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1 Introduction

Consider the first and the second Painlevé equations

(T) w" = 6w’ + z,
(I1),, W' =2w’+ 2w+, a€C

(‘= d/dz). All the solutions of these equations are meromorphic in the whole
complex plane C ([5], [9]). Every solution of (I) is transcendental, and equation
(IT),, admits a rational solution if and only if & € Z (e.g. [2], [8]); these equations
define Painlevé transcendents.
The growth of a meromorphic function f(z) is measured by the characteristic
function defined by
T(r,f) =m(r,f)+ N(r, f)

with

1 [ _
m(r, f) = %/ log™ | f(re')|ab, log* x = max{log z,0},
0

NG ) = [t )= n(0,.0) 5 4000, )logr,

here n(r, f) denotes the number of poles in |z| < r, each counted according to its
multiplicity (for the notation of value distribution theory and basic facts, see [4],
[6]). Also we use the notation g(r) < h(r) if g(r) = O(h(r)) as r — oc.

The growth of each Painlevé transcendent is estimated as follows ([10], [11]):

Theorem A. Let w(z) be an arbitrary solution of (1) (resp. (I1I),). Then, T(r,w) <
752 (resp. T(r,w) < r%).

On the other hand, Mues and Redheffer [7] have shown the following:

Theorem B. For every solution w(z) of (I), we have o(w) > 5/2, where o(w) =
limsup,_, ., log T'(r,w)/logr.

By these results, the order of the first Painlevé transcendents is 5/2.

In this paper we improve on the result of Theorem B, and under a certain
condition, we give a lower estimate for o(w) of the second Painlevé transcendents.
Our results are stated as follows:



Theorem 1.1. For every solution w(z) of (1), we have
2 [logr < T(r,w) < /2.

An arbitrary solution of (I) is expressible in the form w(z) = —(u/(2)/u(2))’,
where u(z) is an entire function called a 7-function. Note that it is uniquely
determined apart from the factor exp(agz + a1) (ag,a; € C).

Theorem 1.2. For every solution of (1), its T-function u(z) satisfies
2 /logr < T(r,u) < r°/2

Theorem 1.3. Suppose that 2o € Z. Then, for every transcendental solution
w(z) of (I1),, we have 3/2 < o(w) < 3.

Remark 1.1. The implicit coefficients of the relation in Theorem 1.1 are estimated
as follows:

lim inf T'(r, w)(r>?/logr) ™" > 4-107 M K;°,  limsup T(r,w)r=>/? < 2K,/5,

r—o0 r—00

where Ky = 1+ limsup, . n(r, w)r=>/? (< o).

Remark 1.2. For every solution w(z) of (I), Boutroux [1] asserts the inequality
n(r,w) > r*?2/logr, but his proof contains an incorrect part.

Remark 1.3. If « — 1/2 € Z, then equation (II), admits a one-parameter family
of solutions {v.(2)}cecue) such that o(v.) = 3/2 (see Section 4.3 and [2]).

2 Preliminaries

In this section, k denotes an arbitrary positive numbere such that x > 1. Let
{¢j}32, be a sequence satisfying |ei| < [co| < -0 < e < -oo ) where ¢ (j =
1,2, ...) are not necessarily distinct. Now consider the summations

SO({Cj}7HT’ Z) = Z |Z_Cj|_17 Sl({Cj},I{T,Z) = Z |Z_Cj|_2'

lej|<mr lej|<kr
Put Ag(r) = {z | |2] < r}. Let v(r) denote the number of points ¢; in Ag(r).

Lemma 2.1. Suppose that v(r) = O(r*) (A > 0). For every r > ro(k), there
exists a point z, € No(r) \ Do(r/v/2) with the properties:

(2.1) So({c;}, kr, 20) < 32(k + Vv(kr)r™;
Si({c;}, k1, 20) < 6Xgu(kr)r 2 logr.

Here ro(k) is a sufficiently large positive number, and \g = max{1, \/2}.
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Proof. Since

// |2 — ¢;| tdady = // dpdd = 27(k + 1)r

Jo—ej <t 1)r p<(xtyr
0<0<27

with |z — ¢;| = p, 2 = v + yi, we have

(2.3) // So({¢;}, wr, z)dzdy < 2mw(k + 1)v(kr)r.

