nonempty for any d A ð0;HÞ.
Now we define the set

NðU �Þ ¼ fðt; jÞ A Rþ � G : U �ðt; jÞ ¼ 0g:

We say that the set MHRþ � CH does not contain solutions of an

equation if for every solution xðt; a; jÞ of this equation there exists t� d a such

that ðt�; xt � ða; jÞÞ B M.

Then, under the assumptions and the definitions given we can state our first

result (its proof arises from the proof of Theorem 3.2 below, and therefore is

omitted):
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Theorem 3.1. Suppose there exists a Lyapunov function Vðt; xÞ satisfying

the following conditions:

1. V 0ðt; jÞ > 0 for all ðt; jÞ A Pt
MðVÞ;

2. there exists a sequence tk ! þy such that for the corresponding limiting

complex ðX �;V �;U �Þ the set Pt
MðV �ÞVNðU �Þ does not contain solu-

tions of the equation _xxðtÞ ¼ X �ðt; xtÞ.
Then the zero solution of (2.1) is unstable.

In studies of instability for autonomous and periodic equations through the

use of time-independent Lyapunov functions the authors of [9] took the fol-

lowing definition:

Definition 3.2. Let D be a subset of CH with 0 A D. The zero solution of

(2.1) is said to be completely unstable relative to D if there exists e > 0, such

that for all d A ð0; eÞ and each j A Cd VD, there exists a a0 d 0 such that for the

solution xðt; a0; jÞ of (2.1) and some t� > a0 the inequality jxðt�; a0; jÞjd e

holds.

When it is considered that the right-hand side of the equation being studied

depends on t, we change the definition in this fashion:

Definition 3.3. Let Dtj be a subset of Rþ � CH , Rþ � f0gHDtj. The

zero solution of (2.1) is said to be completely unstable relative to Dtj if there

exists e > 0, such that for all d A ð0; eÞ and each j A Cd, a0 d 0 such that

ða0; jÞ A Dtj the solution xðt; a0; jÞ of (2.1) satisfies the inequality jxðt�; a0; jÞjd
e for some t� > a0 (if the right-hand side X ðt; jÞ is periodic in t or independent

on t, then Dtj ¼ Rþ �D with D from the previous definition, but then a0 in

Definition 3.2 may be an arbitrary).

Using the coined definition, we can obtain the following result:

Theorem 3.2. Let DHCH be a positively invariant set with respect to (2.1),

0 A D. Suppose there exists a Lyapunov function Vðt; xÞ satisfying the following

conditions:

1. the set Pt
MðVÞV ½Rþ � ðDVCdÞ� is nonempty for any small d;

2. V 0ðt; jÞ > 0 for all ðt; jÞ A Pt
MðVÞV ½Rþ �D�;

3. there exists a sequence tk ! þy such that for the corresponding limiting

complex ðX �;V �;U �Þ the set Pt
MðV �ÞV ½Rþ �D�VNðU �Þ does not

contain solutions of the equation _xxðtÞ ¼ X �ðt; xtÞ.
Then the zero solution of (2.1) is completely unstable relative to Pt

MðVÞV
½Rþ �D�.

Proof. Let e > 0 be given, d A ð0; eÞ. Let’s choose j0; a0 d 0: kj0k < d,

ða0; j0Þ A Pt
MðVÞV ½Rþ �D�. Suppose xðtÞ ¼ xðt; a0; j0Þ is the solution of (2.1)

and its norm in Rn is bounded by e for all td a0. Condition 2 of the theorem
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implies the function vðtÞ ¼ Vðt; xðt; a0; j0ÞÞ is nondecreasing. To prove this

fact, notice that ða0; j0Þ A Pt
MðVÞV ½Rþ �D� implies V 0ða0; j0Þ> 0, or _vvða0Þ> 0.

