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Abstract

This paper is concerned with the linear delay difference equation

xn+1 − xn + pnxn−k = 0, n = 0, 1, 2, · · · ,

where k is a nonnegative integer and {pn}∞n=0 is a real sequence. Sufficient conditions for this
equation to be frequently oscillatory are derived.

AMS Subject Classification : 39A10
Key Words: Difference equation, Frequent oscillation.

1 Introduction

A nontrivial extension of the well known difference equation

xn+1 = xn + xn−1, n = 0, 1, 2, ...,

satisfied by the Fibonacci numbers is the following

xn+1 − xn + pnxn−k = 0, n = 0, 1, 2, ... (1)

where k is a fixed positive integer. This equation has received much attention. In particular, Erbe
and Zhang [1] proved that when {pn} is eventually nonnegative, then every solution of (1) oscillates
provided

lim sup
n→∞

n∑

i=n−k

pi > 1,
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or

lim inf
n→∞

pn >
kk

(k + 1)k+1
, (2)

or
lim inf
n→∞

pn = δ ≥ 0 and lim sup
n→∞

pn > 1− δ.

Ladas et al. in [2] obtained the same conclusion when (2) is replaced by

lim inf
n→∞

1
k

n−1∑

i=n−k

pi >
kk

(k + 1)k+1
.

Since then, there have been many improvements (see [1-11]). In particular, a summary of related
results can be found in the recent paper [9].

In this paper, we intend to obtain several nonstandard oscillation criteria based on the concept
of frequent oscillation. Since frequent oscillation implies oscillation, our results will either be more
general than or complementary to some of the results in [1-11].

In order to derive these criteria, we first recall that a real sequence is said to be oscillatory if
it is neither eventually positive nor eventually negative. Clearly, such a definition does not capture
the fine details of an oscillatory sequence as can be seen from the following two oscillatory sequence
{1,−1, 1,−1, ...} and {1, 1, 1,−1, 1, 1, 1,−1, ...}. For this reason, Tian et al. in [10] introduced the
concept of frequent oscillation. For the sake of completeness, its definition and associated information
will be briefly sketched as follows. Let N = {1, 2, 3, ...} , Z the set of integers and D a subset of Z
of the form {a, a + 1, a + 2, a + 3, ...}, where a is an integer. The size of a set Ω will be denoted by
|Ω| . The union, intersection and difference of two sets A and B will be denoted by A + B, A ∩ B
and A\B respectively. Let Ω be a set of integers. We will denote the set of all integers in Ω which
are less than or equal to an integer n by Ω(n), that is, Ω(n) = Ω ∩ {..., n− 1, n}, and we will denote
the set {x + m|x ∈ Ω} of translates of the elements in Ω by EmΩ, where m is an integer. Let α and
β be two integers such that α ≤ β. The union

σβ
α(Ω) =

β∑

i=α

EiΩ,

will be called a derived set of Ω. Note that an integer j ∈ EmΩ if and only if j −m ∈ Ω. Thus

j ∈ Z\ (
σβ

α(Ω)
) ⇔ j − k ∈ Z\Ω for α ≤ k ≤ β. (3)

Let Ω be a set of integers. If lim supn→∞
∣∣Ω(n)

∣∣ /n exists, then this limit, denoted by µ∗(Ω), will be
called the upper frequency measure of Ω. Similarly, if lim infn→∞

∣∣Ω(n)
∣∣ /n exists, then this limit,

denoted by µ∗(Ω), will be called the lower frequency measure of Ω. If µ∗(Ω) = µ∗(Ω), then the
common limit, denoted by µ(Ω), will be called the frequency measure of Ω.