Ao(r)

Consider the set F) = {z € Ag(r) | So({¢;}, kr, 2) > 32(k+1)v(kr)r—'}. By (2.3),
we have 32(k + 1)v(kr)r tu(F°) < 2m(k + 1)v(kr)r, from which p(F°) < 7r?/16
follows. Here p(-) denotes the area of the set. Next consider the set As(r) =
Ao(r)\ Ds, Ds = U;2 {2 | |2 —¢j| < dw(|e;])}, 6 < 1, where w(t) = min{1, ¢1-*0}
(t > 0). Then, Q(r) =31 j<o1 w(|c;|)? is estimated as follows:

41 r+1
/ £20-%) 4y (1) < 72020y (r 4 1) + / (Ao — D 2ou(t)dt < 12,
1 1

Since w(t) < 1, we may choose ¢ so small that p(DsNAg(r)) < m6%(Q(r)+0(1)) <
7r?/32. Observing that

|z — ¢;| 2dady = // p~tdpdf < 27 (log(r/w(|c;])) + By)
dw(|cj)<|z—cj|<(k+1)r dw(|e; ) <p<(k+1)r
0<0<2m

with B, =log((k + 1)/d), we obtain

// S1({¢;}, kr, z)dady < 2mAgv(kr) (logr + By + log k).

As(r)
Put F' = {z € As(r) | S1({¢;}, K, 2) > 6Aov(kr)r~2logr}. Then, we may take
ro(k) so large that u(F}) < 3wr?/8 for r > ry(x). Gathering the sets above, we
get H, = FP U F' U (Ds N Ag(r)). Since u(H,) < 157r?/32 < mr? /2, there exists
a point 2. € (Ag(r) \ Ao(r/v/2)) \ H, with the desired properties, provided that
r > ro(kK). O

Lemma 2.2. Let g(z) be a meromorphic function, and let {¢;}52, be the poles
and the zeros of g(z) such that |&| < [é] < -+ < |&| < -+, each repeated
according to its multiplicity. Then, for each p € N, we have

(/gD < (TRl g)lo 7+ D 12—l 7 +1)

&<z

for every z, |z| > 1, where C = C(p, k) is some positive number.
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Proof. Under the condition g(0) # 0,00, the lemma is derived from the
Poisson-Jensen formula ([3],[4],[7]). The case where g(0) = 0 or oo is reduced to
the former case by putting h(z) = 2%¢(z), d € Z, h(0) # 0, cc. O

3 Proofs of Theorems 1.1 and 1.2

3.1. Lemmas
Let w(z) be an arbitrary solution of (I). The following lemma is an immediate
consequence of Theorem A with Clunie’s reasoning [6, §2.4].

Lemma 3.1. We have n(r,w) < r*? and m(r,w) < logr.

Every pole of w(z) is double and its residue is 0. Let {a;}52, be the distinct
poles arranged as |a;| < |ag| < --- < |a;| < --- . By the Mittag-Leffler theorem
combined with Lemma 3.1, we write w(z) in the form

w(z) = ¢(2) + (2) Z z—a;) " —a;”),

where ¢(z) is an entire function. In case a; = 0, the corresponding term in ®(z)
is to be replaced by z72. By Lemma 3.1, Ky = 1 + limsup,_,__ n(r,w)r—>? < oo.

Lemma 3.2. Suppose that k > 8. If r > rq, then, for every z € Ay(r),

(kr, 2) Z (2 —a;) " — aj_2] < 9Kk 1212, Z |z —a;|* < Ko,

laj|>kr laj|>xKr
where 1 is a sufficiently large positive constant independent of k.
Proof. For |a;| > kr and for z € Ay(r), observing that |z/a;| < 1/8, we have
(= = a;) % — a5 °| = 2J2]lay |1 = (2/a;)/2|[1 — 2/a;] 2 < 3rla,|~*. Hence

o0

x(kr, z) < 3r Z la;| 73 = 3r/ t3dn(t) < 97“/ t~4at)dt < 9Kk~ V212

Jag|2rr . r

for r > ry, where n(t) = n(t,w)/2 < Kgt*/?/2 (t > r;), provided that r; is
sufficiently large. Using >_,, >, [ — a;|™* < (8/7)* Doy | >hr la;| ™ for z € Ag(r),
we derive the second estimate in the same way. O

Lemma 3.3. There ezists a set E C (0,00) with finite linear measure such that,
for every z satisfying |z| € (0,00) \ E,

Y o lz—a)?—a? < 2

0<]a;|<oo



Proof. Put E = (0,]ax| + 1) U (U;Z,(laj| = [a;17%, lay] + |a;|~?)). By Lemma
3.1, the linear measure of F is finite. By Lemmas 3.1 and 3.2, if |z| € E, then we
have

S+ Y ) =6 < (e + Dn(slalw) + [ < [l

0<|aj|<8|z|  |a;]=8|z]
U

Lemma 3.4. Suppose that k > 8, and that 0 < n < 1. Then, for everyr > 1,

yar) = Y a7 < p7tn(kr,w)r + Lopr'? + O(1),

0<|a;|<kr
where Ly 1s a positive constant independent of k and 7.

