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Abstract

A determinant formula for a class of algebraic solutions to the Painlevé VI equation (Pyr) is presented.
This expression is regarded as a special case of the universal characters. The entries of the determinant are
given by the Jacobi polynomials. Degeneration to the rational solutions of Py and Pryr is discussed, using
the coalescence procedure. The relationship between Umemura polynomials associated with Py1 and our
formula is also discussed.

1 Introduction

Enlarging the work by Yablonskii and Vorob’ev for Pyp [28] and Okamoto for Pry [23], Umemura has introduced
special polynomials associated with a class of algebraic (or rational) solutions to each of the Painlevé equations
Prir, Pv and Py [27]. These polynomials are generated by the Toda equation that arises from the Backlund
transformations of each Painlevé equation. It has been also found that the coefficients of the polynomials admit
mysterious combinatorial properties [15, 26].

It is remarkable that some of these polynomials are expressed as a specialization of the Schur functions.
Yablonskii-Vorob’ev polynomials are expressible by 2-core Schur functions, and Okamoto polynomials by 3-core
Schur functions [7, 8, 16]. It is now recognized that these structures reflect the affine Weyl group symmetry,
as groups of the Backlund transformations [29]. The determinant formulas of Jacobi-Trudi type for Umemura
polynomials of Py;; and Py resemble each other. In both cases, they are expressed by 2-core Schur functions,
and entries of the determinant are given by the Laguerre polynomials [5, 17].

Furthermore, in a recent work, it has been revealed that the entire families of the characteristic polynomials
for rational solutions of Py, which include Umemura polynomials for Py as a special case, admit more general
structures [12]. Namely, they are expressed in terms of the universal characters that are a generalization of the
Schur functions. The latter are the characters of the irreducible polynomial representations of GL(n), while the
former were introduced to describe the irreducible rational representations [11].

What kind of determinant structures do Umemura polynomials for Pyt admit? Recently, Kirillov and Taneda
have introduced a generalization of Umemura polynomials for Pyt in the context of combinatorics and have
shown that their polynomials degenerate to the special polynomials for Py in some limit [9, 10]. This result
suggests that the special polynomials associated with a class of algebraic solutions to Pyr are also expressible
by the universal characters.

In this paper, we consider Py
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where Koo, Ko, k1 and  are parameters. As is well known [21], Pyt (1.1) is equivalent to the Hamilton system
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with the Hamiltonian
H=q(qg=1)(g=1)p* = [rolg = 1)(g =) + k1g(g = 1) + (6 = V)g(g = D]p+ x(g — 1),
KR = 2 Ko K1 - - 4]400.

In fact, the equation for y = ¢ is nothing but Pyp (1.1).

The aim of this paper is to investigate a class of algebraic solutions to Py1 (or Syi) that originate from the
fixed points of the Backlund transformations corresponding to Dynkin automorphisms and, then to present its
explicit determinant formula.

Let us remark on the terminology of “algebraic solutions”. Py admits several classes of algebraic solutions [1,
2, 3, 13, 14], and the classification has not yet been established. In this paper, we concentrate our attention to
the above restricted class of algebraic solutions.

This paper is organized as follows. In Section 2, we first present a determinant formula for a family of
algebraic solutions to Pyt (or Sv1). This expression is also a specialization of the universal characters, and the
entries of the determinant are given by the Jacobi polynomials. The symmetry of Py is described by the affine
Weyl group of type Dz(ll). In Section 3, as a preparation for constructing special solutions, we present a symmetric
description of Backlund transformations for Pyr [6, 20]. We also derive several sets of bilinear equations for the
7-functions. In Section 4, starting from a seed solution on fixed points of a Dynkin automorphism, we construct
a family of algebraic solutions to Py (or Syi) by application of Backlund transformations. A family of special
polynomials is extracted as the non-trivial factor of the r-function, and our algebraic solutions are expressed
by a ratio of these polynomials. A proof of our result is given in Section 5.

As is well known, Py degenerates to Py, ..., P; by successive limiting procedures [25, 4]. In Section 6, we
show that the family of algebraic solutions to Py given in Section 2 degenerate to rational solutions to Py and
Pip with the same determinant structures. Section 7 is devoted to discussing the relationship to the original
Umemura polynomials for Pyr.

2 A determinant formula

Definition 2.1 Let py = p](:’d)(m) and q; = q](:’d)(m), k € 7Z, be two sets of polynomials defined by

DoV @ = Glase,diN), p" () = 0 for k <0,
k=0

(2.1)
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respectively, where the generating function G(z;c,d; ) is given by
Glase,d; ) = (1= (1+20)°. (2.2)
For m,n € Zyo, we define a family of polynomials Ry n = Rmn(x;c,d) by
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For m,n € Zgo, we define Ry n by

Rmn=(—1)"0"*V2R_ 1 Rpn=(=1)"0+2R . (2.4)
Theorem 2.2 We set
Ryn(z;c,d) = Spon(z;a,b), (2.5)
with 1
c:a+b+n—§, d=2b—m+n. (2.6)

Then, for the parameters
Koo =b, Ko=b—m+n, kKi=a+m+n, 6H=a, (2.7

we have a family of algebraic solutions of the Hamilton system Sy,
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with % = t.

This theorem means that a class of algebraic solutions of Py1 is expressed in terms of the universal charac-
ters [11], which also appear in the expression for a class of rational solutions to Py [12]. Note that the entries
pr and g are essentially the Jacobi polynomials, namely,

péc,d)(x) — P[Ed—l,c—d—k‘)(_l _ 213) (‘29)

Applying some Bécklund transformations, which can include the outer transformations given in (7.14), to
the above solutions, we can get other families of algebraic solutions of Pyj. Some examples are presented in
Corollaries 6.3 and 6.9, so we omit any details here.

3 A symmetric description of the Painlevé VI equation

Noumi and Yamada have introduced the symmetric form of the Painlevé equations [18, 19, 16]. This formulation
provides us with a clear description of symmetry structures of Backlund transformations and a systematic tool
to construct special solutions.

In this section, we present a symmetric description for the Béacklund transformations of Py [20]. After
introducing the 7-functions via Hamiltonians, we derive several sets of bilinear equations.

3.1 Backlund transformations of Py

We set
fo:q—t, f3:q_1; f4ZQa f2:pa (31)

and
ag =10, @1 =Ke, Q3=K1, Q4= Kg. (3.2)

Then, the Hamiltonian (1.3) is written as
H= f22f0f3f4 — (o — 1) fafa + asfofa+ aafofa]fo + as(ar + a2) fo, (3.3)

with
ag+ a1 +2as+az+as =1, (34)



and the Hamilton equation (1.2) is written as

fa=2f2fofsfa — (a0 — 1) f3fa — asfofa — asfofs,
fo=—=fofs+ fofa+ fafa)f3 (3.5)
+(o = D)(fs + fa) + az(fo + fa) + aa(fo + f3)]f2 — az(ar + a3).

The Backlund transformations of Pyt are described as follows [6, 20],

si(ozj_) = a; — a;;04, (1, =0,1,2,3,4) (3.6)
so(fi) = fi + jﬁ— si(f2) = fo— jﬁ— (i =0,3,4) (3.7)
Sy ! g < a3 <> 4,
Jo(fafo+ as) tt-1) Ja f3
f2_>_7t(t—1) : fo—>7f0 : fsé(t—l)%, f4—>t%, (3.8)
Se - ap & a3, 1 & (4,
_Jalfafs + a2) VL _Jo t
.fZ_) 1 ) f0_> tf4’ f3_) f4’ f4_) f4’ (39)
S7 Qg > 4, o1 &> a3,
J3(fafa + as) Ja -1 Jo
fZ_)TJ fﬂﬁ_(t_l)ﬁa f3_)_TJ f4_>ga (310)

where A = (aij)ij:o is the Cartan matrix of type Dil):
a; =2 (:1=0,1,2,3,4), ayy=a;2=-1, (j=0,1,3,4), a;; =0 (otherwise). (3.11)
These transformations commute with the derivation ’, and satisfy the following relations

2 . .
si=1 (1=0,...,7), sisas; = sas;sa (1 =0,1,3,4),
555{0,1,2,3,4} = 5${1,0,2,4,3}55, 5$65{0,1,2,3,4} = 5{3,4,2,0,1}56, 575{0,1,2,3,4} = ${4,3,2,1,0}57; (3.12)
S586 = S6S55, §587 = 8785, SgS7 = 8786,

This means that transformations s; (i =0, ..., 4) generate the affine Weyl group W(Dé(ll)), and s; (1=0,...,7)
generate its extension including the Dynkin diagram automorphisms.

3.2 The 7-functions and bilinear equations

We add a correction term to the Hamiltonian (3.3) as follows,

t 1
Hy=H+ 1 [1 + dajag + 4ol — (as + oz4)2] + 2 [(a1 + oz4)2 + (a3 + oz4)2 + 4a2a4] . (3.13)

This modification gives a simpler behavior of the Hamiltonian with respect to the Backlund transformations.
From the corrected Hamiltonian (3.13), we introduce a family of Hamiltonians h; (i = 0,1,2,3,4) as

t t—1 1
ho=Ho+ 7, hi=s5(Ho) = ——, ha=ss(Ho)+ 7, ha=s7(Ho), ho=hi+si(h). (3.14)
Then, we have
si(hj) =h;j, (i#7],1,j=0,1,2,3,4), (3.15)
s0(ho) = ho — ao(t - 1)E, s1(h1) = hy — a1 fs,
fo (3.16)
t—1 fo :
Sg(hg) = h3 + a3 s 84(]14) = h4 + ag—.
f3 Ja



Moreover, from (3.14),(3.16) and the equations (3.5), we obtain

!

i (he) + hi] = [s1 () + b = 22, (i =0,3,4)

fil P (3.17)
[s2(h2) 4+ ho] — (ho + h1 4+ ha + ha) = f_2 — 5(1 —1).
2
Next, we also introduce r-functions 7; (i =0,1,2,3,4) b
/
hi =, (3.18)
T

Imposing the condition that the action of the s;’s on the 7-functions also commute with the derivation /| one
can lift the Backlund transformations to the r-functions. From (3.15) and (3.17), we get

si(m) =15, (i#4, 6,7 =0,1,2,3,4), (3.19)
and
T T TOTIT3T. T T
s0(10) = fo2,  si(m1) = =, so(m) =73 fo B sa(re) = fa—,  sa(m) = fa—, (3.20)
To 1 9 T3 T4
respectively. The action of the diagram automorphisms s5, s¢ and sz are derived from (3.14) as follows,
55 o = [t = D))in, m = [t —1)] ",
T3 tTE(t—1)Try, Ty tF(t—1)" 77, (3.21)
Ty — [H(t - 1)]_%forv,
Sg ! To—)l't%Tg, T3—)—l't_%T0, (al —)t_%T4, 7'4—)'5%7'1, TQ—)t_%leTg, (322)
57 T (=1)"F(t— )i, o (=D)iEt—1)"%n,
o (=)E(E—1)"Fm, o (=1)7EE - 1), (3.23)

Ty — —i(t — 1) 2f3T2.
The algebraic relations of the s;’s are preserved in this lifting except for the following modifications:
$isa(m) = —s2s;(m2) (1 =05,6,T), (3.24)
and . . . .
S556T{0,1,2,3,4} = {1, =1, =1, =1, Z]’56557'{0,1,2,3,4}’
$557T{0,1,2,3,4} = {8, =1, —1,4, —1}5755T{0,1,2,3,4}, (3.25)
5657T{0,1,2,3,4) = {—%, =4, —1,4,1}57567(0,1,2 3 4]-

Note that one can regard (3.20) as the multiplicative formulas for f; in terms of the 7-functions,

_ Tos0(70) _ 7353(73)

T454(74) 1 71s1(7)s2s1(T1)
— 3 — ) > f2 =t7 ——
T181(T1) T151(71)

T151(71) TOT3T4

fi= (3.26)

From these formulas, it is possible to derive various bilinear equations for the 7-functions. First, the constraints
for the f-variables

fo=fa—1t, fa=fs—1, (3.27)
yield
T151(71) + T353(m3) — T4s4(74) = 0,
T050(70) + t7151(m1) — Tasa(ma) = 0,
715981 (71) + T38253(73) — Tas254(74) = 0,

T(]SQSO(TO) + t118981 (Tl) — T48284(T4) = 0.