For the sake of convenience, we will adopt the usual notation for level sets of a sequence, that
is, let x : D → R be a real function, then the set {k ∈ D|xk ≤ c} will be denoted by (x ≤ c) or
(xk ≤ c) . The notations (x ≥ c), (x < c), etc. will have similar meanings. Let x = {xk}∞k=a be a real
sequence. If µ∗(x ≤ 0) = 0, then the sequence x is said to be frequently positive. If µ∗(x ≥ 0) = 0,
then x is said to be frequently negative. The sequence x is said to be frequently oscillatory if it is
neither frequently positive nor frequently negative. Note that if a sequence x is eventually positive,
then it is frequently positive; and if x is eventually negative, then it is frequently negative. Thus, if
it is frequently oscillatory, then it is oscillatory.
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Let x = {xk}∞k=a be a real sequence. If µ∗(x ≤ 0) ≤ ω, then x is said to be frequently positive of
upper degree ω. If µ∗(x ≥ 0) ≤ ω, then x is said to be frequently negative of upper degree ω. The
sequence x is said to be frequently oscillatory of upper degree ω if it is neither frequently positive
nor frequently negative of the same upper degree ω. The concepts of frequently positive of lower
degree, etc. are similarly defined by means of µ∗. We say that x is frequently positive of the lower
degree ω if µ∗(x ≤ 0) ≤ ω, frequently negative of the lower degree ω if µ∗(x ≥ 0) ≤ ω, and frequently
oscillatory of lower degree ω if it is neither frequently positive nor frequently negative of the same
lower degree ω. Note that if the sequence x is frequently oscillatory of the lower degree ω, then it
is also frequently oscillatory of upper degree ω. Note further that if the sequence x is frequently
oscillatory of upper degree ω for some ω > 0, then it is frequently oscillatory.

We first recall three results from [10] needed in the sequel.
LEMMA 1. Let Ω and Γ be subsets of D = {a, a + 1, ...} . Then

µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ).

Furthermore, if Ω and Γ are disjoint, then

µ∗(Ω) + µ∗(Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ) ≤ µ∗(Ω + Γ) ≤ µ∗(Ω) + µ∗(Γ),

so that
µ∗(Ω) + µ∗(N\Ω) = 1.

LEMMA 2. Let Ω and Γ be subsets of D = {a, a + 1, ...} such that µ∗(Ω) + µ∗(Γ) > 1. Then
Ω ∩ Γ cannot be a finite set.

LEMMA 3. For any subset Ω of D = {a, a + 1, ...}, we have

µ∗
(
σβ

α(Ω)
) ≤ (β − α + 1)µ∗(Ω),

and
µ∗

(
σβ

α(Ω)
) ≤ (β − α + 1)µ∗(Ω).

2 Preparatory Lemmas

We will assume throughout this section that k is a positive integer. First of all, we note that

k

(k + 1)1+1/k
≥ kk+1

(k + 1)k+1
. (4)

Indeed, the above inequality holds for k = 1, 2. Let

h(x) = (x + 1)1−x−2

, H(x) =
h(x)

x
, x ≥ 3.

Then

H ′(x) =
h(x)
x3

(
2 ln(x + 1)

x
− 1

)
≤ 0, x ≥ 3.

Furthermore, since limx→∞H(x) = 1, thus H(x) ≥ 1 for x ≥ 3. In particular,

H(k) =

(
k

(k + 1)1+1/k

(k + 1)k+1

kk+1

) 1
k

≥ 1, k = 3, 4, ...,
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as required.
LEMMA 4. For each δ ∈ [0, kk/(k + 1)k+1], the sequence {rn}∞n=1 defined by

r1 = δ/(1− δ)k, rn+1 = δ/(1− rn)k, n ≥ 1, (5)

is increasing and converges to a number in [δ, 1/(k + 1)).
PROOF. If δ = 0, then rn = 0 for n ≥ 0 and our assertion is true. Suppose δ > 0. Note that

0 < δ ≤ α = kk/(k + 1)k+1 ≤ 1/(k + 1) < 1,

δ < r1 ≤ kk

(k + 1)k+1

1
(1− α)k

<
kk

(k + 1)k+1

1

(k/(k + 1))k
=

1
k + 1

,

and

r1 =
δ

(1− δ)k
<

δ

(1− r1)k
= r2 <

kk

(k + 1)k+1

1
(k/(k + 1))k

=
1

k + 1
.

Assume by induction that δ < r1 < r2 < ... < rn < 1/(k + 1). Then

δ < rn+1 ≤ kk

(k + 1)k+1

1
(1− rn)k

<
kk

(k + 1)k+1

1

(k/(k + 1))k
=

1
k + 1

and
rn+1

rn
=

(1− rn−1)
k

(1− rn)k
> 1

as required. The proof is complete.
Note that the sequence {rn}∞n=1 depends on δ. Therefore in case of confusion, we will write

{rn(δ)}∞n=1 instead of {rn}∞n=1 . In view of the above result, its limit also defines a function f on
[0, kk/(k + 1)k+1]. For instance, when k = 1, kk/(k + 1)k+1 = 1/4 and

f(δ) =
1−√1− 4δ

2
, 0 ≤ δ ≤ 1

4
.

