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On a Class of Algebraic Solutions to the Painlevé VI Eguation,
Its Determinant Formula and Coalescence Cascade

By

Tetsu Masupa
{Kobe University, Japan)

Abstract. A determinant formula for a class of algebraic solutions to the Painlevé VI
equation (Pyy) is presented. This expression is regarded as a special case of the
universal characters. The entries of the determinant are given by the Jacobi poly-
nomials. Degeneration {o the rational solutions of Py and Py is discussed, using the
coalescence procedure.  The relationship between Umemura polynomials associated
with Py; and our formulz is also discussed.

1. Introduction

Enlarging the work by Yablonskii and Vorob’ev for Py [28] and Okamoto
for Pry [23], Umemura has introduced special polynomials associated with a
class of algebraic (or rational) solutions to each of the Painlevé equations Py,
Py and Pyr [27]. These polynomials are generated by the Toda equation that
arises from the Béacklund transformations of each Painlevé equation. It has
been also found that the coefficients of the polynomials admit mysterious com-
binatorial properties [15, 26].

It is remarkable that some of these polynomials are expressed as a spe-
cialization of the Schur functions. Yablonskii-Vorob’ev polynomials are ex-
pressible by 2-core Schur functions, and Okamoto polynomials by 3-core Schur
functions [7, 8, 16]. It is now recognized that these structures reflect the affine
Weyl group symmetry, as groups of the Backlund transformations [29]. The
determinant formulas of Jacobi-Trudi type for Umemura polynomials of Py
and Py resemble each other. In both cases, they are expressed by 2-core Schur
functions, and entries of the determinant are given by the Laguerre polynomials
[5, 17].

Furthermore, in a recent work, it has been revealed that the entire families
of the characteristic polynomials for rational solutions of Py, which include
Umemura polynomials for Py as a special case, admit more gencral structures
[12]. Namely, they are expressed in terms of the universal characters that are
a generalization of the Schur functions. The latter are the characters of the
irreducible polynomial representations of GL(n), while the former were intro-
duced to describe the irreducible rational representations j11].
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What kind of determinant structures do Umemura polynomials for Py
admit? Recently, Kirillov and Taneda have introduced a generalization of
Umemura polynomials for Py; in the context of combinatorics and have shown
that their polynomials degenerate to the special polynomials for Py in some
limit [9, 10]. This result suggests that the special polynomials associated with a
class of algebraic solutions to Py are also expressible by the universal char-
acters.

In this paper, we consider Pyy
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where K., kg, %) and § are parameters. As is well known [21], Py; (1.1) is
equivalent to the Hamilton system
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In fact, the equation for y = ¢ is nothing but Pyr (L.1).

The aim of this paper is to investigate a class of algebraic solutions to Py
{or Sy;) that originate from the fixed points of the Bicklund transformations
corresponding to Dynkin automorphisms and, then to present its explicit deter-
minant formula.

Let us remark on the terminology of “algebraic solutions”. Pyr admits
several classes of algebraic solutions |1, 2, 3, 13, 14}, and the classification has
not yet been established. In this paper, we concentrate our atiention to the
above restricted class of algebraic solutions.

This paper is organized as follows. In Section 2, we first present a deter-
minant formula for a family of algebraic solutions to Py (or Svi). This
expression is also a specialization of the universal characters, and the entries of
the determinant are given by the Jacobi polynomials. The symmetry of Pyy is
described by the affine Weyl group of type Dg”. In Section 3, as a prepara-
tion for constructing special solutions, we present a symmetric description of
Biicklund transformations for Py; [6, 20]. We also derive several sets of bilinear
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equations for the z-functions. In Section 4, starting from a seed solution on
fixed points of a Dynkin automorphism, we construct a family of algebraic
solutions to Py (or Sy} by application of Bicklund transformations. A family
of special polynomials is extracted as the non-trivial factor of the r-function,
and our algebraic solutions are expressed by a ratio of these polynomials. A
proof of our result is given in Section 5.

As is well known, Py degenerates to Py,...,Pr by successive limiting pro-
cedures [25, 4]. In Section 6, we show that the family of algebraic solutions to
Pyi given in Section 2 degenerate to rational solutions to Py and Py with the
same determinant structures. Section 7 is devoted to discussing the relationship
to the original Umemura polynomials for Pyp.

2. A determinant formula

Definition 2.1. Let pg = p}f‘d) (x) and g4 = qg‘"’d)(x), ke Z, be two sets of

* polynomials defined by

2.e] .
(2.1) prf‘d-] (x)A* = G(x;¢,d; 4), pf‘dJ (x) =0 for k<0,
' k=0

c.d o, d _
g (x) = (7,

respectively, where the generating function G(x;¢,d;4) is given by
(2.2) Glxse,d; ) = (1 — A (1 + x2)"".
For m,n e Z-y, we define a family of polynomials Rp » = Ruma{x;c,d) by

(2.3)  Rmu(xc,d)

qi qdo tr Gemy2 Gemil 0 Gomntd domens
g3 qz v Gemed Gty 0 om—nts d-mnsd
- J2m-1 qam-2 T Im gm—i ' Hm-ntl Grn—n
Pr—m Pr-mit e Pat Pn T P2 Pon—1
P-n—w+d4 Pon-mts 0 Pent3 P-nrg " . D3
P—t—m+2 Pen-m+3 - Ponyl Pomi2 Po 7

For m,n e Z, we define R, , by

(24) -Rm,.'i = (_1),n(m+l)ﬂR—m—l:m Rm.n = (_l)n{nﬁ_l)ﬁRm‘ —n-1-



124 Tetsu Masuba

Theorem 2.2. We set

{2.5) Ry u(x:0,d) = Sy n(x;a, b)),
with
{2.6) c:a+b+n—%, d=2b-m+n

Then, for the parameters
2.7) Ko = b, xkp=b—m+n, Ki=a+m+tn, O=a
we have a family of algebraic solutions of the Hamilton system Sy,

Sma-1(x:a+ 1,B)Sy_1 a{x;a-+1,5)
Sm-tn(x;a+ 1,6 = DSy (ka4 1,0+1)’

-1 a+b+n— !
P=3 3
L Smetalxad Lh = DSpai(x;a+ L, + 1)8y 0-1(x; 4, b)
Sm,n(x; a, b)Smquz-ul(x;a + 1ab)Sm,n-1 (JC; a- 11b) ‘

(2.8) §g=x

XX

with x2 =t

This theorem means that a class of algebraic solutions of Pyy is expressed
in terms of the universal characters [11], which also appear in the expression
for a class of rational solutions to Py [12]. Note that the entries p; and ¢ are
essentially the Jacobi polynomials, namely,

(2.9) pED(x) = PR 2y,

Applying some Bicklund transformations, which can include the outer
transformations given in (7.14), to the above solutions, we can get other families
of algebraic solutions of Py;. Some examples are presented in Corollaries 6.3
and 6.9, so we omit any details here.

3. A symmetric description of the Painlevé VI eguation

Noumi and Yamada have introduced the symmetric form of the Painlevé
equations [18, 19, 16]. This formulation provides us with a clear description of
symmetry structures of Bicklund transformations and a systematic tool to con-
struct special solutions.

In this section, we present a symmetric description for the Backlund trans-
formations of Py; [20]. After introducing the r-functions via Hamiltonians, we
derive several sets of bilinear equations.
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3.1. Biicklund transformations of Py

We set
(31) fﬂmq“fa ﬁ:q_]w ﬁ:q? ﬁ!mpa
and
(32) o = 0, oy = Ko, o3 = Ki, o4 = K.

Then, the Hamiltonian (1.3) is written as
(33) H=fHfofsha— (0o — 1) Aifa+asfofa+ aafofilfo + m(o +az)fo,
with
(3.4) ap o+ 20+ oz og =1,
and the Hamilton equation (1.2) is written as
(35)  fi=2%fofifs - (00— Dfsf— mfofs — 2fofs

H =~ (hf+hfat+ LRSS

+ [(a0 — (s +fa) + aa(fo +fa) + aa(fo + ill 2 — o2l + o2)-

The Bicklund transformations of Py; are described as follows [6, 20},

(36) S,'(DC]') == 0 — dydy, (f,j = 0, }., 2, 3,4)
(37) wf)=fi+F, s =f-%, (=034
S fi
(3.8)  s5: og ey, @3 e oy,
 hlhfarm) . =) A f
ey = SV R MR Gl SV o
(39) S U 0 Oy, Of e Oy,
L Afhtm) b .k
5 N e T
(310) 870 fp e &g, O < 03,
CABhtw) o A t=1 o h
ﬁ —1 H fﬂ (f 1)){:‘1 .f:-" ﬁ ’ ﬁ- f3’

where 4 = (a,;,-)f:_,. —o is the Cartan matrix of type Di”:
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(3.11) a;=2 (i=0,1,2,3,4), ay = ap = ~1, (i=0,1,34),
a; =10 (otherwise).

These transformations commute with the derivation ', and satisfy the following
relations

(3.12)  sf=1  (i=0,...,7), sms=smsn  (i=0,1,34),
55540,1,2,3,4} = 5{1,0,2,4,3}53, S65(0,1,2,3,4) = $(3,4,2,0,1)56,
§7870,1,2,3 4y = 5{4,3,2,1,0}57,

8556 = 5685, 8587 = 5785, 5§87 = §756.

This means that transformations s; (i = 0,...,4) generate the affine Weyl group
W(D,(,”), and 5; (i=0,...,7) generate its extension including the Dynkin dia-
gram automorphisms,

3.2, The r-functions and hilinear equations

We add a correction term to the Hamiltomian (3.3} as follows,

!
(3.13) Ho = H + 31 + 4o + 403 — (o3 + )]

X _
+ 51 + o}’ + (o3 + 24)* + dapauy].

This modification gives a simpler behavior of the Hamiltonian with respect to
the Bicklund transformations. From the corrected Hamiltoman (3.13), we
introduce a family of Hamiltomans & (/=0,1,2,3,4) as

t -1 1
(314) ho = Ho+z, hl = SS(HO) "“""':i"""s h3 = SG(HU) +E=

hq = s7(Hp), hy =ty + si(l).
Then, we have

(3.15) si(fy) = hy, (i#j,i,j=190,1,2,3,4),

(3.16) So(ho) = ho — ap{t — 1)%, si(hy) = hy — a1 f3,

-1
S3(h3) =h3+ OC3"“}‘:;“~, 54(h4) = h4+a4I9.

Ja

Moreover, from (3.14), {3.16) and the equations (3.5), we obtain
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(3.17) [Sf(hf) + A~ [s1(M) +h1] f’ , {i=0,34)

1

ES2(h2)+hz]—(h0+h1+h3+h4)"“m‘““-(t 1).

Next, we also introduce t-functions 7; (i =0,1,2,3,4) by

7!

3.18 h; = L.
(3.18) (=
Imposing the condition that the action of the s’s on the -functions also
commute with the derivation ’, one can lift the Backlund transformations to the

r-functions. From (3.15) and (3.17), we get

(3‘19) S,'('L’j) =1, ("’ ¢j IJ' = 0: 1121 37 4)9
and
T T T T3t
(320)  slw)=f, sl ==, s(w) =0 Ph
To . | _ T:
T T
$3(13) =f3—2.~ 54(1'4)zﬁt—2,
T3 T4

respectively.  The action of the diagram automorphisms ss, 5 and s7 are derived
from (3.14) as follows,

(3.21) s mo— [t — 1), n— iz - D]V
Ty r*‘/4(z~ ])'/4r4,' s — 11— 1)'1/413,
2 — [t = D] fora,

1/4

{3.22) St g — itl/"n, T3 — -—t’t‘”“tg, T —+ 1y,

s — 1'%, 1y > 122,

(3.23} 7% Tp — (—1)*3'}4(1 — 1)1",414, g — (_1}3/4“ _ 1)-1/41_0‘
11— (=14 - 1) Vi, 23— (=14 = 1)y,
12— —i(t — 1) fary.