(3.28)



The Backlund transformations (3.7) lead to the following sets of bilinear equations,
agt™ T raTy — so(m0)s251(7m1) + T0s0s2s1(m1) =0,
1
Oé()t_i(t - 1)7’17’4 — 80(7'0)8253(7'3) + T0505253(73) =0,

1
a0t2 T1T3 — 80(7'0_)8284(7'4_) =+ T0808254(7'4) = 0,

_1
ait” 27314 + s1(7)s2s0(70) — T1515250(70)

( ( ( 0,
01175_%T0T4+51(T1 5983(m3) — T 818953(73) = 0,
( ( ( 0

1
a1t” 21973 + 51(71)52854(74 T1515254(T4)

) —

) —

) —
ast” 3 9Ty — S3(73)s251(T1) + T3s38251(™1) = 0,
Oé3t_%(], — t)T1 74 — s3(73)s250(T0) + T3835250(T0) = 0,

Clgt_%ToTl — 83(7'3)5284(7'4) =+ 7'3838284(7'4 =0

)
a4t_%7-07'3 — 54(7‘4)8251 (7'1) + T4848281 (Tl) =
—aat?TTy — 54(7a)s250(70) + Tasa5250(70) =

—OZ4t 2’7'07'1 — 84(7'4)8283(7'3) =+ T4S48253(7'3

1
aot” 21314 — S1(T

sa51(T ;

-1
QQt 27973 — S1(7T1)8284 S9 81(7'1 s

)=
(71)s250(70) + s0( )=0
ot~ E Ty — s1(m1)s253(73) + s3(73)s251(m1) =0,
(71)5254(7a) + s4( )=0
)s283(73) + 53 )=0

— e S

Oé2t_%7'07'1 — 54(74)5283(73) + s3(73)s254(7a ,
O1212T1T3 — s4(T4)s250(70) + so0(70)s254(74) = 0,

ozzt_i(t — 1)mi 74 — s3(73)8250(70) + s0(70)s253(73) = 0.

3.3 The 7-functions on the weight lattice of type D,

Let us define the following translation operators
T3 = 53505254515256, 114 = 5451525350525,
T34 = 5§3895051525385, T34 = 545352515082S55,

which act on parameters «; as

Tos(ao, a1, as, ag, ag) = (g, ay, @z, as, aq) + (1,0, -1,1,0),
T14(ao,al,a2,a3, ay) = (@, a1, a3, a3,a4) + (0,1,-1,0,1),
Tha(g, a1, @z, ag, ag) = (ag, a1, as, ag, aq) + (0,0,0, 1, =1),
Ts4(vo, a1, ag, a3, aq) = (o, a1, as, az, aq) + (0,0, -1,1,1),

and generate the weight lattice of type Dy4. It is possible to derive Toda and Toda-like equations.

Proposition 3.1 We have

—_

S8
—
e~

T03(7'0)T03 (7'0) _% [(t — 1)

(1 4 a4)® +

o) —

Tia(r0) T (o) = =t~ 7 (log 70)" — (log 7) +

—
—~
~~
|
—_
~—
S

~ o t—
Tsa(10) 55" (10) = <T

Taa(0) s’ (70) = (%)

(log 70)" +

—_
N
N|=

1
(a 3-“4)2—5]702,

1
— (a3 + a4) — —] Tg.

(log 7o)’ + 5

(NI
| e B e— |
Sl S
N

log )’ — (log )" + = (1 — ag — ag)z +-

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)



Proof. Note that

d 1 1
Ehn = —fifafa+ (asfa + aafs)fo — Z(Ols + a4)2 + 3 (3.37)
Using (3.6),(3.7),(3.20),(3.22) and (3.34), we have
1 _1 d 1 5 1] 5
T03(T0_)T03 (To) =12 (t — I)Eho — ho =+ Z(l — Qg — ag)‘ =+ 5 T6, (338)
|

which gives the first equation in (3.36). The other equations are obtained in a similar way.
Due to the algebraic relations (3.24) and (3.25), the action of these translation operators on the 7-functions

is not commutative. For example, we have

TosTha(m0) = —T14To3(70), T03f34(70) = l'f§4T03(To);

To3T34(m0) = 1134T03(70), Tlif34(70) = —iT34/T14(T0), (3.39)
T14T54(m0) = —tT34T14(10), T34T54(70) = T3aT34(70).
We introduce T-functions on the weight lattice of type Dy as
Tk,l,m,n = T;4f£T{4T§3(TO)ﬂ k; la m,n S 7. (340)

In terms of this notation, the 24 7-functions in the bilinear equations (3.28)-(3.33) are expressed as follows,

70,0,0,0 = To, Ti,—1,—1,0 = —[t(t — 1)]%7'1, T1,0,-1,-1 = ity T1,0,0,—1 = i(t — 1)%7'4,
To,0,—1,-1 = —so(m0), T1,10-1 = [t(t— 1)]%81(7'1),
T10,0,0 = it%53(7'3), Tio-1,0=1(— 1_)%54(7'4_), (3.41)
Ti,—1,-1,—1 = $250(70), To,0,0,—1 = —[t(t — 1)]%8281(7'1),
70,—1,0,0 = —it%5253(7'3), To,—1,-1,0 = i(t — 1)%5254(7'4),
Ti1,0-2 = —s15250(T0), T1,-1,0,0= —s3s250(70), T —1,-2,0= S45250(70),

IR

T2707_17_2 = [t(t - 1)]%808251(7'1), To0.1.0 = [t(t - 1)]%838281(7'1),

T0,0,—1,0 = —[t(t — 1)]%848281(T1),
- 1 1 (3.42)
Ty _1,-1,-1 = —itTs95353(73), To11,-1=it7515953(m3), 7To,—1,-1,1 = —ilT845953(73),
Ty _1,_9,-1=1i(t — 1)%505254(T4); T0,1,0—1 = —i(t — 1)%515254(%1);

T07_17071 = 1(f — ],)%838284(7'4).

The Toda equations (3.36) yield

Tk+1,lmnTk—11mmn
1 d l—ag—az—2k—m—mn)> 1
=17z I:(f — ])E(]Og Tk:7l7m7n)l - (10g Tk‘,l,m,n)l + ( 0 2 4 ) + §:| Tlgyl,m,,n)

Tel+1,mnTk l-1,mmn

1 d a1+ aqg+ 20 —m+ n)? 1
= —1"2 I:(‘t—l)%(log’rkylymyn)/—(longJym’n)l-l-( ! 4 4 ) +§:|

t—1 3 d as—as+k—14+2m?% 1
Tk7l7m+17n7—k7l7m_17n = (T) [E(log Tk7l7m7n)l + ( § - 4 ) - 5 Tl?yly"hﬂ.)

t—1\?[d as+as+k+14+2n)? 1
Thlmnt1Th lmn—1 = <T> [E(log Thlmn) + (a5 + a4 1 ) 3 Tlf},}m’n.



It is easy to see from (3.26), (3.40) and (3.41) that we have

Tk lmnTek+2,1,m—1n-1

Tl ik 1 1
T3y T35 T14To5(fo) =12 (t = 1)2 ;
Te4+1,01-1,m—-1nTk+1,14+1,m n—1

n Amml ik _ 1 Tk41lm—-1n—-1Tk+11mn
TR T3 T, To5(f3) = (1 —1)2 )
Te+1,0l=1,m=1nTk+1,l41,mn—1

(3.44)
f% Te4+1,0mn—-1Tk+1,l,m—1n ’

n m il k
T%4T%4T]4T03(f4) )
Tk+1,l—1,m—=1,nTk+1,l+1,mn—1

= 1 Tp41,l1-1,m—-1,nTk+1,l4+1 —1Tk,l -1
T§4T£T{4T§3(f2) — —(t _ 1) 5 +1, , 1M n'k+1,141,m,n 6, N )
TelmnThk41lm—1n-1Tk+1,l,mn—-1

4 Construction of a family of algebraic solutions

It is known that one can get an algebraic solution of Painlevé equations by considering the fixed points with
respect to a Backlund transformation corresponding to a Dynkin automorphism [27, 16]. Tteration of Backlund
transformations to the seed solution gives a family of algebraic solutions, which are expressed by a ratio of
some characteristic polynomials, such as Yablonskii-Vorob’ev, Okamoto and Umemura polynomials. These
polynomials are defined as the non-trivial factors of 7-functions and are generated by Toda type recursion
relations.

In this section, we construct a family of algebraic solutions to the symmetric form of Pyt by following the
above recipe.

4.1 A seed solution

Consider the Dynkin diagram automorphism sg to get a seed solution. By (3.9), the fixed solution is derived

from
00 = s, an = s, fi=— fQZ_M. (4.1)

fa’ t

Then, we obtain

(010,011,6!2,013,04) - <a b l_a_b;aab>a

2 1 / (4.2)
fo=x—2% fa=x—1, fi=u=, f2:§<a+b—§>m_1, x? =t,

as a seed solution, which is equivalent to the following algebraic solution of Syr,

T (4.3)
==z ==-la —= )= .
q T 9 ) ) _
for the parameters

Koo = b, Ko=0b, kK1=a, 60=a. (4.4)

Remark 4.1 One can choose another diagram automorphism to get a seed solution. Such a solution can be
transformed to (4.2) by some Bdcklund transformations. The seed solution (4.2) is the simplest one.

Remark 4.2 Hitchin has discussed some algebraic solutions of Py in [3]. The seed solution (4.2), with special
values for the parameters, appears as one of them. Also, part of the algebraic solutions derived by Andreev
and Kitaev [1] is expressible by rational functions of \/t and \/t — 1, and can be transformed to (4-2) by some

Bdacklund transformations.



Under the specialization of (4.2), the Hamiltonians h; and 7-functions 7; are calculated as

ho = 176 +é(2a+2b—1)( a—2b—1)z+ 116(8a2—8a+3+8b2_),
hlz—%z -|-8(2a-|-2b—1)(2a—2b-|-1).z-|— (8a +8b% — 8b +T7),
hg:—émz—i-i(lla —4b2—1)m+1(8a + 862 4+ 7),
hs = 136 +é(2a+2b—1)(2a—2b—1)$+ —(8a* — 8a + 7 + 8b?),
h4:13—61: -|-8(2a-|-2b—1)( a—2b+ 1)+ 1(sa + 8b% — 8b + 3),
and

= (& — D) meti et e g )Py

(1‘ 1)a2+l —a?-b? +b——(m+1)b —b+1

=(x— 1)2a2+%$ 2a%—-2b2 ‘?(:c—i—l)% +

= (o — D)ot igmatrasti=F g 4 )P

T4_(T_1)a et —b2+b——($+])b —b+1

up to multiplication by some constants, respectively.