Proof. Note that

KT 2

< ((mﬂ)*2+2 / t’gdt>ﬁ(/<;7")+2 / " t3n(t)dt = n~*n(kr)r 242 / ' Tt’?’ﬁ(t)dt.

nr

By Lemma 3.1, we take a number Lq such that n(t) = n(t,w)/2 < Lot*/?/4 for
t > 1. Using these inequalities, we obtain the conclusion. U

3.2. Proof of Theorem 1.1

Note that |®(z)| < Si({a;},rsr, 2) + v(kr) + x(kr,2) (r > 0). Take k =
ko = MKZ > 8, where M is a positive number determined later. By Lemma
3.2, x(kor,2) < OM V212 for z € Ag(r), if r > r1. By Lemmas 3.1 and 2.1
(A =5/2, v(r) = n(r,w)/2), there exists a point z. € Ag(r)\ A¢(r/+v/2) such that
S1({a;}, kor, z) < (15/4)n(kor, w)r—2logr, if r is sufficiently large. From Lemma
3.4 with n = g = M~Y2L5", we have y(kor) < ng *n(kor,w)r=2 + M~1/2¢1/2 4
O(1). Hence,

(3.1) 1®(2,)| < dn(kor, w)r2logr +10M Y212 1 0(1) < 1/ logr

for some 2, € Ag(r)\Ao(r/v/2),if r > 7, where 7 is sufficiently large. Observing
that {Z‘ajkmr(zr —a;)~*| < S1({a;}, Kor, 2)?, and using Lemma 3.2, we have

(3.2) |®"(2,)| < 6-4%n(kor, w)*r *(logr)? + 6Ky < r(logr)?.

By Lemmas 3.1 and 3.3, T'(r,¢) = m(r,¢) < m(r,w) + m(r,®) = O(logr) as
r — oo, r ¢ E. By the finiteness of linear measure of F and [6, Lemma 1.1.1],
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©(2) is a polynomial. Since w(z,.) = (1/v6)(w”(z) — 2)"/?, by (3.1) and (3.2),
we have [o(z,)| < |®(z)] + (19" ()| + 9" (20)] + 2 )'/? < ' logr + [ ()2,
which implies ¢(z) = Cy € C. Using (3.1) and (3.2), from 2, = w"(z,) — 6w(z,)?,
we obtain

27 VA2 < |2 < (197 (20)] + 6(|2(20)| + |Col)?)?
< |<I>”(zr)|1/2—|—\/—(|<1>(zr)|—|—|C’0D < 8\/6'@(%;07’, w)r 2 logr—l—lO\/éM’l/er/z—l—O(l)

for every r > ri. Now we choose M so large that 274 — 10y/6M /2 > 0. Then
we have n(kor,w) > r°?/logr, which yields N(r,w) > r°/?/logr. Combining
this with Theorem A, we arrive at the conclusion.

In the proof above, we put M = 10%. Observing that 2=%/* — 10v/6M /2 >
0.066, we obtain the estimates in Remark 1.1.

3.3. Proof of Theorem 1.2

Write the 7-function in the form u(z) = e "®)II(z), where h(z) = Cy22/2 +
Crz+Cy and 11(z) = [[72, (1 — z/a;) exp(z/a; + 2% /(243)). By [4, Theorem 1.11]
with ¢ = 3, we have log”L I(2) < |2>2. Hence T(r,u) < m(r,I1)+7r? < r°/2. Also
we have n(r,1/u) = n(r,w)/2 > r*?/logr, which implies T(r,u) > r°/?/logr.

4 Proof of Theorem 1.3

4.1. Lemma

Let w(z) be an arbitrary transcendental solution of (II),. The inequality
o(w) < 3 is an immediate consequence of the lemma below, which follows from
Theorem A.

Lemma 4.1. We have n(r,w) < r* and m(r,w) < log.

The proof of o(w) > 3/2 is divided into two steps.

4.2. Proof for the case where a =0
It is sufficient to show that limsup,_ . log N(r,w)/logr > 3/2. To do so,
suppose the contrary: N(r,w) < 73/27¢ for some £ > 0, which implies

2r dt
(4.1) n(r,w) < n(r, w)/ n < N(2r,w) < /%,
Every pole of w(z) is simple and its residue is £1. Let {b;}32; be the poles
arranged as |by| < |bg| <--- < |b;| < --- . Then, we write w(z) in the form
w(z) =YP(z) + ¥(z) Ze ((z=b;) " +b;1),
j=1



where 1(2) is an entire function, and e(j) is the residue of the pole b;. In case
by = 0, the term for j = 1 is to be replaced by e(1)z~!. Observing the inequality
[(z—=b;) " 4+ b1 = |2[|b;| 721 — 2/bj| =" < 2|2]|bj| % for |z/b;| < 1/2, and putting
E* = (0,4 + 1)U (U‘;‘;zﬂb]\ — b;172, |bs| + |bj|2)), we obtain the following (cf.
the proofs of Lemmas 3.2, 3.3 and 3.4).