The algebraic relations of the s’s are preserved in this lifting except for the
folowing modifications:

(3.24} S;Sz(?.‘z) = -"SzS,'(Tz) (I = 5,6, 7),

and
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(3.25) $586T40,1.2,3,4) = {6 —i, —1,—1,i}56557(0.1,2.3.4)
$557T(0,1,2,3,4) = {f, =&, =1, i, —i}s785770,1,2,3.43
565170,1,2,3,4) = { =, 4, ~1,1,1}571567(0,1,2,3,4}-

Note that one can regard (3.20) as the multiplicative formulas for f; in terms
of the t-functions,

‘EQS{)(‘CQ) 1'3.3‘3(1'3) ‘E4S4(t4) 12 18 (T[}stl (‘E])
326 = = , = ,  fr = B S e
( ) o 7151(11) 5 5 {n1) 4 7181(11) f2 19134

From these formulas, it is possible to derive various bilinear equations for the
t-functions. First, the constraints for the f-variables

(3.27) fo=fa—t,  fi=far1,
yield
(3.28) Tis1r1) + ras3{r3) — zasa(z4) =0,

oso(To) + rT181(11) — Tass(za) = 0,
T]Sgsl(‘r;) + 715283 (1'3) — T485254 (T4) ={,

705250(70) + 1715281 (11) — Tas254(74) = 0.

The Biicklund transformations (3.7) lead to the following sets of bilincar
equations,
(3.29) o0t " 1314 — so(za)s251 (T1) + Tasosam (71) = 0,

aot™ (1 — 1)t174 — S0(T0)s253(13) + Tososass(z3) =0,
a9 21173 — 50{T0)s254(z4) + Tosus288(Ta) = 0,

{3.30) 22314 + 51 (11)5250(T0) — T1518280(70) = 0,

1/2

art gy + sty dsasa(ta) —~ TSy s = 0,

ot P 1ots + 51(11)sa54(1a) — Tis18254(74) = 0,

(3.31) oat” ! Pryty — s3(Ta)sasi (11) + Tasisas (1) = 0,
a3t (1 — ry2s — s3(w3)s250(%0) + T3saszsa(z) = 0,

st Pryry — 53(va)s25a(7a) + T3si529a(7s) = 0,

(3.32) 0(41‘_]/2'{9'(3 — Sa(ta)s51{11) + Tasasysi{11) = 0,

—oagtV 17y — 5a{74)8250(70) + Tasasaso(10) = 0,

~d4l_1/2‘60’1'1 — 54(Ta)5283(13) + Tasasas3(r3) = 0,
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(3.33) 2t 21314 — 51 (71 )5250 (70) + S0(T0)s2s1 {11} =
w201y — 51015283 (73) + s3(3)sas1 (1) = O,
stV ggmy — 81 () )9284 (1) + sa{Ta)sysi (71) =
opt 2 rgty — s4(Ta)s283(13) + 53(T2)s254(T4) =

ozzt”z'rl?:_; — sa(7q)8250(0) + so(to)s2s4(ta} =0

Dczt‘”z(t - 174 — 33 (1.‘3)32.5‘0(1‘0) + so(t0)3253(12) = 0.

3.3. The r-functions on the weight lattice of type D,

Let us define the following translation operators
{3.34) To3 = 53505254515256, T4 = 5155253505256,
T34 = 53528051 528355, T34 = 54538251 505255,

which act on parameters «; as

(3.35) Toa{atg, 0y, &z, 23, 0a) = (00p, &1, 062, &3, o) + (1, 8, -1,1,03,
Ta{en, oy, o2, 03, 04) = (%0, %1, %, %3, %) + (0,1, 1,0, 1),
f’34(ao,a1,o¢2,o¢3,a4) = (o, @1, 02, 23, 24) -+ (0,0,0,1, -1},
Taa{tp, oy, otz, %3, 04) = (20, o1, o2, 23,24} + (0,0, 1,1, 1),

and generate the weight lattice of type D4. It is possible to derive Toda and
Toda-like equations.

Proposition 3.1. We have
{3.36)
2

d 1 1
TQ3(‘E@)T@1(‘E@) = !_1/2 [(Z - I)E(log To], - {iog ‘L'[))! +Z(I — g — 0(3)2 +5]TO,

d ) 1 1
Tia(z0) T (vo) = —17'/* [(t — 1)~ (log 7o) (log 70) +5 (0 + %)’ + Z]Toa

t—1

Ta(to) T3 (r0) = (—-

V2rd ;1 2 1],
; ) [E(Iogfo) +Z(“3*°f4) "*5]%1

1—1\"[d ;1 |
T34(70) Tg (70) = (T) [Zﬁ {log 7o) + Z(Oﬂa +og)® — 5] -

Proof. MNole that

~frfsfa + (0 fa + 2af3)f2 —%(og )t + %

d
3 “ho =
(3.37) 510
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Using (3.6), {3.7), (3.20}, (3.22} and (3.34), we have

2 2

1
+ | T

d 1
(3.38)  Toa{w) T3 (z0) = 17177 [(f = 1) o~ ho A (1 — a3) 5

4

which gives the first equation in {3.36). The other equations are obtained in a
similar way. |

Due to the algebraic relations (3.24) and (3.25), the action of these trans-
lation operators on the t-functions is not commutative. For example, we
have

(3.39) To3T1a(o) = —T14T03(10), To3 T34(t0) = iT34 Tos(T0),
To3 Taa(te) = T34 Toa(70), T14T3(10) = —iTs4Tua(z0),
T14T34(10) = —iT33T1a(70), T34 Taalte) = TaaTau(m0).

We introduce r-functions on the weight lattice of type D4 as

(3.40) Tetmn= TeTETLTE (), ki mmnelZ.

In terms of this notation, the 24 r-functions in the bilincar equations (3.28)-
{3.33) are expressed as follows,

(3.41) 7p.0,0,6 = Tp, Tl,1-10 = —[t(e - 1)]1/41.1,
7Lo-1,-1 = it 71,0,0,-1 = I — i)mu,
T2,0,1,1 = —50(T0), 1 10,-t = [8(f — 1)]1/431 {t1),
71,0,0,0 = itV453(13), 11,0,-1,0 = i{t — 1)1/434(14),_
tyo1-1-1 = 0%(t0),  Tooe-1 = —[H{i— 1)] 5 (n),
To-1.0.0 = ~i535(13), 70110 = it = 1) 5354(rs),
(3.42) 71102 = —5550{(T0), TL-100 = —$35250(T0), 71, -1.-2.0= sa5250{T0),

12,012 = [tlt — )] sps251 (11}, w0010 = [(r ~ 1] s3sam (),

7.0, 1,0 = —[1(t = D] samsi (z1),
72,-1,—-1,~1 = mit”“soszs;;(t;), T0,81,-1 = flms]szs;(r;),
10,3, 1,1 = —itV 45458 (13),
— 1/4 Iy /4
T2,-1,-2,-1 = !(t“ 1) S052S4(T4)1 To,1,0,-1 = ""I(f'-- 1) 5'1523‘4(14),
0,-1,0,1 = it~ ])1/45‘35‘2.94({4).
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The Toda equations (3.36) yield

(343) T, munTh—1, Lan.n

d
=17 [(t = 1) (log T tymn) = (108 e, 1mm)

4 2 T, tm,n

+(]—a0—a3~w2kn—m—-n)2+l} 2

Ti, I+1,m,a%k, I-1,mn

d f 1]
— [(r - i)a(log T homn) — (LOZ Tt n)

54 Tk fomm

4 2

+(a1+m4+2l—m+n)2 1} 2

12
t—1 ;
Th 1, mt1,0Tk, Lm—1,n = (T) [3} (Yog Tk, 1.m.n)

(oz3~a4+k—1+2m)2 1'] 3
Y rk‘l,m‘ni

4 2

-1\ d ,
T Lo, mt 1 Th Lyl = | = ‘c};(]ogfk,l’,m.n}

L otut ke om)? l} )

4 2

5%k, 0

It is easy to see from {3.26), (3.40) and {3.41) that we have

£ 1/2 Te tmnTht2,l,m—1,n—1
344)  TREMTLTE(f) =2 (= 1)
( ) T30 Tk+u—|,m~1,nfk+1.z+1,m,n4’

Ll

- Tkt f,m—1,n-1Tk+1.,m,
THTGTHTR(A) = (1 - 1)/? e =
Th+1,1—1,m=1, 0Tkt 1,441, m, 01

n gl pk a2 Tkl fmp- 1Tkl Lm—bn
Tl Ty(fa) =« / ;
T+ 10—t m—L T4, I+, mn—1

2 —172 Tht1, -1, -1 T4 L 141, m, -1 Tk L m n—1
TLTATITE(f) = —(1 = 1) & e —
Ti, Lo, 0Tkt 1, Lm—1,n— 1 Th-1, L1
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4, Construction of a family of algebraic solutions

It is known that one can get an algebraic solution of Painlevé equations
by considering the fixed points with respect to a Bécklund transformation cor-
responding to a Dynkin antomorphism [27, 16]. Iteration of Bicklund trans-
formations to the seed solution gives a family of algebraic solutions, which are
expressed by a ratio of some characteristic polynomials, such as Yablonskii-
Vorob’ev, Okamoto and Umemura polynomials. These polynomials are
defined as the non-trivial factors of r-functions and are generated by Toda type
recursion relations.

In this section, we construct a family of algebraic solutions to the sym-
metric form of Py by following the above recipe.

4.1. A seed solution

Consider the Dynkin diagram automorphism s to get a seed solution. By
(3.9), the fixed solution is derived from

(4.1) Xp = &3, o) = %4, 'ﬁ‘:fi’ ﬁ:_w'
4

Then, we obtain
1
(42) (%,0!],&2,&3,0!4): (a,b,i-a—-b,a,b),

. 1 1
fozx—xz, fi=x—-1 fa=x, flsi(a+b—§)x*l, xZ:r,

as a seed solution, which is equivalent to the following algebraic solution of Sy,

_ _ 1 1y
(4.3) g=x, pm2(0+b~§)x ,
for the parameters
(4.4) Ko = b, Ko = b, Ky = d, f=a.

Remark 4.1, One can choose another diagram automorphism to get a seed
solution. Such a solution can be transformed to (4.2) by some Bicklund trans-
formations. The seed solution (4.2) is the simplest one.

