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1 Introduction
We consider the partial differential equation

(P)ε F (x, x/ε, uε(x), Duε(x), δD2uε(x)) = 0 in Rn,

where ε and δ ≡ δ(ε) are two positive parameters, F ∈ C(Rn ×Rn ×R ×Rn × Sn),
Sn denotes the space of real symmetric n × n matrices, uε is the unknown, and Duε

and D2uε denote the gradient and Hessian of uε, respectively. The parameter δ will be
given as a function of ε, that is, δ = δ(ε). A typical example of δ(ε) is: δ(ε) = εa, where
0 ≤ a < ∞. We always assume

(A1) F is uniformly elliptic, that is, there are constants 0 < θ ≤ Θ for which if
X, Y ∈ Sn and Y ≥ 0, then

F (x, y, u, p, X)−Θtr Y ≤ F (x, y, u, p, X + Y ) ≤ F (x, y, u, p,X)− θ trY ;

(A2) the function: y 7→ F (x, y, u, p, X) is periodic with period Zn, that is,

F (x, y + z, u, p, X) = F (x, y, u, p,X) for all z ∈ Zn;

and

(A3) there is a constant λ > 0 such that the function: u 7→ F (x, y, u, p, X) − λu is
non-decreasing in R for any (x, y, p,X) ∈ Rn ×Rn ×Rn × Sn.

∗ Major part of this paper was prepared by the first author and delivered in a meeting held at

Tokyo Metropolitan University on August, 30, 1999.
1) Died on October 2, 1999, when he was a graduate student of Tokyo Metropolitan University.
2) Supported in part by Grant-in-Aid for Scientific Research, No. 12440044, JSPS.
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We investigate the asymptotic behavior of the solution uε of (P)ε as ε → 0. The
parameters ε and δ represent a state in the processes of homogenization and vanishing
viscosity in (P)ε, respectively, and our motivation to studying (P)ε is to understand the
simultaneous effects of the periodic homogenization and vanishing viscosity in (P)ε.

Let us describe briefly our results on the effects of the homogenization and vanish-
ing viscosity. For this, we formulate the following three cell problems. Henceforth
C(Rn/Zn) denotes the space of periodic functions u on Rn with period Zn. Fix
(x̂, û, p̂, X̂) ∈ Rn × R × Rn × Sn. The first cell problem is to find a pair of µ ∈ R
and v ∈ C(Rn/Zn) such that v is a (viscosity) solution of

(CP)2 F (x̂, y, û, p̂, X̂ + D2v(y)) = µ in Rn.

The second cell problem is to find a pair (µ, v) ∈ R × C(Rn/Zn) such that v is a
(viscosity) solution of

(CP)12 F (x̂, y, û, p̂ + Dv(y), D2v(y)) = µ in Rn.

The third cell problem is to find a pair (µ, v) ∈ R×C(Rn/Zn) such that v is a (viscosity)
solution of

(CP)1 F (x̂, y, û, p̂ + Dv(y), 0) = µ in Rn.

In this paper we deal with fully nonlinear PDE which may be degenerate elliptic and
which may not have classical solutions, and we adapt the notion of viscosity solution
(see [CIL2]). Henceforth we suppress the word “viscosity” and, for instance, we call a
viscosity solution simply a solution.

Under appropriate hypotheses each of these problems (CP)2, (CP)12, and (CP)1 has
a solution (µ, v) and moreover, the value of µ is determined uniquely while the function
v is not determined uniquely. The correspondence of (x̂, û, p̂, X̂) to this value µ is called
the homogenized or effective function and denoted by F̄2(x̂, û, p̂, X̂), F̄12(x̂, û, p̂), and
F̄1(x̂, û, p̂), respectively, in problems (CP)2, (CP)12, and (CP)1.

Four cases arise in our study of the asymptotics for (P)ε. Case 1: limε→0 δ(ε) ∈
(0,∞). Case 2: limε→0 δ(ε) = 0 and limε→0 δ(ε)/ε = ∞. Case 3: limε→0 δ(ε)/ε ∈
(0,∞). Case 4: limε→0 δ(ε)/ε = 0. We may assume by a simple normalization that
limε→0 δ(ε) = 1 in Case 1 and limε→0 δ(ε)/ε = 1 in Case 3.

Our main results state that under appropriate hypotheses, the solutions uε of (P)ε

converge uniformly on Rn, to the solution u ∈ BUC(Rn) of

F̄2(x, u(x), Du(x), D2u(x)) = 0 in Rn,

F̄2(x, u(x), Du(x), 0) = 0 in Rn,
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F̄12(x, u(x), Du(x)) = 0 in Rn,

and
F̄1(x, u(x), Du(x)) = 0 in Rn

in Cases 1, 2, 3, and 4, respectively. Indeed, these results in Cases 1 and 3 have already
been obtained in [E2].

In Case 4 the vanishing of viscosity is fastest and the result says that in order to
find the limit PDE one firstly sets δ = 0 in (P)ε, i.e., sends the “viscosity” to zero, and
secondly homogenizes the resulting PDE. On the other hand, in Case 2 the result says
that in order to find the limit PDE one firstly fixes δ > 0 and homogenizes the PDE (as
in Case 1 one gets F̄2(x, u, Du, δD2u) = 0), and secondly sends the “viscosity” to zero,
to obtain F̄2(x, u,Du, 0) = 0.

For a general overview of homogenizations of partial differential equations we refer
to [BLP].

The paper is organized as follows. Section 2 is devoted to studying cell problems. In
Section 3 theorems on the convergence of solutions of (CP)ε to that of the corresponding
homogenized equations are established. Section 4 provides proofs of technical lemmas
which are needed in Sections 2 and 3.

2 Cell problems
We begin this section by stating our assumptions on F .

(A4) For each R > 0,

F ∈ BUC(Rn ×Rn × [−R, R]×B(0, R)×Bn×n(0, R)),

where Bn×n(0, R) denotes the ball in Sn of radius R with center at the origin.

We call any continuous function ω : [0,∞) → [0,∞) a modulus if ω(0) = 0 and ω is
non-decreasing in [0,∞).

(A5) For each R > 0 there is a modulus ωR such that for (u, p, X) ∈ [−R, R]×Rn×Sn

and x, y, ξ, η ∈ Rn,

|F (x, ξ, u, p, X)− F (y, η, u, p,X)| ≤ ωR

(
(|x− y|+ |ξ − η|)(1 + |p|+ ‖X‖)),

where ‖X‖ = supξ∈B(0,1) |Xξ| = maxi=1,...,n |λi(X)|, with λi(X) denoting the
eigenvalues of X.

(A6) For each R > 0 there is a constant CR > 0 such that for (x, u, p) ∈ Rn ×
[−R,R]×Rn,

|F (x, ξ, u, p, 0)| ≤ CR(1 + |p|).