Lemma 4.2. Under (4.1), if r > 1, then, for every z € Ay(r),

x(2r, 2) Z (z=b) "+ b < r' P F(2r) = Z b;| 7t < /e

|bj|>2r 0<|bs|<2r

Lemma 4.3. Under (4.1), there exists a set E* C (0,00) with finite linear mea-
sure such that, for every z satisfying |z| € (0,00) \ E*,

D lz=b) bt <zt

0<bj|<o0

Let {87152, (D {b;}52,) be the poles and the zeros of w(z), each zero repeated
according to 1ts mult1phc1ty. Put n.(r) = n(r,w) + n(r,1/w). Using Lemma 4.1
and (4.1), we have n,(r) < r%27¢/2 since n(r, 1/w) < N(2r,1/w) < N(2r,w) +
m(2r,w) < n(2r,w)logr. Then, by Lemma 2.1, for every sufficiently large r, we
can find a point z, € Ag(r)\ Ag(r/v/2) satisfying the relations So({b}, 2]z, 2r) <
So({bi}, 2r,2z,) < n(2r)r=t < V220 S ({0}, 2]z, ) < Si({V},2r, 2) <
n.(2r)r—2logr < 1 and So({b;},2r,z,) < So({b;},2r,2,) < r*/*7*/%; moreover,
we have T'(2|z,|,w) < 73/27¢. These inequalities combined with Lemmas 2.2 and
4.2 yield

(4.2) U (z,)| < So({bj}, 2r, 20) +3(2r) + X(2r, 2,) < 11272,
(4.3) W ()] < T2z, )27 + So({0;}, 202, ], 2) + 1 < /27502,
(4.4) (W' (20)] < T(2|z ], w)lz 7 + S1({0}, 202 ], 20) + 1 < L,

where W (z) = w'(z)/w(z). From (II),, we have
(4.5) W' (z) +W(z)* =2w(z)* + 2.

By Lemmas 4.1 and 4.3, (z) = w(z) — V(z) is a polynomial. From (4.5) together
with (4.2), (4.3) and (4.4), we obtain |¢(2,)| < r/2, so that ¥(z) = C, € C.
By (4.3), (4.4) and the fact that |w(z.)| < [¥(z)| < 7¥/27¢/2, it follows from
(4.5) that 7/v2 < |z < [W'(z)| + W (2)|* + |w(z)> < r'7¢, which is a
contradiction. Thus we conclude that o(w) > 3/2.

4.3. Proof for the case where 2a € Z \ {0}
Note the lemmas below ([2, Propositions 2.5 and 2.7]) concerning Bécklund
transformations for (II), and a relation between (II)14/, and (II)o.
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Lemma 4.4. Let w, be a solution of (I),. As far as w!, — w2 — 2/2 # 0 (resp.
wl, + w2 +2/2 #£0), the function

a—1/2

w!, — w2 —2z/2

a+1/2 >

resp. w, = Wy —

Wo—1 = —Wq +
satisfies (I1)q—1 (resp. (I1)ay1). Equation (I1), admits a solution satisfying the
equation w' — w? — 2/2 = 0 (resp. w' +w? + 2/2 = 0) if and only if « = 1/2
(resp. o = —1/2).

Lemma 4.5. Let wyy/2(2) be an arbitrary solution of (I1) 41 /9. Then there exists a
solution wo(z) of (I1)o such that wl, ,,(z) = £ (wa1y2(2)242/2—23wo (F271/32)?).

Suppose that (II);/2 admits a solution wy s (2) satisfying T'(r,wy ) < r3/?7¢
for some € > 0. Then, by Lemma 4.5, there exists a solution wy(z) of (II)g
such that —2'3w,(—27132)2 = Wy jo(2) — wija(2)? — 2/2. From this relation
we have T(r,wy) < 73/%27¢, which implies wy(z) = 0 (cf. Section 4.2), namely
Wy 1y(2) —wy9(2)? —2/2 = 0. Hence, wy 2(2) = —y'(2)/y(2), where y(z) (£ 0) is a
solution of y”+(z/2)y = 0. This implies o(w/2) = 3/2, which contradicts the sup-
position. Thus we conclude o(w1/2) > 3/2. The case where v = —1/2 is treated
in the same way. In the case where 2ac € Z'\ {0, =1}, supposing the existence of a
solution w, (z) such that T'(r,w,) < r¥27¢, and applying Bicklund transforma-
tions of Lemma 4.4 finitely many times, we get a solution v,,(z2), ap € {0, £1/2}
of (IT)s, such that o(v,.,) < 3/2 — &; which contradicts the fact shown above,
except the case where oy = 0, v9(2) = 0. In case vg(z) = 0, applying Bécklund
transformations reversely, we see that w,(z) is a rational solution. In this way
o(w) > 3/2 has been proved for every transcendental solution of (II),, 2a € Z.
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