Remark 4.2. Hitchin has discussed some algebraic solutions of Py in [3].
The seed solution (4.2), with special values for the parameters, appears as one of
them. Also, part of the algebraic solutions derived by Andreev and Kitaev [1}
is expressible by rational functions of W/t and v/t — 1, and can be transformed to
(4.2) by some Bicklund transformations.
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Under the specialization of (4.2), the Hamiltonians A; and t-functions 7
are calculated as

4.5) hé—{%x +8(2a+2b—])(2a—2b~1)x+ L (8a% - 8a+3+8b2),
By :—%x +§(2a+2bwl)(2a—2b+ )x+—(8a +8b2 — 85 +7),
1
hy=-z¢ x* 4= (4a2 4b2—1)x+ (8a% + 8h% +7),
hy = 136x 4= (2a+2b—])(2a—2bw~l)x+ (8a — 8a+ 7+ 8b%),
hy = 136x + (2a+2b—1)(20—2b+1)x+ (Sa +8b* —8b +3),
and
(4.6} 70 = {x—-1)* a3y ata b3 S(x+l)bz+”2
= (x- )" 14, —a ~b2+b-7/8(x+l)b b+1/2
(x I)2a2+1/2 —2a? 247 —7/4( +])2b +1
7y = (x 1)“ 2-a+3/4 -—a1+a-b2-n7/'8(x+ ]}bz+l/2’
=(x— 1)“ +1/4 —a? b2 b- 3/B(x+ ) 2-b+1/2

up to multiplication by some constants, respectively.

Using the multiplicative formulas (3.26) and the bilinear equations (3. 28)
(3.33), we get the 24 r-functions in (3.41) and (3.42). These are expressed in
the form

@.7) Thlomn = Gt L n(x — 1) 12
% xudz—éz—(l/2)m(m+]}—(]/2)n(n+1)71/8(x+ 1)51+1/2
a=a+k+ﬂi~;m—l, 5=b+l+_m2+n,

where oy ;... are given as follows,

. i/l
(4.8) og.0,00 = I, 01,0,6,0 = I, ,-1,00 = =5 (5 —a- b),

1{1
G|, 1,0,0 = —3 (54“0 ""b)"
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171 ifl
(4'9) G{),O,l,ﬂxi(i“‘a“}‘b), 0'0,_[,_1!0 =§(§—a_b>,

a0, 1,0 = I,

o1,-1,-1,0 = —1,
171 ifl
(4.10) T0,0,0, -1 —E(E—a—b), G0.1.0,-1 ___2_(5““4_5),
61,0,0,-1 =1, a1,1,0,-1 = 1,
411) o =i, o =1, o SN LR
. 1,0,-1.-1 = b 2,0,-1,-1 = L, i-l-l-1 =515 ,

[ /1 1

(4.]2) G{)!wl!ﬂ‘1=%|i E—a—b)x— (§+d—b)],
i1/l 1

(4.13) 695,}1,41—5[(5—~a+b)x+(§waAb ],

{4.14) 0'1:1_(],_2=—%|i(%—a—b)x+ (l—a-i—b s

(4.15)

4.2, Application of Biickiund transformations
Assume that 14, are expressed as in (4.7) for any k,/,mne Z. Sub-

stituting og = a3 = a, # =ds = b and (4.7) into (3.43), we obtain the Toda
equations for ox s, .. The first two equations yield
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(4-16) 4Uk+1,£.m.n9'k--1.l,m,n = {(—’c + 1)292 - (&+ 5)(‘5 - B}]gk_..’.mn COg b om
461 1ot mmn Tkt = (% = 12 B* — (@ + bY@ — B)ok,1.mn - Th.tmms

where we denote

do

(4.17) %0 - ¢ = x(d6 ~ &%) + éa, b=

The others are reduced to
(4.18) 404 s mi 1Ok tmmt,n = (X = DX(X 4 1) (81,10 Lonn = O Lo n)

+ (3% — D)ox. 1m0k, 4y

+{[(&—B+m-—%)(&wf)+3m+§) *”(”+1)]x
-~ 5. ] o i, 1 2
+ a—b+mw§ a+b+n—§ G.tumm>

45k,f‘m,ﬂ+iak,!,m,n-—l = (x - I)x{x + 1)(&k,!,m,n0'k,1,m.n - é}%_l,m,n)

+ (3)(2 - I)é'k, .m.n0k 4w, n

+{[(ﬁ+f;+n—é)(&+5+3n+%)—m(m+l)]x
L NS, 1 2
+ a+b+nw—§ a~b+m—§ Oie 1. m

(4.19) d=a+k,  b=b+l

with

Toda equations (4.16) and (4.18) with the initial data (4.8)-(4.15) gencrate
Ok Lmn = Okt malXia,b) for k,Imne Z. From (3.44) and (4.7), we see that
the ratio of oy, . » gives a family of algebraic solutions to the symmetric form
of PVi-

Noticing that we have

(420) T{qT(f;(ao#l:ﬂfzaﬁho&) = (épf']r%_&-z’1&: 6)1

under the specialization {4.2), we see that the action of Toy and 74 on the
parameter space is absorbed by a shift of the parameters @ and b, respectively.
This suggests that we do not need to consider the translations Tgy and T4 in
order 1o get a family of algebraic solutions of Py
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To verify this, we put
(421) Fic fomn = Wk, L mn Vk,!,m,m ' W fmn = wk‘l.m,n(aa b), k: Imnel.

The constants wy 1 m » are determined by recurrence relations as follows. With
respect to the indices & and /, wy; 5 ; with (i, j} = (=1, ~1), (1,0}, (0, 1), (0,0)
are subject to

IS A N P |
(4.22)  dewnyr i jO-10i;= — (a —b+i- 5) (ﬂ +b+j— E)w}i(,j,]‘z

A A Y L
4(1)k_(+1,j:jmk1[_1=,-,j = (d — b +7— 5) (U + b +_)‘ - E)wﬁgu’j.
The initial conditions are given by

{4.23) wy,0.8,0 = I, w000 =1

ifl 171
wu,q,o,u:—i(§~a—‘b), 601,-1,0,0=“§(5+a——b),

/1 i/l
(4.24) @0,0,-1,0 = 5 (5 —a+ b), @o,-1,-1,0 = 5 (E —a— 1,),

wy0,-t,0 =i, wy,-1,-1,0 = —1,
(4.25) @1,0,0,-1 = I, wy,1,0,-1 = 1
1 /1 i/l
wo.o,n,—l—i(i—a—b), wﬂ,i,ﬂ,ml*“‘z“(i_a‘i‘b),
(4.26) wyn,-1,-1 =1 ,0,—1,-1 = 1
/1 i/1
11,11 = 5_(5 —a- b), W2,-1,-1,-1 =75 <§+ a— b).

Note that these imply
(4.27) Vit -1t = Vi —1,0 = Vigro.-1 = Vispo =1, kileZ

For the indices m and »n, we set

. - 1
(4.28) Bk, 1, m+ 1,00k, L m—1,n = (d —b+m- E) T

o

n 1 2
Bk L mns 10k fmn-1 = | @+ B +0— 5 ) Pk tmn
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Thus, wy ;. are determined for any k,f,m,n ¢ Z. As a result, the functions
Vi.t.ma = Vi 1.mn(X;a,b) introduced in (4.21) have a symmetry described in the
following lemma.

Lemma 4.3. We have
(429) Vk,i,m,ﬂ{x; d, b) = V(),()‘m,n(x; a-+ k, b + 1)
Proof. The Toda equations (4.18) are reduced to

l

. 3 i :
(4.30) 5 ( —b+m— 5) Frtmrin Vi Lm—t,n

= (x — D)x{x + 1)(Vk‘l,m,n Vat.mn — I’.ﬁg‘m,n)

+(3%* = WV tmn Vi tmn

_ 1 . g 1 . 1
+{(a—b+m—§)[(a~b+3m+5)x+(a+b+nw~2~)]
— n(n + I)x} V) mm

17 . {
5 (ﬂ +b+n— "2“) V}c, f.m,nt1 Vk,l, 12, a1

= (X — l)x(x + 1)(&k.,!,m,nd,I,m,n - V.'kz,!,m,n)

-+ (3X2 e l)ﬂ,i,m.nd,I.m,rz

O | .3 1 .7 1
+{(a+b+n—i) [(a+b+3n+§)x+ (a—b+m———2—)]
- m(m+ I)X} Vn;cz,{,m,n‘

Then, we see that Vi jma(x;a,b) satisfy the same Toda equations as
Vo,o.mn(¥;a+ kb +1). Since the initial conditions are given by (4.27), we
obtain (4.29). |

On the other hand, we have from {3.44), {4.7) and (4.21)

: - Ok {m nCl42. 1 m—1,n-1
(4.31) T;;T;ZT&T&(]’O) =x(x -1} e Mt
Ghi1,1-), m—t nCk+ 1,741, m,n-1

@O w5 42,1, m 1,1 Vi dmn Vid2 L m—1,n-1

=x(x—-1) .
Okt 1, 1-1,m—1 0% 4-1 L1 1,01 Vit 0ot m-1,0 Fht1, 141,m, -1
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The ratio of the w’s is calculated as

w W, o
(4.32) ke b, nCOk+2 [ m—1,n—1 -1

O 1,1-1.m—1, 00041, 1+1,m.n-1
Similarly, for f3, fa and f3, we get

Ot 1,1,m—1,n- 1Dk 1 L mn -1 Op41,1,m, - 10k+1, 1 m~1.n

(4.33)

g1, It m—1,m kA1, 1+ 1, m— | ) D1, - 1.m—1, nl% 41,141, m,n—1

Okt 1,11, | n Dkt L S tmn A Dk dymn-1 1 (a i hbne %)

O i Okt I m—t -1 Dk 1 1, n—1

The above discussion means that, for our purpose, we can set & = / = 0 without

loss of generality. Hence, we denote ¥y mn = Vi n

Moreover, we observe that V, ., = V, .(x;a,8) (m,ne Z) are polynomials
in a,b and x with coefficients in Z. We will show this in the next section by

presenting the explicit expressions.

Proposition 4.4. Let ¥V, , =V, (x;a,b) (mncZ} be polynomials gen-

erated by Toda equarions,

1 1
(434) E (a — b4 m— i) VHHwI,?t V;nwl,n

= {x— Lix(x+ 1)(ﬁ;’m,,, Vign — ann) + (3)«:2 — I)Vm,nﬁm

+{(a——b+m~%)[(a—b+3m+%)x+ (a+b+n~i

—n{n+ l)x} V.
! + b+ . , v
5 d H 3 a4k P n—1

= (x— DNx(x + D(FunVor — V2 )+ 3% ~ ¥y o Vun

P, H

=1,

2

#{(arsrn—g)[(asprmes)us (apam-3)]

- m(m + l)x} V,,in,

with the initial conditions,

{4.35) Vi 1=Vae=¥,-1=Vo=1
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Then,

 Van(xa, byt a1 (x50 + 2, b)
Vm~|,n(x;a+1,b“‘ I)V;n,n—l(x;a-f“l,b+ 1)’
= Vm"'l»"*](X;a'{' lib)Vm,n(x;a+ 1,b)
f3~(x 1) Vmwl,n(X;a-i-l’b_I)Vm,n-l(x;a‘*“l,b—}-l)'

Vm‘nwl(x;a + l,b) Vm—!,n(x§a + I»b}
Vi nla+ 1,b— DV (x50 4+ 1,6+ 1)

1
(a+b+n—§)

A Pmra(xat 1L,b— 1DV a(xa+ 1,6+ NV n-1{x:4,b)
Vm,n(x;as b)V —-l,n—l(«‘:;a + lb) Vm,nfl(x;a'i_ lab)

(4.36) fo = x(1 - x)

fa=x

ﬁ:

| -

X X

satisfy the symmetric form of Pyy for the parameters
1
(4.37) (oo, 00,00, 03,08) = (a,b,i— a—b-—na+m+nb —m+n).