3



(A7) For each R > 0

lim
r→∞

inf{F (x, y, u, p, 0) | (x, y, u, p) ∈ R2n × [−R, R]×Rn, |p| ≥ r} = ∞.

(A8) For each (x, u) ∈ Rn ×R and R > 0 there exists a constant L ≡ L(R, x, u) > 0
such that for all y ∈ Rn, p, q ∈ B(0, R), and X ∈ Sn,

|F (x, y, u, p,X)− F (x, y, q, X)| ≤ L|p− q|.

Fix (x̂, û, p̂, X̂) ∈ Rn ×R×Rn × Sn. Define

F̂ (y, q, Y ) = F (x̂, y, û, p̂ + q, X̂ + Y ) for (y, q, Y ) ∈ Rn ×Rn × Sn.

Then consider the following cell problem (CP): find a pair (µ, v) ∈ R×C(Rn/Zn) such
that v is a solution of

(CP) F̂ (y,Dv(y), D2v(y)) = µ in Rn.

We call such a pair (µ, v) a solution of (CP).

Theorem 2.1. Assume that (A1), (A2), (A5), and (A6) hold. Then: (a) There
exists a solution (µ, v) ∈ R × C(Rn/Zn) of (CP). (b) If (µ, v) ∈ R × C(Rn/Zn)
and (ν, w) ∈ R × C(Rn/Zn) are solutions of (CP), then µ = ν. If moreover (A8)
holds, then u(x) = v(x) + C for all x ∈ Rn and for some constant C ∈ R. (c) If
(µ, v) ∈ R× C(Rn/Zn) is a solution of (CP), then v is Lipschitz continuous in Rn.

To prove this theorem, we need Krylov-Safonov Cα estimates, which we state for
the equation of the form

(2.1) λu(x) + G(x, u(x), Du(x), D2u(x)) = 0 in Rn,

where λ ≥ 0 is a constant and G is a continuous function and satisfies:

(2.2) G ∈ BUC
(
Rn × [−R,R]×B(0, R)×Bn×n(0, R)

)
for all R > 0.

(2.3) There are constants 0 < θ ≤ Θ < ∞ such that for all (x, p) ∈ Rn ×Rn, u ∈ R,
and X, Y ∈ Sn, if Y ≥ 0, then

G(x, u, p, X)−Θtr Y ≤ G(x, u, p,X + Y ) ≤ G(x, u, p, X)− θ trY.

Note that condition (2.3) implies the Lipschitz continuity of G(x, u, p,X) in the
variable X. More precisely,

|G(x, u, p, X)−G(x, u, p, Y )| ≤ nΘ‖X − Y ‖
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for all x, p ∈ Rn, u ∈ R, and X, Y ∈ Sn.

(2.4) The function u 7→ G(x, u, p, X) is non-decreasing in R for each (x, p,X) ∈
Rn ×Rn × Sn.

(2.5) For each R > 0 there is a modulus ωR such that for (u, p, X) ∈ [−R, R]×Rn×Sn

and x, y ∈ Rn,

|G(x, u, p, X)−G(y, u, p, X) ≤ ωR

(|x− y|(1 + |p|+ ‖X‖)).

(2.6) For each R > 0 there is a constant CR > 0 such that for all x, p ∈ Rn and
u ∈ [−R, R],

|G(x, u, p, 0)| ≤ CR(1 + |p|).

(2.7) For each R > 0 there is a constant LR > 0 such that for all (x, u) ∈ Rn×[−R, R],
p, q ∈ B(0, R), and X ∈ Sn,

|G(x, u, p, X)−G(x, u, q,X)| ≤ LR|p− q|.

In the above assumptions, because of the convexity of the domain Rn for x, y, we
may assume that ωR grows at most linearly. This observation is useful in our proof of
Lemma 2.3.

Lemma 2.2. Assume that (2.3) and (2.6) hold and that λ = 0. Then for each R > 0
there exist constants α ≡ α(n, θ, Θ, CR) ∈ (0, 1) and C ≡ C(n, θ, Θ, CR) > 0, where
CR is the constant from (2.6), such that if u ∈ C(Rn) is a solution of (2.1) and if
‖u‖L∞(Rn) ≤ R, then

|u(x)− u(y)| ≤ C|x− y|α if |x− y| ≤ 1.

We do not give here the proof of this lemma since the result is somehow standard
and instead we refer to [CC, CCKS, KT, T] and just give the following remark: for
(x, u, p, X) ∈ Rn × [−R,R]×Rn × Sn we have

G(x, u, p,X) = G(x, u, p,X+ −X−) ≤ G(x, u, p,−X−)− θ trX+

≤G(x, u, p, 0)− θ tr X+ + Θ trX− ≤ CR(1 + |p|) + P+(X),

where X+ := 1
2

(
X + (X2)1/2

)
, X− := −X + X+, and P+(X) := −θ tr X+ + Θ tr X−.

Therefore the solution u of Lemma 2.2 satisfies

P+(D2u(x)) + CR(1 + |Du(x)|) ≥ 0 in Rn.
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Similarly, we see that u satisfies

P−(D2u(x))− CR(1 + |Du(x)|) ≤ 0 in Rn,

where P−(X) := −Θtr X+ + θ tr X−.
It may be worth noting here that if the function G(x, u, p, X) is independent of u,

then the constants CR of (2.6) and therefore C of Lemma 2.2 can be chosen indepen-
dently of R.

Lemma 2.3. Assume that (2.2)–(2.5) hold. Let u ∈ USC(Rn) and v ∈ LSC(Rn) be
bounded sub- and supersolutions of (2.1), respectively, and let R > 0 be a constant such
that

max{‖u‖L∞(Rn), ‖v‖L∞(Rn)} ≤ R.

Then there is a constant C ≡ C(n, θ, Θ, ωR, R) > 0, where ωR is the modulus from
(2.5), such that

(2.8) u(x)− v(y) ≤ sup
Rn

(u− v)+ + C|x− y| for all x, y ∈ Rn.

An assertion close to the above can be found in [IL] (see [IL, (3.19)]). We have
chosen condition (2.5) which is much stronger than needed and indeed more restrictive
than [IL, (3.2)]. This choice is made for simplicity of the presentation.

Outline of proof. By a careful review of the proof of [IL, (3.19)], we find a constant
C1 > 0 depending only on n, θ, Θ, R, ωR for which we have

u(x)− v(y) ≤ max
B(z,1)

(u− v)+ + C1|x− y| for all x, y ∈ B(z, 1) and z ∈ Rn.