Therefore, vðtÞ > vða0Þ for all t A ½a0; a0 þ e�, e > 0. What this means is

ða0 þ e; xa0þeða0; j0ÞÞ A Pt
MðVÞ and hence V 0ða0 þ e; xa0þeða0; j0ÞÞ > 0. Repli-

cates of similar reasoning shows that vðt2Þ > vðt1Þ for all t2 > t1 d a0 and

ðt; xtða0; j0ÞÞ A Pt
MðVÞV ½Rþ �D� for all td a0. The solution in question being

bounded, there is a limit

lim
t!þy

Vðt; xðt; a0; j0ÞÞ ¼ c0 > Vða0; j0ð0ÞÞ > 0ðcÞ

and xtða0; j0Þ A G for all td a0 þ r. Let tk ! þy be the sequence from

condition 3 of the theorem, for which Xðtþ tk; jÞ !
FX

X �ðt; jÞ, Vðtþ tk; xÞ !
FV

V �ðt; xÞ, Uðtþ tk; jÞ !
FU

U �ðt; jÞ. The precompactness of the positive orbit

gþðxtða0; j0ÞÞ in C ensures that for a subsequence kj !y we have xtkj ða0; j0Þ !
c A G . So by Lemma 2.1 the sequence fxjðtÞ ¼ xðtkj þ t; a0; j0Þg ¼ fxðtkj þ t;

tkj ; xtkj ða0; j0ÞÞg tends to the solution x�ðtÞ ¼ x�ðt; 0;cÞ of _xxðtÞ ¼ X �ðt; xtÞ (uni-

formly in t A ½0;T � for all T > 0), and x�
t A G for all td 0. Since the func-

tion Vðt; xðtÞÞ is nondecreasing, the relation (c) yields V �ðt; x�ðt; 0;cÞÞ1 c0
and ðt; x�

t Þ A Pt
MðV �Þ for all t. Therefore by (3.1) ðt; x�

t Þ A Pt
MðV �ÞVNðU �Þ.

Furthermore, because D is positively invariant, x�
t A D for all t. There arises a

contradiction (see condition 3 of the theorem), so the proof is finished. r

Remark 3.1. A Lyapunov function in all instability theorems presented

in this paper needs not be positive definite, it is su‰ce that Pt
MðVÞV

½Rþ � ðDVCdÞ� be nonempty for any small d > 0.

Remark 3.2. The proof of Theorem 3.2 implies that e in Definition 3.3

may be an arbitrary (less than H for H < þy).

The last result has a wider range of applications than Theorem 3.1, which

is a corollary of Theorem 3.2 with D ¼ CH . Moreover, for the autonomous

and periodic in t equations we obtain the corollaries from the last theorem:

Theorem 3.3. Let in (2.1) X ðt; jÞ1X ðjÞ, DHCH be a positively invariant

set with respect to (2.1), 0 A D. Suppose there exists a Lyapunov function VðxÞ
satisfying the following conditions:

1. the set DVPMðVÞVCd is nonempty for any small d > 0;

2. V 0ðjÞ > 0 for all j A DVPMðVÞ;
3. the set fj A D : V 0ðjÞ ¼ 0g does not contain solutions of the equation

(2.1) except the zero solution.

Then the zero solution of (2.1) is completely unstable relative to DVPMðVÞ (in

terms of Definition 3.2) or completely unstable relative to Rþ � ½DVPMðVÞ� (in
terms of Definition 3.3).
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This result is immediately evident from Theorem 3.2. It’s the extension of

the first statement of Theorem 3.2 [9] to the case, when a Lyapunov function

can be not positive definite (and coincides with the statement of the theorem in

question if VðxÞ > 0 for x0 0). Also notice, that assertion about complete

instability in terms of Definition 3.3 is more general that in terms of Definition

3.2, since it ensures that a solution beginning in any point of the set and at any

point in time will leave any preassigned neighbourhood of zero contained in CH

(see Definition 3.3 and Remark 3.2).

Theorem 3.4. Let in (2.1) the functional Xðt; jÞ be T-periodic in t, DHCH

be a positively invariant set with respect to (2.1), 0 A D.

Suppose there exists a T-periodic in t Lyapunov function Vðt; xÞ satisfying

the following conditions:

1. the set Pt
MðVÞV ½Rþ � ðDVCdÞ� is nonempty for any small d;

2. V 0ðt; jÞ > 0 for all ðt; jÞ A Pt
MðVÞV ½Rþ �D�;

3. the set fðt; jÞ A Rþ �D : V 0ðt; jÞ ¼ 0g does not contain solutions of

equation (2.1) except the zero solution.

