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Abstract. We are concerned with the existence of at least one periodic solution of

a generalized nonlinear Liénard equation with a periodic forcing term. The main tool

is a continuation theorem by Capietto, Mawhin and Zanolin. A priori bounds for the

periodic solutions are obtained either by studying the behavior of the trajectories of

a new equivalent system or by determining the nature of singular points at infinity of

suitable autonomous systems in the usual phase plane.
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1. Introduction

In this paper we consider the problem of existence of periodic solutions for

the forced generalized Liénard equation:

€xxþ f1ðxÞ _xxþ f2ðxÞ _xx2 þ gðxÞ ¼ eðtÞ;ð1Þ

where the forcing term eðtÞ is a T-periodic continuous function. We remark

that our results are still valid if the forcing term is a bounded function eðt; x; _xxÞ
depending also on x and _xx.

The study of this equation comes from the following motivation. In a

paper of 90’s Freedman and Kuang [4] considered the equation:

€xxþ f ðx; _xxÞ _xxþ gðxÞ ¼ 0;ð2Þ

where:

f ðx; _xxÞ ¼
Xn
i¼0

fiðxÞ _xxi:

Such an equation comes from a Gause-type predator-prey problem, and the

special case f ðx; _xxÞ ¼ f1ðxÞ þ f2ðxÞ _xx has been widely investigated by several

authors [4, 6, 8, 9, 10]. The phase plane approach used in those paper was

based on a transformation which sends the equation:



€xxþ f1ðxÞ _xxþ f2ðxÞ _xx2 þ gðxÞ ¼ 0ð3Þ

in a classical Liénard equation:

€xxþ ~ff ðxÞ _xxþ ~ggðxÞ ¼ 0:

Hence all the classical results can be invoked (for the transformation see

Remark 4.7 or [10]). However for the forced problem this method cannot be

used because the forcing term is drastically changed by the transformation.

For this reason we investigate directly the problem (1). There are two di¤erent

approaches to attack the problem: the first one is based on the classical Brower

fixed point theorem. It is necessary to construct an invariant region for the

Poicaré map and this is obtained by considering some auxiliary autonomous

system (see [16, 2, 19]): however in this case the assumptions are in a certain

sense severe because the invariant region is constructed for all the solutions and

not only the periodic ones.

The second approach relies on some continuation result. Classical the-

orems by Mawhin, Lazer, Cesari, Zanolin (see [12, 13, 23] and the references

therein contained) investigated from the 70’s, although very powerful for the

classical Liénard equation:

€xxþ f ðxÞ _xxþ gðxÞ ¼ eðtÞ;

seems not suitable in our case because the desired a priori bounds are not easily

obtained (see [20] for a more precise discussion). In a recent paper by Mawhin,

Capietto and Zanolin [3] a new continuation method was proposed and this

method has application also in this case. We state here for immediate reference

the version of that theorem we are going to apply.

Theorem 1.1 (Capietto, Mawhin, Zanolin [3]). Assume that:

1. gðxÞx > 0 for all jxj > x;

2. there exists a constant C > 0 such that every T-periodic solution x of :

€xxþ f1ðxÞ _xxþ f2ðxÞ _xx2 þ gðxÞ ¼ leðtÞ; l A �0; 1½;

satisfies the a priori bound:

kxky þ k _xxky aC:

Then equation (1) has at least a T-periodic solution.

The main di¤erence between this new result and the previous continuation

theorems is based on the fact that the parameter l appears only in the forcing

term. Hence in most situations the geometrical properties of the solutions are

preserved and may be used in order to get the desired a priori bounds. Recent

results in this direction may be found in [18, 19, 20, 21, 14].
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In this paper we combine this approach and the use of a new plane for the

equivalent planar system of the scalar equation (3).

In the general case it is necessary to produce a suitable bound for both

kxky and k _xxky, while, due to the particular structure of this case, it will be

enough to get the bound just for kxky or, respectively, for k _xxky.

The plane of the paper is the following:

1. in section 2 we consider the autonomous case, introduce the new

system and study its portrait

2. the new plane will be actually used in section 3 to get a bound for

k _xxky
3. the inspection of the nature of the critical points at infinity in the phase

plane will be performed in section 4 to get the bound for kxky in the

line of the results of [20, 22].

2. The autonomous case

We consider at the moment the autonomous equation:

€xxþ f1ðxÞ _xxþ f2ðxÞ _xx2 þ gðxÞ ¼ 0;

which is equivalent to the system:

_xx ¼ y;

_yy ¼ � f1ðxÞy� f2ðxÞy2 � gðxÞ:

�
ð4Þ

We impose the standard regularity assumptions which guarantee the uniqueness

of the initial value problems associated to the system. Moreover we assume

that gðxÞx > 0 for all x di¤erent from 0. Hence the origin is the only singular

point and the trajectories turn clockwise around the origin.

System (4) is equivalent to the system:

_xx ¼ y� F ðxÞ;
_yy ¼ � f2ðxÞ½y� F ðxÞ�2 � gðxÞ;

�
ð5Þ

where F ðxÞ ¼
Ð x
0 f1ðsÞds.

The nonlinear transformation:

ðx; yÞ 7! ðx; yþ FðxÞÞ

takes the trajectories of the phase plane into the trajectories of the new system.