This immediately yields (2.8), with an appropriate C > 0. QED

A form of the strong maximum principle for (2.1) can be stated as follows:

Lemma 2.4. Assume that λ = 0 and the function G(x, u, p, X) is independent of u

and that (2.3) and (2.7) hold. If u, v ∈ C(Rn) be bounded solutions of (2.1), then
u(x) = v(x) + C for all x ∈ Rn and for some constant C ∈ R.

A proof of Lemma 2.4 can be found in Section 4.

Lemma 2.5. Assume that λ > 0 and that (2.2)–(2.5) hold. If v ∈ USC(Rn) and
w ∈ LSC(Rn) are bounded sub- and supersolutions of (2.1), respectively, then v ≤ w in
Rn.

A proof of this lemma can be found in Section 4. See [IL, Theorem III.1] and also
[T, CCKS] for similar results under “structure condition”.

6



Proof of Theorem 2.1. Fix β > 0, and we consider the problem

(CP)β βvβ(y) + F̂ (y, Dvβ(y), D2vβ(y)) = 0 in Rn.

If we set M = maxξ∈Rn |F̂ (ξ, 0, 0)|, then the constants M/β and −M/β are respec-
tively a supersolution and a subsolution of (CP)β . In order to build a solution of (CP)β ,
we use Perron’s method. Indeed, setting

vβ(x) = sup{w(y) | w a subsolution of (CP)β , |w(y)| ≤ M/β ∀y ∈ Rn},

for x ∈ Rn, we see that the function vβ is a solution of (CP)β in the sense that
(vβ)∗, the upper semicontinuous envelope of vβ , is a subsolution and (vβ)∗, the lower
semicontinuous envelope of vβ , is a supersolution of (CP)β .

Applying Lemma 2.5, we see that (vβ)∗ ≤ (vβ)∗ in Rn, i.e., vβ ∈ C(Rn), and that
vβ is a unique solution of (CP)β .

It is obvious from the uniqueness of bounded solutions of (CP)β , a consequence of
Lemma 2.5, that vβ is periodic with period Zn, i.e., vβ ∈ C(Rn/Zn).

Since |vβ(y)| ≤ M/β by comparison, {βvβ(0) | β > 0} is bounded in R. We can
choose a sequence 0 < βj → 0 as j →∞ such that βjv

βj (0) → −µ, as j →∞, for some
µ ∈ [−M,M ]. Now, by virtue of Lemma 2.2, we see that there exist constants α ∈ (0, 1)
and C > 0 such that

|vβ(x)− vβ(y)| ≤ C|x− y|α for all x, y ∈ Rn, β > 0.

Hence, the family of functions vj : y 7→ vβj (y) − minRn vβj , with j ∈ N, is uniformly
bounded and equi-continuous on Rn. In view of the periodicity of vj , we may hence
assume that vj(y) → v(y) uniformly on Rn, as j →∞, for some function v ∈ C(Rn/Zn),
and also that as j →∞,

|βjv
βj (y) + µ| ≤ Cβj |y|α + |βjv

βj (0) + µ| → 0.

Now, sending j →∞, we see that v is a solution of

F̂ (y,Dv(y), D2v(y)) = µ in Rn.

Thus, (µ, v) has all the properties required for the proof of (a).
Next, we turn to the proof of (b). Let (µ, v), (ν, w) ∈ R × C(Rn/Zn) be two

solutions of cell problem (CP). In order to show that µ = ν, we suppose that µ < ν. We
may assume by adding a constant to v that v > w in Rn. Then, for sufficiently small
β > 0, we observe that v and w are, respectively, a subsolution and a supersolution of
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(CP)β , with F̂ (y, p,X) replaced by F̂ (y, p, X)− µ+ν
2 . By Lemma 2.5, we see that v ≤ w

in Rn. This contradiction shows that µ = ν.
Now, we apply the strong maximum principle (Lemma 2.4) to v, w and conclude

that v(y) = w(y) + C for some constant C ∈ R.
Finally, part (c) is an immediate consequence of Lemma 2.3. QED

By Theorem 2.1 problem (CP) has a solution (µ, v) ∈ R × C(Rn/Zn) and the
constant µ is uniquely determined . In view of the dependence of µ on x̂, û, p̂ and X̂,
we write

µ = F̄ (x̂, û, p̂, X̂).

We call the function F̄ on Rn ×R×Rn × Sn the homogenized or effective function of
F .

Let us observe that under the assumptions of Theorem 2.1 the value µ = F̄ (x̂, û, p̂, X̂)
is characterized by the condition that if ν ≥ µ then there is a subsolution w ∈ C(Rn/Zn)
of

(2.9) F̂ (y, Dw(y), D2w(y)) = ν in Rn

and if ν < µ then there is no subsolution w ∈ BUC(Rn) of (2.9). Indeed, by the choice
of µ, there is a solution v ∈ C(Rn/Zn) of (2.9) with ν replaced by µ and for ν ≥ µ, v is
a subsolution of (2.9). On the other hand, if there were a subsolution w ∈ C(Rn/Zn)
of (2.9) with ν < µ, then we would have

εw(x) + F̂ (x, Dw(x), D2w(x)) ≤ µ + ν

2
in Rn,

εv(x) + F̂ (x,Dv(x), D2v(x)) ≥ µ + ν

2
in Rn

for sufficiently small ε > 0. Here and henceforth, these inequalities are understood in
the viscosity sense in this context. Then by comparison, we get w ≤ v in Rn, which
implies that w ≤ v + C in Rn for any constant C ∈ R. This contradiction verifies our
characterization of F̄ (x̂, û, p̂, X̂).

The above observation, of course, can be stated as

(2.10) F̄ (x̂, û, p̂, X̂) = min{ν ∈ R | (2.9) has a subsolution w ∈ C(Rn/Zn)}.

Similarly, under the assumptions of Theorem 2.1 we have

(2.11) F̄ (x̂, û, p̂, X̂) = max{ν ∈ R | (2.9) has a supersolution w ∈ C(Rn/Zn)}.

The effective function F̄ inherits properties (A1), (A3), (A5), (A6), and (A7). That is,
we have:
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Proposition 2.6. Assume that (A1), (A2), (A5), and (A6) hold. Then : (a) For all
(x, u, p, X) ∈ Rn ×R×Rn × Sn,

min
y∈Rn

F (x, y, u, p, X) ≤ F̄ (x, u, p, X) ≤ max
y∈Rn

F (x, y, u, p,X).

(b) If (A4) holds, then for each R > 0,

F̄ ∈ BUC
(
Rn × [−R, R]×B(0, R)×Bn×n(0, R)

)
.

(c) For (x, u, p) ∈ Rn ×R×Rn and X, Y ∈ Sn, if Y ≥ 0, then

F̄ (x, u, p,X)−Θtr Y ≤ F̄ (x, u, p,X + Y ) ≤ F̄ (x, u, p,X)− θ trY.