Next, note that by taking limits on both sides of rn+1 = δ/(1−rn)k, f(δ) is a root of the equation

x(1− x)k = δ.

Since the function
g(x) = x(1− x)k, (6)

is strictly increasing on [0, 1/(k + 1)), decreasing on (1/(k + 1), 1] and

max
x∈[0,1]

g(x) = g

(
1

k + 1

)
=

kk

(k + 1)k+1
.

Thus for any constant δ ∈ [0, kk/(k+1)k+1], the equation g(x) = δ has exactly two roots θ1, θ2 ∈ [0, 1]
such that θ1 ≤ θ2, where equality holds only if δ = kk/(k+1)k+1. Note that δ = g(θ1) = θ1(1−θ1)k ≤
θ1, thus rn ≤ θ1 for n ≥ 1 and hence f(δ) = θ1.

For similar reasons, we may also see that

λk(1− λ) = δ
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has exactly two roots λ1 and λ2 such that λ1 ≤ λ2 and 1− f(δ) = λ2.

LEMMA 5. For each δ ∈ [
0, k/(k + 1)1+1/k

]
, the equation

x(1− xk) = δ (7)

has exactly two roots µ1, µ2 ∈ [0, 1] such that µ1 ≤ µ2, where µ1 = µ2 only if δ = k/(k + 1)1+1/k.
Furthermore, µ1 is a continuous and increasing function of δ.

Again, existence of such roots µ1, µ2 in [0, 1] and monotonicity of µ1 follows from the fact that
the function G(x) = x(1− xk) is increasing on [0, 1/(k + 1)1/k) and decreasing on (1/(k + 1)1/k, 1]
and

max
x∈[0,1]

G(x) = G

(
1

(k + 1)1/k

)
=

k

(k + 1)1+1/k
.

Continuity of µ1 follows from the implicit function theorem.
LEMMA 6. For any δ ∈ [

0, k/(k + 1)1+1/k
]
, the sequence {Rn}∞n=1 defined by

R1 =
δ

(1− δk)
, Rn+1 =

δ

(1−Rk
n)

, n = 1, 2, ... (8)

is increasing and converges to the root µ1 in Lemma 5.
PROOF. If δ = 0, then µ1 = 0 and Rn = 0 for n ≥ 1, so that limn→∞Rn = µ1. If δ > 0,

then it is easy to see that δ = µ1

(
1− µk

1

)
< µ1 ∈ (0, 1). Hence 0 < R1 < µ1 < 1. Assume that

0 < Rn < µ1 < 1, then

0 < Rn+1 =
δ

(1−Rk
n)

<
δ(

1− µk
1

) = µ1 < 1.

By induction, we may then see that the sequence {Rn} is positive and bounded above. The sequence
{Rn} is also nondecreasing. Indeed, it is easily checked that R1 < R2. Assume by induction that
Rm−1 < Rm. Then

Rm+1

Rm
=

1−Rk
m−1

1−Rk
m

> 1

as required. Therefore, limn→∞Rn exists and equals, say, L. By taking limits on both sides of
Rn+1 = δ/(1−Rk

n), we see that L(1− Lk) = δ. But since L ≤ µ1, we see that L = µ1. The proof is
complete.

Note that the sequence {Rn}∞n=1 depends on δ. Therefore in case of confusion, we will write
{Rn(δ)}∞n=1 instead of {Rn}∞n=1 . In view of the above result, its limit also defines a function F on
[0, k/(k+1)1+1/k]. Furthermore, in view of Lemma 5 and the fact that µ1 = F (δ), F is an increasing
and continuous function.

We remark further that if δ > k/(k+1)1+1/k, there is a positive integer M such that RM (δ) > 1.
Indeed, if the contrary holds, then limn→∞Rn(δ) exists and belongs to (0, 1]. If we denote this limit
by L, then

k

(k + 1)1+1/k
< δ = L(1− Lk) ≤ max

0<x≤1
x

(
1− xk

)
=

k

(k + 1)1+1/k
,

which is a contradiction.
The final preparatory result is in [6].
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LEMMA 7. Let {xn}∞n=−k be a solution of (1) such that xn > 0 for n = m − 3k,m − 3k +
1, ...,m + k + 1 and pn > 0 for n = m− 2k,m− 2k + 1, ..., m + k, where m is a positive integer. If

n−1∑

i=n−k

pi ≥ B > 0, n = m− k,m− k + 1, ..., m + k,

then
xm−k

xm
≤ 4

B2
.