Then the zero solution of (2.1) is completely unstable relative to Pt
MðVÞV

½Rþ �D�.

This assertion is evident from Theorem 3.2, when it is considered, that the

right-hand side and a solution of a limiting equation, as well as functions,

limiting to V and U , can result from the corresponding original functions

through a translation in time by the same value t A ½0;TÞ; in particular, tk ¼ Tk

yields X �ðt; jÞ ¼ X ðt; jÞ, V �ðt; xÞ ¼ Vðt; xÞ, U �ðt; jÞ ¼ V 0ðt; jÞ.
Just as Theorem 3.3 generalizes Theorem 3.2 [9], Theorem 3.4 generalizes

Theorem 4.2 [9] for the periodic equation.

Also, Theorem 3.2 yields a corollary for almost periodic in t equations,

according to the following definition [13]:

Definition 3.4. A functional Xðt; jÞ A CðRþ � CH ;R
nÞ is called uniformly

almost periodic in t if for any e > 0 and q A ð0;HÞ there exists l ¼ lðe; qÞ > 0

such that any segment ½a; aþ l �, a A Rþ, contains at least one number t such

that jXðtþ t; jÞ � Xðt; jÞj < e for all ðt; jÞ A Rþ � Cq.

For a functional Xðt; jÞ, which is uniformly almost periodic in t, the

collection of translations fXtðt; jÞ ¼ Xðtþ t; jÞ : t A Rþg is precompact in the

space FX , and all the limiting to X functionals are uniformly almost periodic in

t [20].

Moreover, the following lemma holds:

Lemma 3.1. If X ðt; jÞ is uniformly almost periodic in t, then there exists a

limiting functional X �ðt; jÞ1X ðt; jÞ.
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Proof. Let en ! 0 and an ! þy be arbitrary sequences. By Defini-

tion 3.4, for every n there exist ln ¼ lnðen;KnÞ and tn A ½an; an þ ln� such that

jXðtn þ t; jÞ � X ðt; jÞj < en for all ðt; jÞ A Rþ � Kn. The last inequality implies

that X ðtn þ t; jÞ ! Xðt; jÞ uniformly in every compact K HRþ � G . r

Now from Lemma 3.1 and Theorem 3.2 we obtain immediately the fol-

lowing statement:

Theorem 3.5. Let in (2.1) the functional Xðt; jÞ be uniformly almost pe-

riodic in t, DHCH be a positively invariant set with respect to (2.1), 0 A D.

Suppose there exists a Lyapunov function VðxÞ satisfying the following

conditions:

1. the set DVPMðVÞVCd is nonempty for any small d;

2. V 0ðt; jÞ > 0 for all ðt; jÞ A Rþ � ½DVPMðVÞ�;
3. the set fðt; jÞ A Rþ �D : V 0ðt; jÞ ¼ 0g does not contain solutions of

equation (2.1) except the zero solution.

Then the zero solution of (2.1) is completely unstable relative to Rþ �
½DVPMðVÞ�.

Remark 3.3. In the paper [18] an instability theorem was proven utilizing

a Lyapunov function with the positive definite on Pt
MðVÞ derivative. Besides,

instability was defined in [18] as the reverse of uniform stability. Theorems

3.1–3.5 assure that even though V 0 can be only positive on Pt
MðVÞ, we are able

to obtain a more general statement.

Remark 3.4. Evidently, in all results above it su‰ces to require, that all

the properties of a function Vðt; xÞ hold only in some neighbourhood of the

equilibrium of equation (2.1), i.e.:
. the set Pt

MðVÞ can be replaced with Pt
MðV ;BÞ ¼ fðt; jÞ : kjkcB; 0 <

Vðt; jð0ÞÞ ¼ max�rcsc0 Vðtþ s; jðsÞÞg for B A ð0;HÞ;
. the set D can be replaced with DB ¼ fj A D : kjkcBg (see Theorem 3.3

[9] for an autonomous equation).

The proof di¤ers from the above one in that only we can choose any e A ð0;BÞ.