(d) If (A3) holds then the function: u 7→ F̄ (x, u, p, X)− λu is non-decreasing in R for
any (x, p,X) ∈ Rn ×Rn × Sn. (e) For each R > 0 there is a modulus ωR such that
for x, y ∈ Rn and (u, p, X) ∈ [−R, R]×Rn × Sn,

|F̄ (x, u, p, X)− F̄ (y, u, p,X)| ≤ ωR

(|x− y|(1 + |p|+ ‖X‖)).

(f) For each R > 0 there is a constant CR > 0 such that for x, p ∈ Rn and u ∈ [−R, R],

|F̄ (x, u, p, 0)| ≤ CR(1 + |p|).

(g) If (A7) holds, then

lim
r→∞

inf{F̄ (x, u, p, 0) | (x, u, p) ∈ Rn × [−R, R]×Rn, |p| ≥ r} = ∞ for R > 0.

The next lemma is useful in the following arguments, which is adapted from [J2,
CKSS].

Lemma 2.7. Assume that (2.2)–(2.5) hold. Let u ∈ C(Rn) be a bounded solution of
(2.1), with λ = 0. Then : (a) u is Lipschitz continuous in Rn. (b) Let R > 0 be a
constant such that ‖Du‖L∞(Rn) ≤ R and MR > 0 a constant such that

|G(x, u, p, 0)| ≤ MR for (x, u, p) ∈ Rn × [−R,R]×B(0, R).

Then for each ε > 0 there are functions v± ∈ C(Rn) ∩ W 2,∞(Rn) and a constant
C ≡ C(ε, n, ωR, θ, Θ, R,MR) > 0, where ωR is the modulus from (2.5), such that

‖u− v±‖L∞(Rn) < ε, ‖v±‖L∞(Rn) ≤ ‖u‖L∞(Rn),(2.12)

‖Dv±‖L∞(Rn) ≤ ‖Du‖L∞(Rn), ‖v±‖W 2,∞(Rn) ≤ C,(2.13)

and
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G(x, v+(x), Dv+(x), D2v+(x)) ≥ − ε in Rn,(2.14)

G(x, v−(x), Dv−(x), D2v−(x)) ≤ ε in Rn.(2.15)

A proof of this lemma can be found in Section 4.

Proof of Proposition 2.6. Let (x, u, p, X) ∈ Rn×R×Rn×Sn and v ∈ C(Rn/Zn)
be a solution of

F (x, y, u, p + Dv(y), X + D2v(y)) = F̄ (x, u, p, X) for y ∈ Rn.

Let y+, y− ∈ Rn be points where v attains its maximum and minimum, respectively.
We have

F (x, y+, u, p, X) ≤ F̄ (x, u, p, X) ≤ F (x, y−, u, p, X),

from which follows assertion (a).
Next, let (x, u, p, X) ∈ Rn ×R×Rn ×Sn and let Y ∈ Sn satisfy Y ≥ 0. There is a

solution v ∈ C(Rn/Zn) of

F (x, y, u, p + Dv(y), X + Y + D2v(y)) = F̄ (x, u, p, X + Y ) for y ∈ Rn.

Using (A1), we see that v is a subsolution of

F (x, y, u, p + Dv(y), X + D2v(y)) = F̄ (x, u, p, X + Y ) + Θ tr Y for y ∈ Rn,

and a supersolution of

F (x, y, u, p + Dv(y), X + D2v(y)) = F̄ (x, u, p, X + Y ) + θ trY for y ∈ Rn.

Accordingly, by (2.10) and (2.11), we deduce that

F̄ (x, u, p, X + Y ) + θ trY ≤ F̄ (x, u, p,X) ≤ F̄ (x, u, p, X + Y ) + Θ tr Y,

which completes the proof of (c).
Fix R > 0 and ε > 0. Fix (x, u, p,X) ∈ Rn × [−R, R] × B(0, R) × Bn×(0, R), and

choose a solution v ∈ C(Rn/Zn) of

F (x, ξ, p + Dv(ξ), X + D2v(ξ)) = F̄ (x, u, p, X) for ξ ∈ Rn.

Using (c), (a), and (A6), we see that if we set G(ξ, q, Y ) = F (x, ξ, p + q, X + Y ) −
F̄ (x, u, p, X), then

|G(ξ, q, 0)| ≤ |F (x, ξ, u, p + q, 0)|+ |F̄ (x, u, p, 0)|+ 2nΘ‖X‖
≤ 2CR(1 + |p|+ |q|) + 2nΘR ≤ (

2CR(1 + R) + 2nΘR
)
(1 + |q|).
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By Lemmas 2.2 and 2.3 we find a constant C1 > 0 depending only on n, θ, Θ, R

such that ‖Dv‖L∞(Rn) ≤ C1. Next by Lemma 2.7 we see that there are a function
w ∈ BUC(Rn) and a constant C2 > 0 depending only on ε, n, θ, Θ, R such that w is a
subsolution of

F (x, ξ, p + Dv(ξ), X + D2v(ξ)) = F̄ (x, u, p, X) + ε for ξ ∈ Rn,

and such that

‖w‖L∞(Rn) ≤ ‖v‖L∞(Rn), ‖Dw‖L∞(Rn) ≤ ‖Dw‖L∞(Rn), ‖D2w‖L∞(Rn) ≤ C2.

Let (y, t, q, Y ) ∈ Rn × [−R,R]×B(0, R)×Bn×n(0, R). By assumption (A4), there
is a constant δ ∈ (0, 1) depending only on R, C1, C2 such that if |x− y|+ |u− t|+ |p−
q|+ ‖X − Y ‖ < δ and (r, Z) ∈ B(0, C1)×Bn×n(0, C2), then

|F (x, ξ, u, p + r,X + Z)− F (y, ξ, t, q + r, Y + Z)| < ε.

Accordingly, we have

F (y, ξ, t, q + Dw(ξ), Y + D2w(ξ)) ≤ F̄ (x, u, p, X) + 2ε for ξ ∈ Rn.

In view of (2.10) this shows that

F̄ (y, t, q, Y ) ≤ F̄ (x, u, p, X) + 2ε.

By symmetry, we have

F̄ (x, u, p, X) ≤ F̄ (y, t, q, Y ) + 2ε,

and hence, |F̄ (x, u, p,X) − F̄ (y, t, q, Y )| < 2ε. This proves the required uniform conti-
nuity of F̄ . The boundedness of F̄ on Rn ×Rn × [−R, R] × B(0, R) × Bn×n(0, R) for
each R > 0 follows immediately from (a).

Now, we turn to (d) and assume that (A3) holds. Let (x, u, p,X) ∈ Rn×R×Rn×Sn

and r ≥ 0. Let v ∈ C(Rn/Zn) be the solution of

F (x, y, u + r, p + Dv(y), X + D2v(y)) = F̄ (x, u + r, p, X) for y ∈ Rn.