3 Main Results

We first recall that f(δ) and F (δ) are limits of the sequences (5) and (8) respectively.

THEOREM 1. Suppose there is δ ∈ [
0, kk/(k + 1)k+1

]
and a constant c > (1− f(δ))k (1− F (kδ))

such that µ (pn < 0) = 0, µ∗(pn ≥ c) > 0 and µ (qn < δ) = 0 where

qn =
1
k

n−1∑

j=n−k

pj , n = k, k + 1, k + 2, · · · . (9)

Then every solution {xn}∞n=−k of (1) is frequently oscillatory (and hence oscillatory).
PROOF. In view of (4), F (kδ) exists. Suppose to the contrary that {xn} is a frequently positive

solution of (1) such that µ∗ (xn ≤ 0) = 0. From the definition of f and F, we see that there is a large
positive integer M such that

c > (1− rM (δ))k (1−RM (kδ)) .

In view of Lemma 1 and Lemma 3,

µ∗
(
N\

{
σ

(M+2)k
−(M+1)k(pn < 0) + σ

(M+2)k
−(M+1)k(qn < δ) + σ

(M+3)k
−(M+1)k−1(xn ≤ 0)

})
= 1.

Hence by Lemma 2, the intersection

N\
{

σ
(M+2)k
−(M+1)k(pn < 0) + σ

(M+2)k
−(M+1)k(qn < δ) + σ

(M+3)k
−(M+1)k−1(xn ≤ 0)

}
∩ (pn ≥ c)

must be an infinite subset of N. In view of (3), there exists a positive integer n such that pn ≥ c and

pi ≥ 0, qi ≥ δ, n− (M + 2)k ≤ i ≤ n + (M + 1)k,

and
xi > 0, n− (M + 3)k ≤ i ≤ n + (M + 1)k + 1.

Since (1) implies {xi} is decreasing for n− (M + 2)k ≤ i ≤ n + (M + 1)k + 1,

xi+1

xi
= 1− pi

xi−k

xi
, n− (M + 3)k ≤ i ≤ n + (M + 1)k + 1, (10)

and

0 < xi+1 = xi − pixi−k =
(

1− pi
xi−k

xi

)
xi ≤ (1− pi)xi (11)
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for n− (M + 1)k ≤ i ≤ n + (M + 1)k + 1. Hence

xi

xi−k
=

i−1∏

j=i−k

(
1− pj

xj−k

xj

)
≤


1− 1

k

i−1∑

j=i−k

pj
xj−k

xj




k

≤

1− 1

k

i−1∑

j=i−k

pj




k

≤ (1− δ)k (12)

for n−Mk ≤ i ≤ n + (M + 1)k, so that

xi−k ≥ xi∏i−1
j=i−k

(
1− pj

xj−k

xj

) ≥ xi∏i−1
j=i−k

(
1− pj

(1−δ)k

)

≥ xi(
1− 1

k(1−δ)k

∑i−1
j=i−k pj

)k
≥ xi(

1− δ
(1−δ)k

)k

≥ xi

(1− r1)k

for n− (M − 1)k ≤ i ≤ n + (M + 1)k. Similarly for n− (M − 2)k ≤ i ≤ n + (M + 1)k,

xi−k ≥ xi∏i−1
j=i−k

(
1− pj

xj−k

xj

) ≥ xi∏i−1
j=i−k

(
1− pj

(1−r1)k

)

≥ xi(
1− 1

k(1−r1)k

∑i−1
j=i−k pj

)k
≥ xi(

1− δ
(1−r1)k

)k

≥ xi

(1− r2)k
.

By induction, we may then obtain

xi−k ≥ xi

(1− rM )k
, n ≤ i ≤ n + (M + 1)k.

If we substitute the above inequality into (1), we obtain

xn = xn+1 + pnxn−k ≥ xn+1 + pn
xn

(1− rM )k
, (13)

and for n ≤ i ≤ n + (M + 1)k

xi+1 ≥ xi+k+1 +
k∑

j=1

pi+jxi+j−k ≥ xi+k+1 +
k∑

j=1

pi+jxi. (14)

Thus

xi+1 ≥ xi+k+1 +





k∑

j=1

pi+j



xi ≥ xi+k+1 + (kδ)xi ≥ (kδ)xi, n ≤ i ≤ n + Mk.