Example 3.1. Let’s consider the scalar equation

_xxðtÞ ¼ xðtÞ þ xðt� r1ðtÞÞ � xðtÞxðt� r2ðtÞÞGðt; xtÞ;ð3:2Þ

with 0 < riðtÞc r, Gðt; jÞ : Rþ � CH ! R are uniformly continuous functions,

g0 cGðt; jÞcG0. The set D ¼ fj : jðsÞ > 0; s A ½�r; 0�g is positively invari-

ant relative to equation (3.2). In fact, if xð�Þ is a solution with xðtÞ ¼ 0,

xðtþ sÞ > 0 for s A ½�r; 0Þ, then the equation yields _xxðtÞ > 0 which is a con-

tradiction. So, for j > 0 the solution xðt; a; jÞ > 0 for all td a� r.
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Let VðxÞ ¼ x, then

V 0ðt; jÞ ¼ jð0Þ þ jð�r1ðtÞÞ � jð0Þjð�r2ðtÞÞGðt; jÞ

¼ jð0Þ þ jð�r1ðtÞÞ � jð0Þjð�r2ðtÞÞGþðt; jÞ � jð0Þjð�r2ðtÞÞG�ðt; jÞ;

where

G�ðt; jÞ ¼
0; Gðt; jÞ > 0;

Gðt; jÞ; Gðt; jÞc 0;

�
Gþðt; jÞ ¼

Gðt; jÞ; Gðt; jÞd 0;

0; Gðt; jÞ < 0:

�

Now, for all j A DVPMðVÞ ¼ fj : 0 < jðsÞc jð0Þg

V 0ðt; jÞd jð0Þ � j2ð0ÞGþðt; jÞ ¼ jð0Þð1� jð0ÞGþðt; jÞÞ:

Therefore, V 0ðt; jÞ > 0 for j : 0 < jð0Þ < 1=G0, if G0 > 0, and for all j : jð0Þ >
0, if G0 c 0.

A limiting equation to (3.2) has the form

_xxðtÞ ¼ xðtÞ þ xðt� r�1 ðtÞÞ � xðtÞxðt� r�2 ðtÞÞG �ðt; xtÞ;

with r�i ðtÞ ¼ limk!y riðtk þ tÞ ði ¼ 1; 2Þ, G �ðt; jÞ ¼ limk!y Gðtk þ t; jÞ for some

sequence tk ! þy.

Making an estimate of the functional

U �ðt; jÞ ¼ jð0Þ þ jð�r�1 ðtÞÞ � jð0Þjð�r�2 ðtÞÞG �ðt; jÞ

by analogy with the Lyapunov function derivative, we can obtain that on the

set Rþ � ½DVPMðVÞVC1=jG0j� it is positive, so for any limiting equation the

corresponding set ½Rþ � fPMðV ; 1=jG0jÞVDg�VNðU �Þ does not contain its

solutions. Hence it follows by Theorem 3.2 that the zero solution of (3.2) is

completely unstable relative to Rþ � ½DVPMðVÞ� (see Remark 3.4).

4. Another set in complete instability results

Let’s now consider the second statement of Theorem 3.2 [9]. It implies

that in Theorem 3.3 the set PMðVÞ can be replaced with PmðVÞ ¼ fj A CH :

Vðjð0ÞÞ ¼ min�rcsc0 VðjðsÞÞ > 0g. However the similar statement for the

periodic equation is not proven and proposed by the authors as an open

problem. We will establish the validity of this statement for equation (2.1)

with precompact right-hand side (this case covers periodic Xðt; jÞ).
With this aim in mind we introduce notations:
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Pt
mðVÞ ¼ ðt; jÞ A Rþ � CH : Vðt; jð0ÞÞ ¼ min

�rcsc0
Vðtþ s; jðsÞÞ > 0

� �
;

nðt; c0;V �Þ ¼ j A CH : min
�rcsc0

V �ðtþ s; jðsÞÞ ¼ c0

� �
;

mðt; c0;V �Þ ¼ fj A nðt; c0;V �Þ : V �ðt; jð0ÞÞ ¼ c0g:

Lemma 4.1. If for a function Vðt; xÞ

V 0ðt; jÞd 0 for all ðt; jÞ A Pt
mðVÞ

then for every ða; jÞ A Pt
mðVÞ the following estimation holds:

vðtÞ ¼ Vðt; xðt; a; jÞÞd min
�rcsc0

Vðaþ s; jðsÞÞ;

where xðt; a; jÞ is a solution of (2.1) defined on ½a� r; bÞ, t A ½a; bÞ.

