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Abstract. Our purpose is to give some stability regions for linear di¤erential equa-

tions with two kinds of time lags, namely, a discrete time lag and a distributed time

lag. We show that there are various stability regions which depend on the choice of

the time lags and also some region is the union of two adjoining domain.
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1. Introduction

There are many results concerning asymptotic stability for di¤erential equa-

tions with two time lags. See e.g. [1] through [10]. Most of them are the

results for di¤erential equations with two discrete time lags. A few results are

known for di¤erential equations with a distributed time lag. In [2:XI.4], Diek-

mann et al. studied a prey-predator system with a distributed time lag. Their

method to analyze the corresponding characteristic equation is also useful for

proving our theorems. In this paper, we shall discuss asymptotic stability for

linear di¤erential equation with a discrete time lag and a distributed time lag

_xxðtÞ ¼ axðt� tÞ þ b

ð t

t�h

xðsÞds;ð1Þ

where tb 0, h > 0 and a and b are both real. In case b ¼ 0 and t > 0, this

equation becomes

_xxðtÞ ¼ axðt� tÞð2Þ

for which with t > 0, the following result is well known.

Theorem A. The zero solution of (2) is asymptotically stable if and only if

�p=ð2tÞ < a < 0.

1 Supported in part by Grant-in-Aid for Scientific Research 14540193.



On the other hand, in case a ¼ 0, the following result is known.

Theorem B ([3]). The zero solution of the equation

_xxðtÞ ¼ b

ð t

t�h

xðsÞds

is asymptotically stable if and only if �p2=ð2h2Þ < b < 0.

In what follows, stability region for (1) means the set of all ða; bÞ for which
the zero solution of (1) is asymptotically stable. Then Theorems A and B

assert that the stability region for (1) contains the segment fða; 0Þ j �p=ð2tÞ <
a < 0g on a-axis and the segment fð0; bÞ j �p2=ð2h2Þ < b < 0g on b-axis. So, it

is of great interest to find the stability region for (1). Our purpose in this paper

is to find such regions when h=t or t=h are some integers.

Now we shall consider the characteristic equation for (1)

l ¼ ae�lt þ b

ð0

�h

els ds:ð3Þ

It is easy to see that (3) is reduced to

aþ bh ¼ 0 when l ¼ 0;ð4Þ

l ¼ ae�lt þ b

l
ð1� e�lhÞ when l0 0:ð5Þ

We denote the straight line aþ bh ¼ 0 in the ab-plane by l0. The following

two results will be employed to find the stability regions.

Theorem C ([6]). The zero solution of (1) is asymptotically stable if and

only if any root of (3) has negative real part.

Proposition D. If aþ bhb 0, then (3) has a nonnegative real root.

Proof of Proposition D. Define

f ðaÞ ¼ a� ae�at � b

a
ð1� e�ahÞ

for real a0 0. Then lim
a!þ0

f ðaÞ ¼ �ðaþ bhÞa 0 and lim
a!y

f ðaÞ ¼ y.

Hence there is a positive a such that f ðaÞ ¼ 0, and so we arrive at the

conclusion of this proposition.

Proposition D asserts that the stability region is contained in the half-plane

aþ bh < 0. We divide this half-plane into an infinite number of regions Dk by

curves Gn or straight lines ln which will be given in the next section. Then the

following proposition is valid.
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Proposition E. Let ða; bÞ belong to a region Dk. Then the number of roots

of (3) whose real parts are positive, depends on Dk but not on the choice of ða; bÞ.

The proof of this proposition is analogous to that of Theorem 2.1 in [8],

and so it is omitted. In what follows, for Dk containing ða; bÞ, nðDkÞ denotes

the number of roots of (3) whose real parts are positive.

2. Curves to divide the ab-plane

In this section, we shall give an infinite number of curves or straight lines.

For the point ða; bÞ on these curves or straight lines, the characteristic equation

(3) has some purely imaginary roots Gio, o > 0. We shall prove that the

stability region for (1) is enclosed by some of them.

Suppose (3) has the roots Gio, o > 0. Then (5) implies

ao cos otþ b sin oh ¼ 0ð6Þ

and

ao sin otþ bð1� cos ohÞ ¼ �o2:ð7Þ

There are four cases for us to discuss.