Hence
xi+1

xi
≥ kδ, n ≤ i ≤ n + Mk,
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so that
xi+k+1

xi+1
≥ (kδ)k, n ≤ i ≤ n + (M − 1)k.

Therefore from (14)

xi+1

xi
≥ kδ

1− (kδ)k
= R1(kδ), n ≤ i ≤ n + (M − 1)k,

and by induction, we have
xn+1

xn
≥ kδ

1−Rk
M−1(kδ)

= RM (kδ).

In view of (13),

0 ≥ −xn + xn+1 +
pnxn

(1− rM )k
≥

(
−1 + RM (kδ) +

pn

(1− rM )k

)
xn.

This then leads to
pn ≤ (1−RM (kδ)) (1− rM (δ))k

< c,

which is contrary to our previous conclusion that pn ≥ c.
The case where {xn} is a frequently negative solution of (1) such that µ∗ (xn ≥ 0) = 0 is similarly

proved. The proof is complete.
As an immediate corollary, if k = 1 in (1), then kk/(k + 1)k+1 = 1/4, qn = pn and

(1− f(δ))k (1− F (kδ)) =
(

1 +
√

1− 4δ

2

)2

.

Thus we have the following result.
COROLLARY 1. Suppose k = 1 and suppose there are δ ∈ [0, 1/4] and c such that µ (pn < δ) = 0,

µ∗ (pn ≥ c) > 0 and

c >

(
1 +

√
1− 4δ

2

)2

.

Then every solution of (1) is frequently oscillatory.
As an example, consider the difference equation

xn+1 − xn + pnxn−3 = 0, n = 0, 1, 2, ..., (15)

where {pn}∞n=0 is defined by

pn =





1/n n ∈ A1 = {2m, 2m + 1, 2m + 2; m = 0, 1, 2, ...}
0.1 n = 4m, 4m + 1, 4m + 2 and n /∈ A1

0.385 n = 4m + 3 and n /∈ A1

.

If we take δ = 0.1 and c = 0.385, then we can calculate

kk/(k + 1)k+1 = 0.10546875, f(δ) ∈ (0.18, 0.185), F (kδ) ∈ (0.305, 0.31).

Thus
(1− f(δ))3 (1− F (kδ)) < 0.385 = c,
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and
µ (pn < 0) = µ (qn < δ) = 0, µ (pn ≥ 0.385) = 0.25.

By Theorem 1, every solution of (15) is frequently oscillatory. However, since it is easy to see that

lim inf
n→∞

1
3

n−1∑

j=n−3

pj = 0,

Theorem 2.1 or Theorem 2.2 in [9] cannot be applied to conclude the oscillation of (15).
As another example, let k = 1 and let {pn}∞n=0 be defined by

pn =
{

1/n n = 2m; m = 1, 2, ...
0.26 otherwise .

Since µ (pn < 0) = µ (pn < 0.25) = 0 and µ (pn ≥ 0.26) = 1, Corollary 1 implies that (1) is oscillatory.
However, since lim infn→∞ pn = 0, Theorem 2.1 or Theorem 2.2 in [9] cannot be applied to make
the same conclusion.

THEOREM 2. Suppose µ (pn < 0) = 0, and there exist δ ∈ [
0, kk/(k + 1)k+1

]
and β ≥ δ such

that µ (qn < δ) = 0 and µ∗ (Qn < β) = 0, where qn is defined in (9) and

Qn =
1
k

k∑

j=1

pn+j∏n−1
s=n+j−k(1− ps)

.

Suppose further that kβ > k/(k+1)1+1/k or there exist a constant c > (1− f(δ))k (1− F (kβ)) such
that µ∗ (pn ≥ c) > 0. Then every solution of (1) is frequently oscillatory.

PROOF. Suppose to the contrary that {xn} is a frequently positive solution of (1) such that
µ∗ (xn ≤ 0) = 0. If kβ ≤ k/(k + 1)1+1/k, then the limit F (kβ) exists. From the definition of f and
F, we see that there is a large positive integer M such that

c > (1− rM (δ))k (1−RM (kβ)) .

As in the proof of Theorem 1, there exists a positive integer n such that pn ≥ c and

pi ≥ 0, qi ≥ δ, Qi ≥ β, n− (M + 2)k ≤ i ≤ n + (M + 1)k,

and
xi > 0, n− (M + 3)k ≤ i ≤ n + (M + 1)k + 1.

