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1 Introduction

Consider the first and the second Painlevé equations

w′′ = 6w2 + z,(I)

w′′ = 2w3 + zw + α, α ∈ C(II)α

(′= d/dz). All the solutions of these equations are meromorphic in the whole
complex plane C ([5], [9]). Every solution of (I) is transcendental, and equation
(II)α admits a rational solution if and only if α ∈ Z (e.g. [2], [8]); these equations
define Painlevé transcendents.

The growth of a meromorphic function f(z) is measured by the characteristic
function defined by

T (r, f) = m(r, f) + N(r, f)

with

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ, log+ x = max{log x, 0},

N(r, f) =

∫ r

0

(
n(t, f)− n(0, f)

)dt

t
+ n(0, f) log r;

here n(r, f) denotes the number of poles in |z| ≤ r, each counted according to its
multiplicity (for the notation of value distribution theory and basic facts, see [4],
[6]). Also we use the notation g(r) ¿ h(r) if g(r) = O(h(r)) as r →∞.

The growth of each Painlevé transcendent is estimated as follows ([10], [11]):

Theorem A. Let w(z) be an arbitrary solution of (I) (resp. (II)α). Then, T (r, w) ¿
r5/2 (resp. T (r, w) ¿ r3).

On the other hand, Mues and Redheffer [7] have shown the following:

Theorem B. For every solution w(z) of (I), we have σ(w) ≥ 5/2, where σ(w) =
lim supr→∞ log T (r, w)/ log r.

By these results, the order of the first Painlevé transcendents is 5/2.
In this paper we improve on the result of Theorem B, and under a certain

condition, we give a lower estimate for σ(w) of the second Painlevé transcendents.
Our results are stated as follows:
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Theorem 1.1. For every solution w(z) of (I), we have

r5/2/ log r ¿ T (r, w) ¿ r5/2.

An arbitrary solution of (I) is expressible in the form w(z) = −(u′(z)/u(z))′,
where u(z) is an entire function called a τ -function. Note that it is uniquely
determined apart from the factor exp(a0z + a1) (a0, a1 ∈ C).

Theorem 1.2. For every solution of (I), its τ -function u(z) satisfies

r5/2/ log r ¿ T (r, u) ¿ r5/2.

Theorem 1.3. Suppose that 2α ∈ Z. Then, for every transcendental solution
w(z) of (II)α, we have 3/2 ≤ σ(w) ≤ 3.

Remark 1.1. The implicit coefficients of the relation in Theorem 1.1 are estimated
as follows:

lim inf
r→∞

T (r, w)(r5/2/ log r)−1 ≥ 4·10−11K−5
0 , lim sup

r→∞
T (r, w)r−5/2 ≤ 2K0/5,

where K0 = 1 + lim supr→∞ n(r, w)r−5/2 (< ∞).

Remark 1.2. For every solution w(z) of (I), Boutroux [1] asserts the inequality
n(r, w) À r5/2/ log r, but his proof contains an incorrect part.

Remark 1.3. If α− 1/2 ∈ Z, then equation (II)α admits a one-parameter family
of solutions {vc(z)}c∈C∪{∞} such that σ(vc) = 3/2 (see Section 4.3 and [2]).

2 Preliminaries

In this section, κ denotes an arbitrary positive numbere such that κ > 1. Let
{cj}∞j=1 be a sequence satisfying |c1| ≤ |c2| ≤ · · · ≤ |cj| ≤ · · · , where cj (j =
1, 2, ...) are not necessarily distinct. Now consider the summations

S0({cj}, κr, z) =
∑

|cj |<κr

|z − cj|−1, S1({cj}, κr, z) =
∑

|cj |<κr

|z − cj|−2.

Put ∆0(r) = {z | |z| < r}. Let ν(r) denote the number of points cj in ∆0(r).