Proof. Suppose that the conclusion of the lemma is not true, i.e., there

exists t0 A ða; bÞ such that vðt0Þ < min�rcsc0 vðaþ sÞ. Without loss of gener-

ality we can believe that 0 < vðt0Þ < vðtÞ for t A ½a� r; t0Þ. Then there exists

t A ða; t0� such that _vvðtÞ ¼ V 0ðt; xtða; jÞÞ < 0 and 0 < vðtÞ < vðtÞ for all t A
½a� r; tÞ. This contradiction proves the lemma. r

Now under Assumptions 2.1–2.3 we can prove the next lemma (compare

with Theorem 2 [3]):

Lemma 4.2. Assume that a solution xðt; a; jÞ of (2.1) is defined and bounded

for all td a� r, jxðt; a; jÞjc q < H, and for a function Vðt; xÞ we have

V 0ðt; jÞd 0 for all ðt; jÞ A Pt
mðVÞ.

Then there exists c0 ¼ const such that for every point c from the positive

limit set oþðxtða; jÞÞ there is a limiting complex ðX �;V �;U �Þ such the solu-

tion x�ðt; 0;cÞ of the limiting equation _xxðtÞ ¼ X �ðt; xtÞ has properties x�
t A

oþðxtða; jÞÞHG and x�
t A nðt; c0;V �Þ for all t A Rþ. Furthermore, if x�

t A
mðt; c0;V �Þ then U �ðt; x�

t Þ ¼ 0, that is ðt; x�
t Þ A NðU �Þ.

Proof. Let xðt; a; jÞ be a bounded solution of equation (2.1) with

ða; jÞ A Pt
mðVÞ. Then by Lemma 4.1 min�rcsc0 Vðtþ s; xðtþ s; a; jÞÞ is non-

decreasing and because of the boundedness of V along the solution there is a

limit

lim
t!þy

min
�rcsc0

Vðtþ s; xðtþ s; a; jÞÞ ¼ c0:ðv1Þ

Let a point c A oþðxtða; jÞÞ be defined by a sequence tn ! þy, xðnÞ ¼
xtnða; jÞ ! c as n ! y (notice that fxðnÞgHG). The precompactness of

the collections of translations fXtðt; jÞ : t A Rþg, fVtðt; xÞ : t A Rþg, fUtðt; jÞ :
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t A Rþg implies that one can extract a subsequence nk ! y such that

Xtnk
!FX

X �, Vtnk
!FV

V �, Utnk
!FU

U �. Then by Lemma 2.1 the sequence fxðnkÞðtÞg ¼
fxðtnk þ t; tnk ; x

ðnkÞÞg ¼ fxðtnk þ t; a; jÞg tends to the solution x�ðt; 0;cÞ of _xxðtÞ ¼
X �ðt; xtÞ uniformly in t on interval ½0;T � for each T > 0.

This implies that every point x�
t ð0;cÞ, t A Rþ, is a limiting one for the

sequence fxtnkþtða; jÞg, k ! y, and x�
t ð0;cÞ A oþðxtða; jÞÞHG for all t A Rþ.

By (v1),

lim
t!þy

min
�rcsc0

Vðtþ s; xðtþ s; a; jÞÞðv2Þ

¼ lim
k!þy

min
�rcsc0

Vðtnk þ tþ s; xðnkÞðtþ sÞÞ

¼ min
�rcsc0

V �ðtþ s; x�ðtþ sÞÞ ¼ c0:

Thus x�
t A nðt; c0;V �Þ for every td 0.

Let x�
t belong to mðt; c0;V �Þ for some t A Rþ, that is

V �ðt; x�ðtÞÞ ¼ lim
k!y

Vðtnk þ t; xðnkÞðtÞÞ ¼ c0:

Then from (v2) we have V �ðt; x�ðtÞÞ ¼ min�rcsc0 V
�ðtþ s; x�ðtþ sÞÞ, so

equality (3.1) implies U �ðt; x�
t Þ ¼ 0. This completes the proof of the lemma.

r

In the next theorem we say that a set MHRþ � CH does not contain

solutions of an equation if for every solution xðt; a; jÞ of this equation there

exists t� d a such that ðt; xtða; jÞÞ B M for all t A ½t�; t� þ r�.
This change of the traditional definition (see page 5) is concerned with the

fact that the minimum value of the function V on every interval with length r,

not the function V itself, is asymptotically constant along a solution. So for

any bounded solution x�ðtÞ of a limiting equation the relation ðt; x�
t Þ A NðU �Þ

holds necessary only at some moment t on every interval with length r, but not

for all t. However, in many examples this change is insignificant.