Hence
xi−k ≥ xi

(1− rM (δ))k
, n ≤ i ≤ n + (M + 1) k,

and (13) holds. From (1) and (11), we can obtain

xi+1 = xi+k+1 +
k∑

j=1

pi+jxi+j−k = xi+k+1 +




k∑

j=1

pi+j
xi+j−k

xi


 xi

≥ xi+k+1 +




k∑

j=1

pi+j∏i−1
s=i+j−k(1− ps)


 xi, n ≤ i ≤ n + Mk,
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Thus
xi+1 ≥ xi+k+1 + kQixi ≥ xi+k+1 + (kβ)xi, n ≤ i ≤ n + Mk.

Following the same reasoning used in the proof of Theorem 1, we may then conclude that

1 ≥ xn+1

xn
≥ kβ

1−Rk
M−1(kβ)

= RM (kβ). (16)

In view of (13),

0 ≥ −xn + xn+1 +
pnxn

(1− rM (δ))k
≥

(
−1 + RM (kβ) +

pn

(1− rM (δ))k

)
xn.

This then leads to
pn ≤ (1−RM (kβ)) (1− rM (δ))k

< c,

which is a contradiction.
If kβ > k/(k + 1)1+1/k, then by the remark following Lemma 6, there exists a positive integer

M such that RM (kβ) > 1. As before, (16) holds, which is a contradiction. The proof is complete.
To compare Theorem 1 and Theorem 2, let us take β = δ in Theorem 2. Then the conditions in

Thereom 2 include those in Theorem 1 with the additional condition µ∗(Qn < δ) = 0. Only when
the sequence {pk} satisfies µ∗(Qn < δ) = 0 (for instance, if µ(Qn ≥ qn) = 1, then µ(Qn < δ) = 0 in
view of the assumption µ(qn < δ) = 0), then Theorem 1 will be a special case of Theorem 2.

To illustrate Theorem 2, consider the difference equation

xn+1 − xn + pnxn−3 = 0, n = 0, 1, 2, · · · (17)

where {pn}∞n=0 is defined by

pn =




−1 n ∈ {1, 2, 22, 23, ...},
0.105 n = 4m, 4m + 1, 4m + 2 and n /∈ {1, 2, 22, ...}
0.305 n = 4m + 3 and n /∈ {1, 2, 22, ...}

.

If we take δ = 0.105 and β = 0.117, then we can check that µ(pn < 0) = µ(qn < δ) = 0, kδ = 0.315
and kβ = 0.351, and

δ <
kk

(k + 1)k+1
= 0.10546875 <

k

(k + 1)1+1/k
=

3
4 3
√

4
∈ (0.472, 0.473),

f(δ) ∈ (0.229, 0.23), F (kδ) ∈ (0.32, 0.33), F (kβ) ∈ (0.36, 0.37).

Since

kQn =
3∑

j=1

pn+j∏n−1
s=n+j−3(1− ps)

=
pn+1

(1− pn−1)(1− pn−2)
+

pn+2

1− pn−1
+ pn+3,

then for any n, if n + 3, n + 2, n + 1, n− 1, n− 2 /∈ {1, 2, 22, 23, · · ·}, then we have

kQn ≥ 0.3534 > 0.351, (1− f(δ))3(1− F (kδ)) ∈ (0.3058, 0.3117),

and
(1− f(δ))3(1− F (kβ)) ∈ (0.287, 0.294).
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Let c = 0.3, then µ(Qn < β) = 0 and µ(pn ≥ c) = 0.25. By Theorem 2, every solution of (17)
is frequently oscillatory. The same conclusion cannot be obtained from Theorem 1. Indeed, for
any δ ∈ [0.105, kk/(k + 1)k+1], we have µ(qn < δ) > 0 (and not µ(qn < δ) = 0). And for any
δ ∈ [0, 0.105), we have µ(pn < 0) = µ(qn < δ) = 0. But since

(1− f(δ))3(1− F (3δ)) ≥ (1− f(0.105))3(1− F (3× 0.105)) > 0.305,

thus there does not exist any c > (1− f(δ))3(1− F (3δ)) such that µ∗(pn > c) > 0.