Lemma 2.1. Suppose that ν(r) = O(rλ) (λ > 0). For every r > r0(κ), there
exists a point zr ∈ ∆0(r) \∆0(r/

√
2) with the properties:

S0({cj}, κr, zr) ≤ 32(κ + 1)ν(κr)r−1;(2.1)

S1({cj}, κr, zr) ≤ 6λ0ν(κr)r−2 log r.(2.2)

Here r0(κ) is a sufficiently large positive number, and λ0 = max{1, λ/2}.
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Proof. Since
∫∫

|z−cj |≤(κ+1)r

|z − cj|−1dxdy =

∫∫

ρ≤(κ+1)r
0≤θ≤2π

dρdθ = 2π(κ + 1)r

with |z − cj| = ρ, z = x + yi, we have

(2.3)

∫∫

∆0(r)

S0({cj}, κr, z)dxdy ≤ 2π(κ + 1)ν(κr)r.

Consider the set F 0
r = {z ∈ ∆0(r) | S0({cj}, κr, z) ≥ 32(κ+1)ν(κr)r−1}. By (2.3),

we have 32(κ + 1)ν(κr)r−1µ(F 0
r ) ≤ 2π(κ + 1)ν(κr)r, from which µ(F 0

r ) ≤ πr2/16
follows. Here µ(·) denotes the area of the set. Next consider the set ∆δ(r) =
∆0(r)\Dδ, Dδ =

⋃∞
j=1{z | |z− cj| < δω(|cj|)}, δ < 1, where ω(t) = min{1, t1−λ0}

(t ≥ 0). Then, Ω(r) =
∑

1≤|cj |≤r+1 ω(|cj|)2 is estimated as follows:

∫ r+1

1

t2(1−λ0)dν(t) ¿ r2(1−λ0)ν(r + 1) +

∫ r+1

1

(λ0 − 1)t1−2λ0ν(t)dt ¿ r2.

Since ω(t) ≤ 1, we may choose δ so small that µ(Dδ∩∆0(r)) < πδ2(Ω(r)+O(1)) <
πr2/32. Observing that

∫∫

δω(|cj |)≤|z−cj |≤(κ+1)r

|z − cj|−2dxdy =

∫∫

δω(|cj |)≤ρ≤(κ+1)r
0≤θ≤2π

ρ−1dρdθ ≤ 2π
(
log(r/ω(|cj|)) + Bκ

)

with Bκ = log((κ + 1)/δ), we obtain
∫∫

∆δ(r)

S1({cj}, κr, z)dxdy ≤ 2πλ0ν(κr)
(
log r + Bκ + log κ

)
.

Put F 1
r = {z ∈ ∆δ(r) | S1({cj}, κr, z) ≥ 6λ0ν(κr)r−2 log r}. Then, we may take

r0(κ) so large that µ(F 1
r ) ≤ 3πr2/8 for r ≥ r0(κ). Gathering the sets above, we

get Hr = F 0
r ∪ F 1

r ∪ (Dδ ∩∆0(r)). Since µ(Hr) ≤ 15πr2/32 < πr2/2, there exists
a point zr ∈ (∆0(r) \∆0(r/

√
2)) \Hr with the desired properties, provided that

r ≥ r0(κ). ¤
Lemma 2.2. Let g(z) be a meromorphic function, and let {c̃j}∞j=1 be the poles
and the zeros of g(z) such that |c̃1| ≤ |c̃2| ≤ · · · ≤ |c̃j| ≤ · · · , each repeated
according to its multiplicity. Then, for each p ∈ N , we have

∣∣(g′(z)/g(z)
)(p−1)∣∣ ≤ C

(
T (κ|z|, g)|z|−p +

∑

|c̃j |<κ|z|
|z − c̃j|−p + 1

)

for every z, |z| ≥ 1, where C = C(p, κ) is some positive number.
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Proof. Under the condition g(0) 6= 0,∞, the lemma is derived from the
Poisson-Jensen formula ([3],[4],[7]). The case where g(0) = 0 or ∞ is reduced to
the former case by putting h(z) = zdg(z), d ∈ Z, h(0) 6= 0,∞. ¤

3 Proofs of Theorems 1.1 and 1.2

3.1. Lemmas
Let w(z) be an arbitrary solution of (I). The following lemma is an immediate

consequence of Theorem A with Clunie’s reasoning [6, §2.4].