The x-coordinate does not change, while the y-axis is transformed into the curve

y ¼ F ðxÞ (such a transformation plays the same role of the similar one, which

for the classical Liénard equation maps the phase plane in the Liénard plane).

Hence the geometrical properties of the solutions, like for instance limit cycles,

can be read in both planes.
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We are interested in the 0-isocline of the new plane, that is the points in

which _yy ¼ 0. Straightforward calculations show that the 0-isocline is given by

the curve:

y ¼ F ðxÞG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� gðxÞ

f2ðxÞ

s
:

If we assume that f2 is positive, such a curve is contained in the half plane

xa 0 and passes through the origin. It is trivial to prove the following lemma

which will be useful in the next section.

Lemma 2.1. Assume that f1; f2 and g are locally Lipschitz continuous func-

tions (or any other kind of assumption ensuring the uniqueness for the initial value

problems associated to (5)). Assume also that:

1. gðxÞx > 0 for all x0 0;

2. FðxÞ is bounded;

3. f2ðxÞ > 0 for all x;

4. lim inf
x!�y

gðxÞ
f2ðxÞ

> �y.

Then the 0-isocline is bounded in the y-coordinate.

We just note that a similar result holds with minor changes if we con-

sider the function ~ggðxÞ ¼ gðxÞ þ c, being c a suitable constant, provided that

gðxÞ > �c for all x > x.

3. The forced case: a bound for y

Following the result of [3], we must find a priori bounds for T-periodic

solutions of the family of equations:

€xxþ f1ðxÞ _xxþ f2ðxÞ _xx2 þ gðxÞ ¼ leðtÞ; l A ½0; 1�:ð6Þ

This goal will be reached studying the periodic orbits of the equivalent system:

_xx ¼ y� FðxÞ þ lE0ðtÞ;
_yy ¼ � f2ðxÞ½y� F ðxÞ þ lE0ðtÞ�2 � gðxÞ þ le;

�
l A ½0; 1�;ð7Þ

where:

e ¼ 1

T

ðT
0

eðsÞds

is the mean value of e and:

E0ðtÞ ¼
ð t
0

½eðsÞ � e�ds:
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Such a system is introduced having in mind the previous one for the auton-

omous case and we are going to get a result similar to Lemma 2.1.

Lemma 3.1. Assume that f1; f2; g and e are continuous functions and let eðtÞ
be T-periodic with mean value e. Assume also that:

1. gðxÞ > keky for all x > R and gðxÞ < �keky for all x < �R;

2. FðxÞ is bounded;

3. f2ðxÞ > 0 for all x;

4. lim inf
x!�y

gðxÞ � e

f2ðxÞ
> �y.

Then there exists a constant C > 0 such that every T-periodic solution x of (6)

satisfies:

k _xxky aC:

Proof. Let ðx; yÞ be a T-periodic solution of the equivalent system (7)

for some l A ½0; 1� and let t� be such that jyðt�Þj ¼ kyky. Hence _yyðt�Þ ¼ 0

and:

� f2ðxðt�ÞÞ½yðt�Þ � F ðxðt�ÞÞ þ lE0ðt�Þ�2 � gðxðt�ÞÞ þ le ¼ 0:

As stated in section 1, we have:

yðt�Þ ¼ F ðxðt�ÞÞ � lE0ðt�ÞG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� gðxðt�ÞÞ � le

f2ðxðt�ÞÞ

s
:

Now, since E0 is bounded being T-periodic, we are in the case of Lemma 2.1

and yðt�Þ is uniformly bounded.

To finish the proof it remains to notice that:

_xxðtÞ ¼ yðtÞ � FðxðtÞÞ þ lE0ðtÞ

and this is clearly bounded since F and E0 are bounded. 9

Proposition 3.2. Under the assumptions of Lemma 3.1, equation (1) has at

least a T-periodic solution.

Proof. In order to apply the continuation theorem, it remains to be

proved that kxky is uniformly bounded. This comes from Lagrange’s theorem.

Indeed xðt1Þ � xðt2Þ ¼ _xxðtÞðt1 � t2Þ so that jxðt1Þ � xðt2ÞjaCT for all t1; t2 A
½0;T � and this gives a bound for the oscillation of x. If s1 and s2 are respec-

tively the times in which x attains its minimum and maximum values, then

€xxðs1Þb 0, €xxðs2Þa 0 and leðsiÞ � gðxðsiÞÞ ¼ €xxðsiÞ; therefore, the first condition

on g in Lemma 3.1 implies that the intervals ½min x;max x� and ½R;R� have

nonempty intersection and, thus, there is a t̂t such that jxðt̂tÞjaR. Hence

jxðtÞjaRþ CT for all t. 9
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In order to get our main result we are going to relax the sign condition

on f2.

Theorem 3.3. Assume that f1; f2; g and e are continuous functions and let

eðtÞ be T-periodic with mean value e. Assume also that:

1. gðxÞ > keky for all x > R and gðxÞ < �keky for all x < �R;

2. FðxÞ is bounded;

3. f2ðxÞ > 0 for all jxjbR;

4. lim inf
x!�y

gðxÞ � e

f2ðxÞ
> �y.