Using (A3), we infer that v is a subsolution of

F (x, y, u, p + Dv(y), X + D2v(y)) + λr ≤ F̄ (x, u + r, p, X) for y ∈ Rn,

and moreover that F̄ (x, u, p, X) ≤ F̄ (x, u + r, p,X)− λr, which was to be shown.
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Next we prove (e). Fix R > 0 and let ωR be the modulus from (A5). Let (u, p, X) ∈
[−R,R]×Rn × Sn and x, y ∈ Rn, and let v ∈ C(Rn/Zn) be a solution of

F (x, ξ, u, p + Dv(ξ), X + D2v(ξ)) = F̄ (x, u, p,X) for ξ ∈ Rn.

Fix ε ∈ (0, 1). Since v ∈ W 1,∞(Rn) by (c) of Theorem 2.1, by virtue of Lemma 2.7
there are a function w ∈ C(Rn/Zn) ∩W 2,∞(Rn) and a constant C ≡ C(ε) > 0 such
that

‖v − w‖L∞(Rn) < ε, ‖Dw‖L∞(Rn) ≤ ‖Dv‖L∞(Rn), ‖D2w‖L∞(Rn) ≤ C,

and w satisfies

F (x, ξ, u, p + Dw(ξ), X + D2w(ξ)) ≤ F̄ (x, u, p, X) + ε for ξ ∈ Rn.

(Regarding the periodicity of w, consult the proof of Lemma 2.7.) In view of Lemmas
2.2 and 2.3, there is a constant C1 > 0 which depends only on n, θ, Θ, CR, ωR, where
CR is the constant from (A6), such that ‖Dv‖L∞(Rn) ≤ C1.

Hence, by (A5), we see that w satisfies

F (y, ξ, u,p + Dw(ξ), X + D2w(ξ))

≤ F̄ (x, u, p,X) + ε + ωR

(|x− y|(1 + C1 + C + |p|+ ‖X‖)) for ξ ∈ Rn,

which guarantees that

F̄ (y, u, p, X) ≤ F̄ (x, u, p, X) + ε + ωR

(|x− y|(1 + C1 + C + |p|+ ‖X‖)).

By symmetry, we conclude that

|F̄ (y, u, p, X)− F̄ (x, u, p, X)| ≤ ε + ωR

(|x− y|(1 + C1 + C + |p|+ ‖X‖)).

Define the function σR : [0,∞) → [0,∞) by

σR(r) = inf{ε + ωR

(
(1 + C1 + C(ε))r

) | ε ∈ (0, 1)},

which is upper semicontinuous and non-negative in [0,∞) and satisfies σR(0) = 0. We
have

|F̄ (y, u, p, X)− F̄ (x, u, p, X)| ≤ σR

(|x− y|(1 + |p|+ ‖X‖)).
Furthermore we may assume that σR ∈ C([0,∞)); otherwise we may replace σR by a
continuous function in [0,∞). We finish the proof of (e).
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Finally we prove (f) and (g). Fix R > 0 and (x, u, p) ∈ Rn × [−R,R]×Rn. By (a)
we have

min
y∈Rn

F (x, y, u, p, 0) ≤ F̄ (x, u, p, 0) ≤ max
y∈Rn

F (x, y, u, p, 0).

(A6) and (A7), respectively, yield

|F̄ (x, u, p, 0)| ≤ CR(1 + |p|),

and

lim
r→∞

inf{F̄ (x, u, p, 0) |(x, p) ∈ R2n, |p| ≥ r}
≥ lim

r→∞
inf{F (x, y, u, p, 0) | (x, y, p) ∈ R3n, |p| ≥ r} = ∞.

Thus the proof is complete. QED

Now, fix (x̂, û, p̂, X̂) ∈ Rn ×R ×Rn × Sn and consider cell problems of finding a
pair (µ, v) ∈ R× C(Rn/Zn) such that v is a solution, respectively, of

(CP)2 F (x̂, y, û, p̂, X̂ + D2v(y)) = µ for y ∈ Rn,

and

(CP)12 F (x̂, y, û, p̂ + Dv(y), D2v(y)) = µ for y ∈ Rn.

These problems are special cases of (CP). (CP)12 does not depend on X̂, and it is
exactly problem (CP) with X̂ = 0. We denote the homogenized function associated
with (CP)12 by F̄12, which is a function of (x̂, û, p̂). We obviously have

(2.16) F̄12(x̂, û, p̂) = F̄ (x̂, û, p̂, 0).

Let us define the function F (·; p̂) on Rn ×Rn ×R×Rn × Sn by

F (x, y, u, p,X; p̂) = F (x, y, u, p̂, X),

which is a function independent of p. Then (CP) with F (·; p̂) in place of F is problem
(CP)2. Let F̄ (·; p̂) and F̄12 denote the homogenized functions associated with (CP)
having F (·; p̂) and with (CP)12, respectively. It is clear that for all q ∈ Rn,

(2.17) F̄2(x̂, û, p̂, X̂) = F̄ (x̂, û, q, X̂; p̂).

Next, we consider the cell problem

(CP)1 F (x̂, y, û, p̂ + Dv(y), 0) = µ for y ∈ Rn,
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where the unknown is a pair (µ, v) ∈ R×C(Rn/Zn) and (x̂, û, p̂) ∈ Rn×R×Rn is an
arbitrary point. This is a first-order PDE for the function v and so does not have the
uniform ellipticity unlike previous cell problems.

Theorem 2.8. Assume that (A2)–(A4) and (A7) hold. Then: (a) There exists a
solution (µ, v) ∈ C(Rn/Zn) of (CP)1. (b) If (µ, v), (ν, w) ∈ R × C(Rn/Zn) are
solutions of cell problem (CP)1, then µ = ν. (c) If (µ, v) ∈ R × C(Rn/Zn) is a
solution of (CP)1, then v is Lipschitz continuous in Rn.

It is clear that in Theorem 2.8, the requirement of (A2) to F (x, y, u, p, X) is only
needed for X = 0.

We do not give the proof of Theorem 2.8 and instead refer to [E2], where a result
[E2, Lemma 2.1] similar to ours is proved under a bit stronger assumptions. Consult
e.g. [CIL2] for technicalities in the current generality.

In view of Theorem 2.8, we can define the homogenized function F̄1 associated with
cell problem (CP)1, which is a function on Rn ×R×Rn. That is, F̄ (x̂, û, p̂) is defined
as the value µ for which there is a solution v ∈ C(Rn/Zn) of (CP)1.