Lemma 3.1. We have n(r, w) ¿ r5/2 and m(r, w) ¿ log r.

Every pole of w(z) is double and its residue is 0. Let {aj}∞j=1 be the distinct
poles arranged as |a1| ≤ |a2| ≤ · · · ≤ |aj| ≤ · · · . By the Mittag-Leffler theorem
combined with Lemma 3.1, we write w(z) in the form

w(z) = ϕ(z) + Φ(z), Φ(z) =
∞∑

j=1

(
(z − aj)

−2 − a−2
j

)
,

where ϕ(z) is an entire function. In case a1 = 0, the corresponding term in Φ(z)
is to be replaced by z−2. By Lemma 3.1, K0 = 1 + lim supr→∞ n(r, w)r−5/2 < ∞.

Lemma 3.2. Suppose that κ ≥ 8. If r > r1, then, for every z ∈ ∆0(r),

χ(κr, z) =
∑

|aj |≥κr

|(z − aj)
−2 − a−2

j | ≤ 9K0κ
−1/2r1/2,

∑

|aj |≥κr

|z − aj|−4 ≤ K0,

where r1 is a sufficiently large positive constant independent of κ.

Proof. For |aj| ≥ κr and for z ∈ ∆0(r), observing that |z/aj| ≤ 1/8, we have
|(z − aj)

−2 − a−2
j | = 2|z||aj|−3|1− (z/aj)/2||1− z/aj|−2 ≤ 3r|aj|−3. Hence

χ(κr, z) ≤ 3r
∑

|aj |≥κr

|aj|−3 = 3r

∫ ∞

κr

t−3dn̄(t) ≤ 9r

∫ ∞

κr

t−4n̄(t)dt ≤ 9K0κ
−1/2r1/2

for r ≥ r1, where n̄(t) = n(t, w)/2 ≤ K0t
5/2/2 (t ≥ r1), provided that r1 is

sufficiently large. Using
∑

|aj |≥κr |z− aj|−4 ≤ (8/7)4
∑

|aj |≥κr |aj|−4 for z ∈ ∆0(r),
we derive the second estimate in the same way. ¤

Lemma 3.3. There exists a set E ⊂ (0,∞) with finite linear measure such that,
for every z satisfying |z| ∈ (0,∞) \ E,

∑

0<|aj |<∞
|(z − aj)

−2 − a−2
j | ¿ |z|9.
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Proof. Put E = (0, |a1| + 1) ∪ (⋃∞
j=2(|aj| − |aj|−3, |aj| + |aj|−3)

)
. By Lemma

3.1, the linear measure of E is finite. By Lemmas 3.1 and 3.2, if |z| 6∈ E, then we
have

( ∑

0<|aj |<8|z|
+

∑

|aj |≥8|z|

)
|(z − aj)

−2 − a−2
j | ¿ (|z|6 + 1)n(8|z|, w) + |z|1/2 ¿ |z|9.

¤

Lemma 3.4. Suppose that κ ≥ 8, and that 0 < η < 1. Then, for every r ≥ 1,

γ(κr) =
∑

0<|aj |≤κr

|aj|−2 ≤ η−4n(κr, w)r−2 + L0ηr1/2 + O(1),

where L0 is a positive constant independent of κ and η.

Proof. Note that

∑

1≤|aj |≤κr

|aj|−2 =

∫ κr

1

t−2dn̄(t) ≤ (κr)−2n̄(κr) + 2
(∫ η2r

1

+

∫ κr

η2r

)
t−3n̄(t)dt

≤
(
(κr)−2+2

∫ κr

η2r

t−3dt
)
n̄(κr)+2

∫ η2r

1

t−3n̄(t)dt = η−4n̄(κr)r−2+2

∫ η2r

1

t−3n̄(t)dt.