Furthermore, the bilinear relations for V,,, are derived from (3.28)-(3.33).

Proposition 4.5. The polynomials Vi, n(x;a,b) satisfy the following bilinear
relations,

@38) PO P ety pso a0 Y =,

m-1,n " mn- m—L.n—t"m g1 m—1.n

bl V(l,ﬂ)] V,.f.l_'?,Jn =),

n-1 m—in " mn-l 1

2,
(x— DFLOpED

1

DV, = e VD, T+ 0 =,

- —1,a~1"mn w,n—

(ot DBV, b 00, D 0l g,

m m=1.n "man-1

@39)  4apt®  pU0 oy (- 3D vO oyl <o,

m—1.n=~1" mn-1 m—t,n-1" mn—

1, -1y 1.0 2,0 - 2, -1
2av WS }“"nV( ‘ 1Vn§?}; n““m-&-lp;r(!?;io}Vrr(:—Ln)—l:O’

m—1i,n "mn-1 m—1,n—

TP AN AGK IS MRS )} At N A AV L AN

m—1.n-1 wm—1,p—1"m-1n mnr < m-2a-l T

(440)  4b¥ 00y oy ey pll Y +ypihD o,

m—-1,1—-1" m,n-1 -1 m-1.n

FTANTAN] Aol T P D AN A A S vt A IR B

m,n—k mn—t"m ~1,n " m+l,n—

T YA A NN AN A R STI Ahioh AR )

mu Tm mn—1 o Tma—1 7T
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4.41
| 420 RO A TN R VAV AN AHI A
Aa+m+n) Vn(«l—;i] V:S}:O—)l — ¥ K;(l,lr'zo) Vn(ilul_:!)fl = Hmsy Vn{al—‘(ll,)n-—l Kt(r,lr‘z_l) =0,
dla+m+n) V,,E?;,m V,',(Tl_lm:,) + 2vy(x = 1) V,',ﬂ__l;,o) V”[,O_;L) — Vw(i'j?‘)nf] Vri?;;:) =0,
(4.42)

: } : ) 70,
26~ m+mypSOyth o, ViV on Vinens + V,Lf,f?; V»(:O—?.)n =0,

R m—1,1—-1 m -

IR P Al A TN R AUK R AN ACA A Y )

m—1,n-1 m—1.n" m—1n-

4p—m+mpp POV oy (e R B0 o g0l g,

(4.43)
1,0 1,0 | 1, -1} 2,0 0,
2%—-1??1—] I/;P(I,P!-—)l - {X + 1) V;:(:,njl I/H(l*],?l"'l + (‘x ~1 Vtr(t—l,)n—l Vn(w,n—)l = 0’
L A O A e R LA PRI AV}

IOV, D PO g0 o0 g

-
moa-1"m—-1n m—1.n" e
jpAL—1 1,0 _ 0, -1
2RO = e DD O g (- ROV <,
1,-1 1.0 1.0 b, -1 2.0 0,~1
ZYVn(r—t,n] A A {x+ I)V( 7 Vn(;;i,n)-l - {x = I)Vn(f-—l,)n—l V;fi—l,n} =0,

m—1,n—1 m—1.m

2ph oD p

m—1.n "m,

1,0 1,0) 3-41,-1 (2,0 0.~1) __
n_}l“Krs,n)V( )E-V V( )=

m—1,n— m-1,n—-1"mn

where we denote

(4.44) ,um=a-b+m~—%, vﬂ=a+b+n—%,
(4.45) VD = W alia+ kb4 1),

Conversely, by solving the bilinear relations (4.38)-{4.43) with the initial
conditions (4.35), one can get the family of algebraic solutions (4.36) with
(4.37). Even though these bilincar relations are overdetermined systems,
thier consistency is guaranteed by construction. In order to show Theorem
2.2, we will prove not the Toda equations (4.34) but the bilinear relations
(4.38)—(4.43).

5. Proof of the determinant formula
In this section, we give a proof of Theorem 2.2.

Proposition 5.1. We have

(5.1)  Vau(xia,b) = (—2x)"m D2 gynnt2g £ g (x;a,6), mneZ,
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where Sy n = Sma(X;a,b) is defined in Theorem 2.2 and &, is the factor

determined by

(52) fﬂ:+l‘fn—i = (2"+ l)é‘i, é—] = f:() =1

From this proposition, it is easy to verify that the ¥}, ,(x;a b) are indeed

polynomials in a,b and x with coefficients in Z.

Substituting (5.1} into {4.36), we find that Theorem 2.2 is a direct con-
sequence of Proposition 5.1. Taking (2.5), (2.6) and (5.1) into account, we

obtain the bilinear relations for R, ,.

Proposition 5.2. Let R, . be a family of polynomials given in Definition

2.1. Then, we have

(2 I e N m—1.n—1 m-tn

(53)  ROJURDY 4 (x— DREY, BRI - xRDURON =0,

(x — ])Rs::g]R(l,O) - xR(O.ﬁl)R(lgi) ! JrR(O‘—l}R(:‘]) =0,

m—t,n— m—1,n" mn— me—1 " m—tn

R(l,O) R(O,ﬂ] __(x_*_.l)R(I,]) REE:;]J+xRS'D} R(G.O) EO,

m—1t,n" myn--1 m—1.n—-1 -1 m-1.n

(x+I)R“'UR(0’_” — xRUO QOO plEO) p00) g

[ Bl R I e | m—4,n" m n—t m.p-1" m—1,n

(5.4) (2¢ —d —m—mREY RO 4 cfx— DRYS RGN

m-L.n' mn

+(2n+ DRYY RO <0,

m o+l m-1,n—1 77

(2¢—d—m—m) RO ROV — RN RGN

m-1.n" mn—1 m—t,n-1

) 0,-1
—{e—ad)RODRU-D

m,n v m—-be—

m.a—1 m,—1

(2c —d —m -n)foS",,‘UR(D’U) —clx - NRLY R "

+(2m+ DxRYD ROH_ g,

m+l,n tm—1.n—t

(55) (d+m—mREY ROY (x4 DRGVRLD

m—1.n

~@n+ RGN RO =0,

m—1,n+1" a1
0,—1i 11 -1, -
{d+m— H)JCRES:B)RL_”J —c(x+ E)RE,,,,,LRE,LL 2

— (2m+ DxRENREO g

m—1, a0 ‘m+l,n-

(d+m—mREIRLY _RUD RV 4 (e d)RGTIR )

m—k,n— mn—1" m—1

m.op-1 "

0.
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(5.6} {(2¢ —d +m+ n)ngg:,],}Rm 0 o{x— I)Rg: hRl Lo

m,n—1 r “rmn-1

4+ (2m+ DxR®Y  ROO — g,

m—bu=t"" m+1 5

(2c —d +m+n)RYS ROV cRIDRIL D

m-1.n" m - m—1,n—1

— (e~ d)Rm’” RO — g

m—-1n-1""mn

(2¢—d +m+mREDRES, + e(x - DREVRLY

m—1

+ {2+ DR RED o,

m—F n—1" m, n1 =

(57 (d—m+mREOR®D | cREY RELD 4 (e~ ayROTDREY o,

p—-t -1 m—F,n" e n—1 maA-1"m—1n

(d —m+m)xROVRED (x4 DRI RELTD

m,ne-1 . i mon—|

—{(2m + l)xR(o’O) lR(D’ Vo=,

mib -1 m—1n

d—m+m)ROUR Y _ oix  DRLY RELD

e rm—1n m—1,n m,n

—@n+ )REHRED =0,

1,01

0,0 _ 1,1 1,0 -1~

(58) 29N ROV (x+ DREDRL D 4 (x - DREY RELY =0,
B, ~1 [, 1 - -1,~1

2RENRG N — (x+ DR REL™ — (x - DREVRE " < 0,

ZREB:E)R(D:O) *R(l’” R(“"n“‘l) . R(':U R(“L*U =0,

m-1.n-1 -1 m~1n m—1,n" v n—1

2ROOR™ N (x4 DRIY RELD o (o - REVREL D = g,

mn m—1, 0", n L1

2RO IR (ot DREDRL D — (x- DR REET =0,

i, n—1l

00) g0 1t 1,1 11y _
2R§""‘)‘"anm)~l - Rgr]i:rli)Rin—l,n—]l - Rr-n—l),n—!Rgn,L b=,
where we denote
5:9) RE;‘Q = Ry nlc+i,d+J).

From the above discussion, we see that the proof of Theorem 2.2 is reduced to
that of Proposition 5.2.

It 15 possible to reduce the number of bilinear relations to be proved by the
following symmetries of R, .:

Lemma 5.3. We have the following relations for mne Zoq:
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{(5.10) Rom(x "} = Ry (),
(S 1 1) Rm! "(mc, —d) — (_ l)m(m+l)f2+n(ﬂ+})}'2Rm!n(C’ d),
(5.12) Run(—x10,20 — d) = (- 1)t D2 R (e, d).

Proof 'The first relation (5.10) is easily obtained from Definition 2.1.
To verif}f the second relation (5.11), we introduce two sets of polynomials
_ (¢, — _{e,d
Be=5"() and g, =g (x), ke Z, by

(5.13) YN0 = Gy —e,~di—4), e (x) =0 for k<0,
k=0

_fe, _fed -
7" =),
where G is the generating function (2.2). Since we have

G(x;—c,—d; =)

14 = (1 — 2By L2
(5.14) e T AT RS

we see that

(5.15)  Frlx) = pax) + 3 g0 pey(x),  Gelx) = @l®) + Y p(x " V=i (),
== =

where p;(x) = pj(x;c,d) are some functions. Therefore, Ry, for m,n & Z.p,
can be expressed in terms of the same determinant as (2.3) with the entries py
and gi replaced by B, and §;, respectively. Noticing that

~{e,d —e,— —(c,d —c,~d
(516 AP =00, @0 = 0 ),
we obtain the relation (5.11). The third relation (5.12) is verified similarly. W

By the symmetries of R,, . described by (2.4) and Lemma 5.3, it is sufficient
to prove the following bilinear relations for m,ne Z,

1)_1"_xR(1-0) R0 _ plLO) R0 g

m—1.n""m,n—1 m -1 m—1,n

Q
(5.17)  (x+DREDRYS

—t,n
(5.18) |
(d+m~n)RSY ROV _ o(c HREDRCED _ (2n+ HRYS RO =0,

w1, 0t v mou-1 T
X)) 1,1 —1,—1 0,-1 01
(5.19) (d+m- H)Rg},’g)Rgn—l}.nml - Can,n)—lREn-l‘n) +{c— d)Rﬁn—l,r)zRgn:n)—] =0,
0,0 L1 —1,~1 L) gl-1,-1
(520) ZRSI(::S)REHA—I),H—I - Rgn,n)—]R;(le.n) - REﬂ-—l),nRin,n—l )= 0,

(5.21) 2RO RGO _ RULRCL-D _ROY RGLD =0,

m-1,m" m,n—1 I o N

(522) 2800 RO — (b DRGDRCNY + (e DR, RLG ™D = 0,

m-—},nt m,n m—1,n
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From the symmetry (5.12) and the bilinear relation (5.17), we have
1,0 0,1y pil,1 p®. 1) pll, 1
(523)  (x~ DRGORDY xR VR L REDRED o,

N m—1, 5 wp—-1" =10

Then, it is possible to derive the bilinear relation (5.22) as follows,

(5.24)  RON % (5.20)] gy — RGP % (507) 4 R % (5.23)] oy goas

m—1,n m—1,n

= RO~ (522).