THEOREM 3. Suppose there exist three nonnegative numbers λ, η and θ such that

µ∗ (pn < 0) = θ ≥ 0,

µ∗




n∑

j=n−k

pj∏n−1−k
s=j−k (1− ps)

> 1


 = η > 0

and η > (3k + 1)θ + (4k + 2)λ. Then every solution of (1) is frequently oscillatory of lower degree λ.
PROOF. Let us set

p̃n =
n∑

j=n−k

pj∏n−1−k
s=j−k (1− ps)

, n = 2k, 2k + 1, 2k + 2, · · · .

Suppose to the contrary that {xn} is a frequently positive solution of lower degree λ such that
µ∗ (xn ≤ 0) ≤ λ. Then in view of Lemma 1 and Lemma 3,

µ∗
(
N\ (

σ3k
0 (pn < 0) + σ4k

−1 (xn ≤ 0)
))

+ µ∗ (p̃n > 1)

≥ 1− µ∗
(
σ3k

0 (pn < 0) + σ4k
−1 (xn ≤ 0)

)
+ η

≥ 1− (3k + 1)θ − (4k + 2)λ + η

> 1.

Thus by Lemma 2, the intersection
{
N\ (

σ3k
0 (pn < 0) + σ4k

−1 (xn ≤ 0)
)} ∩ (p̃n > 1)

must be an infinite subset of N. From (3), there is a natural number n such that p̃n > 1, pi ≥ 0 for
n − 3k ≤ i ≤ n and xi > 0 for n − 4k ≤ i ≤ n + 1. In view of (1) and (11), {xi} is decreasing on
{n− 3k, n− 3k + 1, ..., n + 1} and

0 ≥ xn+1 − xn−k +
n∑

i=n−k

pixi−k ≥
(
−1 +

n∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

)
xn−k,

which is a contradiction. The proof is complete.
COROLLARY 2. Suppose {pn}∞n=0 is eventually nonnegative and

lim sup
n→∞

n∑

j=n−k

pj∏n−1−k
s=j−k (1− ps)

> 1.

Then every solution of (1) is oscillatory.
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THEOREM 4. Suppose there exist δ ∈ (0, kk/ (k + 1)k+1] and numbers θ, η, ξ and λ such that
µ∗ (pn < 0) = θ ≥ 0,

µ∗
(

1
k

n−1∑

i=n−k

pi < δ

)
= η ≥ 0,

µ∗

(
n−1∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

> 1− (kδ)2

4

)
= ξ > 0,

and
(4k + 1)θ + (2k + 1)η + (5k + 2)λ < ξ.

Then every solution of (1) is frequently oscillatory of lower degree λ.

PROOF. Suppose to the contrary that {xn} is a frequently positive solution of lower degree λ
such that µ∗ (xn ≤ 0) ≤ λ. Then in view of Lemmas 1 and 3,

µ∗
(

N\
{

σ3k
−k(pn < 0) + σk

−k

(
n−1∑

i=n−k

pi < kδ

)
+ σ4k

−(k+1) (xn ≤ 0)

})

+µ∗

(
n−1∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

> 1− (kδ)2

4

)

≥ 1− µ∗

(
σ3k
−k (pn < 0) + σk

−k

(
n−1∑

i=n−k

pi < kδ

)
+ σ4k

−(k+1) (xn ≤ 0)

)
+ ξ

≥ 1− {(4k + 1)θ + (2k + 1)η + (5k + 2)λ}+ ξ

> 1.

In view of Lemma 2, the intersection
(

N\
{

σ3k
−k (pn < 0) + σk

−k

(
n−1∑

i=n−k

pi < kδ

)
+ σ4k

−(k+1) (xn ≤ 0)

})

∩
(

n−1∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

> 1− (kδ)2

4

)

must be an infinite subset of N, so that there exists a positive integer n such that

n−1∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

> 1− (kδ)2

4
,

pi ≥ 0, n− 3k ≤ i ≤ n + k,

i−1∑

j=i−k

pj ≥ kδ, n− k ≤ i ≤ n + k,

and
xi > 0, n− 4k ≤ i ≤ n + k + 1.
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In view of (1) and (11), {xi} is decreasing for i ∈ {n− 3k, n− 3k + 1, ..., n + k + 1} , and

0 = xn − xn−k +
n−1∑

i=n−k

pixi−k ≥ xn − xn−k +

(
n−1∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

)
xn−k

≥
(

xn

xn−k
− 1 +

n−1∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

)
xn−k.