Case I: t > 0, h ¼ mt and m ¼ 2p for some positive integer p.

Case II: t > 0, h ¼ mt and m ¼ 2p� 1 for some positive integer p.

Case III: t > 0, t ¼ mh for some positive integer m.

Case IV: t ¼ 0 and h > 0.

We first consider Case I. Since oh ¼ 2pot, there exists a polynomial Pðx; yÞ
such that

sin oh ¼ cos ot � Pðcos ot; sin otÞ;

and hence (6) becomes

cos otfaoþ b � Pðcos ot; sin otÞg ¼ 0:

Suppose cos ot ¼ 0. Then

ot ¼ ð2n� 1Þp
2

for some positive integer n, and so

sin ot ¼ ð�1Þn�1;

cos oh ¼ cosð2n� 1Þpp ¼ ð�1Þp; sin oh ¼ 0:

Hence for each n, (7) means the straight line:
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a ¼ ð�1Þn ð2n� 1Þp
2t

ð8Þ

if p is even, or

b ¼ ð�1Þn ð2n� 1Þp
4t

a� ð2n� 1Þ2p2

8t2
ð9Þ

if p is odd. On the other hand, in case cos ot0 0, we have from (6) and (7),

the curve with parametric representation:

a ¼ o sin oh

cos ot� cos oðt� hÞ ; b ¼ � o2 cos ot

cos ot� cos oðt� hÞð10Þ

for on�1 < o < on, where fong is the increasing sequence which satisfies o0 ¼ 0

and

cos ont� cos onðt� hÞ ¼ 0:

Note that each on is expressed as

on ¼
2kp

mt
ð11Þ

or

on ¼
2kp

ðm� 2Þtð12Þ

for some positive integer k, and also if either

o ¼ 2kp

mt
or o ¼ 2kp

ðm� 2Þt

holds, then there are no pairs of a and b satisfying both (6) and (7), whenever

cos ot0 0. Moreover in case h ¼ 2t ðm ¼ 2Þ, we can find only the straight

lines (9), because

cos ot� cos oðt� hÞ ¼ 0

for all o > 0.

In Case II or in Case III, we have the curves defined by (10), but no

straight lines are found. Besides, (10) may be valid even if cos ot ¼ 0. In

Case II, the increasing sequence fong satisfies (11), and in Case III, fong
satisfies

on ¼
2kp

h
or on ¼

2kp

ð2m� 1Þh

for some positive integer k.
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Finally, in Case IV, we have only the curves defined by (10), that is

a ¼ o sin oh

1� cos oh
; b ¼ � o2

1� cos oh
ð13Þ

for on�1 < o < on, where on ¼ 2np=h.

3. Theorems and Proofs

In this section, we shall give the stability regions for the cases h ¼ t, h ¼ 2t,

h ¼ 4t and t ¼ 0. We denote the line (8) or (9) by ln and the curve (10) defined

on the interval ðon�1;onÞ by Gn. In case h ¼ t, the half-plane aþ bh < 0 is

divided into regions Dk by the curves Gn:

a ¼ o sin ot

cos ot� 1
; b ¼ � o2 cos ot

cos ot� 1
ð14Þ

for on�1 < o < on, where on ¼ 2np, and the following is valid.

Theorem 1. Let h ¼ t and let D1 be the region enclosed by l0 and G1.

Then D1 is the stability region for (1).

Proof. Since (14) implies a2 � 2b ¼ o2, the inequalities o2
n�1 < a2 � 2b <

o2
n hold for ða; bÞ A Gn, and hence Gi and Gj are disjoint if i0 j. (See Figure

1.) So, let Dn be the region enclosed by l0;Gn�1 and Gn for each nb 2.

Suppose Gn intersects the a-axis at a point ða; bÞ. Then it follows from (14)

that

Fig. 1. Curves Gn Fig. 2. Lines ln
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cos ot ¼ 0 and sin ot ¼ � a

o
> 0;

so that sin ot ¼ 1 and a ¼ �o. Then we have at ¼ �p=2� 2ðn� 1Þp. Hence

the intersection of Dn and the a-axis is the segment whose end points are

ð�p=2� 2ðn� 1Þp; 0Þ and ð�p=2� 2ðn� 2Þp; 0Þ. Thus Theorems A and E

assert that

nðD1Þ ¼ 0 < nðDnÞ

for nb 2. This completes the proof.