Theorem 4.1. Let D be a positively invariant set with respect to (2.1),

0 A D. Suppose there exists a Lyapunov function Vðt; xÞ satisfying the following

conditions:

1. the set Pt
mðVÞV ½Rþ � ðDVCdÞ� is nonempty for any small d;

2. V 0ðt; jÞd 0 for all ðt; jÞ A Pt
mðVÞV ½Rþ �D�;

3. there exists a limiting complex ðX �;V �;U �Þ such that the set Pt
mðV �ÞV

½Rþ �D�VNðU �Þ does not contain solutions of the equation _xxðtÞ ¼
X �ðt; xtÞ.

Then the zero solution of (2.1) is completely unstable relative to Pt
mðVÞV

½Rþ �D�.
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Proof. Let e > 0 be given, d A ð0; eÞ. We take any j0; a0 d 0: kj0k < d,

ða0; j0Þ A Pt
mðVÞV ½Rþ �D�. By way of contradiction, suppose that the con-

clusion of the theorem is false. Then if xðtÞ ¼ xðt; a0; j0Þ is the solution

of (2.1), that (for an appropriate d) its norm in Rn must be bounded

by e for all td a0. Thus under the assumptions placed on the Lyapunov

function, vðtÞ ¼ Vðt; xðt; a0; j0ÞÞ is bounded for all t, and by Lemma 4.1

min�rcsc0 Vðtþ s; xðtþ s; a0; j0ÞÞ is a nondecreasing functional, so there is a

limit

lim
t!þy

min
�rcsc0

Vðtþ s; xðtþ s; a0; j0ÞÞ ¼ c0 dVða0; j0ð0ÞÞ > 0:ðcÞ

Let tk ! þy be the sequence from condition 3 of the theorem for

which Xtk ðt; jÞ !
FX

X �ðt; jÞ, Vtk ðt; xÞ !
FV

V �ðt; xÞ, Utk ðt; jÞ !
FU

U �ðt; jÞ. The solu-

tion xðt; a0; j0Þ is defined for all td a0 � r and bounded, so there are c A G

and a subsequence kj ! y such that xtkj ða0; j0Þ ! c. Then by Lemma 2.1

the sequence fxðkjÞðtÞ ¼ xðtkj þ t; a0; j0Þg ¼ fxðtkj þ t; tkj ; xtkj Þg tends (uniformly

in ½0;T � for any T > 0) to the solution x�ðtÞ ¼ x�ðt; 0;cÞ of _xxðtÞ ¼ X �ðt; xtÞ,
and by Lemma 4.2 x�

t A nðt; c0;V �Þ for any t A Rþ. Moreover, on every in-

terval with length r there exists a t1 with x�
t1
A mðt1; c0;V �Þ, and, by virtue of

(c), c0 > 0. Hence ðt1; x�
t1
Þ A Pt

mðV �Þ, and by Lemma 4.2 ðt1; x�
t1
Þ A NðU �Þ. In

addition, x�
t A D for all t. This contradicts condition 3 of the theorem, so the

proof is finished. r

In particular, Theorem 4.1 is valid for autonomous, periodic and almost

periodic in t equations. It implies respectively the second assertion of [9,

Theorem 3.2], and the statements of Theorems 3.4, 3.5, with Pt
MðVÞ being

replaced with Pt
mðVÞ and V 0ðt; jÞ > 0 being replaced with V 0ðt; jÞd 0.

Example 4.1. Now consider the equation

_xxðtÞ ¼ aðtÞhðxðtÞÞ þ
ð0

�r

pðt; sÞhðxðtþ sÞÞds;ð4:1Þ

where the functions aðtÞ and pðt; sÞ are uniformly continuous in t and bounded

for all t A Rþ and s A ½�r; 0�, pðt; sÞd 0, hðxÞ is nondecreasing, hð0Þ ¼ 0,

hðxÞ0 0 for x0 0.