Then equation (1) has at least a T-periodic solution.

Proof. Let ðx; yÞ be a T-periodic solution of (7) for some l A �0; 1½.
At first we study the behavior of the solution when xðtÞa�R. From the

second equation in (7), if:

yðtÞ < FðxðtÞÞ � lE0ðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� gðxðtÞÞ � le

f2ðxðtÞÞ

s

or if:

yðtÞ > F ðxðtÞÞ � lE0ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� gðxðtÞÞ � le

f2ðxðtÞÞ

s
;

then _yyðtÞ < 0. From the assumptions of the theorem the quantities:

F ðxðtÞÞ; lE0ðtÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� gðxðtÞÞ � le

f2ðxðtÞÞ

s
;

are bounded by a constant K ; hence the periodic solutions, if any, must lie in

the strip fjyja 3Kg, as long as xðtÞa�R.

On the other hand, in the half plane fxbRg we have that _yy < 0 so that

the absolute maximum and minimum of y cannot lie there.

It remains to investigate the behavior of y in the strip fjxjaRg. In this

region we estimate the slope of the solution given by:

dy

dx
¼ � f2ðxÞ½y� FðxÞ þ lE0ðtÞ� þ

le� gðxÞ
y� F ðxÞ þ lE0ðtÞ

:ð8Þ

Let:

A ¼ sup
jxjaR

j f2ðxÞj; B ¼ 2AK þ 1

K
eþ sup

jxjaR

jgðxÞj
 !

;

C ¼ 3K þ B

A

� �
e2AR:
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We claim that kyky aC and we argue by contradiction. Assume that

jyðt�Þj ¼ kyky > C for some t�. By the previous discussion we have also that

jxðt�Þj < R, since C > 3K and y cannot have critical points where xbR. Let

us suppose that actually yðt�Þ > C (the other case yðt�Þ < �C can be treated in

an analogous way) and let:

t� ¼ infft0 : t0 < t� and yðtÞ > 3K for all t A ½t0; t��g;

note that t� is finite, yðt�Þ ¼ 3K and xðt�Þb�R, since there must be a time

t1 < t� in which _xxðt1Þ ¼ 0 and, from the first equation in (7), yðt1Þ ¼
F ðxðt1ÞÞ � lE0ðt1Þa 2K . Again from the same equation we deduce that

_xxðtÞbK and equation (8) has meaning when t varies in ½t�; t��, giving rise to the

following bound:

1

Ayþ B

dy

dx
a 1 as t A ½t�; t��:

Integrating this inequality for x varying in ½xðt�Þ; xðt�Þ�, one obtains:

yðt�Þa 3K þ B

A

� �
e2AR � B

A
< C;

that is a contradiction.

The rest of the proof is the same as in the previous Proposition 3.2. 9

Remark 3.4. We just note that a dual result can be easily obtained

replacing assumptions 3 and 4 with:

3*. f2ðxÞ < 0 for all jxjbR;

4*. lim inf
x!þy

gðxÞ � e

f2ðxÞ
> �y.

4. The forced case: a bound for x

In this section we attack the problem with a complete di¤erent approach.

Therefore no assumptions on the sign of f2 or on the boundedness of F will

be required. Again we start investigating the autonomous case, but now we

will work in the standard phase plane and consider system (4). The basic idea

is that, if the system possesses a separatrix which tends to the singular point at

infinity on the x-axis, then such a separatrix is run in infinite time. A con-

tinuity argument shows that the trajectories near the separatrix are run in an

arbitrarily large time. This argument was presented for the first time in [21].

In particular T-periodic solutions of (6) must be confined in a region bounded in

the x-direction.
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In fact we have the following result, which we take entirely from [20] and it

is valid for the more general equation:

_xx ¼ y;

_yy ¼ �F ðx; yÞ þ leðtÞ:

�
ð9Þ

Lemma 4.1 (Villari, Zanolin [20, 22]). Assume that system:

_xx ¼ y;

_yy ¼ �F ðx; yÞ þ E;

�
ð10Þ

with E ¼ max eðtÞ, has a separatrix G which lies in the third quadrant and crosses

the negative y-axis. If the time along the separatrix from x ¼ 0 to the point at

infinity is larger than T, then there is R > 0 such that:

min xðtÞ > �R

for every T-periodic solution of (9).

Proof. The complete proof of this lemma will appear in [22], while a

sketched proof can be found in [20]. 9

The same conclusion holds if the separatrix lies in the second quadrant. A

dual result can be proved for a separatrix in the first or in the fourth quadrant

obtaining an upper bound for xðtÞ. For the complete proof we refer to the

forthcoming paper [22].