(4.5)

(4.6)

Using the multiplicative formulas (3.26) and the bilinear equations (3.28)-(3.33), we get the 24 r-functions

n (3.41) and (3.42). These are expressed in the form

G241 2 f2_1 _1 _1 B2yl
Tedmn = Ok tmn(e — 1)7 Hepm @0 ammiD=annb )k (p 4 1),

i=a+k+——, b=b+1+ OB

where ok | m n are given as follows,

1/1
0’0,0,0,0—1 01,0,0,0—2 Uo,—1,0,0:—§ 5—61—5 ) 01,—1,0,0:—5 §+G—b )

1/1 i /1 .
J0,0,-1,0 = 7 §—a+b , 00,—-1,—-1,0= ——a—b , 01,0-1,0=1, 01,—1,—1,0:—1,

1/1
co00-1=5lz—a—=b), oo10-1=

1t

1
§—a+b, 01,00-1=1%, 01,1,0-1=1,

. 1/1 1 (1
010,-1,-1=1% 0O20-1-1=1, 01,—1,—1,—125 5—0—17 ) 02,—1,—1,—1=§ §+a—b )

i[/1 1 |
70,-1,01 = 5 <§—a—b> —<§+a—b> ,

1 1 1 |
0'0707170:—5 <2+(I—b>l‘— <§—(I—b> y

i 1 1 |
J0,1,1,—-1 = 5 <§ a -+ b> <§ —a— b) s

1 1

=g |(ga=b) e+ (5-ar0)]

(4.7

(4.8)

(4.9)
(4.10)

(4.11)

(4.12)

(4.13)



1 1 1
01,1,0,—2=—§ [(——a—b) z+ <§—a+b>] ,
1 ; 1 ) (4.14)
0’1,—1,—2,0—5 ——a-+ r+ 5—a_ ,
02,-1,-2,-1 = —% [(%—f-a—b) z— (% —a—b>] ;
4.15
- _1 1 5 ]+ ; ( )
20-1,-2= 5 5—(1— xr — 2 a— .

4.2 Application of Backlund transformations

Assume that 75 ;m  are expressed as in (4.7) for any k,{,m,n € Z. Substituting ag = az =a, a1 = a4 = b
and (4.7) into (3.43), we obtain the Toda equations for oy i m . The first two equations yield

40’k+1,l,m,n0'k—1,l,m,n = |:($ + 1)22)2 - (C~L + g)(a - g)i| Ok lmmn ' Ok lmmn,

B B (4.16)
40’k,l+1,m,n0k,l—1,m,n = — |:($ - 1)22)2 - (CNL + b)(a - b)i| Ok lmmn * Okl mmn,
where we denote J
D -0 =x(60—6*)+60, &= d—o-. (4.17)
x
The others are reduced to
40k 1 m4100k Im=1,n = (& — D)x(z + 1)(0k 1, m,n0k,1,mn — "Tz,z,m,n) + (327 — 1)k tmnOk Lmn
—|—{|:<d—ﬂ-|-m— %) (d—i)-l—Bm-l—%) —n(n+1)]m
o 1 o 1 9
+ a—b+m—§ a+b+n—§ O Lmons
(4.18)

4o'k,l,m,n+10'k,l,m,n—1 = (1‘ - 1)1‘(1‘ + 1)(&k,l,m,n0'k,l,m,n - d’£717m7n) + (31‘2 - 1)&k,l,m,n0k,l,m,n

N - 1
+{[(d+b+n—%)<d+b+3n+§>—m(m+1)]x
s 1 s 1 9
+ a+b—|—n—§ a—b—l—m—§ Ok lmns

a=a+k, b=b+1l (4.19)
Toda equations (4.16) and (4.18) with the initial data (4.8)-(4.15) generate 0k imn = Okimn(z;a,b) for
k,l,m,n € 7Z. From (3.44) and (4.7), we see that the ratio of o4 ;m » gives a family of algebraic solutions

to the symmetric form of Pyry.
Noticing that we have

with

~ 1 ~ ~
T]I4T(§c3(o‘0a 1, X2, A3, 0‘4) = <a; b; 5 —a— ba a’a b) ) (420)

under the specialization (4.2), we see that the action of Tps and 714 on the parameter space is absorbed by a
shift of the parameters a and b, respectively. This suggests that we do not need to consider the translations Ty3
and Tj4 in order to get a family of algebraic solutions of Pyjy.

To verify this, we put

Ok lmmn = WkimnVhlmn, Wkimn=wkimn(ab), kl mneZ. (4.21)
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The constants wk ;.m,» are determined by recurrence relations as follows. With respect to the indices k and I,

wg1,i,; with (i,7) = (=1,=1),(=1,0), (0, —=1),(0,0) are subject to

IARRS]

T N . |
A0p 4114, jWk—1,0i5 = — <‘1 —b+i— §> <‘1 +b+j— §> wﬁ,l,i,j’

. . (4.22)
AWk 1411, j%k 1= 1,1, = (fl —b+i-— 5) (d +b+7 - 5) Wk i
The initial conditions are given by
! : i (L LY - (4.23)
= =1 _ = | =—a— _ = —— | = — X
w0,0,0,0 , W1,0,0,0 wo,—1,0,0 5\3 ¢ y W1,-1,0,0 slgta ;
171 Al .
w0,0,-1,0= 3 <§ —a+ b) , Wo—1,-10= 7 <§ —a-— b) , wio0-10=1% wi_1-10=—1, (4.24)
=1 =1 L] b -1l +b (4.25)
wi00-1=1% wiio-1=1 wooo-1=35{5—a ;o won0-1=—g5 5 —a ) .
1/1 A
wi0-1,-1 =1, wso-1,-1=1 wi_1_1-1= 5 <§ —a— b) , Wa_1,-1-1= % <§ +a— b) . (4.26)
Note that these imply
Vii-1,-1=Vei-1,0=Vies0-1=Ves00=1 kIlEZ. (4.27)
For the indices m and n, we set
R LY 5
8wk I, m+1,nWkIm-1n = | G —b+m — 5 ) “kimn
) (4.28)
8Wk,l,m,n+1wk,l,m,n—1 = <d + E +n - §> wi,l,m,n'
Thus, wk | mn, are determined for any k,[,m,n € 7Z. As a result, the functions Vi;mn, = Viimn(2;a,b)
introduced in (4.21) have a symmetry described in the following lemma.
Lemma 4.3 We have
Vi t,mon (25 0,0) = Vo o,mn(z;a+ kb4 1). (4.29)
Proof. The Toda equations (4.18) are reduced to
Llazh D, Vi
2 a—bo+m— 5 kilm+1nVkilm—1n
= (2= Da(@+ D)V tmnVeimn = Vitmn) + 327 = 1D)Vi tmn Ve tmn
. 1 - 1 . 1
+{(a—b+m— 5) [(d—b+3m+§> x4+ <a+b+n— 5)] —n(n+1)m}Vk2’l’m’m
(4.30)

17, & 1
5 <lI +b+n— 5) Vk,l,m,n+1vk,l,m,n—1
= (1‘ — 1)1‘(1‘ =+ 1)(Vk}l,m,nvk,l,m,n - szylymyn) + (3$2 - I)Vk,l,m,nvk,l,m,n

+{<d+i)+n—%> |:<d+5+3n+%>x+ (&—B-l—m—%)] —m(m-l—l)m}Vﬁhmm.

Then, we see that Vi im n(2;a,b) satisfy the same Toda equations as Vi 0,m,n(z;a + k,b+ (). Since the initial

conditions are given by (4.27), we obtain (4.29).
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On the other hand, we have from (3.44), (4.7) and (4.21)

= Ok lmmnOk+2]lm-1n-1
n pmal ik _ AmnYk432,1, )
T35 114 T05(fo) = 2(z—1)
Ok411-1,m—-1,n0k+11+1,mmn—1
= a(e—1) Wk I,mnWk+2,l,m=1n-1 VigmnVigzim—1n-1 (4.31)
WEH1,1-1,m—1,n%Wk+1,1+1,mn—-1 Vk41,1-1,m—1,nVe41,I+1,mn—1
The ratio of the w’s is calculated as
Wik I mnWk4+21lm—-1n-1 - _1 (4 32)
Wek+41,1-1,m—1n%Wk+1,l4+1,mn-1
Similarly, for fs, fa and fa, we get
WE+1 1l m=1n—1Wk+1,1mn -1 WE+1 1l mn—1WEk+1 I m—1n -1
- ) - )
WE41,1-1,m—-1,n%Yk41 141,mn—-1 WE41,1-1,m—-1,n%Wk4+1,14+1,m n—1
4.33
WE41,1-1,m—1,nWk+1,14+1,m,n— 19k I, m,n—1 17, 1 (4.33)
+1,0-1, ) +1,i+1,m, 6,1, =——la4+b4+n——
WE I mnWkt1 1l m—1n—1Wk411mn—1 : 2

The above discussion means that, for our purpose, we can set k¥ =1 = 0 without loss of generality. Hence, we
denote V4 0,mn = Vin,n-

Moreover, we observe that Vi, , = Vi, n(2;a,b) (m,n € Z) are polynomials in a,b and z with coefficients in
7.. We will show this in the next section by presenting the explicit expressions.

Proposition 4.4 Let V,,, , = Vi n(2;a,b) (m,n € Z) be polynomials generated by Toda equations,

! b ! V, Vi
5 a—b+m— 5 m+1l,nVm=1n
= (I - 1)33(33 + 1)(Vm,n Vm,n - Vn21 n) + (3332 - 1)va,n Vm,n

—}-{(a—b—{—m—%) [(a—b+3m+%>x+<a+b+n—%>] —n(n—{—l)x}VﬂQW,

(4.34)
1 1
5 a+b+n_§ Vm,n-}—lvm,n—l
= (&= Dz(z +1)(Vimn Vinn = Vin ) + (327 = 1) Vi o Vinyn
1 1 1
+{<a+b+n—§> [<a+b+3n+§>x+ <a—b+m—§>] —m(m-l—l_)m}Vn:im,
with the initial conditions,
Vo 1 =Voo=Vo1=Voo=1. (4.35)
Then,
Vinn (2;0,0) Vi1 n_1(2;a + 2,0
fO — I(l _ 13) 7' ( ) 1, 1( : ) ,
Vim—in(z;a+ 1,0 — 1)V noa(25a+ 1,04 1)
m—1n—1(; 1,0) Vi (2; 1,b
fo=(z—1) Vim—1ip—1(z;a+1,0) Vi n(z;a+ 1,0) ’
Vim—in(@a+ 10— 1)V o (25a+ 1,04 1) (4.36)
fi= 2 Vimn—1(z;a+1,0)Vi_1 n(z;a 4+ 1,0) .
‘T Vincin(zia+ 1,0—= 1)V poi(z;a+ 1,64+ 1)
o= l Gt btn— l o1 Vim—ipn(za+ 10— 1)V o (z5a+ 1,04 ])me_l(m;a,b)’
2 Vi (250, 0)Vin_1 noi(®;a4+ 1,6) Vi noa (36 4+ 1,)
satisfy the symmetric form of Py1 for the parameters
1
(o, @1, a2, ez, () = (a,b,i—a—b—n,a-l—m—l—n,b—m-l—n). (4.37)
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Furthermore, the bilinear relations for V,y, , are derived from (3.28)-(3.33).