], =1
Therefore, the bilinear relations we need to prove are (5.17)-(5.21).

In the following, we show that these bilinear relations (5.17)~(5.21) reduce
to Jacobi’s identity for determinants. Let D be an (m+4n+ 1) x(m+n+1)

determinant and D[ 1 1,2 Ik] the minor that is obtained by deleting the
Jvoi2o

rows with indices 7, ..., and the columns with indices ji,...,jz. Then, we

have Jacobi's identities

{5.25)

p.pl™ m 1 :DmD m+1 D m Dm+1 ’
1 m+n+1i i m-+n+1 m+n+1 1
' m m+1 m m+1 m m+1
w0 oofy ol ol )
(5.27)
| m+1 1 m+1 1 m+ 1
D'D[Z m+n+1]*D[Z]D[m+n+l]—0[m+n+l]D[ 2 ]
First, we give the proof of the bilinear relations (5.17)-(5.19). We have
the following lemmas.

Lemma 5.4. Set

(5.28)
{c—m—n, d—m—n} {e—m—n+1,d—m—n) {e~1,d-2) {c,d~1)
4 4 T 4 3 9 omansz
{(c—nr—n, d—m-n) (c—m—n+1,d~m—n) {c~1,d-2) {c,d—1)
43 a3 e 9 —n+5 9 mnya
(C—!ﬂ—.ﬂ,i]—m-—n) (c—m-—rﬂz L, dwmn) i {c— l‘.d'72) (C‘;f-— 1)
D= “dn-1 Y1 T Gra-n
—men (Cmm—m, d—m—n) g —ment L d ] fe1,d-2 -1 |
x ™ npgn m—n,d—m—n) xm n+lp§; "h meny x lpg‘n ) pg; }
x._m_.npgc——m-m,d-—m——n) e 1pgc:—m—n+l,d—m—n) . xf]péc'ul,df?._] pg:, d-1)
x_m_npéc—m—n,d—m—n) x..m_,H.1p({)c—m-—n+1,d-—m—n) L x_lpl(]c—l,d—l) P{(}c,d—l)
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Then, we have

1 -
(529) D={(-H"(1+x")""R}D, D[’” mr ]zx"Rf D

1 m+n+1 m=1,n=11

m (0,—1 m-+ 1 m_— —1ymn—1 p(=1.-1]
D|:£:| =Rm-—1,i)1’ DI:”"—%—n-Fljl =(-D"x"(1+x hym Ripnt1s

m 1 Cpymnel p{-1,-1) m+1 0,—1)
o, ] = oy oM R

Lemma 5.5. Set

(5.30)
q(cfmfn.d—m—n) g¢:7m~rz,d-m~n~—1) . (:‘—2,d—33) (cAl,d—22)
——A+ —m—n-+
~ (c~ti—n, d—m—n) (e—m—n,d—m-n—1) {¢~2,d-3) (c—1,d~2)
q3 4 Tt —m—R+5 d_penvd
N e d=mi—n=] ‘ 2,43 1d-2
D= Gomm g,y PR A i
T sle—m-nd—m— i1 —t—H, d —m—n—1 — Dy d-3 —1,d-2) 7
formmdmn) e g Dol e
ﬁgc—m—n.,d-—m—n} x_m,nﬂpgc—;n—n,d—m—nwl) x”’pg";z"ims) pg,:_ll_d__z)
ﬁéc—n:~n,d—an—n) x.“mvn,_quc—m—n,d—mwnvl] x_lp(ic—lrimS) ch—l.d—Z)
with
~(e—m—n,d—m— xomn —mr-n, d—m—
(531) pg;c i m—} - ST 1P§5{ m m n),
{¢—mt—n,d—m-—n)
(e, d-m-n) 2% 1 -
-1 (d—m—n+2k—-2)x
Then, we have
min
Me—m-n+j-1)
+ m+n J=1 0,0
(532) D= (—1)""(L 42" RO,

Tl(d~m—n+2i—2) T12k+1)
f=1 k=0

m
D - (— m+n—1 F m4-n—1
[m+n+l} (=1) (F+x)

m+a—-1
I[N (e~m-n+j—1}
j=1 L

m—1.n

X x—m—ﬂ

m—1 #
[ (d—m—n+2i-2) T2k +1)
i=1 k=0
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m+ 1 mr—1 mtn—1
= (- 1
7t e
-1
IT (e—m—n+j—1)
- = (~1,~1)
XX m n—1 Rm,n-—] ¥
T[(d—m—n+2i—2) [[(k+1)
i=1 k=0
M —1.-2 m 4+ 1 1.2 m -+ 1 _ —2,-3
D[]:I:RE"—L?H)-U DI: 1 ]:R‘(m:"’ )7 D 1 m+n+1 =X ”RS”_EJ‘).
Lemma 5.6. Set
(5.33)
~(c,d=m-n (c—~1.dwmr—n-1) (o1, d~3) {e~1,d-2
&4 ) qic e T qu7n+3 qmm—-rH-Z)
~{c,d—m—n) {e—1,d=m—n-1} {e—1,d—-3) {c~1,d-2)
q3 T3 e —~m—n+5 —m—n+4
~{ .d; 2—n) ml,d; —n—1) ) { —-I:d—S’ c—il,d—2)
D= Gim1 oy T I o
ale,d—m— — —1,d—m—n~1 —1,d-3 —1,d-2} {7
BT (mnym g i ey gl 1Y gl
ﬁgc,d~m—n) (_I)m-l-n——lpgcul,dfmfraf]} . (_ 1) lpgc—l‘d—3) p(Bc-—l,d-—E)
ﬁ‘(]c,d—m—n) (_i)mﬂzmipgr—l,dmmunw]) L (_1) lpgcvl,dmﬂ pgc—l,d—Z)
with
(. ) p(c,d—m—n) o 7 q(c.dwmmn}
534) plod-mn o qymin P sled—m—n) _ 2kl .
(334) P (=D Ueq 1 0 T (d—m—n+2k~2)x

Then, we have

m+h
(fc—d+m+n—-j+1)
=1

(535) .D — (_l)m—i—n(l + x)m+nx—-m I= R(U-‘D)

m n m
d-m—-—n+2i-2) [T(2k+1)
i=l : =0
m ,
D e (1Y prin--t
[m—}-n-H} (=171 +x)
wHn—1
IT (e—d+m+n—j+1)
x x~mH i=l RO

b n m—1,n
[(d—m—n+2i—2) [1(2k+1)
i=1 k=0
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m+1 m—1 mtn—|
= (-1 1 '
[m+n+1] (D™ (1 +x)
m+a—-1
Il (e—-d+m+n—j+1)
- =1 0,-1
><x n Rin‘n—gi

n-l
(d=m—n+2i-2)[]{(2k+1)
k=0

?

m 1,2 m+1 -1, -
D[l} :REN—I.?H)—I’ D{ 1 ]ZREn.iE 2,

i
s

m m+1 (—). —%
= (-1)"R, 2.
[1 m+n+l] (1) Rl
it is easy to see that the bilinear relations (5.17) and (5.18) follow immediately
from Jacobi's identity (5.25) by using Lemmas 5.4 and 5.5, respectively. By

Lemma 5.6, Jacobi's identity (5.25) is reduced to

(5.36) (d +m—mxRy ROD 4 (e d)(x+ DRGAR) )
+2n+ DRSS, R =0,

Then, the bilinear relation {5.19) is derived as follows,

(537 RED % (5.36)+ RU Y | x (5.18) + (d +m — n)ROY x (517

n,n-1 X o
= (x+ DRMD x (5.19).

The proof of Lemmas 5.4~5.6 is given in Appendix B.
‘ Next, we prove the bilinear relations (5.20) and (5.21). We have the fol-
lowing lemmas.

Lemma 5.7. Set

(5.38)
~xgy xlqf g Gemenrd
~x gy +x72q7) xgy @ Gomears
D= _x-l (‘Iz_m-; Tt x_m+2qi_) x_lq§n1—1 G2m—1 oo Gm-n+2
Prmyt T+ xln—Zp:n_m+3 p;—.m+1 Pn—myz P
- 2 - + e
Popms +x Ponin3 Popmss  Pen—msé f k!
Py a3 pin_m_._a Pn-m+d Pi
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with pE = p Y Then we have
1
(5.39) D[T] = xRl D[”"j ]:xwmkﬁ,l;,iil,
m - —1.— m+ 1 _ —1,~1
D[ 2 ] = (=07R D{ 2 ] = (=X "R,
m om+1 (0,0)
D|: 1 2 :| = Rm.ml.rhlJ
aned
(5.40) D = 2(—1) xR,
Lemma 58. Ser
(5.41)
1 0 0 - 0
-x gy x'qt Qo Gementd
—x gz +x7q) x~gy B Gomonts
D= —x“l(qg,,ml +- 4+ xm2m+2qT) x’lq;m_l g2m—| T Hm—ntl
| R i A Pim  Pr-ml 0 Pmel
- - +
Pon-mid +x Pn—m+2 Pmn---m+4 Poremis ot P
Py mi2 ptnwm-ﬂ Popmyd 7 r 4l

Then, we have

_ 1 m+1 —m pl=1,-1)
(542)  D=x"RED D[z m+n+1] = (—x) "R

D[ 1] — (““X)me(iL'il), D{ mt - 1 ] - x_m_HR 1, l]}:

2 m m+n+1 molnel?
m+ 1 (0,) i . 2mi | pl0.0)
D =R 7 D = 2~ R ;
[ 7 :| m—1,n [m+n+l 2( 1) X m,n—-1

From Lemma 5.7, Jacobi's identity (5.26) leads to the bilinear relation (5.20).
Lemma 5.8 and Jacobi’s identity (5.27) give the bilinear relation (5.21). We
also give the proof of Lemmas 5.7 and 5.8 in Appendix B.
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6. Degeneration of algebraic solutions

It is well known that, starting from Py, one can obtain Py,...,P; by
successive limiting procedures in the following diagram [25, 4],

(6.1) Pvi Py P

L

Pry Pu P.

It is also known that each Painlevé equation, except for Py, admits particular
solutions expressed by special functions, and that the coalescence diagram of
these special functions is given as

(6.2)  hypergeometric —— confluent hypergeometric —— Bessel

| |

Hermite-Weber s Alry.

What is the degeneration diagram of algebraic (or rational) solutions that
originate from the fixed points of Dynkin automorphisms? In this section, we
show that, starting from the family of algebraic solutions to Pyy given in The-
orem 2.2, we can obtain rational solutions to Py, Pyy and Prp by degeneration
in the following diagram,

(6.3) Py —— Py

Remark 6.1. Tt seems that the rational solutions of Py cannet degenerate
to those of Py, and that there is no way to include the rational solutions of
Pv expressed in terms of Okamoto polynomials in the above diagram (6.3).