The lemma provides only a one-sided bound. In this light we need to have

a phase portrait with two separatrices on opposite sides with respect to the y-

axis. If this happens one has the desired bound on x, say jxðtÞjaR. In the

general case this is not enough for having a bound on _xx and some kind of

Nagumo-type conditions is necessary (see [7, Ch. XII, Lemma 5.1, p. 428]);

indeed, if we set:

A ¼ sup
jxjaR

j f2ðxÞj; B ¼ sup
jxjaR

j f1ðxÞj;

C ¼ sup
jxjaR

jgðxÞj þ sup
0ataT

jeðtÞj; jðsÞ ¼ As2 þ Bsþ C;

then
Ðy

s=jðsÞds ¼ þy and j€xxja jðj _xxjÞ from (6). Therefore the above men-

tioned Lemma in [7] directly applies to our T-periodic solutions and the missing

bound on _xx can be deduced. However, in this particular case, the conclusion

directly comes from the formula which gives the slope of the solutions in the

phase plane:

dy

dx
¼ � f2ðxÞy� f1ðxÞ �

gðxÞ � leðtÞ
y

:
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Indeed, from this expression we get:

dy

dx

����
����aAjyj þ Bþ C

jyj ;

where the right hand side is sublinear in jyj, provided that y is bounded away

from zero, so that an argument like that in the proof of Theorem 3.3 could be

exploited.

For this reason we concentrate on the problem of existence of separatrices.

We investigate the behavior at infinity by studying the nature of the singular

points at infinity of the autonomous system (10). This will be performed intro-

ducing homogeneous coordinates so that we restrict ourselves to the polynomial

case. In the following subsections, where f1; f2 and g are polynomials, the

nature of the singular points at infinity will be determined by imposing con-

ditions only on the coe‰cients of the highest degree terms and, therefore, it will

not be a¤ected at all by the constant term þE in (10).

The problem of investigating the nature of singular points at infinity is a

classical one and we refer to the papers by Bendixson [1] and Gomory [5] which

are milestones in this field.

A preliminary result was obtained by Tempesti in her thesis for the gener-

alized Liénard equation:

€xxþ f ðx; _xxÞ _xxþ gðxÞ ¼ leðtÞ:ð11Þ

Theorem 4.2 (Tempesti [15]). If the point at infinity of the x-axis is a saddle

point for:

_xx ¼ y;

_yy ¼ � f ðx; _xxÞ _xx� gðxÞ;

�

then there are two separatrices from opposite sides with respect to the y-axis and,

hence, kxky aC for every T-periodic solution of (11).

Being our equation a particular case of (11), one has the following cor-

ollary.

Corollary 4.3 (Tempesti [15]). If the point at infinity of the x-axis of (4) is

a saddle point, the equation (1) has at least a T-periodic solution.

Since this result is abstract, in the remaining part of the paper we will give

some condition ensuring that the point at infinity of the x-axis of (4) is actually

a saddle point. Moreover we will investigate other situations in which the

singular point considered is not a saddle, but a bound can be actually reached.

We assume that the functions f1; f2 and g in the system (4) are poly-

nomials:
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f1ðxÞ ¼
Xl

i¼0

aix
i; f2ðxÞ ¼

Xm
i¼0

bix
i; gðxÞ ¼

Xn
i¼0

cix
i;

with al 0 0, bm 0 0 and cn 0 0. In view of the first assumption on g in

Theorem 1.1, we assume also that n is an odd integer and cn > 0. Let

k ¼ maxfl;mþ 1g and suppose that kb n (this condition implies that the point

at infinity of the x-axis is actually a critical point), so that the degree of

f1ðxÞyþ f2ðxÞy2 þ gðxÞ is exactly k þ 1. In order to extend system (4) to the

projective plane, we follow [5] (see also the book [11, XI, § 9, pp. 307–311]) and

introduce homogeneous coordinates ðx; y; zÞ such that the point ðx; y; 1Þ rep-

resents the point ðx; yÞ in the a‰ne plane; with this identification, (4) and the

following system:

d

dt

x

z

� �
¼ y

z
;

d

dt

y

z

� �
¼ � f2

x

z

� �
y

z

� �2
� f1

x

z

� �
y

z
� g

x

z

� �
;

8>>>><
>>>>:

ð12Þ

have the same solutions, but the last one can be extended to cover also the

line at infinity z ¼ 0; indeed, multiplying both the equations of (12) by zkþ2

and considering the homogeneous extension of the polynomials f1; f2 and g,

namely:

f H
1 ðx; zÞ ¼ zlf1

x

z

� �
; f H

2 ðx; zÞ ¼ zmf2
x

z

� �
; gHðx; zÞ ¼ zng

x

z

� �
;

we obtain:

ð13Þ

zk z
dx

dt
� x

dz

dt

� �
¼ yzkþ1;

zk z
dy

dt
� y

dz

dt

� �
¼ � f H

2 ðx; zÞzk�my2 � f H
1 ðx; zÞzk�lþ1y� gHðx; zÞzk�nþ2:

8>>><
>>>:
Using coordinates ðx; 1; zÞ and a new time-variable t such that dt ¼ zk dt,

the trajectories of (13) in the open region y0 0 of the projective plane are

described by the system:

dz

dt
¼ f H

1 ðx; zÞzk�lþ1 þ f H
2 ðx; zÞzk�m þ gHðx; zÞzk�nþ2;

dx

dt
¼ f H

1 ðx; zÞxzk�l þ f H
2 ðx; zÞxzk�m�1 þ gHðx; zÞxzk�nþ1 þ zk:

8>>><
>>>:

ð14Þ

Duccio Papini and Gabriele Villari50



On the other hand, using coordinates ð1; y; zÞ and a new time-variable s such

that dt ¼ zk ds, the trajectories of (13) in the open region x0 0 are described

by the system:

dz

ds
¼ �yzkþ1;

dy

ds
¼ �½ f H

2 ð1; zÞzk�m�1 þ zk�y2 � f H
1 ð1; zÞzk�ly� gHð1; zÞzk�nþ1:

8>>><
>>>:

ð15Þ

In particular, the point at infinity of the x-axis is the critical point ð0; 0Þ of the

last system (15). Therefore we look for conditions ensuring that the origin is a

saddle for (15).