Proposition 4.5 The polynomials Vi, (2;a, b) satisfy the following bilinear relations,

AN VA AN OO § TANLL N VA R VAN VAN I )
(@ — v eOvEY ey Dy o vnil_’?nzo,
ViR = @+ )y v ey v =0,
Al A R VA AL IR TAS NS TA S g ]
A TASE PR VAL P PR ) A R VAN AP TA G LA AR S
20V Vi Ly = vV VT = i VROV = 0,
A A AL I T 1)vn22_’%1n_1vn&°_’1},3 — Vo =0,
4bvm1_’?n_1vnilfll — 2w (2 + 1)Vni #llvnil_’zlﬁ_l + VSLEEVWS M, =0,

2bv,;?h“>vn21:1,n_1 e vrfiillvni“_’;i + fim vnil_zﬁvn%” L =0,
aa+m+n)eV OOV — oz - YVEOVED _yhY v =0,
2a+m+n)V TV —p Oy T VY v =0
da+m+ )OOV p oy, (2 - Y L0V v tD vl = o,

2(b—m + n) VSOV = VY v v v <o,

)N , m—1n"mmn—1 mnlm—n
46— m+m)aVii VY = e+ ) v v =0,

a(b—m + )V LIV v, @+ VY VO v v T =0,

—1n

P LA S VAN U NN § L TACADINS TANLPA SIEY PR DL ZAS R A}
VIV = @ DV VD — @ = VSOV =0,
2VOOVAD oy = VL V) = v v =0,

WDV = e+ VLD VT 4+ (e - DOV =0,

2V = @ VT - e - v v =0
2V = VRV = Vi Vil = 0,

where we denote

— =a+ b+ __1
Vv, = a n ,
2’ 2

VD = Vo a(zia+ kb+1).

)

m =a—b+m—

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

Conversely, by solving the bilinear relations (4.38)-(4.43) with the initial conditions (4.35), one can get
the family of algebraic solutions (4.36) with (4.37). Even though these bilinear relations are overdetermined
systems, thier consistency is guaranteed by construction. In order to show Theorem 2.2, we will prove not the

Toda equations (4.34) but the bilinear relations (4.38)-(4.43).
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5 Proof of the determinant formula

In this section, we give a proof of Theorem 2.2.

Proposition 5.1 We have
Vi (z;a,0) = (—Zx)m(m+])/2(—2)”(”+1)/2£m£n5m7n(J:; a,b), m,neZ,
where Sy, n = Smon(x;a,b) is defined in Theorem 2.2 and &, is the factor determined by

bngibnr = (2n4+1)E, =& =1

(5.1)

(5.2)

From this proposition, it is easy to verify that the Vj, ,(2;a,b) are indeed polynomials in a,b and z with

coefficients in Z.

Substituting (5.1) into (4.36), we find that Theorem 2.2 is a direct consequence of Proposition 5.1. Taking

(2.5), (2.6) and (5.1) into account, we obtain the bilinear relations for R, ,.

Proposition 5.2 Let Ry, , be a family of polynomials given in Definition 2.1. Then, we have

0,-1 0,0

ROTDROY 4 (2= )RS ROD — 2RI RO =0,

m—1n*'mmn—1 m—1n—1 mn—1"'m—-1n

(z - 1)R£n,’n)Rri’ %n 1~ IRET?’_ll,ZLRETL:n) 1+ RSS ;1)1R£i’_1% n = 0,

RGO Ry — (@ + DRG], RO + 2RO RO =0,

(z+ 1)R$,’r11)R£2’—_11,21—1 - ‘EREn’—{,nRET(L]:SL)—l - Rgnn)—ler?—U%n =0,
(2c—d—m—n)RS")  ROTD 4 ez — )RL) RGL™Y 4 (2n + RGOV RS =0,
(2¢—d—m—n)Ry?) RO —cROM  RGLTY — (e - d)RODRET) =0,
(2c—d—m—n)zROTVRGY | —e(x — )RV RGL™D 4 (2m + 1)2RGY) RS =

(d+m—n)RYN ROD —c(e+ HYRODRD — 20+ 1)RYY ROV =0,

(d+m—n)zROIRCD — (e + )R REL™D — (2m + 1) RET) RO

n i mon— m,n—1
0,—1

) R( )_+_ (C—d)R( ) )R(Oﬂl) 0

mnl m—1,n —-1,n"*mmn— 1=

(d+m—n)ROVREO) R

(2c—d+m+ Tl)JZR(O;}l)R(O’O) —¢(z — )R 711)R(—1,E)1 + (2m + 1);ER(0’1) R(:0)

m,n m—1,n—-1""m+1,n

~(c—d)RY! ROV =0,

m—1,n—-1

(2¢—d+m+n)RY%) RO — cRODRGT
(2c = d+m +n)RCVRE?) |+ c(z — 1)ROY RS

)

(d—m+n)RODRC  —er0N ROV 4 (- ROV RN =0,
(d—m+n)eREIVRO | —c(z + )RODRS DD — 2m+ 1)2RYY)  RUY
(d—m+n)ROIROTD — (e +1)REY)  REE=D — 20+ HROTVRDY L =0,

14

m—1,n""m+1 n— 1=

O+ @n+ R RPN =0,

0,

0,

(5.4)



2R£Sfi,nR£,?7—” — (@ + DRGVRG Y + (e = DRGY LRG Y =0,
20 ROVRG — (2 + DRG G RGY™ — (2 - DRUVRS T =0,
2RORGS o = RO RGEY = RO LR D =, -
2ROVRO — (@ + )RUY L RGL™) 4+ (@ — YREDRS Y =0, |
20 ROSVRLL — (e + DROGVRE Y — (o - DRI RG L) =0,
0,0 ) - 1,1 1 1)
2R£” { Rgnvn)_l - Rngll)Rgﬂ 1,n )1 - Rm {n 1I{£n,rll7 U= 0;
where we denote N
RU9) = Ry, (e +i,d + j). (5.9)

)

From the above discussion, we see that the proof of Theorem 2.2 is reduced to that of Proposition 5.2.
It is possible to reduce the number of bilinear relations to be proved by the following symmetries of R, »:

Lemma 5.3 We have the following relations for m,n € Z>q:

Rn,m(x_l) = Rm,n(l'); (510)
Rinn(—c, —d) = (_1)m(m+1)/2+n(n+1)/2Rmm(c’ d), (5.11)
Rm,n(_x;c; 2¢ — d) — (_I)M(m+1)/2+n(n+1)/2Rm,n(I;C; d) (512)

Proof. The first relation (5.10) is easily obtained from Definition 2.1. To verify the second relation (5.11), we

introduce two sets of polynomials py = ﬁéc’d)(ac) and gx = (j,(cc’d)(af:), k € Z, by

ipﬁd) ()M = G(a;—c,—d; =N), 59V (2) =0 for k <0, (5.13)
7 @) =5 =),
where G is the generating function (2.2). Since we have
G(g(:;;:;?) = (1 =A%)+ (1= 2207, (5.14)
we see that
+ZPJ )Pk —2j( +Zp] Ygw_ 25 (%), (5.15)

where p;(z) = pj(z; ¢, d) are some functions. Therefore, Ry, n for m,n € Zyq, can be expressed in terms of the
same determinant as (2.3) with the entries pg and gy replaced by pr and §x, respectively. Noticing that

@) = (0T, 0@ = 0T ), (5.16)
we obtain the relation (5.11). The third relation (5.12) is verified similarly. 1

By the symmetries of R,, ,, described by (2.4) and Lemma 5.3, it is sufficient to prove the following bilinear
relations for m,n € Zxo,

(@ + DREVRYS  —«rDO ROD —RUY RO =0, (5.17)

(d+m—n)RN ROY — (e + HRODRITD — 20+ 1)RYY L ROV =0, (5.18)
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(d+m—n)RODRYY | — RGBT + (e~ ROTLRS =0,
2ROORDY - ROV RGNV - RO RS T =0
2R£fiynR£:2)—1 - Rfvi’rlz)REn_—li,_nlh - Rri’_l%,n_lRm_,}z’_l) =0,

2R L ROTY — (2 + DRGVRS) + (0 - DRYY L RGLD =0
From the symmetry (5.12) and the bilinear relation (5.17), we have
(2= DRGVRGD L =2 ROSDRG + ROTDRGS <o,

Then, it is possible to derive the bilinear relation (5.22) as follows,

RO L % (5.20)dac1 — RS2 % (5.07) + RO L % (5.23)emyemt ama—1 = ROy % (5.22).

Therefore, the bilinear relations we need to prove are (5.17)-(5.21).

(5.24)

In the following, we show that these bilinear relations (5.17)-(5.21) reduce to Jacobi’s identity for deter-

minants. Let D be an (m+ n+ 1) x (m + n + 1) determinant and D Jl ;.2 ;k’ ] the minor that is
: 1 J2 o Jk
obtained by deleting the rows with indices i1, ..., i and the columns with indices ji,...,Jjx. Then, we have

Jacobi’s 1dentities

m m+1 . m m+1 m m+1
I)D[l m+n+1]_D[I]D[m+n+1]_D[m+n+l]D[ 1 y
p.pl™ m+ 1 -nl™|p m+1 pl™|p m+ 1
2 B 1 2| 2 (N
1 m+1 1 m+1 1 m+1
I)D[z m+n+1] D[Q]D[m+n+l]_D[m+n+l]D[ 2 }
First, we give the proof of the bilinear relations (5.17)-(5.19). We have the following lemmas.