We examine instability of the zero solution of this equation. Choose

VðxÞ ¼ x as a Lyapunov function. Its derivative is

V 0ðt; jÞ ¼ aðtÞhðjð0ÞÞ þ
ð0

�r

pðt; sÞhðjðsÞÞds

and on the set PmðVÞ admits the estimation:
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V 0ðt; jÞd aðtÞ þ
ð0

�r

pðt; sÞds
� �

hðjð0ÞÞ:

The equation limiting to (4.1) has a similar form:

_xxðtÞ ¼ a�ðtÞhðxðtÞÞ þ
ð0

�r

p�ðt; sÞhðxðtþ sÞÞds;

with a�ðtÞ ¼ limk!y aðtþ tkÞ, p�ðt; sÞ ¼ limk!y pðtþ tk; sÞ for some sequence

tk ! þy.

The corresponding functional is

U �ðt; jÞ ¼ a�ðtÞhðjð0ÞÞ þ
ð0

�r

p�ðt; sÞhðjðsÞÞds

d a�ðtÞ þ
ð0

�r

p�ðt; sÞds
� �

hðjð0ÞÞ when j A PmðV �Þ1PmðVÞ

So under the conditions

aðtÞ þ
ð0

�r

pðt; sÞds > 0ð?Þ

lim
t!þy

aðtÞ þ
ð0

�r

pðt; sÞds
� �

0 0ð?1Þ

the set ½Rþ � PmðV �Þ�VNðU �Þ does not contain solutions of the corresponding

limiting equation. Thus, Theorem 4.1 yields complete instability of the zero

solution of (4.1) relative to Rþ � PmðVÞ ¼ Rþ � PmðxÞ.

Remark 4.1. For an equation (4.1), in which aðtÞ1 a, pðt; sÞ1 pðsÞ (or

they are periodic in t), in [9] the following su‰cient conditions of complete

instability relative to PMðx2Þ was obtained:

a�
ð0

�r

jpðsÞjds > 0ð??Þ

( pðsÞ needs not be nonnegative function). In addition, the following su‰-

cient conditions of complete instability relative to the positively invariant set

DVPMðx2Þ with D ¼ fj : jðsÞd 0; s A ½�r; 0�g was presented in the form

aþ
ð0

�r

p�ðsÞds > 0:ð? ? ?Þ

Clearly for pðsÞ > 0 relationship ð?Þ follows from ð??Þ or ð? ? ?Þ, but not

conversely.
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Remark 4.2. Let VðxÞ ¼ x2. Then the derivative of V with respect

to (4.1) is V 0ðt; jÞ ¼ aðtÞhðjð0ÞÞjð0Þ þ jð0Þ
Ð 0
�r

pðt; sÞhðjðsÞÞds, and V 0ðt; jÞc
ðaðtÞ þ

Ð 0
�r

jpðt; sÞjdsÞjð0Þhðjð0ÞÞ for j A PMðVÞ. If aðtÞ þ
Ð 0
�r

jpðt; sÞjdsc 0,

then the zero solution of (4.1) is stable (asymptotically stable if inequality is

strong and ð?1Þ holds, see, for instance, [3]). Therefore if pðt; sÞ > 0 and

inequality ð?1Þ is valid, then condition ð?Þ is necessary and su‰cient for com-

plete instability of the zero solution of (4.1) relative to Rþ � PmðxÞ.

Example 4.2. Consider the zero solution of

_xxðtÞ ¼ �aðtÞxðtÞ þ
ð0

�r

pðt; sÞxðtþ sÞds;ð4:2Þ

where: the functions aðtÞd 0 and pðt; sÞd 0 are uniformly continuous in t and

bounded for all t A Rþ and s A ½�r; 0�;ð0

�r

pðt; sÞdsd e > 0 for all t A Rþ;ð4:3Þ

the function AðtÞ ¼
Ð t

0 aðtÞdt is uniformly continuous and lim t!þy AðtÞ ¼ A.