4.1. The case k ¼ lbmþ 1

If we suppose that k ¼ lbmþ 1, then system (15) can be written in the

following form:

dz

ds
¼ �yzlþ1;

dy

ds
¼ �al y� gzþ Y2ðz; yÞ;

8>>><
>>>:

ð16Þ

where Y2ðz; yÞ contains terms with degree grater than one and:

g ¼ cn if l ¼ n;

0 if l > n:

�

This kind of system was already studied by Bendixson in [1, § 35–40], where it

is proved that the behavior of the trajectories of (16) around ð0; 0Þ is almost

completely determined by the Poincaré index i of the field in ð0; 0Þ. It turns

out that the origin is a saddle for (16) if and only if i ¼ 1, therefore now

we are going to calculate this number. We use its original definition: if we

set Zðz; yÞ ¼ �yzlþ1 and Yðz; yÞ ¼ �½ f H
2 ð1; zÞzk�m�1 þ zk�y2 � f H

1 ð1; zÞzk�ly�
gHð1; zÞzk�nþ1 and if we consider a small curve which turns around ð0; 0Þ, then
the index of the field ðZðz; yÞ;Yðz; yÞÞ around ð0; 0Þ is given by one half of the

di¤erence between the number of times that Y=Z passes from �y to þy and

the number of times it passes from þy to �y, as the curve is run coun-

terclockwise:

i ¼ # Y=Z passes from �y to þyf g � #fY=Z passes from þy to �yg
2

:
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Since Zðz; yÞ vanishes only on the coordinate axes z ¼ 0 and y ¼ 0, we can

choose the curve to be a small circle and check the sign of:

Y ðz; 0Þ ¼ �cnz
l�nþ1 þ h:o:t:’s and Yð0; yÞ ¼ �amy� by2;

(with b0 0 only if l ¼ n) in a neighborhood of the origin. Thus the value of

i depends only on the sign of al and cn as well as on the parity of l and n and

it is straightforward to check that actually we have:

i ¼
1 if n is odd and cn > 0;

�1 if n is odd and cn < 0;

0 if n is even:

8<
:

Hence we are exactly in the case in which the point at infinity of the x-axis is

a saddle and Corollary 4.3 implies the following result.

Theorem 4.4. Let l;m and n be positive integers, al ; bm and cn be non-zero

real numbers and eðtÞ be a continuous T-periodic function. If lbmþ 1, lb n, n

is odd and cn > 0, then the equation:

€xxþ
Xl

i¼0

aix
i

 !
_xxþ

Xm
i¼0

bix
i

 !
_xx2 þ

Xn
i¼0

cix
i ¼ eðtÞð17Þ

has a T-periodic solution.

4.2. The case k ¼ mþ 1 > l

Assume now that mb l and let:

m ¼ m� l þ 1 and n ¼ m� nþ 2;

so that (15) can be rewritten as:

dz

ds
¼ �yzmþ2;

dy

ds
¼ �½ f H

2 ð1; zÞ þ zmþ1�y2 � f H
1 ð1; zÞzmy� gHð1; zÞzn:

8>>><
>>>:

ð18Þ

Let us put in evidence the terms with degree 1 and 2 in the second equation:

dy

ds
¼ Y ðz; yÞ :¼ �bmy

2 � azy� bz� gz2 þ Y3ðz; yÞ;ð19Þ

where:
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a ¼ al if m ¼ l;

0 if mb l þ 1;

�
b ¼ cn if m ¼ n� 1;

0 if mb n;

�

g ¼
cn�1 if m ¼ n� 1;

cn if m ¼ n;

0 if mb nþ 1:

8<
:

The possible directions ðz; yÞ of approach to ð0; 0Þ satisfy the homogeneous

equation z½Yðz; yÞ�lowest degree terms ¼ 0, therefore we will have to consider only

the direction z ¼ 0, if b0 0 (that is if n ¼ 1), and maybe also other directions

satisfying bmy
2 þ azyþ gz2 ¼ 0, if, otherwise, b ¼ 0, (that is if nb 2). We note

that in both cases the linear part of the field does not help in the study of the

nature of the singular point ð0; 0Þ since it is identically zero or its eigenvalues

are both zero, thus we are led to apply some change of variables suitably

developed in [1].

In order to examine the trajectories approaching ð0; 0Þ with the limiting

direction z ¼ 0, we consider the following positions:

y ¼ x and z ¼ xh;

which transform (18) into:

dx

ds
¼ �½ f H

2 ð1; xhÞ þ ðxhÞmþ1�x2 � f H
1 ð1; xhÞxmþ1hm � gHð1; xhÞxnhn;

dh

ds
¼ f H

2 ð1; xhÞxhþ f H
1 ð1; xhÞxmhmþ1 þ gHð1; xhÞxn�1hnþ1:

8>>><
>>>:

ð20Þ

The critical point ð0; 0Þ of (18) corresponds to the trajectories on x ¼ 0 of (20)

and all the other characteristics approaching ð0; 0Þ in (20) are in one-to-one

correspondence with the characteristics of (18) approaching ð0; 0Þ with limiting

direction z ¼ 0.