Lemma 5.4 Set

c—m—n,d—m-—n) q(c—m—n+1,d—m—n) o (e—1,d-2) (e,d—1)

—(15 1 9 m—n43 9 m—n+2
(e=m=—n,d—m-n) (c=m—n+1,d—m—n) (c 1 d 2) (c,d—1)
—q3 q3 o q—m—n+5 q—m,—n+4
q(c—m—n,d—m—n) q(c m— n+1 d—m—n) q(c 1 ,d—2) q(c,d—l)
_ —92m—1 m—1 F1 i
D= ) _m_nm(c—m—n,d—m—n) _m_nnil (c—=m—n+1,d—m—n) _In(: 1,d—2) r(ré,dril)
z 2n z Pan T " Pag Pan
x_m_np(c—m—n,d—m—n) I_m_n+1p(c—m—n+1,d—m—n) L I_lp(c—l,d—Q) p(c,d—l)
2 2 2 2
—m—n.d—m— —m— —m— —1.d—2 _
—m—n, (ec—m-n,d-m-n) w_m_n+1p(()c m-n+1,d—m-n) x_lp(()c 1,d—2) pgc,d 1)

Then, we have

m m4n m m+1 _n —1,-2
D:(_l) (1+‘E ) + R7(7(1)7(’)L)) D[ 1 m-l-n-|-1:|:13 R 1,n—"1

m _ p0,-1) m+1 _(_1\ym N —1ym4n—1p(—1,-1)
D[1:|_Rm—1,ﬂ’ DI:m+n+1:|_( 1) z (1-|-l‘ ) Rm,n—l)

m _(_ m—1_-—-n—1 —1ym4n-—-1 (—17—1) m+1 _ (07_1)
D[m+n+1:|_( 1) z (1-|-1‘ ) Rm—l,n) D[ 1 :|_Rm,n—1'
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(5.29)



Lemma 5.5 Set

~c—m—n,d—m—n) (c=m—n,d—m—-n-1) o (c—2,d-3) (c—1,d-2)
1 il 9 m—n+3 9 m—n+2
~(e=m—n,d—=m—-n) (e=m=—n,d-m-n-1) (c—2,d-3) (e=1,d-2)
93 q3 e 9 m—n+5 9 m—n+4
A{c—m—r{,d—m—n) (c—m—n,;i—m—n—l) (c—2.,d—3) (c—l.,d—Q)

D= Z%m_l d ) qu_l( d o Pehlaay (etasa) | (5.30)
Py, T gt 41 ’ ' *73—1172}14-{ . Popi1 '
?:((;—m—n,j—m—n; w_m_n+1p%c—7;1—n,j—m—n—1; ) i’_lp%c‘_jj_g p%c—i,j—i;

c—m-n,d—m—n —m—n c—m-n,d—m—n— _1 (c—2,d— c—1,d—2
Po r +]p1 e X 1171 P
with
. pom-n ) ) (c—m—n,d—m-n)
ﬁ(c—m,—n,7d—m,—n) — p(c—m,—n,d—m,—n) a«(c—m,—n,,d—m,—n} — q2k;—1 . (531)
%k 2k + 172k bkl (d—m—n+2k—2)z -

Then, we have

m+n
(c—m—-n+j-1)
D= (<) (L4 2) e ; RLY.
[[d-m-n+2i-2)JJ2k+1)
i=1 k=0
m4n—1
H (c=m—-n+j-1)
m m+4n— m+n— —m—-n J=1 —1,-1)
D[m+n+1]:(_1) T ) T . R,
[[d-m-—n+2i-2)[J2k+1) (5.32)
i=1 k=0
m4n—1
H (e—=m—-—n+j—1)
m+1 _ m+n—1 ym4+n—1_—-m—-n Jj=1 (-1,-1)
[[(d=m-n+2i—2) []k+1)
i=1 k=0
m | (=1,-2) m+41 | (=1,-2) m m—+ 1 _ —np(=2,-3)
D[ 1 :| _Rm—l,n+1a D[ 1 :| - Rmm ) D 1 m4+n+1 =7z Rm—l,n :
Lemma 5.6 Set
g e ey
~(¢,d—=m—n) (e=1,d=m—-n-1) (e—1,d-3) (e—1,d-2)
43 43 e 4—m-n+5 dem—-n+4
aigc,d—lm—n) qgc—l,ld—m—n—l) L (c—l,i;ﬁi) (e—1,d—2) ( )
D=\ i mn 1 (c—1,d—m—n—1 TTC d=3) (e—t.d—2) | 5.33,
2 G D et N L S R . v
I/)\gc,d—m—n) (_1)m+n_1pgc—1,d—m—n—l) o (_1 1p:(’)c—1,d—3) pgc—l,d—2)
I/)\éc,d—m—n) (_1)m+n_1pgc—1,d—m—n—1) o (_1)1pgc—1,d—3) pgc—l,d—Q)




with

(e,d—m—n) (e,d=m=—n)
/\(cd m—n) :( -l)m-|-np2k: a{cd m-n) Do 1
Pk : 2k 41 7 L T (d—=m—n+2k—-2)z
Then, we have
m+n
H(c—d+m+n—j+1)
D= (=17 (14 2)™ e = ; RO,
[[(d=m-—n+2i—2) [ (2k+1)
i=1 k=0
m+4n—1
H (c—d+m+n—j+1)
m _(_1\m ym4n—1_—m+1 j=1 (0,—1)
Pl | =Ememmee R,
[[@- m—n+22—2H2k+1
i=1 k=0
' m+4n—1
H (c—d4+m+4+n—j+1)
m+1 — (_1ym-—-1 m+4n—-1,,-m Jj=1 (0,-1)

[[(d—m—n+2i-2) 1:[ 2k +1)

m—1n

1

’

1 m4+n+1

i=1
D[m]zREJEfﬂl, D[m“]sz-”, D[m . ]z(—l)"R(‘l"?’)-

(5.34)

(5.35)

Tt is easy to see that the bilinear relations (5.17) and (5.18) follow immediately from Jacobi’s identity (5.25) by

using Lemmas 5.4 and 5.5, respectively. By Lemma 5.6, Jacobi’s identity (5.25) is reduced to

(d+m—n)zREY RO 4 (c—d)(x + HNROIRET + 2n+ HREY , RELD =0,

1
m—1n m,n *'m—1n m,n—

Then, the bilinear relation (5.19) is derived as follows,
RV | % (5.36) + RO'My % (5.18) + (d+ m — n)ROY x (5.17)]aapr = (z + 1)RE? x (5.19).

The proof of Lemmas 5.4~5.6 is given in Appendix B.
Next, we prove the bilinear relations (5.20) and (5.21). We have the following lemmas.

Lemma 5.7 Set

_I_1Q1_ I_1Q1 q1 ot d—m—n44
-7 (g3 + 2727 x71q3 q3 v gem-n+46
Do | = Gy o 2T T) 2T et Gmeng
pr:—m+1 + -+ I2n_2p:n—m+3 p;lz-—m-}-l Pn—m+2 s Pan—-1 ’
p:n—m,+5 + I2p:n—m,+3 pzn_m,+5 p—n—m,-I—G ce P3
p—n—m+3 p—n—m+3 P-—n—m+4 v P1
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(5.37)
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with p,:f = p,(:i]’di]). Then, we have

"] = o R, (539

1 2 m—1,n—-1:
and
D =2(-1)"mz= M+ RO, (5.40)
Lemma 5.8 Set
1 0 0 0
_I_lq; I_lqr q1  f—m—n43
—2~ (g5 +277q7) e qd g3 T A
D= | =" ggm_y + -+ 277" Hq7) 23 Gamet o Gmentr | (5.41)
Pr-m T “.+$~n_2p:n—m,+2 - Pn—m+1 0 Pn—1
- 2 - + '
p—n—m+4_+ T p—n—m+2 p—n—m+4 P—n—m+5 e P3
p—n—m+2 p—n—m+2 P—n—m+3 v P1

Then, we have

perngn, o[} 0 |,

m,n ) 2 m4n+1
1 -m p(=1,-1) m+ 1 L mit (11
D [ 2 :| - (_T) Rm,7n ) D m+ n + 1 = R“’L—l,n—l’ (542)

D[mfl]:R“”

1 _ ¢ —-m _ —2m+1 (070)
9 m—1,n» D[m+n+1:|_2(_]) €T R

m,n—1"

From Lemma 5.7, Jacobi’s identity (5.26) leads to the bilinear relation (5.20). Lemma 5.8 and Jacobi’s identity
(5.27) give the bilinear relation (5.21). We also give the proof of Lemmas 5.7 and 5.8 in Appendix B.

6 Degeneration of algebraic solutions

It 1s well known that, starting from Pyr, one can obtain Py, ..., P by successive limiting procedures in the
following diagram [25, 4],
Pyi — Py — P
Lo (6.1)

PIV — PH — PI.

It 1s also known that each Painlevé equation, except for Py, admits particular solutions expressed by special
functions, and that the coalescence diagram of these special functions is given as

hypergeometric — confluent hypergeometric — Bessel

i } (6.2)
Hermite-Weber — Airy.
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What is the degeneration diagram of algebraic (or rational) solutions that originate from the fixed points of
Dynkin automorphisms? In this section, we show that, starting from the family of algebraic solutions to Py
given in Theorem 2.2, we can obtain rational solutions to Py, Pi1 and Prp by degeneration in the following
diagram,

Pvi — Py
Lo (6.3)

Prir — P

Remark 6.1 [t seems that the rational solutions of Py cannot degenerate to those of Prr1, and that there is no
way to wnclude the rational solutions of Pry expressed in terms of Okamoto polynomials in the above diagram

(6.3).

6.1 Degeneration from Py; to Py

As is known [22], Py

dy (1, 0N\ (dy\' tdy  (y-D (., K} y_yly+1)
(s — ) () X : A ISP RS AN AT A i) 4
12 <2y = 1) <dt T RTE <“°°y y ) DT 5T (6.4)
is equivalent to the Hamilton system
O0H 0H d
Sv : '=— = =t 6.5
v ‘=55 P 94 o (6.5)

with the Hamiltonian
H=q(q—1)"p" = [ro(g = 1)" + (¢ — 1) + tq] p+ r(g — 1),

1 1
K= Z(I{o +6)? — ZKZO
This system can be derived from Sy1 by degeneration [4]. The Hamilton equation (1.2) with the Hamiltonian
(1.3) is reduced to (6.5) with (6.6) by putting

(6.6)

t—sl—ct, kK1—e ' +0+1, 06— —c", (6.7)

and taking the limit as ¢ — 0.
On rational solutions of Sy, we have the following proposition [12].

Proposition 6.2 Let pr = p,(cr)(z) and q = q,(cr)(z), k € Z, be two sets of polynomials defined by

(k1 = e [ o
kz_%pk: )‘ _(1 A) eXp( 1_/\> ) pk; —0f07‘k<0, (68)
(r) (r)
9 (2) = pi " (=2).
We define the polynomials Ry n = R%?n(z) by
q?) q{)) QE—Tr_)n-|-2 ) 4 nts QE_T,;n_nH
q ) ‘12) q_,21+4 q_,%H_g 9—m-n+5 9—m-nt4
7 . Pnim Prnm+1 o Pn’y Pn Pan_2 Pon_1
P(_)-L—m+4 p(—rn—m+5 p(—Tr)z-l-S p(—r1)‘b+4 pET) &)
p(—r1)1—m+2 p(—n—m-I—S p(—rn+1 p(—r)'b-l—? p(r) p(T)




form,n € Z>o and by

Ropn = (=1)"+02R 0 Ry = (=100 2R, (6.10)
for m;n € Z .y, respectively. Then, setting
RY) (2) = Smalt, s), (6.11)
with .
=3 r=2s —m+n, (6.12)

we see that

Smn=1(t,5)Sm=1,n(t,s)

I T St s = DSmai (s + 1)’ 619)
. 2n — lsm_Ln(t,S—I)Smyn_l(t,s—{—1)Sm_17n_2(t,5) ( o
4 qu—l,n—l(tﬂs)‘gm:”—l(tas) ,
give a family of rational solutions to the Hamilton system Sy for the parameters
Koo =8, ko=s—m+n, O6=m+n—1. (6.14)

Let us consider the degeneration of the algebraic solutions of Sy1. Applying the Backlund transformation
sg to the solutions in Theorem 2.2, we obtain the following corollary.