Proportion 2.9. Under the hypotheses of Theorem 2.8, we have: (a) For all (x, u, p) ∈
Rn ×R×Rn,

min
y∈Rn

F (x, y, u, p) ≤ F̄1(x, u, p) ≤ max
y∈Rn

F (x, y, u, p).

(b) For all R > 0, F̄1 ∈ C(Rn× [−R, R]×B(0, R)). (c) If (A3) holds, then the function
u 7→ F̄1(x, u, p) − λu is non-decreasing in R, where λ is the constant from (A3). (d)
For any R > 0, limr→∞ inf{F̄1(x, u, p) | (x, u, p) ∈ Rn × [−R, R]×Rn, |p| ≥ r} = ∞.

Outline of proof. Most of arguments of the proofs of (a), (b), (d), and (g) of
Proposition 2.6 apply to show assertion (a), (b), (c), and (d), respectively, with obvious
modifications. We do not need (and can not use either) Lemmas 2.2, 2.3, and 2.7 here.
In this respect the following observation is useful. Let R > 0, (x, u, p) ∈ Rn× [−R, R]×
B(0, R), and v ∈ C(Rn/Zn) be a solution of

(2.18) F (x, y, u, p + Dv(y), 0) = F̄1(x, u, p) for y ∈ Rn.

Noting that

|F̄1(x, u, p)| ≤ CR := sup{|F (ξ, y, t, q, 0)| | (ξ, y, t, q) ∈ R2n × [−R,R]×B(0, R)},

in view of (A7) we may choose a constant L > 0 so that for all (ξ, y, t, q) ∈ Rn ×Rn ×
[−R,R]×Rn, if |q| > L, then

F (ξ, y, t, q, 0) > CR.
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Now (2.18) implies that v is a subsolution of

|Dv(y)| ≤ L + R in Rn,

which gives the Lipschitz bound ‖Dv‖L∞(Rn) ≤ L + R. The bound L can be chosen so
that it depends on x, u, p only through R > 0. QED

3 Convergence results
We show in this section that, as ε → 0, the solutions uε of (P)ε converge to the

solution u of one of the homogenized equations

F̄2(x, u, Du(x), D2u(x)) = 0 in Rn,(3.1)

F̄2(x, u, Du(x), 0) = 0 in Rn,(3.2)

F̄12(x, u, Du(x)) = 0 in Rn,(3.3)

and

F̄1(x, u, Du(x)) = 0 in Rn.(3.4)

We begin with the existence and uniqueness theorem for (P)ε.

Theorem 3.1. Let ε > 0. Assume that (A1) and (A3)–(A5) hold. Then there exists a
unique bounded solution uε of (P)ε and uε is Lipschitz continuous in Rn.

Outline of proof. The first step is to establish the comparison principle between
bounded upper semicontinuous subsolutions and bounded lower semicontinuous super-
solutions of (P)ε. To this end, one may follow the proof of [IL, Theorem III.1] with a
minor and standard modification which takes care of the non-compactness of the domain
Rn. (See also the proof of Lemma 2.5 in Section 4.)

The second step is to use the Perron procedure and to establish the existence of a
bounded solution of (P)ε. By (A3) and (A4) the constants

± sup
x,y∈Rn

|F (x, y, 0, 0, 0)|/λ

are respectively super- and subsolutions of (P)ε. Thus the function

uε(x) = sup{v(x) | v a subsolution of (P )ε, |v(y)| ≤ M/λ for y ∈ Rn},

where M = supx,y∈Rn |F (x, y, 0, 0, 0)|, is a solution of (P)ε. The comparison principle
guarantees that uε is continuous in Rn. Lemma 2.3 gives a Lipschitz bound for uε.
QED
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We next state comparison and existence results for (3.1), (3.2), (3.3), and (3.4) in
the following theorems.

Theorem 3.2. Assume that (A1)–(A6). Then: (a) If u ∈ USC(Rn) and v ∈ LSC(Rn)
are bounded sub- and supersolutions of (3.1), respectively, then u ≤ v in Rn. (b) There
exists a solution u ∈ C(Rn) ∩W 1,∞(Rn) of (3.1).

Remark. Due to Theorem 2.1, under the hypotheses of this or the next theorems the
respective homogenized functions F̄2, F̄2(·, 0), and F̄12 are well-defined.

Proof. The function F̄2 has all the properties described in (b)–(f) of Proportion 2.6.
The proof of (a) is similar to that of Lemma 2.5, which we leave to the reader. One can
prove (b) as in the same way as the proof of Theorem 3.1. Also, (b) is a consequence
of the proof of Theorem 3.5 below. QED

Theorem 3.3. Assume that (A1)–(A7) hold. Then the conclusions of Theorem 3.2
hold both for (3.2) and for (3.3).

Proof. The function F̄2(·, 0) and F̄12 have all the properties described in (b), (d)–
(g) of Proposition 2.6. The comparison and existence assertions are a consequence of
classical results (see e.g. [CIL1]). The Lipschitz regularity of the solutions of (3.2) or
(3.3) are a classical result as well (see, e.g., the outline of proof of Proposition 2.9).
QED

Theorem 3.4. Assume that (A2)–(A5) and (A7) hold. Then the conclusions of The-
orem 3.2 hold for (3.4).

Remark. By Theorem 2.8, under the hypotheses of the above theorem the homogenized
functions F̄1 is well-defined.

Proof. The function F̄1 has all the properties described in (b)–(d) of Proposition
2.9. As before, the comparison and existence assertions and the Lipschitz regularity
property are consequences of classical results. QED

We state our results on convergence of solutions of (P)ε according to the limit equa-
tions.

Theorem 3.5. Assume that limε↘0 δ(ε) = 1 and that (A1)-(A6) hold. Let uε ∈
C(Rn)∩W 1,∞(Rn) be the solution of (P)ε for each ε > 0 and u ∈ C(Rn)∩W 1,∞(Rn)
the solution of (3.1). Then uε(x) → u(x) uniformly on Rn as ε → 0.

We remark that, by Theorems 3.1 and 3.2, uε and u of the above theorem exist
uniquely.

The assertion of Theorem 3.5 is close to and a bit stronger than that of [E2, Theorem
3.3]. Indeed, our result holds under slightly weaker assumptions on F .

We use the following lemma in the proof of Theorem 3.5.
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Lemma 3.6. Let Ω be an open subset of Rn, u ∈ USC(Ω), and v ∈ C(Ω) ∩W 2,∞(Ω).
Let x̂ ∈ Ω and (p,X) ∈ J2,+(u− v)(x̂). Then there is a Y ∈ Sn such that

(Dv(x̂), Y ) ∈ J
2
v(x̂),

(p + Dv(x̂), X + Y ) ∈ J2,+u(x̂),

where J
2
v(x) denotes the set of those points (q, Y ) ∈ Rn × Sn for which there is a

sequence xj → x such that v is twice differentiable at xj, i.e., it has the Taylor expansion
at xj up to second order terms, and (Dv(xj), D2v(xj)) → (q, Y ).