Now, if nb 2, we can introduce a new parameter s1 such that ds1 ¼ x ds

and the system becomes:

dx

ds1
¼ �bmxþ h:o:t:’s;

dh

ds1
¼ bmhþ h:o:t:’s;

8>>><
>>>:

for which the origin is clearly a saddle. Therefore, if mb n, there are no other

orbits of (18) which goes towards ð0; 0Þ with limiting direction z ¼ 0, besides

those on z ¼ 0 itself.

If n ¼ 1, then m ¼ n� 1 and system (20) has the form:
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dx

ds
¼ �xðbmxþ cnhÞ þ h:o:t:’s;

dh

ds
¼ hðbmxþ cnhÞ þ h:o:t:’s;

8>>><
>>>:

hence the possible directions to approach ð0; 0Þ solve 2xhðbmxþ cnhÞ ¼ 0 and

are the following three: x ¼ 0, h ¼ 0 and h=x ¼ �bm=cn. The substitution:

x ¼ x1; h ¼ x1h1; ds1 ¼ x1 ds;

transforms (20) into:

dx1
ds1

¼ �bmx1 � cnx1h1 þ x21h1fðx1; h1Þ;

dh1
ds1

¼ 2h1ðcnh1 þ bmÞ þ x1h
2
1cðx1; h1Þ;

8>>><
>>>:

ð21Þ

where f and c are polynomials. This system has on the line x1 ¼ 0 two criti-

cal points ð0; 0Þ and ð0;�bm=cmÞ, which respectively correspond to the limiting

directions h ¼ 0 and h=x ¼ �bm=cn for (20). Now, ð0; 0Þ is clearly a saddle

and, therefore, the characteristics on h ¼ 0 are the only two approaching the

origin in (20) with limiting direction h ¼ 0. On the other hand the Jacobian of

the field of (21) in ð0;�bm=cnÞ is:

0 0

0 �2bm

� �

therefore again the Poincaré index helps in the determination of the nature of

the critical point ð0;�bm=cmÞ. Using the fact that n is odd, cn > 0 and m

even, it can be shown that the index is 1 and the point is a saddle. Finally, the

substitution:

h ¼ x2; x ¼ x2h2; ds2 ¼ x2 ds;

shows that for system (20) only the two characteristics on x ¼ 0 approach ð0; 0Þ
with direction x ¼ 0.

Hence, when m ¼ n� 1, there are only 4 orbits of (18) tending to ð0; 0Þ
with limit tangency z ¼ 0: two of them are the trivial ones on z ¼ 0, while the

other two correspond to the trajectories of (21) approaching ð0;�bm=cnÞ and,

therefore, lie in z > 0, if bm < 0, and in z < 0, if bm > 0. In both cases, how-

ever, the origin cannot be a saddle for (18). We will consider this and other

similar situations in Subsection 4.3.

Let us study now the case in which mb n, so that b ¼ 0 in (19), and

consider the quantity D :¼ a2 � 4bmg. We already showed that in this case
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the trajectories on z ¼ 0 are the only two to approach the origin with limiting

direction z ¼ 0. If D < 0, there are no other possible directions of approach to

ð0; 0Þ and, then, no other characteristics going to ð0; 0Þ at all. The situation in

which D ¼ 0 is a delicate one and we will consider it later. Therefore assume

that D > 0. Just note that in this case at least one of a and g must be di¤erent

from zero; thus either m ¼ l (and m ¼ 1) or m ¼ n (and n ¼ 2).

Let us make the following change of variables:

z ¼ x; y ¼ xh; ds1 ¼ x ds;ð22Þ

which transforms system (18) into the following one:

dx

ds1
¼ �xmþ2h;

dh

ds1
¼ � f H

2 ð1; xÞh2 � f H
1 ð1; xÞxm�1h� gHð1; xÞxn�2;

8>>><
>>>:

ð23Þ

and, specifying the lower order terms in the second equation, we have:

dh

ds1
¼ �bmh

2 � ah� gþ xcðx; hÞ ¼ �bmðh� k1Þðh� k2Þ þ xcðx; hÞ;

where c is a polynomial and jk1ja jk2j. Therefore system (23) has on the h-

axis two critical points, ð0; k1Þ and ð0; k2Þ, which, as explained above, can be

studied in order to determine the characteristics of (18) approaching the origin

with slope y=z ¼ k1 and y=z ¼ k2, respectively.

In both these critical points the linear approximation of system (23) has

one null eigenvalue and the other eigenvalue isG
ffiffiffiffi
D

p
0 0; hence the behavior of

the characteristics approaching them is completely determined by the Poincaré

index of the field in ð0; k1Þ and ð0; k2Þ. It can be easily checked that the index

of ð0; k1Þ depends on the parity of n and on the sign of cn and that, in our case

(that is n odd and cn > 0) it is always 1. Therefore it is a saddle and, in terms

of the original system (18), it means that there are exactly two characteristics

approaching ð0; 0Þ with limiting direction y=z ¼ k1, one in the half plane z > 0

and one in z < 0.