Corollary 6.3 Let Sy, , = Sy, n(2;a,b) be polynomials given in Theorem 2.2. Then, for m,n € 7,

5(170) 15(170% m—1 5(17_11) 5(171) 15(270% 9
g=z m,ri— m— ,n, p=- m—-1n"mn—-1"m-1n— ’ (6]5)
Sr(riy—l%r)zsr(i:rlz)—] 22(1 —z) Sfr}f])7n—155r},7701)—157(3f)]),n—1
where we denote S,(,]fy’,ll) = Smn(x;a+k, b+ 1), satisfy Svr for the parameters
koo =b, kKg=b—m+n, Ki=a+m+n, 0=—a, (6.16)
with 2 =t.
It is easy to see that by putting
t—1l—ct, a=e", (6.17)
Sy with (6.16) is reduced to Sy with (6.14) in the limit as ¢ — 0.
Next, we investigate the degeneration of Rﬁ,’;fn) given in Definition 2.1. Putting
1 1
r— —(1—ct)z, c:e_l+s+n—§, d=2s—m+n, (6.18)
we see that the generating function (2.2) degenerates as
G = (1=X""exp{c[log(l—\) —log(l 4zt N)]}
A
= (I=X)"Texp <:Flz_—)\+0(6)> ) (6.19)
where we use (6.12). Then, we have
. c,d r . c,d r c
timpi" (@) =i (2), lim g™ (@) = ¢ (2), (6.20)
which gives N .
lim R{9) (x) = RGED (). (6.21)
£— ? ? /

Finally, it is easy to see that (6.15) yields (6.13).
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Remark 6.4 As we mentioned in Section 1, Kirillov and Taneda have introduced “generalized Umemura
polynomials” for Py1 in the context of combinatorics and have shown that these polynomials degenerate to
Smn = Smpn(t,s) defined in Proposition 6.2 in some limit [9, 10].

Remark 6.5 The polynomuals p,(:) (and q,(:)) defined in (6.8) are essentially the Laguerre polynomials, namely,

p,(:)(z) = L,(:_l)(z). The above degeneration corresponds to that from the Jacobi polynomials to the Laguerre
polynomials.

6.2 Degeneration from Py; to Py

Next, we consider Ppy;

d?y 1 [(dy\® 1dy 4 an?
7= o) =75 = 7 [esfeot® +mo(f0 + 1] + 402y — —2 6.22
dt? y(dt) 3~ 7 [Meofooy” +m0(00 + D] + 41y = (6.22)

which is equivalent to the Hamilton system [24]

OH oOH d
Sur q/ — %’ p/ — _a_q) - ta’ (623)

with the Hamiltonian
H =2¢°p” — 2n0tq” + (200 + 1)g + 200t]p + 7o (0o + f0)14. (6.24)

This system can be also derived from Sy, directly, by degeneration. This process is achieved by putting

t—e’t?, q—etq, p—etT'p, (6.25)

Koo = Moot L4+ 00, ko= —moe 405V 41, ky o —neoe™ 402, 0 = et + 687 (6.26)
1

H — —5 (H +qp), (6.27)

and taking the limit as ¢ — 0. In fact, the system (1.2) with the Hamiltonian (1.3) is reduced to (6.23) with
(6.24) by this procedure, where we set

foo = 61 + 02 6, = 0" +6{". (6.28)

o0

On rational solutions of Sy, we have the following proposition [5].

Proposition 6.6 Let p; = pl(:) (t), k € Z, be polynomials defined by
SN = (14 N exp (—tA), p) =0 for k < 0. (6.29)
k=0

We define a family of polynomials R = Rgf)(t) by
(r) oM (r)

Pn ' Pan—_2 Pan—1
(") (4) = : S E
R(t) p(r) . (r) ry (6:30)
G o
P_pya 0 Po b1
forn € Z>q and by
Ry = (=1)"" VPR, (6.31)
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for n € Zi.<q, respectively. Then,

CRUFVRD on 1 RUTVREED (6.32)
q= R£:+1)R£LT21 ) p= 2 Rnr_ll)RiT’j—ll) [y

give a family of rational solutions to Sy for the parameters

1 1
90027’4—5—{—71, 00+1:—r—§+n, (6.33)

with
1
Noo = N0 = 7 (6.34)

Before discussing the degeneration to the rational solutions of Sy, we slightly rewrite the determinant
expression in Definition 2.1, for convenience.

Lemma 6.7 Let p = ﬁl(f’d)(:c) and q; = tj](f’d)(x), k € 7, be two sets of polynomials defined by

S 5D (I = Gl a d A 5D (@) = 0 fork <0
k;)p (I) 7(;73;6) ) )1 7pk; (.’B) fOT ) (635)
@) =50,
respectively, where the generating function G(a:, ¢, d; A) is given by
G(x;e,d;A) = (1= N1 (1 4+ zA)~C. (6.36)

Define Rmyn = Rmyn(x; c, J) in terms of the same determinant as (2.3) with entries py and qi replaced by py
and qi, respectively. Then, we have

Rimn(z;¢,d) = Sp (2 a,b), (6.37)
with ! )
E:a—l—b-l—n—? J:a—b-l—m-l—i (6.38)

Remark 6.8 The polynomials py and qi are also expressed by the Jacobi polynomials as

péa(f)(l,) — (—1)kPk(J_1_k’5_d)(l + 22). (6.39)

Let us consider the degeneration of the algebraic solutions of Sy1. Applying the Backlund transformation
s150 to the solutions in Theorem 2.2, we obtain the following corollary.

Corollary 6.9 Let Rmm = Rmyn(l‘; c, J) be polynomuals defined in Lemma 6.7. Then, for m,n € Z,

0

(0,1 (1,0 (0,1 (1,0 (0,1
Rgl,n)—lRSn—i,n 2n —1 Rgn—%,nRSn,n)—lREn—%,n—Q (640)

—/01Y =710 p= — — — )
R(071) R(170) 2{1}(1 — Jj) R(Uvoi Rgr?’rlz) R(171)

m—1n**'mmn-1 m—1,n-1 n—1"'m—-1n-1

=z

where we denote R%’fn) = Rpn(x;8+1i,d+j), satisfy Sy1 for the parameters
Koo =—b, Kko=b—m+n, kKi=a+m+n, 0§=-—aqa, (6.41)

under the setting of (6.37),(6.38) and z* = 1.

23



According to (6.26) and (6.41), we choose 7o and 7o as in (6.34) and set
R 1 i, 1
a_2<—6 +r+2—m+§'>, b—2<—6 —r—2+m+C), (6.42)
where ¢ is a quantity of O(1). Then, we have

6&2):.3<r+.——m—c>, 6&2):%<r+?+m+c>+n

1 1
05 +1=— <r+—+m—c)+n, 05 = -3 <r+——m+c>

(6.43)

Setting as (6.25) and (6.27), we see that Syr with (6.41) is reduced to Spyr with (6.33) in the limit as ¢ — 0.
Note that m vanishes in (6.33). Then, it is possible to put m = 0 without losing generality in this limiting
procedure.

Next, we investigate the degeneration of R( 9) = ( )n Rg . Putting
_ 1 -
r—>et, ¢=—¢ +C+n—§, d=r+1, (6.44)

we find that the generating function (6.36) degenerates as

G=(1- )\) Vexp[—log(1 + zX)] = (1 = A exp [tA + O(¢)] . (6.45)
Then, we have )
tim 7 (@) = (=1)*5” (1), (6.46)
which gives _ .
lim R (2) = (1) DRI (1), (6.47)
&= .

Finally, it is easy to see that (6.40) leads to (6.32) in the above limit.

Remark 6.10 The polynomials pk defined by (6.29) are also the Laguerre polynomials, namely, pé )(t) =

LE: k)(t), Then, the above degeneration also corresponds to that from the Jacobi polynomials to the Laguerre
polynomials.

Similarly, the rational solutions of Py and Pry1 given in Proposition 6.2 and 6.6, respectively, degenerate to
those of Pr;. We give more details in Appendix A. Therefore, the coalescence cascade (6.3) is obtained.

7 Relationship to the original Umemura polynomials

In this section, we show that the original Umemura polynomials for Py are a special case of our polynomials
Vin,n(2; a,b) introduced in Section 4.

7.1 Umemura polynomials associated with Py

First, we briefly summarize the derivation of the original Umemura polynomials for Py [27]. Set the parameters

b (i=1,2,3,4) to

— (ko — K1), b3:%(6—1+/€m), by (0 —1—Kao), (7.1)

N | —
l\DI»—\

1
by = 5(140 + K1), ba=

namely,

(Oz() —1 + 011) b4 = %(Ot() -1 - 011). (72)

N | —

1 1
5125(0144—0[3), 5225((14—013), by =
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Umemura has shown that

@t UEE WD ag—(at B2
1= O EE T A ey (73)

give an algebraic solution of the Hamilton system Sy for the parameters

1
(b1;b2;b3;b4) = (aaﬂa_§a0> . (74)
Substituting the solution of upper sign into the Hamiltonian (1.3), one obtain
_ 1 2 502 2 502 2
H=7 |=(a+8)+(a+8)? +20t —2(a” + 52t +2(a® = )it = 1) (7.5)

Application of the translation
(blaanbSab4) - (b1,b2,b3,b4)+TL(0,0,1,0), n €, (76)

to the seed solution (7.3) with (7.4) generates a sequence of algebraic solutions (gn,pn). Let 7, be a 7-function
with respect to the solution (¢n, pn). Okamoto has pointed out that 7, satisfy the Toda equation [21]

11 d d
TntlTn=1 — @ logr,) + (b +bs +n)(bs + bs+n), '=t(t—1)— (7.7)

2 dt Tdt

Define a family of functions 7,, for n € Z by

(log ) = (logTn)' + H —n (at — a—;—,@) ) (7.8)

Then, the Toda equation (7.7) yields

T, T\’ dTy,
(7.9)
2t — 1

_2(a2+/32) ‘|‘ (a2 —/82)

it —1)

1 t—1
=4/ — — 7.1
v \/t_]+\/ T (7.10)

we find that the T}, are generated by the recurrence relation

e
4

Moreover, introducing a new variable v as

1, , AT, dT, 1, o (dT\’
Tn Tn— =-—(v" -4 “—4 —_— Tn—— —4
T = 367 =) [12 =) T4 o 2| T - 20—
(7.11)

fiess e nis )

with the initial conditions Ty = 71 = 1. It has been shown that 7, for n € Z>¢ are polynomials in «, 8 and v,
and deg, T,, = n(n — 1)/2. These polynomials are called Umemura polynomials associated with Py;.
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7.2 Correspondence of the seed solution

We investigate how Umemura’s seed solution (7.3) with (7.4) is related to our seed solution,

1 1
p:f2:§<a+b—§) l‘_l,

1
——a—b,a,b).
2

In addition to the Backlund transformations stated in Section 3, it is known that Pyr admits the outer symmetry
as follows [21],

g=fa=r1, (7.12)
with

(ao,al,ag,ag,a4) = <(1,bJ (713)

ag @] a3 a3 0y t fa fa
a1 @1 X 9 s X4 ] —1 (1 — t)f4 fO(fOfZ + a2)
fo tt—1)

1 Ja

o3 || @3 @1 a3 ag 4 7 }— tfa
1

T04 a4 Q1 Qy Q3 Qg ﬁ 1 _Of (1 — t)fg (714)
i f

013 || 0 Q@3 Q@3 Qa1 Q4 P % —fa(fafo + a2)
- 3
1 1

014 || o @4 Q@3 @3 Q1 7 f_ —fa(fafo + a2)
2 4

034 || g @1 s ay az| 11—t —f3 —fa

Proposition 7.1 Umemura’s seed solution (7.3) with (7.4) is obtained by applying the Bdcklund transformation
defined by