Consider the function Vðt; xÞ ¼ eAðtÞx. The derivative of this function with

respect to (4.2) equals

V 0ðt; jÞ ¼ eAðtÞ aðtÞjð0Þ þ �aðtÞjð0Þ þ
ð0

�r

pðt; sÞjðsÞds
� �� �

¼ eAðtÞ
ð0

�r

pðt; sÞjðsÞds:

On the set Pt
mðVÞ the inequality eAðtþsÞjðsÞd eAðtÞjð0Þ > 0 holds for all

s A ½�r; 0�, and since AðtÞ is nondecreasing, jðsÞd eAðtÞ�AðtþsÞjð0Þd jð0Þ > 0.

Hence, V 0ðt; jÞd eAðtÞjð0Þ
Ð 0
�r

pðt; sÞds on the set Pt
mðVÞ, and by virtue of

conditions (4.3) V 0ðt; jÞ > 0 for ðt; jÞ A Pt
mðVÞ.

A limiting equation to (4.2) has the form

_xxðtÞ ¼
ð0

�r

p�ðt; sÞxðtþ sÞds;

with p�ðt; sÞ ¼ limk!y pðtþ tk; sÞ for some sequence tk ! þy.

The derivative of the Lyapunov function has the corresponding limiting

functional U �ðt; jÞ ¼ eA
Ð 0

�r
p�ðt; sÞjðsÞds, which under conditions (4.3) is evi-

dently positive on Pt
mðV �Þ. So Theorem 4.1 implies that conditions (4.3) yield

the complete instability of the zero solution of (4.2) relative to Pt
mðVÞ (compare

with the instability conditions in Example 4.1).
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Example 4.3. Consider the system of two equations

_xx1ðtÞ ¼ aðtÞðx1ðtÞ � 3x2
2ðtÞÞ þ f ðt; ðx1Þt; ðx2ÞtÞx2

2ðtÞ;
_xx2ðtÞ ¼ aðtÞðx1ðtÞx2ðtÞ þ x3

2ðtÞÞ � f ðt; ðx1Þt; ðx2ÞtÞx1ðtÞx2ðtÞ;

�
ð4:4Þ

where 0 < a0 c aðtÞc a1 is uniformly continuous function, f ðt; j1; j2Þ meets

Assumption 2.1. We take VðxÞ ¼ ðx2
1 þ x2

2Þ=2 as a Lyapunov function. Its

derivative with respect to (4.4) equals

V 0ðt; jÞ ¼ aðtÞðj1ð0Þ � j2
2ð0ÞÞ

2

and it is semidefinite. Limiting systems have the following form:

_xx1ðtÞ ¼ a�ðtÞðx1ðtÞ � 3x2
2ðtÞÞ þ f �ðt; ðx1Þt; ðx2ÞtÞx2

2ðtÞ;
_xx2ðtÞ ¼ a�ðtÞðx1ðtÞx2ðtÞ þ x3

2ðtÞÞ � f �ðt; ðx1Þt; ðx2ÞtÞx1ðtÞx2ðtÞ;

�
ð4:5Þ

where a�ðtÞ ¼ lim tk!þy aðtþ tkÞ, f �ðt; j1; j2Þ ¼ lim tk!þy f ðtþ tk; j1; j2Þ. The

set NðU �Þ is equal to fðt; jÞ : j1ð0Þ ¼ j2
2ð0Þg. Substituting x2

2ðtÞ for x1ðtÞ in

the system (4.5) one obtains _xx2ðtÞ ¼ �x2ðtÞ _xx1ðtÞ. On the other hand, _xx1ðtÞ ¼
2x2ðtÞ _xx2ðtÞ. Thus _xx1ðtÞ ¼ 0. Assume that there exists t A Rþ such that

2a�ðtÞ � f �ðt; j1; j2Þ0 0 with j1ðsÞ1 c2 and j2ðsÞ1 c for any c A R. Then

for x1ðtÞ ¼ x2
2ðtÞ from the first equation of (4.5) one has x2

2ðtÞ ¼ 0 ¼ x1ðtÞ.
Now we can see that Theorem 4.1 is applicable in this case. Moreover, by

investigating the proof of the theorem carefully, we find that for system (4.5) the

set DVPMðVÞ actually can be replaced with Cnf0g. Therefore the zero solu-

tion of (4.4) is completely unstable.
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