In the same way it can be shown that the index of ð0; k2Þ depends on the

parity of m and on the sign of bm, but, actually, we do not care about it, since

ð0; k2Þ can be a saddle (index 1), a node (index �1) or a saddle–node (index 0),

but in any case there are at least two characteristics which go to ð0; k2Þ, one in

x > 0 and one in x < 0. Hence the original system (18) has at least two orbit

(one in z > 0 and one in z < 0) which approach ð0; 0Þ with limiting direction

y=z ¼ k2 and, in conclusion, it cannot be a classical saddle and Corollary 4.3

cannot be applied.
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However, in this case we can use directly Lemma 4.1. Indeed the desired a

priori bounds on the T-periodic solutions of (9) can be deduced also if we show

the existence of at least two unbounded trajectories (one in either the first or the

fourth quadrant and the other either in the second or in the third quadrant) of

(10) which are run in infinite time and we already accomplished this task when

we said that the index of ð0; k1Þ is 1 under our assumptions.

Let us consider now the case in which D ¼ 0. This can happen in two

ways. The first one is when m ¼ n ¼ l (so m ¼ 1 and n ¼ 2) and a2l � 4bmcn ¼
0, so that the second equation in (18) becomes:

dy

ds
¼ �bmðy� kzÞ2 þ Y3ðx; yÞ with k ¼ � al

2bm

and the unique limiting direction of approach to ð0; 0Þ left to be studied is

y=z ¼ k. The change of variables:

z ¼ x; y ¼ xðhþ kÞ; ds1 ¼ x ds;

leads to the following system:

dx

ds1
¼ �xmþ2ðhþ kÞ;

dh

ds1
¼ � f H

2 ð1; xÞðhþ kÞ2 � f H
1 ð1; xÞðhþ kÞ � gHð1; xÞ;

8>>><
>>>:

and, using the condition D ¼ 0, the second equation becomes:

dh

ds1
¼ � f H

2 ð1; xÞh2 �
Xm
i¼1

ð2kbm�i þ am�iÞx ih�
Xm
i¼1

ðk2bm�i þ kam�i þ cm�iÞx i:

It is clear now that one should impose some further condition on the coe‰cient

of the terms with lower degree in the polynomials f1; f2 and g in order to deter-

mine the structure of the origin for the new system, but we are not going to do

this here.

We shall discuss the other case in which D ¼ 0, that is when mb l þ 1 and

mb nþ 1 and, therefore, mb 2, nb 3 and a ¼ g ¼ 0. We have to study there-

fore the characteristics of (18) approaching the origin with limit tangency to the

z-axis. We note that the change of variables (22) transforms (18) into the new

system (23) in which the first equation is unchanged, while in the second one the

degree of some terms decreases; hence Bendixson’s idea is to iterate that change

of variable until we obtain an already studied case. In particular, if we iterate

the transformation i times, that is if we set:

z ¼ xi; y ¼ x i
ihi; dsi ¼ zi ds;
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we get the system:

dxi
dsi

¼ �xmþ2
i hi;

dhi
dsi

¼ �½ f H
2 ð1; xiÞ � ði � 1Þxmþ1

i �h2i � f H
1 ð1; xiÞxm�i

i hi � gHð1; xiÞxn�2i
i ;

8>>><
>>>:

which we studied above if either m� i ¼ 1 or n� 2i A f1; 2g, since in these cases

the second equation has the form of (19) with some coe‰cient di¤erent from

zero among a; b and g. Therefore we distinguish the following cases:

1. if nb 2mþ 1, that is if 2lbmþ nþ 1, we choose i ¼ m� 1 and we

obtain the second equation of the form (19) with b ¼ g ¼ 0 and a ¼ al ;

thus D is positive and the existence of the desired characteristics is

ensured;

2. if n ¼ 2m, that is if 2l ¼ mþ n, the choice i ¼ m� 1 leads to a case in

which b ¼ 0, a ¼ al and g ¼ cn and we have to ask that a2l � 4bmcn > 0

in order to obtain the existence of the two characteristics;

3. if na 2m� 1 and n is even, then actually na 2m� 2, 2lamþ n� 2, m

is odd and we choose i ¼ n=2� 1 obtaining the case a ¼ b ¼ 0 and

g ¼ cn; therefore we have to impose that bmcn < 0, that is, bm < 0, to

satisfy the requirement D > 0;

4. if na 2m� 1 and n is odd, that is if 2lamþ n� 1 and m is even, then

the choice i ¼ ðn� 1Þ=2 leads to the case b ¼ cn in which the char-

acteristics towards the origin exists only in one of the two half planes

za 0 and zb 0, depending on bm > 0 or bm < 0, respectively, thus

Lemma 4.1 gives the bound for x only on one side; we treat this case in

the next subsection.

The discussion above can be summarized by the following result.