By Lemma 3.1, we take a number L0 such that n̄(t) = n(t, w)/2 ≤ L0t
5/2/4 for

t ≥ 1. Using these inequalities, we obtain the conclusion. ¤
3.2. Proof of Theorem 1.1

Note that |Φ(z)| ≤ S1({aj}, κr, z) + γ(κr) + χ(κr, z) (r > 0). Take κ =
κ0 = MK2

0 > 8, where M is a positive number determined later. By Lemma
3.2, χ(κ0r, z) ≤ 9M−1/2r1/2 for z ∈ ∆0(r), if r > r1. By Lemmas 3.1 and 2.1
(λ = 5/2, ν(r) = n(r, w)/2), there exists a point zr ∈ ∆0(r)\∆0(r/

√
2) such that

S1({aj}, κ0r, zr) ≤ (15/4)n(κ0r, w)r−2 log r, if r is sufficiently large. From Lemma
3.4 with η = η0 = M−1/2L−1

0 , we have γ(κ0r) ≤ η−4
0 n(κ0r, w)r−2 + M−1/2r1/2 +

O(1). Hence,

(3.1) |Φ(zr)| ≤ 4n(κ0r, w)r−2 log r + 10M−1/2r1/2 + O(1) ¿ r1/2 log r

for some zr ∈ ∆0(r)\∆0(r/
√

2), if r ≥ r∗0, where r∗0 is sufficiently large. Observing
that

∣∣∑|aj |<κ0r(zr − aj)
−4

∣∣ ≤ S1({aj}, κ0r, zr)
2, and using Lemma 3.2, we have

(3.2) |Φ′′(zr)| ≤ 6·42n(κ0r, w)2r−4(log r)2 + 6K0 ¿ r(log r)2.

By Lemmas 3.1 and 3.3, T (r, ϕ) = m(r, ϕ) ≤ m(r, w) + m(r, Φ) = O(log r) as
r → ∞, r 6∈ E. By the finiteness of linear measure of E and [6, Lemma 1.1.1],
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ϕ(z) is a polynomial. Since w(zr) = (1/
√

6)(w′′(zr) − zr)
1/2, by (3.1) and (3.2),

we have |ϕ(zr)| ≤ |Φ(zr)|+(|ϕ′′(zr)|+ |Φ′′(zr)|+ |zr|)1/2 ¿ r1/2 log r + |ϕ′′(zr)|1/2,
which implies ϕ(z) ≡ C0 ∈ C. Using (3.1) and (3.2), from zr = w′′(zr)− 6w(zr)

2,
we obtain

2−1/4r1/2 ≤ |zr|1/2 ≤ (|Φ′′(zr)|+ 6(|Φ(zr)|+ |C0|)2)1/2

≤ |Φ′′(zr)|1/2+
√

6(|Φ(zr)|+|C0|) ≤ 8
√

6n(κ0r, w)r−2 log r+10
√

6M−1/2r1/2+O(1)

for every r ≥ r∗0. Now we choose M so large that 2−1/4 − 10
√

6M−1/2 > 0. Then
we have n(κ0r, w) À r5/2/ log r, which yields N(r, w) À r5/2/ log r. Combining
this with Theorem A, we arrive at the conclusion.

In the proof above, we put M = 103. Observing that 2−1/4 − 10
√

6M−1/2 >
0.066, we obtain the estimates in Remark 1.1.

3.3. Proof of Theorem 1.2
Write the τ -function in the form u(z) = e−h(z)Π(z), where h(z) = C0z

2/2 +
C1z + C2 and Π(z) =

∏∞
j=1(1− z/aj) exp(z/aj + z2/(2a2

j)). By [4, Theorem 1.11]

with q = 3, we have log+ Π(z) ¿ |z|5/2. Hence T (r, u) ¿ m(r, Π)+r2 ¿ r5/2. Also
we have n(r, 1/u) = n(r, w)/2 À r5/2/ log r, which implies T (r, u) À r5/2/ log r.