In case h ¼ 2t, the equation (3) has roots Gio, o > 0 only if ot ¼
ð2n� 1Þp=2 and the point ða; bÞ lies on some line ln:

b ¼ ð�1Þn ð2n� 1Þp
4t

a� ð2n� 1Þ2p2

8t2
:

Then also the equality

ð�1Þn � ao ¼ 2bþ o2ð15Þ

holds. Each line l2m intersects any l2k�1 in the half-plane aþ bh < 0. (See

Figure 2.) But each ln does not any of lnþ2k with k0 0 in the half-plane

aþ bh < 0, because the intersection of those is the point ðð�1Þnð2nþ 2k� 1Þp=t;
fð2n� 1Þ2 þ 4kð2n� 1Þgp2=8t2Þ and so lies on the half-plane aþ bh > 0. The

lines ln divide the half-plane aþ bh < 0 into regions Dk. It is easily seen that

each region Dk approaches the origin with shrinking as t ! y. This shows the

following result.

Theorem 2. Let h ¼ 2t and let D1 be the triangular region enclosed by l0; l1
and l2. Then D1 is the stability region for (1).

Proof. In the same way as the proof of Theorem 1, we can easily see from

Theorems A and B that nðD1Þ ¼ 0 < nðDkÞ for kb 2, whenever Dk inter-

sects the a-axis or the b-axis. Therefore we consider Dk which does not so.

Suppose Dk is adjoining to Dp and suppose ða; bÞ lies on the common boundary

of Dk and Dp at t ¼ t�, where ot� ¼ ð2n� 1Þp=2. We may assume that Dp

is closer to the origin than Dk and that the point ða; bÞ moves from Dp into Dk

as t grows, but actually the regions Dk and Dp move and the point ða; bÞ does

not. Let l ¼ lðtÞ be the root of (3) satisfying l ¼ io, ot� ¼ ð2n� 1Þp=2 at

t ¼ t�. Put

f ðl; tÞ ¼ l2 � ale�lt � bð1� e�2ltÞ:

Then (5) implies f ðio; t�Þ ¼ 0. Since e�iot � ¼ ð�1Þni, we have from (15) that
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qf

ql
ðio; t�Þ ¼ i2oþ aðiot� � 1Þe�iot � � 2bt�e�i2ot�

¼ ð�1Þnþ1
aot� þ 2bt� þ if2o� ð�1Þnag

¼ �o2t� þ if2o� ð�1Þnag

0 0:

Hence the implicit function theorem guarantees

< dl

dt
ðt�Þ ¼ �< qf =qtðio; t�Þqf =qlðio; t�Þ

jqf =qlðio; t�Þj2

¼ ��io3f�ið2o� ð�1ÞnaÞg
jqf =qlðio; t�Þj2

¼ o2ðo2 � 2bÞ
jqf =qlðio; t�Þj2

If b < 0, then it is clear that <ðdl=dtðt�ÞÞ > 0, and hence we assume bb 0.

Since ða; bÞ lies on some line ln, let ðan; bnÞ be the intersection of ln and the line

aþ 2bt� ¼ 0. Then it follows from (15) that

2bn ¼
o2

ð�1Þnþ1ot� � 1
a

o2

ot� � 1
< o2

for nb 2, because ot� b 3p=2. And so the inequality o2 � 2b > 0 holds for

any ða; bÞ A ln V faþ 2bt� < 0g for nb 2. On the other hand, in case n ¼ 1,

we choose ða; bÞ ¼ ð�o; 0Þ. Then this point lies on l1 and also we have

o2 � 2b > 0. Thus there exists a point ða; bÞ which lies on the common

boundary of Dk and Dp, and for this point ða; bÞ the inequality

< dl

dt
ðt�Þ > 0

is valid. Since ða; bÞ moves from Dp into Dk as t grows near t�, we arrive at

the conclusion that

nðDkÞ > nðDpÞ

and hence

nðDkÞ > 0

for all kb 2. This completes the proof.
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In case h ¼ 4t, the half-plane aþ bh < 0 is divided into regions Dk by the

lines (8) and the curves (10). Since h ¼ 4t, each line (8) means ln:

a ¼ ð�1Þno; o ¼ ð2n� 1Þp
2t

ð16Þ

and each (10) means Gn:

a ¼ o cos 2ot

sin ot
; b ¼ � o2

4 sin2 ot
ð17Þ

for on�1 < o < on, where on ¼ np=t. Then all ða; bÞ lying on Gn satisfy

a2 þ 4b ¼ �4o2 cos2 ot:

Now put

pðoÞ ¼ �4o2 cos2 ot:

Then pðoÞ attains its maximum 0 at o ¼ ð2n� 1Þp=2t. This shows that each

curve Gn comes in contact with the parabola a2 þ 4b ¼ 0 at the point

Pn ðð�1Þnð2n� 1Þp=2t;�ð2n� 1Þ2p2=16t2Þ. Hence it follows from (16) that

Gn intersects the line ln at Pn, and also Pn approaches the origin along the pa-

rabola a2 þ 4b ¼ 0 as t ! y. (See Figure 3.) Since pðoÞ tends to �4n2p2=t2

as o ! np=t� 0, the curve Gn is asymptotic to the parabola

a2 þ 4b ¼ � 4n2p2

t2

Fig. 3. Gn and ln Fig. 4. Curves Gn
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as o ! np=t� 0, for each nb 1. Furthermore, the curve Gn is asymptotic to

the parabola

a2 þ 4b ¼ � 4ðn� 1Þ2p2

t2

as o ! ðn� 1Þp=tþ 0, for nb 2. In case n ¼ 1, the point ða; bÞ lying on G1

approaches the point ð1=t;�1=4t2Þ as o ! þ0. Thus we obtain the following

theorem.

Theorem 3. Let h ¼ 4t and let D1 be the region enclosed by G1; l0 and l1,

and D2 the region enclosed by G1 and l1 only. Then the union of D1 and D2 is

the stability region for (1).

Proof. The regions D1 and D2 touch each other at P1ð�p=2t;�p2=16t2Þ.
Let D3 be the region enclosed by the curves G1;G2 and the lines l0; l1 and l2.

Then the region D3 adjoins both the regions D1 and D2. Theorems A and B

imply that

nðD1Þ ¼ 0 < nðDkÞ

for kb 3, whenever Dk intersects the a-axis or the b-axis. Therefore it is easily

seen that nðD3Þ > 0. Similarly to the proof of Theorem 2, we need to consider

the behavior of lðtÞ corresponding to ða; bÞ which lies on the boundary of Dk

at t ¼ t�, where ðn� 1Þp < ot� < np for some nb 1. Suppose the point ða; bÞ
lies on the curve Gn or on the line ln at t ¼ t�. Put

gðl; tÞ ¼ l2 � ale�lt � bð1� e�4ltÞ:

Then (5) implies gðio; t�Þ ¼ 0 for some o, where ðn� 1Þp < ot� < np. We

consider first the case that ða; bÞ A ln. Since e�iot � ¼ ð�1Þni, it follows from

(16) that

qg

ql
ðio; t�Þ ¼ i2oþ aðiot� � 1Þe�iot � � 4bt�e�i4ot�

¼ �ða2 þ 4bÞt� þ io

0 0;

and so

< dl

dt
ðt�Þ ¼ �<�ao2e�iot � � i4boe�i4ot �

qg=qlðio; t�Þ

¼ a2ða2 þ 4bÞ
jqg=qlðio; t�Þj2

:
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Hence, if a2 þ 4b > 0, then we have

< dl

dt
ðt�Þ > 0;ð18Þ

because a2 ¼ o2 > 0. Next, we consider the case that ða; bÞ A Gn. Since the

function

hðzÞ ¼ i2z

t�
þ z cos 2zðiz� 1Þe�iz

t� sin z
þ z2e�i4z

t� sin2 z

is holomorphic in the strip region fz j ðn� 1Þp < <z < npg of the complex plane

and since hðzÞ satisfies hðot�Þ ¼ qg=qlðio; t�Þ, the unicity theorem shows that

qg=qlðio; t�Þ0 0 except for at most a finite number of o in ððn� 1Þp=t�;
np=t�Þ. Then, from (17), we have