0 = 013535951, (715)
to our (7.12) with (7.13), where we set
1
a=g-a B =bh. (7.16)
Proof. First, we check for the parameters. Application of ¢ to (7.13) gives
T 1 1 1
(o, 1, a2, a3, v4) = <§, 5ty —a- b, ;¢ + b> , (7.17)
which coincides with (7.4) by using (7.2) and (7.16).
Next, we verify the correspondence of ¢ = f4. We have
! +b
——a
o(fy) = Lfitordor 2 . (7.18)
fofs + a1+ as 1 1 1
——a+bl+|(-—a—-b)=x
2 2
Note that z is now given by
[
— _ 7.19
r=F\— (7.19)

due to the action of ¢y3. Thus, the expression (7.18) is equivalent to the first of (7.3). Tt is possible to check
for p = f5 in similar way. 1
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7.3 Relationship to the original Umemura polynomials

The above discussion on the seed solution suggests that the family of polynomials V;, »(2; a,b) constructed in
Section 4 corresponds to the original Umemura polynomials under the setting of (7.16) and

r=— L (7.20)

Notice that, from (7.9) and (7.20), the T,, = T,,(z; o, B) satisfy the recurrence relation
AT 1Tnor = 27 (22 = 1)°D? — %z + 1) + B2 (x — 1)? + (2n — 1)?2] T), - T, (7.21)
with To =77 = 1.
Theorem 7.2 We have
Tu(z;a,B) = 2_2”("_1)(—23)_”("_1)/21/_”7_”(;13; a+n,b), (7.22)
with (7.16).

We prove Theorem 7.2 by showing that both sides of (7.22) satisfy the same recurrence relation and initial
conditions. Let T3¢ be the translation operator defined by

Tho = TaaTsa T (7.23)
Then, we have a Toda equation
T Ti—1 -1 d / / 1 ‘ 31 o ¢
T30(T0)T30 (TO) =12 (t—])a(logﬁ)) —(]OgT()) —{—Z(OZQ—O@)(O[Q—OZQ,—Z)—{—Z Ty - (724)
For simplicity, we denote R
Tn = TgO(TO)a nec Z; (725)

namely 7,, = 7_,, 0.nn in the notation of (3.40). The above Toda equation is expressed as

2, (7.26)

: d a3 2n) (a0 — as — 20— 2
fn+ﬁn_1:t‘5[(t—1)E(log?n)’—(logfn)’+(ao = "‘)(jo e )+%]

In the following, we restrict our discussion to the algebraic solutions. According to (4.7) and (4.21), we introduce
Vo = Va(z;a,b) as
T = wn Va (x— ])(a_ 1) 43— (a=3)" b on(nt1)-3 (x4+1 )b2+% , (7.27)

where w, = w_y 0n,n. Substituting (7.27) and ag = a3 = a into the Toda equation (7.26) and noticing

1
Wnp1Wno1 = —Ewi, (7.28)
we find that Vj, = V,,(;a, b) are generated by the recurrence relation
15 r/ 2 212 1 ? 2 2 2 ¢ 2 r/ r/ f
~1 g1 Vo1 = | (2% = 1)*D% — a=g (z4+ 1) +b(z—1)"+ 2n+ 1)%2| V, -V, (7.29)
with the initial conditions V_; = Vj = 1. By construction, it is easy to see that
Vi (z;a,0) = Vi, (250 — 0, b). (7.30)
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Moreover, we introduce Ty, = T}, (z; a,b) as
T, = 2720 =1)(_g)—n(n=1)/2y_ (7.31)

Then, the T}, satisfy the recurrence relation

2
AT Ty =271 l(ﬁ —1)?p? — <a - %) (z+1)2+b%(x—1)2+ 2n— 1)%2| T, - Ty, (7.32)
with 7?0 = 7?1 =1.
Comparing (7.21) with (7.32), we find

under the setting of (7.16), which is nothing but Theorem 7.2.

Remark 7.3 The Toda equation (7.7) can be regarded as the recurrence relation with respect to the translation
operator
Tor = Tgy TiaTos, (7.34)

which acts on the parameters as
To1 (v, a1, ag, a3, o) = (g, a1, @, ag, aq) + (1,1,-1,0,0). (7.35)
Theorem 7.2, namely (7.33), is consistent with the relation
To10 = crf.{ol. (7.36)

From the discussion of the previous sections and (7.31), it is clear that 7, for n € Z>o are polynomials in
a,f and v, and deg, T, = n(n — 1)/2 under the setting of

v = — (1‘ + 1:_1) . (7.37)

Acknowledgment The author would like to thank Prof. M. Noumi, Prof. Y. Yamada and Prof. K. Kajiwara
for useful suggestions and discussions. Especially, he owes the initial steps of this work, including the lifting
of the Backlund transformations of Py to the 7-functions, to discussions with them. The author would also
express his sincere thanks to Prof. Kirillov and Dr. Taneda for stimulating discussions.

A Degeneration of rational solutions

In this section, we show that the rational solutions of Py and P given in Proposition 6.2 and Proposition 6.6,
respectively, degenerate to those of P,

d?y 3 1

As is known [23], Py; (A.1) is equivalent to the Hamilton system

,_O0H . 9H ,_d (4.2)

Syp e = -, -yt ;
I q ap p g a1

with the Hamiltonian
H=—-2p> — (¢ = 2t)p + aq. (A.3)

The rational solutions of Sy are expressed as follows [7].
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Proposition A.1 Let g5 = qr(t), k € 7Z, be polynomials defined by

Z%)\k = exp (t)\ + ?> . qx =0 fork <0. (A.4)
k=0
We define R, = Rn(t) by
qn o q2n-2 q2n-—1
[/ q2 q3
q—n42 - q0 q1
forn € Z»q and by
Ry = (<104 0/2R_, (A6)
forn € Z <o, respectively. Then,
d R, 2n— 1R, R, _2
= —1 = AT
=@ ®r T TR (A7)
give the rational solutions of St1 for the parameters
1
=n--. A.
a=n-— (A 8)
Al From PV to PII
It is possible to derive the Hamilton system Sy from Sy, directly, by degeneration. Putting
1
t—e 3 (142e%), q——1+2q, p— 55-11), (A.9)
hoo = 2o 100, kg o e 4w, 9 o 200 A.10
0o 4 0 ) 0= 45 + Ky, - ) ( : )
1 1 . ) _ 50
H— 56_2H - 56_3(1, a=00 4 %, (A.11)

with o = £1 and taking the limit as ¢ — 0, we find that the system (6.5) with the Hamiltonian (6.6) is reduced
to (A.2) with (A.3).

We show that the rational solutions of Sy given in Proposition 6.2 degenerate to those of Sy in Proposition
A.1. According to (A.10) and (6.14), we set ¢ = 1 and

s = 15—3, K0 =0 k”=-m+n, 0= mtn—1

= A2
767 w2 . (A.12)

Then, after the replacements (A.9) and (A.11), we find that Sy with (6.14) is reduced to Sy with (A.8) in the
limit as ¢ — 0. Note that m vanishes in (A.8). Then, it is possible to put m = 0 without loss of generality in
this limiting procedure.

Next, we investigate the degeneration of Rﬁf) = R(_r{ n = RE)TZL. It is obvious that we have the following
lemma.

Lemma A.2 et py = 131(;)(2), k € 7Z, be polynomials defined by

SN =exp | Y <_Z + Z) N+ %Az ) =0 fork <0, (A.13)
: J
k=0 j=1
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Then, we have

=(r) =(r) (r)

Pn " Pan—2 Pan—1
RO =| 3 3 A4
G R S (4.14)
e R
p 7)7,-{-2 130) P
Put
Ao =), g = (=), (A.15)
and | )
z— 56_3 (1 + 262t> , r= 56_3 + n. (A.16)
Then, (A.13) yields
S ) yk A7 : 2, 3y )
> g I = exp ) [L—e (A nA+10 + 207 ) +0(%) | (A.17)
k=0
By using (A.4), we obtain
~r+i) _ ; 3 2
G = e = i1 = € kot + k-2 + ggk-a | + O(E7). (A.18)
Since it is easy to see that
dqn
— = k- Al
dt qk -1, ( 9)
we have, from (A.5),
RI+1) = (—g)~n(n+1)/2 [Rn —¢j dﬁ” —eQ, + 0(52)] , (A.20)
where @, denotes the contribution from the third term of (A.18).
Finally, we verify the degeneration of the variables ¢ and p. The above procedure gives
RU-DRGH) d . Rn ,
R;r—l)R(r+1)R(r—1) Ry Ry_s (A21)
- (r) ?r;l (rn—_1§ = 6_1 ;%2 — + 0(1)
Rn—an—an—l n—1

Thus, from (A.9), we get (A.7) in the limit as ¢ — 0.

A2 From PIII to PH

It is well known that the Hamilton system Sy is derived from Syp by degeneration [4]. This process is achieved
by putting

t——c3(1=e%), q—=1l4eq, p—e'p, (A.22)
foo — — 3400, 65—+ 0, (A.23)

(0) (0)
H— —2H -3, a= w (A.24)

and taking the limit as ¢ — 0.
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We show that the rational solutions of Sii1 given in Proposition 6.6 degenerate to those of St in Proposition

A.1. From (A.23), we set
1 |
r:—6_3, 6((2):71%-5, Qén)zn—%. (A.25)
Then, after replacing as (A.22) and (A.24), we see that Syj; with (6.33) is reduced to Sy; with (A.8) in the limit
as ¢ — 0.
Next, we investigate the degeneration of R{) defined by (6.29) and (6.30). It is obvious that we have the

following lemma.
Lemma A.3 Let py = ]")I(cr)(t), k € Z, be polynomials defined by
r > -1 j-1 . )
Zﬁé))\k:exp Z(?}%rﬂ—ﬂ\—{—g)ﬁ , ]52) =0 for k <0. (A.26)
k=0 j=1

Then, we have

o ﬁgrn)—2 13272—1
Ow=| ] A2
R (®) 13(7’) =(r) =(r) (4.27)
__1'7)L+4 I_)%r) e?r)
P_nt2 Py b1
Put
Ao —e), ) = (=)t (A.28)
and
t— -1 -¢%), r=-—e" (A.29)
Then, (A.26) is written as
Z’jl(crﬂ)/\k = exp <t)\ + 3) [l +¢ (—j/\ + i)\‘l) + 0(62)] . (A.30)
k=0
By using (A.4), we obtain
r+7 . 1
q}{ +) qk + € <—Jl}k—1 + qu—4> + 0(e?). (A.31)
Thus, we have
R = (—g)~n(nt1)/2 [Rn +e (—j% + Qn> + 0(52)] , (A.32)

where @, denotes the contribution from the term of gr—4 in (A.31).
Finally, it is easy to see that (6.32) is reduced to (A.7) by the above limiting procedures.