6.1. Degeneration from Py to Py
As is known [22], Py

(6.4)

dy (U LN\ ldy -1, xg y_¥y+1)
#= ) (@) i e () ety
is equivalent to the Hamilton system

(6.5) Sv: ¢ = H = oA L

ap’ dq’ dr’
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with the Hamiltonian

(6.6)  H=gqlg - 1)’p* ~ [kolg - 1)* + 0g(q — 1) + tglp+ xlg— 1),

This system can be derived from Sy by degeneration [4]. The Hamilton
equation (1.2) with the Hamiltonian (1.3) is reduced to (6.5) with (6.6) by
putting

(6.7) -1 et Ky —e 041, g s et

and taking the limit as ¢ — 0.
On rational solutions of Sy, we have the following proposition [12].
Proposition 6.2, Let p; = p,(:)(z) and gy = q,(c'](z), ke Z, be two sets of
polvromials defined by

= r]. - Z..l )
(6.8) gpiuk = (1—4) 'exp(wm), =0 for k<o,
gy (z) = p{’(~2).

We define the polynomials R, , = R%J__,,(z) by

{6.9)
} 7) (r) (r)
q(lr) qg) e q(:m+-2 q(—tjn-f—l T q—rmmn+3 ‘erfmuz
{r} 3 {r)
qg") ‘_?g) e q(—rln-+~4 (‘erH T qgnl)'nmm-S q:m—rz+4
) 0 . ) ("
RO (7} = q2131—| Gz ‘Im) D1 D Gin'n
Ml () (r) . (r (r) L (r) {r} ’
Pu-m Primti 2ol Pr P2 Py
" ) G . ' ) %
Prmis Pohmis o P e Y I
P(-Bg—mu p(—rzaum+3 T P(..,EH.] P—rn+2 T POF Plr

Jor mae Z.q and by
(6.10)  Rupn = (—1)""2R 1 Ry = (—1)"™02R,
Jor m,ne Z.o, respectively. Then, setting

(6.11) . RY) (2} = Spu(t,5),
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with
(6.12) Z= = r=2s—m+n,

we see that
S, -1 (, S}Smwl,u(fn 5)

1 = - .
(6 3) 7 Sm—l_.n(tss - ])Sm,nvl(rns + 1) ‘
p= _2” -1 Smul,n(tas - I)Sm,n—-}(fgs + ])Sm—],n-—.’.(tss}
4 St 1 {t:5)Sm,n-1(8,5) ’

give a family of rational solutions to the Hamilton system Sy for the parameters
(6.14) Ko =8, Ko =8 —m+n, G=m+n-1.

“Let wus consider the degeneration of the algebraic solations of Sy
Applying the Bicklund transformation sy to the solutions in Theorem 2.2, we
obtain the following corollary.

Corollary 6.3. Let S, , = Sma(x;a,b) be polynomials given in Theorem
2.2. Then, for mne Z,

1,0y (1,0} i, -1 1B} (2,0}
(6.15) g= xS:(n,n~1Sm—I,n p= 2n-1 Sr(n—l‘tgsr(n,n-wlsmml!nmz
’ - L-1} (1.1} - — (1.0) (L0} (2,0 ’
Sz(nfi,nSr(n,nfl 2x(1 X) Sm—],n-lSm__n—ISm—l},n-—l

where we denote Sf,ﬁ *,!’ 2 S (X -+ k, b+ 1), satisfy Sy for the parameters

(6.16) K, =5, Kg=b-m+n, K| =a+m+n, f = —a,
with x* =1,
It is easy to see that by putting
(6.17) t—1—et, a=g,
Svr with (6.16) is reduced to Sy with (6.14) in the limit as ¢ — .

Next, we investigate the degeneration of Rgﬁ.’,,) given in Definition 2.1,
Putting
1
{6.18) x->-—(1—st)1/2, c:s”1+s+n~§, d=2s—m+n,
we see that the generating function (2.2) degenerates as

(6.19) G = (1~ 1) exp{cflog(1 — A} — log(1 + x*' )]}

ZA
1—4

=(1-4" exp(? + O(E))a
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where we use (6.12). Then, we have

(6.20) im ) =p0(),  lim g 6) =) (),

which gives

(621 lim RJ7(x) = R{H)(z).

Finally, it is easy to see that (6.15) yields (6.13).

Remark 64. As we mentioned in Section 1, Kirillov and Taneda have
introduced “‘generalized Umemura polynomials™ for Py in the context of com-
binatorics and have shown that these polynomials degenerate to Sy, » = Sy (1, 5)
defined in Proposition 6.2 in some limit {9, 10].

Remark 6.5, The polynomials pkr (and q{')) defined in (6.8) are essentially

the Laguerre polynomials, namely, (’)( )= Lﬁ: (7). The above degeneration
corresponds to that from the Jacobi polynomials to the Laguerre polynomials.

6.2. Degeneration from Py; to Ppy

Next, we consider Py

d 1dy 4 4nZ
620 T2 L(Y 1D Ay 0y o )t -,

drz dr
which is equivalent to the Hamilton system [24]

oH H d
_2 . ":—-——-——- ":------- "= e
(6.23) Sm: ¢ A o -

with the Hamiltonian
(6.24)  H =20 — 2n,,1¢° + (206 + 1}g + 211] p + 1, (0. + o) tq

This system can be also derived from Sy;, directly, by degeneration. This
process is achieved by putting

(6.25) t— &', g—setq, p—&lt'p,
(6.26) Koo =l 0D kg — —pe 0 + 1,
K= e + 09, 8 — e +0(2J

1
(6.27) H— — 3 {H + gp),
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and taking the limit as ¢ — 0. In fact, the system (1.2) with the Hamiltonian
(1.3) is reduced to (6.23) with (6.24} by this procedure, where we set
(6.28) o =00+ 82 g =8N 6.

On rational solutions of Sy, we have the following proposition [5].
Proposition 6.6. Let p, = pg)(r), k ¢ Z, be polynomials defined by
<
(6.29) ST a0 A = (1 4+ 4)" exp(—-14), P =0 for k<.
=0
We define a family of polynomials RY' = R by
(r) (r) {r)

P o Pz P
(6.30) ROy = R ,
P PE."
P o By
Jor ne Zso and by
(6.31) Ry=(~1)"2R
for ne Z, respectively.  Then,
R{,,Jr;} Ru+1 R(r+1}
(6.32) 1 R(:) : p:"z 5 = i) (r|21)
w Ry R}
give a family of rational solutions to Sm for the paramelers
1 1
(6.33) 9m=r+~2~+n, 99+I=-r—§+n,
with
1
(6.34) Moo = Mo =75

Before discussing the degeneration to the rational solutions of S, we
slightly rewrite the determinant expression in Deﬁnition 2.1, for convenience.

Lemma 6.7. Let p, = (x) and §, = qk (x) keZ, be two sets of
polynomials defined by

o o .
(635)  S_opr 0t = Gixad;a), PO =0 for k<0,
k=)

700 = B,
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respectively, where the generating function G(x;¢,d;A) is given by
(6.36) Glx; &, d;4) = (1 - A1+ x2).

Define Ry, == R o(x;8,d) in terms of the same determinant as (2.3) with entries
Pi and gy replaced by p. and §,, respectively. Then, we have

(6.37) Ry n(x;8,d) = S n{x;0,8),
with

_ i - 1
(6.38) c:a+b—é—n-—§, d:a—b+m+5.

Remark 6.8. The polynomials 7, and g, are also expressed by the Jacobi
polynomials as

(6.39) P (x) = (—DF PR (] g 9y

let us consider the degeneration of the algebraic solutions of Sy;.
Applying the Bicklund transformation s1sp to the solutions in Theorem 2.2, we
obtain the foliowing corollary.

Corollary 6.9. Let Ry, = Ry n(x;¢,d) be polynomials defined in Lemma
6.7. Then, for mne Z,

70.1) 5(1.0) Bl 1} 51,0 50,1}
(6 40} g= me,n-)—] RJ(W—],H p= n—1 Rmki,uRm,rrARJ(nml,n—z
: T 50,1 L0y ! "" — 7(0,0] F0.0) (1.1 :
R}Sﬁ—l),nRr(n,n—l 2x(1 -~ x) Raﬁl),n—lan,n)—lRa(n—l),n—l

where we denote RY) = R, ,(x; E-i—j,cf +7), satisfy Syy for the parameters
(6.41) . = —b, Ko=b—m+n, Ky =a-+m+n, f=—a,
under the setting of (6.37), (6.38) and x* =¢.

According to (6.26) and (6.41), we choose #,, and #, as in (6.34) and set

4 1 a1
(6.42) a_i(—s +r+§~m+§), b_z( A 2+m+C),

where { 15 a quantity of O(1). Then, we have

1
(6.43) 0§J=%(r+%—m—g)? 9£)=5(r+%+m+¢')+n,
I L SO S @ _ 1/ 1
' +1I= 2(r+2-;-m g)+n, & = 2(r+2 m+{.
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Setting as (6.25) and (6.27), we see that Sy; with (6.41) is reduced to Sy with
{6.33) in the limit as ¢ — 0. Note that m vanishes in (6.33). Then, it is pos-
sible to put m = 0 without losing generality in thls limiting procedure.

Next, we investigate the degeneration of Ry G = R(_’]j) =R Putting
) 0 1 =
(6.44) x — &, &= —t +C+n—§, d =r+1,

we find that the generating function (6.36) degenerates as
(6.45) G =(1— i) exp|-clog(l + xA)] = (1 — 4)" exp|ti + O(z)].
Then, we have

(6:46) tim 5} (x) = (1) (1),

which gives

(6.47) lim RYP(x) = (—1)" T ERT0).

Finally, it is easy to see that (6.40) leads to (6.32) in the above limit.

Remark 6.10. The poiynommls D "} defined by (6.29) are also the Laguerre
polynomials, namely, p )(t) r #) (r). Then, the above degeneration also
corresponds to that from the Jaoobi polynomials to the Laguerre polynomials.

Similarly, the rational solutions of Py and Py given in Proposition 6.2 and
6.6, respectively, degenerate to those of Py. We give more details in Appendix
A. Therefore, the coalescence cascade (6.3) is obtained.

7. Relationship te the original Umemuora polynomials

In this section, we show that the original Umemura polynomials for Py
are a special case of our polynomials ¥, ,(x;@,b) introduced in Section 4.

7.1. Umemura polynomials associated with Py,

First, we briefly summarize the derivation of the original Umemura poly-
nomials for Py, [27}. Set the parameters b; (i=1,2,3,4) to

(7.1)
b

[—

(@ —1—xx),

B3 =

i 1
:“K[)—E-Ki), by = (J":()—Iocl)1 b3:§(9~i+xm), b4=

5 2

namely,
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(7.2)
b_l(tx + 23) b—i( — a3) b—l{ -1 ) b-—l( -1
1=3@+o), H=zla-n) 63750k + o), 4 = 5 (% - o).

Umemura has shown that

LBk @ o fVIG-T) g (x4 )2
(x— B)* + dafit ’ alq — 1)

give an algebraic solution of the Hamilton system Sy; for the parameters

(7.3)

(74) (b],bz,b3,b4) = (d,ﬁ,-—-%,ﬂ).

Substituting the solution of upper sign into the Hamiltonian (1.3), one obtain
i
(7.5) H=g[-(a+p)+ (a+ B) + 2at — 2(a® + B2 + 2(a® — f2)/t{t — 1)].