< dl

dt
ðt�Þ ¼ � 2ao3 sin ot� þ a2o2 � 8bo2 cos 4ot� þ 4abo sin 3ot�

jqg=qlðio; t�Þj2
:

A computation implies that

< dl

dt
ðt�Þ ¼ 2o4 sin2 ot�

jqg=qlðio; t�Þj2
> 0ð19Þ

except for the case of ða; bÞ ¼ Pn. Note that the point ða; bÞ ¼ ð0;�p2=32t�2Þ
lies on the common boundary of D1 and D3. For this point ða; bÞ, (3) has a

pair of purely imaginary rootsGio, o > 0. As t grows near t�, the point ða; bÞ
moves from D1 into D3 across the curve G1. Since nðD1Þ ¼ 0, (19) implies

nðD3Þ ¼ 2. On the other hand, the common boundary of D2 and D3 is a part

of the line l1 which approaches the b-axis as t grows, and also each point ða; bÞ
lying on the common boundary satisfies a ¼ �p=2t and b < �p2=16t2, and

so a2 þ 4b < 0. Hence (18) shows that nðD2Þ ¼ 0, because such a point ða; bÞ
moves from D3 into D2 across the line l1. Since each parabola a2 þ 4b ¼
�4n2p2=t2 approaches the parabola a2 þ 4b ¼ 0 as t ! y, each curve Gn

also approaches the parabola a2 þ 4b ¼ 0. Especially, the point Pn on Gn

approaches the origin as t ! y. It is clear that each line ln approaches the

b-axis as t ! y. Therefore we arrive at the conclusion that

nðD1Þ ¼ nðD2Þ ¼ 0 < nðDkÞ

for all kb 3. This completes the proof.

In case t ¼ 0, the characteristic equation (3) has the purely imaginary roots

Gio, o > 0, only if the point ða; bÞ lies on Gn defined by (13). Furthermore, the

curves Gn divide the half-plane aþ bh < 0 into regions Dk. Then we arrive at

the following theorem.
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Theorem 4. Let t ¼ 0 and let D1 be the region enclosed by G1 and the line

l0. Then D1 is the stability region for (1).

Proof. Since (13) implies that the equality

a2 þ 2b ¼ �o2

with 2ðn� 1Þp=h < o < 2np=h for any ða; bÞ lying on Gn, each Gn does not

intersect another Gk. For each nb 2, Gn is the curve like a parabola and

intersects the b-axis only at the point ð0;�ð2n� 1Þ2p2=2h2Þ. This implies that

each region Dk intersects the b-axis. (See Figure 4.) Therefore Theorem B

shows that

nðD1Þ ¼ 0 < nðDkÞ

for all kb 2. This completes the proof.

Remark. To our regret, we can not yet find the stability region exactly for

all cases. But Theorems A and B lead us to the result that in each of Figures 5

through 27, the shaded portion is contained in the stability region and the others

are not so, whenever they are contained in the half-plane aþ bh > 0 or intersect

the a-axis or the b-axis. Our conjecture is that the following figures illustrate

the stability regions. Furthermore Theorems 1 through 4 assert that the shaded

portions in Figures 5, 6, 8 and 16 are stability regions.
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Fig. 5. S-region for h ¼ t Fig. 6. S-region for h ¼ 2t
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Fig. 7. S-region for h ¼ 3t Fig. 8. S-region for h ¼ 4t

Fig. 9. S-region for h ¼ 5t Fig. 10. S-region for h ¼ 6t

Fig. 11. S-region for h ¼ 7t Fig. 12. S-region for h ¼ 8t
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Fig. 13. S-region for h ¼ 9t Fig. 14. S-region for h ¼ 10t

Fig. 15. S-region for h ¼ 20t Fig. 16. S-region for t ¼ 0

Fig. 17. S-region for t ¼ 2h Fig. 18. S-region for t ¼ 3h
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Fig. 19. S-region for t ¼ 4h Fig. 20. S-region for t ¼ 5h

Fig. 21. S-region for t ¼ 6h Fig. 22. S-region for t ¼ 7h

Fig. 23. S-region for t ¼ 8h Fig. 24. S-region for t ¼ 9h
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