B Proof of Lemma 5.4-5.8

We first note that the following contiguity relations hold by definition (2.1) and (2.2),

c—1,d—1 c.d c,d) c—1,d=1) c.d — c
p Y = pe D b aplo?, g =0 a0, (B.1)
c,d—1 c,d c,d c,d—1 c,d c,d f
PO = po® —plo® gLt = gt _glod) (B.2)

(k + 1)p1(:-|7_dl) — —(C _ d)pgc,d+1) i Cxpl(cc+1,d+1),

(k + 1)q}(ci<i) — —(c- d)q}(cc,d-kl) _ cx—lql(cc+l,d+1).
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(0

Let us prove Lemma 5.4. Adding the (i 4+ 1)-th column multiplied by z~! to the i-th column of ijg) for
i=1,2,...,5,j=m+n—1m+n—2,...,1, and using (B.1), we get
(c=m—n+1,d—m—-n+1) (c=m—n+2,d—m—-n+2) (c—1,d-1) (e,d)
ql qO —m—-n+3 —m—-n+2
(e=m—n+1,d—m-n+41) (e=m—n+42,d—m—-n+2) (e—1,d-1) (e,d)
93 13 q—m—n+5 q—m—n+4
(c—m—n+1.,d—m—n+1) (c—m—n+2.,d—m—n+2) (c—l.,d—l) (c.,d)
R(O’O) — 92m—1 92m—2 m—n+1 m—n
m,n I_m_n+1pgcn—_rrlz—n+1,d—m—n+1) I_m_n+2pg<;—_n]1—n+2,d—m—n+2) él‘_lpgi__lid_l) pgi{ﬂ
x_m_n+1pgc—m'_n+17d_m_n+1) SE‘_m_n+2pgc_m.—n+2’d_m_n+2) x_lpgc;l’d_l) p'(%c.,d)
m_m_n+1p§c—m—n+1,d—m—n+1) I_m_n+2p.§c—m—n+2,d—m—n+2) I_lp.gc—l,d—l) pzlc,d)
(B.4)
Noticing that po = 1 and pp = 0 for k < 0, we see that Ry, » can be rewritten as
q1 q0 v f—m—n42 G—m-n+41
q3 q2 v —m—n+4 G—m-n43
Rm,n _ Joam—1 qoam—2 ce Im—n Im—-n-—-1 (B5)
Pn—m Pn—m+1 s Pon—-1 Pon
P-n—m+2 P-n—-m+3 - Y4 P2
P—n—m P—n—m41 - Y2 Po
By a similar calculation, we obtain
(e—=m—n,d—m—n) (e=m—n+1,d—m—-n+1) (e—1,d-1) (e,d)
91 99 —m-—n+2 —m-—n+1
(c—m—n,d—m-n) (c—m—n+1,d—m—-n+1) (c—1,d-1) (c,d)
3 D) Q—m,—n+4 q—m—n+3
(c—m—n.,d—m—n) (c—m—n+1.,d—m—n+1) (c—l.,d—l) (c,z;)
R 0,0) _ Yom—1 Yom—2 m-—n m—n— (B 6)
m,n. l‘_m_npg(;—m—n,d—m—n) I_m_n+1pg(7:1—m—n+1,d—m—n+1) I_lpgib—l,d—l) pgf{d) .
I_m_npgc—m—n,d—m—n) x_m_n+1pgc—m—n+1,d—m—n-i—l) et gc—l,d—l) gc,d)
—m— c—m—n,d—m—n) —m— c—m-n+1,d—m-n+1 _ c—1,d-1 c,d)
r—m np(() ) =™ n+1p(() ) e 1p(() ) pé )
We have from (B.1) and (B.2) that
d —1,d— de
(1 +2)pe? =pi ™"+ api Y, (B.7)
d—1 _ d —1,d—1 :
i3V + (12 hgl ) = gl

Subtracting the j-th column multiplied by (1 4+ 2=1)=! from the (j + 1)-th column of (B.6) for j = m +n,m +
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n—1,...,1, and using (B.7), we get

RO = (=)™ (14 27)7m "
(e=m=—n,d—=m-n) (e=m=—n+1,d-=m-n) (e=1,d-2) (e,d=1)

—q 41 e 9 m— n+3 —m—-n+2
(e=m—n,d—m—n) (e=m—n+1,d—m—n) (e=1,d-2) (e,d—1)
—q3 d3 e q_pm— n+5 q—m—n+4
. ,d— +1 d 1,d-2 ,c.i—l B.
y qgfn(ml e & | abim '”1( ! :: d”) o qfﬁ(nﬁ d)z) q{i_dn 1; (B-8)

p—m—n S g ) g r—m- n+1p2n g L g . _1p2n pg;{

- (c m—n,d—m-—n) x_m_n_},lpgc—r.n—n-i-l,d—m—n) o $_1pgc;1’d_2) pgc,z.i—l)

(c m—n,d—m-—n) x_m_n+1péc—m—n+1,d—m—n) o ;‘L‘_lpéc_l’d_Q) péc,d—l)

From (B.6) and (B.8), we obtain Lemma 5.4.
Next, we prove Lemma 5.5. We have

(k+1)p(c7d) dp(c yd+1) e(1+2)p (c+1,d+2)J

k+1 —
) (e+1, d+2)

B.9
(d+k+1)q(57 = dg i — (1 + 2~ )

d—m-n+j—2

(c—m—-n+j—1)(1+2z7")
forj=m+n,m+n—1...1, and using (B.9), we get

from the (j 4+ 1)-th column of (B.6)

Subtracting the j-th column multiplied by

ﬁ(d m—n+2i—2) f[ 2k +1)
k=0

R(070) — (_1)m+n(1 + x)—m—nmm i=1 —
H(c—m—n-|—j—1)
Jj=1

~ec—m—n,d—m—n) (c m—n,d-m-n—1) o (c—2,d-3) (e—1,d-2)
41 q1 —m—-n+3 —m—-n+2
~(c—m—n,d—m—n) (c—m—n,d—m—-n—-1) (c—2,d—3) (c—1,d-2)
d3 d3 e 9 m—n45 q—m—n+4 (BIO)
~e=m=—n d m—n) (e=m=—n d m-n-—1) L (c—2,d-3) (e=1,d-2)
% ?\%m 1 - ) Qom— 1( 4 1) mzn-|—2]d 3) Q1(n—111d ?)
c—m—n,d—m-n — 1 (e—=m—-n,d—m-n— 1 (e=2,d— c—1,d—2
Pan gmmont Pany1 T Pangr Pany1
c—m—n,d—m—-n —m— 1. (c—m—-n,d—m-n-—1 -1, (c—2,d-3 c—1,d-2
c—m-—n,d—m-—n —m— 1_(e=m—-n,d—-m-n-1 —1 (c—2,d-3 c—1,d-2
Py ) p-m-n+ ) ) g o) ) ! )

Lemma 5.5 follows from (B.4) and (B.10).
Note that we have

(k+ 1)p57 = —dapf Y — (e = d) (14 2)pf ), (B.11)
(d+k+ 1)‘112:’.6? — dqlifll’d+l) —(e—d)(1+ 271 (c+1, d+2)

It is easy to see that Lemma 5.6 is proved similarly to Lemma 5.5 by using (B.2) and (B.11).
The proof of Lemma 5.7 is given as follows: Adding the (j—1)-th column multiplied by « to the j-th column
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of Rﬁ,l;,]) forj=m+4+n,m+n—1,...,2, and using (B.1), we get

We have from (B.1)

T q1 I—m-n+4 G—m-n+3
$_1q;_ q3 q—m—-n+6 G—m-n45
-1+
1) — M T Qom—_1 q2m—1 Im—n+2 Im—n+1
" P:_m Pn-m+1 P2n-2 P2n—1
N : :
p—n,—m,+4 p—n—m,+5 e P2 Y%
p—n,—m,+2 P—n—m+3 e Do D1
c,d) 2 (e,d c—1,d—1) c—1,d—1)
pi? = 2?pl) = T —apl T,
(c,d) -2 (C7d) — (6_17‘1_1) -1 (C_l7d_1)
U " =% Qs = - k-1 :

(-1

(B.12)

(B.13)

Then, subtracting the (j — 1)-th column multiplied by # from the j-th column of Rmyﬁ’_]) forj=m+n,m+

n—1,...,2, and using (B.13), we get

ql_ I_lq—l — 41 I_lq_m_n+1 —xq_
Q3_ *73_1(11 — Xq3 I_lq_m_n+3 — G m_nys
R _1’_1) = qQ_m_l 17_1(]2771,_3 — Zqam—1 I_lq”L—n—] — Tdm—n+1
o P—m Pn-m+1 — x2p”_m_1 Pon—1 — 172P2n—3
p:ﬂ—m+4 P-n—-m+5 — ‘Ezp—n—m+3 P3 — afpl
Pop—myz P-n-m+3 =T P-n—m+i pP1L—x°p_1
Noticing that py = qx = 0 for k < 0, we obtain
—z~ gy 71 q0
—o~ g5 + 277 a3 0
R(-1-1) _ m| =2 (G A 2TT) o 92m—2
m,n - (—l’) - . m—9 —
Pn—m + +x Pon—m42 Pn—m+1 Pn—m+2
— ’ 9 —
P_n_m4a +z Pon—m+2 P-n—-m+5 P-n—m+6
p:”_m+2 P-n-m+3 P-n-m+4

The first half of Lemma 5.7 is obtained from (B.12) and (B.15). Moreover, we have

_1 —_
—T Qom_1

p;—m+1

p:n—m+5

p:n—m+3

-1 -2
T “qom—-1— T “qam-2

g1 — 2%,

z7lqr — 27 %q0
gz —x 7

-1 -2
xr q3—;‘l7 QQ

pn—m+1 — ITPn—m pn—m+2 -
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-2
I2m—-1— T “qam-3
2
T Pn—m

-2
Q—m,—n+4 - q—m—n+2

-2
Q—m,—n-l—ﬁ - q—m—n+4

2
Pn—m+45 — TP-n—m+4 P-n-m+6 — T P_n—_m+4
P-n—m43 — TP-n—-m+2 P-n-m+4 — $2p—n—m+2

m—n+3

q—m—-n+3
q—m—n+5

Im—n+1
Pon—-1

P3
yan

Qm—n+2 - I_Z’Jm—n
2
Pan—1— T Pan-3

P3 — I2p1
p1—zip_y

(B.14)

(B.15)

(B.16)



Subtracting the 2’nd column from the 1’st column, and using (B.1), we get

-1 -1 -2 -2 -2
—T M r 1 —T “qo G — T "4 vt em—ntd — T T_m-_n42
—IL‘_1Q3 $_1’J3 - 93_2’12 q3 — 93_2’11 ot —m—n46 — $_2q—m—n+4
-1 =1 " . o
D=2 —T qam—-1 T qam-1—% “qam-2 92m—-1—7% 2‘12m—3 T Im-—n42 — 132 Im—n
IPn—m Pn—m+1 — TPn—m Pn—-m+2 — T Pn—m ce Pan—1 — T " Pan-3 ’
TPon—mtd4 Pon-m+5 — TP-n—mtd Pon—m+6 — T Pen_mtd " p3 — ;i
TPon-m42 Pon—m+3 — TPon-m+2 Pon—mtd — T Pep_miz - p1 — x2p_q
— 2(—1)_ml‘_2m+1R£27’2),
(B.17)

which is nothing but the second half of Lemma 5.7.

From the above discussion, it is easy to verify Lemma 5.8.
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