See [CIL2] for the definition of J
2,+

u, etc. A proof will be given in Section 4.

Proof of Theorem 3.5. We only prove the local uniform convergence of uε to u.
We just refer the reader to [HI] for an argument how to improve to the global uniform
convergence.

Setting M = supx,y∈Rn |F (x, y, 0, 0, 0)|, in view of the construction of uε in the proof
of Theorem 3.1, we see that ‖uε‖L∞(Rn) ≤ M/λ for all ε > 0.

We define functions u and u on Rn by

u(x) = lim
r↘0

sup{uε(y) | y ∈ Rn, |y − x| ≤ r},

u(x) = lim
r↘0

inf{uε(y) | y ∈ Rn, |y − x| ≤ r},

and will show that u and u are a subsolution and a supersolution of (3.1), respectively.
Once this is done, we conclude by Theorem 3.2 that u ≤ u ≤ u in Rn and moreover
that uε(x) → u(x) locally uniformly in Rn as ε → 0, which was to be shown.

We show that u is a subsolution of (3.1) and omit the proof of the assertion that u

is a supersolution of (3.1), since the proofs of these facts are symmetric.
Fix ϕ ∈ C2(Rn) and x̂ ∈ Rn so that u − ϕ has a strict maximum at x̂. Let

v ∈ C(Rn/Zn) be a solution of

F (x̂, y, û, p̂, X̂ + D2v(y)) = F̄2(x̂, û, p̂, X̂) for y ∈ Rn,

where û := u(x̂), p̂ := Dϕ(x̂), and X̂ := D2v(x̂). (Theorem 2.1 guarantees the existence
of such a v.)

Fix γ > 0 and, in view of Lemma 2.7, choose a function w ∈ C(Rn/Zn)∩W 2,∞(Rn)
so that w is a supersolution of

F (x̂, y, û, p̂, X̂ + D2w(y)) = F̄2(x̂, û, p̂, X̂)− γ for y ∈ Rn.

By the definition of u, there are sequences 0 < εj → 0 and xj → x̂ such that for each
j, the function uε(x) − ϕ(x) − ε2w(x/ε), with ε = εj , has a local maximum at xj and
uε(xj) → û as ε = εj → 0.
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Assume for the moment that w ∈ C2(Rn), which is not true in general. Then we
have

F (xj , xj/ε, uε(xj), Dϕ(xj) + εDw(xj/ε), δD2ϕ(xj) + δD2w(xj/ε)) ≤ 0,(3.5)

F (x̂, xj/ε, û, p̂, X̂ + D2w(xj/ε)) ≥ F̄2(x̂, û, p̂, X̂)− γ,(3.6)

and, sending j →∞ and using the periodicity of F and w, we obtain

0 ≥ F (x̂, ξ, û, p̂, X̂ + D2w(ξ)) ≥ F̄2(x̂, û, p̂, X̂)− γ

for some ξ ∈ Rn. Because of the arbitrariness of γ > 0, we conclude that

(3.7) F̄2(x̂, û, p̂, X̂) ≤ 0.

In the general case we use Lemma 3.6, to find an Xj ∈ Sn for each j such that

(Dw(xj/ε), Xj) ∈ J
2
w(xj/ε),

(Dϕ(xj) + εDw(xj/ε), D2ϕ(xj/ε) + Xj) ∈ J2,+uε(xj).

Then we obtain inequalities (3.5) and (3.6) with Xj in place of D2w(xj/ε) and then
proceed exactly as above, to conclude (3.7). The proof is now complete. QED

Theorem 3.7. Assume that limε→0 δ(ε) = 0 and limε→0 δ(ε)/ε = ∞ and that (A1)–
(A7) hold. Let uε, u ∈ C(Rn) ∩ W 1,∞(Rn) be the solutions of (P)ε and of (3.2),
respectively. Then uε(x) → u(x) uniformly on Rn as ε → 0.

We remark that uε and u in the above theorem exist and are unique by Theorems
3.1 and 3.3.

The proof below is similar to the previous one, and so we give just its outline.

Outline of proof. Again we only prove the local uniform convergence of uε to u.
We define u and u as in the previous proof with current {uε}ε>0. It is enough to

show that u and u are sub- and supersolutions of (3.2), respectively.
Again, we only prove that u is a subsolution of (3.2). Fix ϕ ∈ C2(Rn) and x̂ ∈ Rn

so that u− ϕ attains a strict maximum at x̂. Let v ∈ C(Rn/Zn) be a solution of

F (x̂, y, û, p̂, D2v(y)) = F̄2(x̂, û, p̂, 0) for y ∈ Rn,

where û := u(x̂) and p̂ := Dϕ(x̂). Let γ > 0 be an arbitrary number and choose
w ∈ W 2,∞(Rn) ∩ C(Rn/Zn) so that w is a supersolution of

F (x̂, y, û, p̂, D2w(y)) = F̄2(x̂, û, p̂, 0)− γ for y ∈ Rn.
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We can find sequences 0 < εj → 0 and xj → x̂, as j →∞, such that for each ε = εj

the function uε − ϕ − ε2δ−1w(x/ε) attains a maximum at xj and uε(xj) → û, with
ε = εj , as j →∞. Proceeding as in the previous proof, we first get

F (xj , xj/ε, uε(xj), Dϕ(xj) + εδ−1pj , δD
2ϕ(xj) + Xj) ≤ 0,

F (x̂, xj/ε, û, p̂ + εpj , Xj) ≥ F̄2(x̂, û, p̂, 0)− γ

for some (pj , Xj) ∈ J
2
w(xj/ε) and for ε = εj and all j, and then, passing to the limit

as j →∞,
0 ≥ F (x̂, ξ, û, p̂, X) ≥ F̄2(x̂, û, p̂, 0)− γ

for some (ξ,X) ∈ Rn × Sn. This shows that F̄2(x̂, û, p̂, 0) ≤ 0, which completes the
proof. QED

Theorem 3.8. Assume that (A1)–(A7) hold and that limε→0 δ(ε)/ε = 1. Then the
solution uε ∈ C(Rn)∩W 1,∞(Rn) converges to the solution u ∈ C(Rn)∩W 1,∞(Rn) of
(3.3) uniformly on Rn as ε → 0.

Again this theorem is close to [E2, Theorem 4.4]. Our assumptions are slightly
weaker than those of [E2, Theorem 4.4].

The proof below is similar to those for Theorems 3.5 and 3.7.