4 Proof of Theorem 1.3

4.1. Lemma
Let w(z) be an arbitrary transcendental solution of (II)α. The inequality

σ(w) ≤ 3 is an immediate consequence of the lemma below, which follows from
Theorem A.

Lemma 4.1. We have n(r, w) ¿ r3 and m(r, w) ¿ log r.

The proof of σ(w) ≥ 3/2 is divided into two steps.

4.2. Proof for the case where α = 0
It is sufficient to show that lim supr→∞ log N(r, w)/ log r ≥ 3/2. To do so,

suppose the contrary: N(r, w) ¿ r3/2−ε for some ε > 0, which implies

(4.1) n(r, w) ¿ n(r, w)

∫ 2r

r

dt

t
≤ N(2r, w) ¿ r3/2−ε.

Every pole of w(z) is simple and its residue is ±1. Let {bj}∞j=1 be the poles
arranged as |b1| ≤ |b2| ≤ · · · ≤ |bj| ≤ · · · . Then, we write w(z) in the form

w(z) = ψ(z) + Ψ(z), Ψ(z) =
∞∑

j=1

e(j)
(
(z − bj)

−1 + b−1
j

)
,
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where ψ(z) is an entire function, and e(j) is the residue of the pole bj. In case
b1 = 0, the term for j = 1 is to be replaced by e(1)z−1. Observing the inequality
|(z− bj)

−1 + b−1
j | = |z||bj|−2|1− z/bj|−1 ≤ 2|z||bj|−2 for |z/bj| ≤ 1/2, and putting

E∗ = (0, |b1|+ 1) ∪ (⋃∞
j=2(|bj| − |bj|−2, |bj|+ |bj|−2)

)
, we obtain the following (cf.

the proofs of Lemmas 3.2, 3.3 and 3.4).

Lemma 4.2. Under (4.1), if r ≥ 1, then, for every z ∈ ∆0(r),

χ̃(2r, z) =
∑

|bj |≥2r

|(z − bj)
−1 + b−1

j | ¿ r1/2−ε, γ̃(2r) =
∑

0<|bj |≤2r

|bj|−1 ¿ r1/2−ε.

Lemma 4.3. Under (4.1), there exists a set E∗ ⊂ (0,∞) with finite linear mea-
sure such that, for every z satisfying |z| ∈ (0,∞) \ E∗,

∑

0<|bj |<∞
|(z − bj)

−1 + b−1
j | ¿ |z|4.

Let {b′j}∞j=1 (⊃ {bj}∞j=1) be the poles and the zeros of w(z), each zero repeated
according to its multiplicity. Put n∗(r) = n(r, w) + n(r, 1/w). Using Lemma 4.1
and (4.1), we have n∗(r) ¿ r3/2−ε/2, since n(r, 1/w) ¿ N(2r, 1/w) ¿ N(2r, w) +
m(2r, w) ¿ n(2r, w) log r. Then, by Lemma 2.1, for every sufficiently large r, we
can find a point zr ∈ ∆0(r)\∆0(r/

√
2) satisfying the relations S0({b′j}, 2|zr|, zr) ≤

S0({b′j}, 2r, zr) ¿ n∗(2r)r−1 ¿ r1/2−ε/2, S1({b′j}, 2|zr|, zr) ≤ S1({b′j}, 2r, zr) ¿
n∗(2r)r−2 log r ¿ 1 and S0({bj}, 2r, zr) ≤ S0({b′j}, 2r, zr) ¿ r1/2−ε/2; moreover,

we have T (2|zr|, w) ¿ r3/2−ε. These inequalities combined with Lemmas 2.2 and
4.2 yield

|Ψ(zr)| ≤ S0({bj}, 2r, zr) + γ̃(2r) + χ̃(2r, zr) ¿ r1/2−ε/2,(4.2)

|W (zr)| ¿ T (2|zr|, w)|zr|−1 + S0({b′j}, 2|zr|, zr) + 1 ¿ r1/2−ε/2,(4.3)

|W ′(zr)| ¿ T (2|zr|, w)|zr|−2 + S1({b′j}, 2|zr|, zr) + 1 ¿ 1,(4.4)

where W (z) = w′(z)/w(z). From (II)0, we have

(4.5) W ′(zr) + W (zr)
2 = 2w(zr)

2 + zr.