By Lemma 7, we have

0 ≥ xn

xn−k
− 1 +

n−1∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

≥
n−1∑

i=n−k

pi∏n−1−k
s=i−k (1− ps)

− 1 +
(kδ)2

4
,

which is a contradiction. The proof is complete.
We now present two examples to show that Theorems 3 and 4 are independent of each other.
First, consider the difference equation

xn+1 − xn + pnxn−2 = 0, n = 0, 1, 2, · · · , (18)

where {pn}∞n=0 is defined by

pn =
{ −1 n = 2m; m = 1, 2, ...

0.25 otherwise .

Let
A =

{
2, 22, 23, 24, ...

}
, (19)

then pn = −1 for n ∈ A. For any n, if n, n− 1, n− 2, n− 3, n− 4 /∈ A, then we have

Λ =
n∑

j=n−2

pj∏n−1−k
s=j−k (1− ps)

= pn +
pn−1

1− pn−3
+

pn−2

(1− pn−3) (1− pn−4)
=

37
36

> 1,

and

∆ =
n−1∑

j=n−2

pj∏n−1−k
s=j−k (1− ps)

=
pn−1

1− pn−3
+

pn−2

(1− pn−3) (1− pn−4)
=

7
9

< 1,

δ =
1
2

n−1∑

j=n−2

pj = 0.25 and 1− (kδ)2

4
=

15
16

.

Hence it is easy to see that µ∗(pn < 0) = 0 and

µ∗




n∑

j=n−2

pj∏n−1−k
s=j−k (1− ps)

> 1


 = 1 and µ∗


1

2

n−1∑

j=n−2

pj < δ


 = 0,
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and

µ∗




n−1∑

j=n−2

pj∏n−1−k
s=j−k (1− ps)

> 1− (kδ)2

4


 = 0.

Hence by Theorem 3, for any nonnegative constant λ < 0.1, every solution of (18) is frequently
oscillatory of lower degree λ. But it is impossible to obtain the same conclusion from Theorem 4.
Indeed, the case where δ ∈ [0, 0.25] is impossible since

1− (2δ)2

4
≥ 15

16
,

and

µ∗

(
n−1∑

i=n−2

pi∏n−1−k
s=i−k (1− ps)

> 1− (kδ)2

4

)
= 0.

The case where δ ∈ (0.25, 4/9] is also not possible, since

µ∗
(

1
2

n−1∑

i=n−2

pi < δ

)
= 1 = η,

so that
1 ≥ ξ > (4k + 1)θ + (2k + 1)η + (5k + 2)λ ≥ (2× 2 + 1) = 5

is a contradiction.
As our final example, consider the difference equation (18) where {pn}∞n=0 is defined by

pn =





−0.5 n ∈ A,
0 n = 3m, m = 0, 1, 2, ...
0.25 n = 3m + 1, n /∈ A and m = 0, 1, 2, ...
0.5 n = 3m + 2, n /∈ A and m = 0, 1, 2, ...

,

and A is defined by (19). Let δ = 0.125 and

∆ =
n−1∑

j=n−2

pj∏n−1−k
s=j−k (1− ps)

=
pn−1

1− pn−3
+

pn−2

(1− pn−3) (1− pn−4)
,

and

Λ =
n∑

j=n−2

pj∏n−1−k
s=j−k (1− ps)

= pn +
pn−1

1− pn−3
+

pn−2

(1− pn−3) (1− pn−4)
,

then 1− (kδ)2/4 = 0.984375 and for any n, if n, n− 1, n− 2, n− 3, n− 4 /∈ A, then we have

∆ =





1 n = 3m
0.67 n = 3m + 1
0.5 n = 3m + 2

, Λ =





1 n = 3m
0.917 n = 3m + 1
1 n = 3m + 2

.

Hence it is easy to see that µ∗(pn < 0) = 0 and

µ∗


1

2

n−1∑

j=n−2

pj < δ


 = 0, µ∗




n∑

j=n−2

pj∏n−1−k
s=j−k (1− ps)

> 1


 = 0,
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and

µ∗




n−1∑

j=n−2

pj∏n−1−k
s=j−k (1− ps)

> 1− (kδ)2

4


 =

1
3
.

By Theorem 4, for any constant λ < 1/36, every solution of (18) is frequently oscillatory of lower
degree λ. But it is impossible to obtain the same conclusion from Theorem 3. Indeed, for any
δ ∈ [0, 4/9], µ∗(pn < 0) = 0 and

µ∗




n∑

j=n−2

pj∏n−1−k
s=i−k (1− ps)

> 1


 = 0.
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