Application of the translation
(7.6) (by, 82, b3,B4) ~ (b1, 52,53, 84) +1{0,0,1,0), neZ,

to the seed solution (7.3) with {7.4) generates a sequence of algebraic solutions
(9. pr). Let 7, be a r-function with respeet to the solution (g., p,). Okamoto
has pointed out that 1, satisfy the Toda equation [21]

Tnt1la-1 E_

d
}
(7.7} B dz(iog ) + (B b+ ny b+ ba+n), =11 - DE'

Define a family of functions T, for ne Z by

(78) (log t2)' = (log T.)' + H — n(at -315_)
Then, the Toda equation (7.7) yields

' 42T, AT\ dT,
(7.9) Tn+1Tn~—1=f(r“‘I)[‘E;§ETn“(—Eﬁ) -%—(2[*1)—‘5—1}

L Y I - S N et A
+{4{2(a FBY - ) f—*ﬂﬂz(zw;)]*(" 2)}?3-

Moreover, introducing a new variable v as

t t—1
7.10 S SLANY L}
{ } v r~l+ ;
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we find that the T, are generated by the recurrence relation

dv? dv

2
+ {% [<2(2% + ) + (& — F)0] + (" - %) }Tf,

with the initial conditions Ty = T} = 1. It has been shown that T, for ne Z,
are polynomials in a,f and v, and deg, T, =n(n—1)/2. These polynomials
are called Umemura polynomials associated with Pyr.

2
(7.11) T,,+1T,,m1=£(t)2-—4)|:(t, w4)d +vdT]T ——( 2.4 (‘g)

7.2. Correspondence of the seed solution

We investigate how Umemura’s seed solution (7.3) with (7.4) is related to
our seed solution,

1 1
(7.12) q = fo=x, P=f2'~‘-§(a+b“§)xly
with
(7.13) (oo, 0y, 003, 23, 04 ) = (a,b,%—awb,a,b).

In addition to the Bicklund transformations stated in Section 3, it is known that
Py; admits the outer symmetry as follows [21],

(714) gp Gy O O3 Dig t f4 fz
(1-0f | flhfH+m)
-1t
Gol || %1 op H2 &3 C4 I r(t—-l)
1
S A N % th
t Jo :
—_ A8 1 -
N R L e B (1-1)f2
! Ja
a3 || o o3 M2 M o | T = —f3{(fifr + )
1| 5
1 i
au o % w oy a | A ~falfafa + 22}
o |0 @ a2 a o | l—7 £ ~fa

Proposition 7.1.
applying the Biicklund transformation defined by

Umernura’s seed solution (7.3) with (7.4) is obtained by
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(7-]5) o = d|353551,

fo our {7.12) with (7.13), where we set

{7.16) o==—a, A=65

Proof. TFirst, we check for the parameters. Application of ¢ to (7.13)
gives
i1 1 1
(7.17) (og, 001, 062, 003, g ) = (—2-,——2-,a,§ —a- b,E——a +b),

which coincides with (7.4) by using (7.2) and (7.16).
Next, we verify the correspondence of g = fy. We have

_hhitain il
(718) d(ﬂ) _fzf:‘; +a1+o(2_ (w ) (,"maw )Xil

Note that x is now given by
(7]9) X = $ ——

due to the action of ;3. Thus, the expression (7.18) is equivalent to the first
of (7.3). 1t is possible to check for p = f in similar way. [ ]

7.3. Relationship to the original Umemura polynomials

The above discussion on the seed solution suggests that the family of
polynomials ¥V, .(x;a,b) constructed in Section 4 corresponds to the original
Umemura polynomials under the setting of {7.16) and

H

7.20 X = g e,

Notice that, from (7.9) and (7.20), the T, = T,{x; 2, f) satisfy the recurrence
relation

(7.21)
4T 1 T =5 (X"~ D222 — 6 (x + 1) + f2(x - D) + (2n - )X T, - T,

with Tp =Ty = L.
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Theorem 7.2. We have
(7.22) Tu(x; e, f) = 272V (o x) D2y (e + n,b),
with (7.16). |

We prove Theorem 7.2 by showing that both sides of (7.22) satisfy the
same recurrence relation and initial conditions. Let T3 be the translation
operator defined by

(723) Tg() = T34 TMT‘ﬁ]
Then, we have a Toda equation

(7.24)  Tao(z0) T3 (o)

_ d , 1 3
= Y2 l}:{i(log 15)" — (log 7o)’ +Z(mo — 21)(otg — otz - 2) +3 2.
For simplicity, we denote
(7.25) Ty == T{’O(ra), nel,

namely Z, = T_po0nnx in the notation of (3.40). The above Toda equation is
expressed as

(7.26)  Tnpifay = 7172 [(r - l)g;(log ) — (log &)’

- |T

+(a9—a3~—2n)(o;0—ac3w2nm~2)+z ‘i-

In the following, we restrict our discussion to the algebraic solutions. Accord-
ing to (4.7) and {4.21), we introduce V, = Vp(x;a,b) as
(7.27) %y = waFp(x — l)(a——l,"2)2+l/2x~v{afl/2)sz2-n(n+l]—I/B(x + 1)b2+1/2,

where @, = W_p 0,0, Substituting (7.27) and ) = a3 = a into the Toda equa-
tion {7.26) and noticing

|
(7.28) R T3

we find that ¥, = V,(x;a,b) are generated by the recurrence relation

1. .
(7'29) ““Z ﬂ+1p;rvl

1\ _
= [(x2 - 1) %? - (""5) e+ D2+ 02(x~ 1)+ 20+ 1Yx| V- T,



160 Tetsu Masupa

with the initial conditions ¥_; = ¥y = 1. By construction, it is easy to see that
(7.30) Valx;a,b) = Vo ul(x; 0~ n,B).

Moreover, we introduce T, = T,(x;a,b) as

(7.31) Ty = 27200 xy -2

Then, the T, satisfy the recurrence relation

2
(7.32) AT 1 Ty = x71 [(xz - 1227 - (a - %) (x+1)2

+ 82 x— P+ (2n— )| Ty Ty,

with Tp=T; = 1.
Comparing {7.21) with (7.32), we find
(7.33) Ta(x; 00 ) = Tulx;a,b),
undef the setting of (7.16), which is nothing but Theorem 7.2.
Remuark 7.3. The Toda equation (7.7} can be regarded as the recurrence
relation with respect to the translation operator
(7.34) _ Tor = 155 ThaToa,
which acts on the parameters as
{7.35) Tor (o0, o1, %2, 03, 04) = (s, oty %, a3, 0g) + (1,1, —1,0,0).
Theorem 7.2, namely (7.33), is consistent with the relation
(7.36) Too = oT3.

From the discussion of the previous sections and (7.31), it is clear that T,
for ne Z. are polynomials in 2,8 and v, and deg, T, = n(n — 1)/2 under the
setting of

(7.37) p=—(x+x").
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A. Degeneration of rational solutions

In this section, we show that the rational solutions of Py and Py given in
Proposition 6.2 and Proposition 6.6, respectively, degenerate to those of P,

d%y 3 1
As is known [23], Py (A.1) is equivalent to the Hamilton system
oH oH d
A. . ’x—-—-—-——, ":--VWA---_ ’_—_..._.q
(A2) Sn 7% p e 7
with the Hamiltonian
(A.3) H=-2p" (¢ —20p+ ugq.

The rational solutions of Sy are expressed as follows {7].

Proposition A.1. Let g = qi(1), k € Z, be polynomials defined by

o "3
ko A _
(Ad4) ;%3 —EXP(M+ 3), g =0 for k<O
We define R, = R,(f) by
Gn R 7 PP S/

(A5) R=| 1

Gpsa -0 42 3

q-nsy2 qo 1
for ne Z-o and by
{A.6) R, = (—l)"("“)/zR_,,ml,

Jor ne £, respectively.  Then,

d. R, 21 RyRe g

T = — ]
(A7) g=g g P TR
give the rational solutions of Sn for the paramerers
1
A. = —
(A.8) a=n—z

A.l. From Py to Py

It is possible to derive the Hamilton system Sy from Sy, directly, by
degeneration.  Putting
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1
(A9) t &1+ 2e°), q — —1+ 2eq, p— Es“‘p,
(A.10) Koy — %f: + x(n Ko — %8“3 + K‘{]O)’ g — 269
 _ .0
(A.11) H—»%s'zﬂ—%e'%t, ocf—f?(o)—%%—zm,

with ¢ = +1 and taking the limit as ¢ — 0, we find that the system (6.5) with
the Hamiltonian (6.6) is reduced to (A.2) with {A.3)

We show that the rational solutions of Sy given in Proposition 6.2 de-
generate to those of Sy in Proposition A.l.  According to (A.10} and (6.14}, we
set ¢ =1 and

89 = ﬁjn_"l,

(A.12) § = 21;_8_3’ K0 =0, x&o) = —m+n, >

Then, after the replacements (A.9) and (A.11), we find that Sy with (6.14) is
reduced to Sy with (A.8) in the limit as ¢ — 0. Note that s vanishes in (A.8).
Then, it is possible to put m =0 without loss of generality in this limiting
procedure.

Next, we investigate the degeneration of RY = R(ji_n = R((,rl It is obvious
that we have the following lemma. '

Lemma A2, Let jp = ﬁi’)(z), ke Z, be polynomials defined by
o«

(A.13) Zpk A —exp[Z(—z—i—E)H-i—%}.z}, pk ) Jor k<0
J=1

Then, we have
= I—)(r)' =(r)

Pn -2 Pan-1
(A.14) RO@=| -
A - BB
={r ={r —(r
AP G 4
Put
(A.15) Ao —eh, 0 = (=8B,
and
I 3 2 1
{A.16) z— 58 (1+ 2¢°1), r=5¢E + &
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Then, (A.13) yields

o ) 3
A1) Y g A = exp (zA + i}) [1 - a(j,l +nh 4 1A %A“) + 0(32)].
k=0

By using (A.4), we obtain
rif . 3
A18) & =g -ga - b‘(nqk--l + t—2 + qu_.a) + 0(e%).

Since it i3 easy to see that

dqr
(A.19) P L
we have, from (A.5),
(A.20) R = ()2 [R,, o9 o0, + 061,

where @, denotes the contribution from the third term of (A.18).
Finally, we verify the degeneration of the variables ¢ and p. The above
procedure gives
_ RS;—[!}RLHJ)
RS’r— 1}Rirj—ll}
— '('r_l)Rir—Jrll)Rr(:—mzl : — 1 RuRy 2
r (r-1y 2
RS:-)nRE;?lR&-l ) R

=] +2sg-; log Ry + 0(£%),

(A.21) R

+0(1).

Thus, from (A.9), we get (A7) in the limit as ¢ -+ 0.

A2, From P to Py

It is well known that the Hamilton system Sy is derived from Syp by
degeneration [4]. This process is achieved by putting

(A.22) t- =31 —%), g—l+eq, p—e'p
(A.23) O — =3 +09, e 6,

{0) (0)
(A.24) H — —°H - ¢, o= g;g_,jzt_g_,

and taking the limit as ¢ - 0.
We show that the rational solutions of Syp given in Proposition 6.6
degenerate to those of Sy in Proposition A.1. From (A.23), we set .
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(A.25) r=—e3 0% =nt %’ 4 —n-

Then, after replacing as (A.22) and (A.24), we see that Sy with (6.33) is reduced
to 8y with (A.8) in the limit as ¢ — 0.

Next, we investigate the degeneration of R,(,’ defined by (6.29) and (6.30).
It is obvious that we have the following lemma.