By Lemmas 4.1 and 4.3, ψ(z) = w(z)−Ψ(z) is a polynomial. From (4.5) together
with (4.2), (4.3) and (4.4), we obtain |ψ(zr)| ¿ r1/2, so that ψ(z) ≡ C0 ∈ C.
By (4.3), (4.4) and the fact that |w(zr)| ¿ |Ψ(zr)| ¿ r1/2−ε/2, it follows from
(4.5) that r/

√
2 ≤ |zr| ¿ |W ′(zr)| + |W (zr)|2 + |w(zr)|2 ¿ r1−ε, which is a

contradiction. Thus we conclude that σ(w) ≥ 3/2.

4.3. Proof for the case where 2α ∈ Z \ {0}
Note the lemmas below ([2, Propositions 2.5 and 2.7]) concerning Bäcklund

transformations for (II)α and a relation between (II)±1/2 and (II)0.
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Lemma 4.4. Let wα be a solution of (II)α. As far as w′
α − w2

α − z/2 6≡ 0 (resp.
w′

α + w2
α + z/2 6≡ 0), the function

wα−1 = −wα +
α− 1/2

w′
α − w2

α − z/2

(
resp. wα+1 = −wα − α + 1/2

w′
α + w2

α + z/2

)

satisfies (II)α−1 (resp. (II)α+1). Equation (II)α admits a solution satisfying the
equation w′ − w2 − z/2 = 0 (resp. w′ + w2 + z/2 = 0) if and only if α = 1/2
(resp. α = −1/2).

Lemma 4.5. Let w±1/2(z) be an arbitrary solution of (II)±1/2. Then there exists a
solution w0(z) of (II)0 such that w′

±1/2(z) = ±(
w±1/2(z)2+z/2−21/3w0(∓2−1/3z)2

)
.

Suppose that (II)1/2 admits a solution w1/2(z) satisfying T (r, w1/2) ¿ r3/2−ε

for some ε > 0. Then, by Lemma 4.5, there exists a solution w0(z) of (II)0

such that −21/3w0(−2−1/3z)2 = w′
1/2(z) − w1/2(z)2 − z/2. From this relation

we have T (r, w0) ¿ r3/2−ε, which implies w0(z) ≡ 0 (cf. Section 4.2), namely
w′

1/2(z)−w1/2(z)2−z/2 ≡ 0. Hence, w1/2(z) = −y′(z)/y(z), where y(z) ( 6≡ 0) is a

solution of y′′+(z/2)y = 0. This implies σ(w1/2) = 3/2, which contradicts the sup-
position. Thus we conclude σ(w1/2) ≥ 3/2. The case where α = −1/2 is treated
in the same way. In the case where 2α ∈ Z \{0,±1}, supposing the existence of a
solution wα(z) such that T (r, wα) ¿ r3/2−ε, and applying Bäcklund transforma-
tions of Lemma 4.4 finitely many times, we get a solution vα0(z), α0 ∈ {0,±1/2}
of (II)α0 such that σ(vα0) ≤ 3/2 − ε; which contradicts the fact shown above,
except the case where α0 = 0, v0(z) ≡ 0. In case v0(z) ≡ 0, applying Bäcklund
transformations reversely, we see that wα(z) is a rational solution. In this way
σ(w) ≥ 3/2 has been proved for every transcendental solution of (II)α, 2α ∈ Z.
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Hukuhara, Funkcial. Ekvac., 44 (2001), 201–217.

[10] Shimomura, S., Growth of the first, the second and the fourth Painlevé transcen-
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