Theorem 4.5. Let l;m and n be positive integers, al ; bm and cn be non-zero

real numbers and eðtÞ be a continuous T-periodic function and assume also that

mb l, mb n, n is odd and cn > 0. If one of the following three conditions is

satisfied:

1. 2lbmþ nþ 1,

2. 2l ¼ mþ n and a2l � 4bmcn > 0,

3. 2lamþ n� 1, m is odd and bm < 0,

then the equation (17) has a T-periodic solution.

4.3. The case mb l, 2lamþ n� 1 and m even

If 2lamþ n� 1 and m is even then we saw that we are able to obtain

the characteristics towards the point at infinity of the x-axis for (4) only in
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one of the two half planes generated by the y-axis. Therefore Lemma 4.1

provides an a priori bound only for either the minimum or the maximum of

the x-component of the periodic solutions. However, in this case the other

bound can be deduced through the study of the other critical point at infinity

of (4), that is the point at infinity of the y-axis or, with the notation of the

preceding section, the point ð0; 0Þ in system (14), which now, since k ¼ mþ 1,

becomes:

dz

dt
¼ f H

1 ðx; zÞzm�lþ2 þ f H
2 ðx; zÞzþ gHðx; zÞzm�nþ3;

dx

dt
¼ f H

1 ðx; zÞxzm�lþ1 þ f H
2 ðx; zÞxþ gHðx; zÞxzm�nþ2 þ zmþ1:

8>>><
>>>:

ð24Þ

The unique direction of approach to the origin is easily seen to be z ¼ 0, hence

we perform the usual change of variables:

x ¼ x; z ¼ xh; dt1 ¼ xm dt;

to get the system:

dx

dt1
¼ ½ f H

2 ð1; hÞ þ hmþ1�xþ f H
1 ð1; hÞhm�lþ1x2 þ gHð1; hÞhm�nþ2x3;

dh

dt1
¼ �hmþ2;

8>>><
>>>:

whose Jacobian in ð0; 0Þ is:

bm 0

0 0

� �
:

Since in this case the Poincaré index can be easily calculated to be 0, we are in

presence of a saddle–node. A picture of the directions in which the orbits on

x ¼ 0 and on h ¼ 0 of (24) are run, shows immediately that the zone h > 0 is

the saddle one if bm > 0, while it is the nodal one if bm < 0. Hence it turns

out that in the system (24) the origin is a repulsive 1-node, if bm > 0, and an

attractive one, if bm < 0.

Just to fix the idea, let us consider the case bm > 0 and take the point

ð1; 1; 0Þ in the projective plane. By the discussion above, there is an e > 0

such that the characteristic passing by ð1; 1; z0Þ tends to ð0; 1; 0Þ in the past if

0 < z0 a e. On the other hand, since in this case system (18) has no char-

acteristics approaching ð0; 0Þ from the half plane z > 0, if e is taken su‰ciently

small then the characteristic passing by ð1; 1; eÞ crosses the x-axis in a point

ð1; 0; dÞ, with d > 0, and the space between this characteristic and the one on
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z ¼ 0 is filled up by characteristics joining points ð1; 1; z0Þ and ð1; 0; z1Þ with

0 < z0 � e and 0 < z1 � d. Therefore all the characteristics passing through

ð1; 0; z1Þ tends to ð0; 1; 0Þ in the past if 0 < z1 a d. If we read this fact in the

a‰ne plane, we deduce that all the orbits of (4) crossing the x-axis to the right

of x ¼ 1=d have the y-component which tends to þy for negative times (in

the same way it can be proved that it also goes to �y as time increases): we

use these orbits as a ‘‘barrier’’ for the periodic solutions of the forced version

of (4).

Indeed, if jeðtÞjaM then all the solution curves of the system:

_xx ¼ y;

_yy ¼ � f1ðxÞy� f2ðxÞy2 � gðxÞ þ leðtÞ;

�
l A ½0; 1�;ð25Þ

crosses the characteristics of:

_xx ¼ y;

_yy ¼ � f1ðxÞy� f2ðxÞy2 � gðxÞ þM;

�

passing from above to below as time increases, as a comparison of the slopes

immediately shows. Since the constant M does not a¤ect at all the nature of

the critical points at infinity, we deduce that the periodic solutions of (25) can

cross the x-axis only before 1=d, which therefore constitutes the missing a priori

bound.

The case bm < 0 can be treated in a similar way and we can state the

following theorem.

Theorem 4.6. Let l;m and n be positive integers such that m is even, n is

odd, mb l, mb n� 1 and 2lamþ n� 1; let al ; bm and cn be non-zero real

numbers such that cn > 0; let eðtÞ be a continuous T-periodic function. Then

equation (17) has a T-periodic solution.

Remark 4.7. The remaining a priori bound could be deduced in this case

also without the study of the point at infinity of the y-axis. Indeed we could

first transform our equation in a classical Liénard equation:

€xxþ f ðxÞ _xxþ ~ggðxÞ ¼ 0

by the positions:

f ðxÞ ¼ f1ðxÞe
Ð x

0
f2ðsÞds; ~ggðxÞ ¼ gðxÞe2

Ð x

0
f2ðsÞds:

Then we could apply results like those in [17] or [19] which give necessary and

su‰cient conditions ensuring that all the trajectories of a Liénard equation cross

the x-axis in the phase plane (or the graph of FðxÞ ¼
Ð x
0 f ðsÞds in the Liénard

plane).
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