Lemma A3. Let pp = p,(:)(t), ke Z, be polynomials defined by

=) 1
(r} 2 k l}j r _{r
{A.26) Zp A =exp ; t2+§;12 , ch == 0 fork<0
Then, we have
ﬁf,’] Pg:) 2 Pz:,) 1
(A.27) R =| R
By oo Y ﬁ%’}
e - BB
Put
(A.28) A —gd, g7 = (—e)fp
and
(A.29) ts 531 - 82),  r=—g.

Then, {A.26) is wrilten as
(A.30) Zg("ﬁu" =exp| 13 + z E+e —ja+ Lisy 4 01|
3 4
By using {A.4), we obtain
r . 1
(A.31) q,(t o =gy -+ a(w]qk_l + Eqkm‘;) + O(&Z).
Thus, we have
¢ n(D))2 (AR, 2
(A.32) R = (—¢) R, +¢ —]“d'?'—!" G ) + O,

where Q, denotes the contribution from the term of gz_4 in (A.31).
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Finally, it is easy to see that (6.32) is reduced to {A.7) by the above limiting
procedures.

B. Proof of Lemma 5.4-5.8

We first note that the following contiguity relations hold by definition (2.1)
and {2.2),

o-1,d-1} d d 1, d~- d ~1 e, d
B1) P = g ), T = gt e x0T,
i o, v d—1 d
(B.2) PE: n_ pi ) Pﬁcc 1), ql((c b q(c vl qi(tc l}’

(k+ l)qfi;‘:) S d)qgf””l) cx"qicﬂ d+1)

Let us prove Lemma 5.4. Adding the (i + 1}-th column multiplied by x!
to the i-th column of jog) for i=1,2,...,j, j=m+n—-1m+n-2,....1,
and using (B.1), we get

(B4)
le—m—n+1,d-m—n+1} {e—~m—n+2,d—m—nt2) . {e-td—1} (c,d)
E 4y ! —mi—n+3 4 mn+2
(e—m—n+1,d—m—n+1} {cm—n+2.d--m—nt2) {e~1.d-1) (e,d)
Vi) Ep) I prnts —m—t-+4d
00 . qgc-—ml-—n+l.d-mwn+l] q(c--n;7u+2, d-m—n+2} .. q(c—hdl—i) qs’(':,:{!)
Rm,n - 1~ L2 A+ .
v g ] ple—mrentl d—m—nt+1} ) (r—nt—pt 2. d—m—n+2) -1, (e—1,d-1) {c. )
X Pon " Pin-1 X Py Py
x_,n_,,+gp(c—m—n+1‘d—m‘.n+1) x_m_n+gpgc—m~n+2,d—m—n+2) I |pgc—1,n’-—1} ch,d)
3
—— ——n+1. d--m— - —t~n+2,d~m-n+2 — ~1.d— d
o ,,.Hpgc a1, d-m—n+}) M ,H.zpar m-n+ m-n+2) x lpgr 1} p(lr )

Noticing that po = 1 and py = 0 for k < 0, we see that Ry, can be rewritten
as

g1 qo v Gomens? GQ-mentl

q3 q2 o om—n+d m-nt3

(35} Rm,n _ Gom—1 G1m-2 v Im—n Gm—n—1
DPn—m Pr—m+i T P—1 D
P-w-m=2 P-n-ms3 - Pi P2
P-nem Pen-m+1 D Po
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By a similar calculation, we obtain

0,0
(B.6) ROY
{¢—m—n,d—m—n) (c—m—-n+1,d—m-n+1) {e—1,d-1}) (¢,d)
g 0 IR (T P
{cm--n,d-—m—n) (¢—m—nt+t, d—m—n+1) {c-1,d-1}) {c,d)}
4G gz ’ e ! R i3
o {e—m—#t,d—m—n) (e—m—nt1,d—m—n+1) {c=1,d-1) (c.d)
_ Dom.-t tm—2 “t Gmen Don—n—1
g \C—M—R =10} . c—m—n+l,d-m-n+l 1 fe~1,d-1) ¢, d
X" rzpzn x—m n+1pgn ) X lpgn Pén }
wwiprr, (C—m—R, d e —t— c—m—n+1,d—m—n+1 -1, {c-1,d-1 c.d
X np2 ) x " n+lp£ } el x ]pg ) pg )
typn C—m-m d—m—n} e py) {cementl demeni |} -1, {c—td-1) (c,d)
xmnpo o 2y < x7py Py

We have from (B.l) and (B.2) that

(B.T) (1 +X)P,-(:’ d) - P,(gc—l,d-—]) + xpic, d—-l}’

d—1 RICY; —1.d—1
god™V + (1 gt =g,

Subtracting the j-th column multiplied by (1 +x~')"" from the (j+ 1)-th col-
umn of (B.6) for j=m+nm+n-1,...,1, and using (B.7), we get

(B8) ROV = (-1)"(1+x71y"

{c—m—n,d—m—n) {e~m—p+i,d-nt-n) fe—1,d—-2} (e, d—-1)
4 9 "t Gpentd q m—nt2
(e~m—n, d—m—n) (c~m—n+1,d—m—n) (c—1,d-2) (e, d—1}
U iy e P+ 9 m-n+d
(c—m—n,d—m—n) (c——n+1,d—m—n) {c—1.d-2) (c,d-1)
« G- D1 T Hmentd dm—n
=1, =B~ B e —1.4-2 |
=t g, M—H, d—pi—m) x_m_n+1pg; m—n+l,d—m-n} x—lpg, 1,d-2) Péf;d 1}
- (c~m-n,d~r-n~n_] —m-n+l fe—m—nt 1 d—m-n) —1, (c-1,d-2) (c.d~1)
xmnp2 P D5 e x71pg P
XM {()cfmfn,dfmfn) xwmv,‘wlp‘(’cﬁmfmrl,dmmvn} . x_]p‘()c'w],dwz) p'gc, d-1)

From (B.6) and (B.8), we obtain Lemma 5.4.
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Next, we prove Lemma 5.5. We have

(Bg) (k + I)pii‘{] - dp o d+1} (1 + ’C) {c+1, d+2}’

(d 4k + DD = dgd™ — (14 x g,

d—m—n+j—2
f
STy D o e
(j + 1)-th column of (B.6) for j=m+nm+n—1,...,1 and using (B.9),
we get

Subtracting the j-th column multiplied by %

ﬁ(d-m—n+2z'—2) f]{2k+ 1)
(BAO) ROY = (=)™ (1 +x)™" "am = e

-+

[[e—m—n+j-1)
j=1
—{e—mi—n, d—#t— — =, d—m—n—1 {(e—2,d-3 o-1,d-2
q(l =) qgf e dmenl) qu n+3) q[mm n+2}
~fo—m—nd—m-n —m—n, d-m—n—1 2,d-3 r-1,d—-2
qg mod e qgc " ) q{—c —n+5) Efm—n—H-)
o (mtt—tt, d—r i, d— it 1 -72, -3 1, d-2
o (e=mt—nt,d—m1— — —mi—,d—mi—n—1 - 2,d-3 w1, d-2)
() o L )
ﬁg‘-—m—n,d—mmn) x,m_,,.,_[pgcfmfn,d—m—n—l) xggpgc—z,d%i) pg«-],d—z)
j([;:_m—n,d-—m—n) xvm7n+lpgf‘m""od*m"’*—l) x,|p{1c-—2,d—3) pgcml,d—Z)
Lemma 5.5 follows from (B.4) and (B.10).
Note that we have
ol 1d+1 1,d+2
(B.11) (ke + DD = —dxplE Y (e — d)(1 4+ x)plTHD,

(d+k + l)q'(;:ff:) qu‘_:lt ,d+1} _ (C - d}(} 71)4 (+1 d+2)

Tt is easy to see that Lemma 5.6 is proved similarly to Lemma 5.5 by using {B.2)
and (B.11).

The proof of Lemma 5.7 is given as follows Adding the {j — 1)-th column
multiplied by x to the j-th column of R,,.,,, for j=m+nm+n-1,...,2, and
using (B.1), we get
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x“]q-l'— 41 S Q—m—ntd G—m—nt+3
x_lq; 93 o Yemnts —m—nitS
(B.12) RO o | ¥ Bt Dot Gmeni2 et
il Prm Pr—m+v1 " Pm-2 Pn-1
.i_
p—n~m+4 p—n-‘m+5 t P2 3
P:r,,umAg Ponems3 Po P1
We have from (B.1}
d od ~1.d-1 —1,d-1
(B.13) P = x2 ) = AT i,
o d -2 {ed SR —1 {c—1,d-1
4o 2D = gl g 1y,

Then, subtracting the {j — 1)-th column multiplied by x from the j-th column of
Rﬁ,,__f;_” for j=m+nm+n—1,...,2, and using (B.13), we get

(B.14)

a7 x7tg_y - xq o X il — Xt
q7 x_lqi — Xg3 o x—lq—m—n-i-fi — X —m—n+5
- ~1 _
REL-D | et X Gmd = Xgam X Gt~ X
i Prm Pl — -\’an-m—l s Pt — szzn—a
_ 2 . i
Popemrs P—n—mt5 — X Pop—my3 - P3— X°pr
- 2
p—n—-m+2 Pnwm+3 — XPpem+i e 2 B x2p__;

Noticing that p; =g, =0 for k <0, we obtain

(B.15)
““xilq; ql qﬂ PRV q_m_n+3
_x—l(q; + x_zlh_) g3 g2 U empt5
REL = () Mg XY Gt Gamer  dmnid
m,n Pomt -+ x2n~2p:n_m+2 Pr—mtl  Puome2 0 Pl
P:n—m-i-d. + xzp:n_m+2 Ponem+s Ponmit - 73
p:”*””z P-n-m+3 Pon-mtq4 * - P
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The first half of Lemma 5.7 is obtained from (B.12) and (B.15). Moreover, we
have

(B.16)
. 1 - 2 -2
—x"1q, g - xg - X Tq- T et d T X T s 2
RS R - _ -2 —2
-x'q; xlgy—x g2 g1 — X" e Gemens6 = X Gmonia
b -1 e 2 2
D X o 1 X g2l = X T qun-2 2m-1 T X “{zm-3 T Im—n+2 = X “nr-n
- - 2 .2
FZ—— Pr-mt1 — XPn—m Prn—m+2 = XPr-m - Pin-y — X P13
- - -yl ... —x2
Plpemes DP-n—mts = XPnemts Pew-mi6 ™ X Pon—mid Py — X
- 2 2
Pamss  Ponemid 7 XPon—msd P-n—mid X Popomil T PL—Xp

Subtracting the 2'nd column from the 1'st column, and using (B.1}, we get

(B.17)
el ~1 -2 2 —x2
X q X g1 X do qL—x "¢ o fepenrd T X T —moni2
- - 3 2 -
—xlgn 2lg - xT g - xq et~ X Gmpad
1l —1 2 ) _ 2
D=2 X a1 X Jam—1 — X Q-2 G2m—t — X "¢im-3 itz — X “dm—n
- . 2 ’2 ¥
Al g Pr-m+1 — XPu—m Pn—m+2 = X Prem - Pip-1 — X Pa-3
XPg—m+d  P-n-ms5 = XP-pmid Pen-m+6 — xzpfnme no P XZP}
XPn-m+2 P-n-m+3 — XP-pemt2 P-n-m+s Izp—n—mz T P11 X?‘Pfl

— 21y RO,

which is nothing but the second half of Lemma 5.7.
From the above discussion, it is easy to verify Lemma 5.8.
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