Outline of proof. We follow the proof of the previous two theorems. To see that the
function u, which is defined as in the previous proof, is a subsolution of (3.3), we fix
ϕ ∈ C2(Rn) and x̂ ∈ Rn so that u−ϕ attains a strict maximum at x̂. Then we choose
a function w ∈ C(Rn) ∩W 2,∞(Rn) so that

F (x̂, y, û, p̂ + Dw(y), D2w(y)) = F̄12(x̂, û, p̂)− γ for y ∈ Rn,

where γ > 0 is an arbitrarily fixed number and û, p̂ are defined as in the same fashion
as before.

For ε > 0 we consider the function uε(x) − ϕ(x) − ε2δ−1w(x/ε) and its maximum
point xε. We then get

F (xε, xε/ε, uε(xε), Dϕ(xε) + εδ−1pε, δD
2ϕ(xε) + Xε) ≤ 0,

F (x̂, xε/ε, û, p̂ + pε, Xε) ≥ F̄12(x̂, û, p̂)− γ,

where (pε, Xε) ∈ J
2
w(xε/ε). The rest of the arguments are the same as before. QED

Theorem 3.9. Assume that (A1)–(A5) and (A7) hold and that limε→0 δ(ε)/ε = 0.
Then the solution uε ∈ C(Rn) ∩ W 1,∞(Rn) of (P)ε converges to the solution u ∈
C(Rn) ∩W 1,∞(Rn) of (3.4) uniformly on Rn as ε → 0.
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Remark that the existence of uε and u in the above theorem is assured by Theorems
3.1 and 3.4.

Outline of proof. We argue as before and then come up to the situation that we have
a function ϕ ∈ C2(Rn) and a point x̂ ∈ Rn such that u− ϕ attains a strict maximum
at x̂, where u is defined as usual.

The next step is to fix a solution v ∈ C(Rn/Zn) ∩W 1,∞(Rn) of

F (x̂, y, û, p̂ + Dv(y), 0) ≥ F̄12(x̂, û, p̂) for y ∈ Rn,

where û := u(x̂), p̂ := Dϕ(x̂).
Since this equation is not uniformly elliptic, we cannot use Lemmas 2.7 and 3.6 in

this proof. Instead, we utilize inf-convolutions of v to find a function w ∈ C(Rn/Zn) ∩
W 1,∞(Rn) which is a supersolution of

F (x̂, y, û, p̂ + Dw(y), 0) ≥ F̄12(x̂, û, p̂)− γ for y ∈ Rn,

where γ > 0 is an arbitrarily fixed number, and which is semiconcave in Rn. Choose
a constant L > 0 so that the function w(x)− (L/2)|x|2 is concave in Rn. Note that if
p ∈ D+w(x), then (p, LI) ∈ J2,+w(x) and that D+w(x) 6= ∅ for all x ∈ Rn. Note as
well that, since w is almost everywhere differentiable, Dw(x) 6= ∅, where Dw(x) denotes
the set of p ∈ Rn for which there is a sequence yj → x such that w is differentiable at
yj and Dw(yj) → p as j →∞, and that Dw(x) ⊂ D+w(x) for all x ∈ Rn.

Fix sequences 0 < εj → 0 and Rn 3 xj → x̂ so that for each j, the function
uεj (x)− ϕ(x)− εjw(x/εj) has a local maximum at xj and uεj (xj) → û as j →∞. Fix
j and write ε = εj . Fix pj ∈ Dw(xj/ε) and observe that

(Dϕ(xj) + pj , D
2ϕ(xj) + ε−1LI) ∈ J2,+uε(xj).

We then get

F
(
xj , xj/ε, uε(xj), Dϕ(xj) + pj , δ(D2ϕ(xj) + ε−1LI)

) ≤ 0,

F (x̂, xj/ε, û, p̂ + pj , 0) ≥ F̄1(x̂, û, p̂)− γ.

Sending j →∞, we get

0 ≥ F
(
x̂, y, û, p̂ + p, 0) ≥ F̄1(x̂, û, p̂)− γ

for some y, p ∈ Rn, and conclude that u is a subsolution of (3.4). QED

4 Proof of lemmas
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Proof of Lemma 2.5. Let ε ∈ (0, 1) and α > 0, and set

Φ(x, y) = u(y)− v(y)− α

2
|x− y|2 − ε

2
|x|2 for x, y ∈ Rn.

This function clearly attains a maximum at a point (x̄, ȳ) ∈ R2n.
We argue by contradiction and, in order to get a contradiction, we suppose that

M := supRn(u− v) > 0.
We choose a sequence {xj} ⊂ Rn so that as j →∞,

(u− v)(xj) → M.

We may assume by replacing {xj} by a subsequence that the sequence of functions
G(x+xj , u, p, X) on Rn×R×Rn×Sn is locally uniformly convergent to some function
Ḡ. Define u and u by

u(x) = lim
r↘0

sup{u(y + xj) | y ∈ B(xj , r), j > 1/r},

v(x) = lim
r↘0

inf{v(y + xj) | y ∈ B(xj , r), j > 1/r}.

Replacing G, u, and v by Ḡ, u, and v, respectively, we may assume that u − v attains
its maximum at the origin.

Then we follow the proof of [IL, Theorem III.1] with minor modifications. The first
step is to observe that there are Xα,ε, Yα,ε ∈ Sn such that

λu(x̄) + G(x̄, u(x̄), α(x̄− ȳ) + εx̄,Xα,ε + εI) ≤ 0,

λv(ȳ) + G(ȳ, v(ȳ), α(x̄− ȳ),−Yα,ε) ≥ 0,

−3α

(
I 0
0 I

)
≤

(
Xα,ε 0

0 Yα,ε

)
≤ 3α

(
I −I
−I I

)
.

Subtracting the second from the first of the above inequalities and sending ε → 0, we
get

(4.1) λM + θ| tr (Xα + Yα)| ≤ ωR(rα(1 + R + ‖Xα‖))

for some Xα, Yα ∈ Sn satisfying

(4.2) −3α

(
I 0
0 I

)
≤

(
Xα 0
0 Yα

)
≤ 3α

(
I −I
−I I

)
,

where rα := lim infε→0 |x̄ − ȳ| and for some R > 0. Here we have used the following
observations. By Lemma 2.3, we have

u(x)− v(y) ≤ M + C1|x− y| for x, y ∈ Rn
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for some constant C1 > 0, and hence,

M ≤ u(x̄)− v(ȳ)− α

2
|x̄− ȳ|2 − ε

2
|x̄|2 ≤ M + C|x̄− ȳ| − α

2
|x̄− ȳ|2 − ε

2
|x̄|2.

Therefore,
α|x̄− ȳ| ≤ 2C1.

Similarly we have
ε|x̄|2 ≤ 2(u(x̄)− v(ȳ)−M),

and
ε|x̄| ≤ C2

for some constant C2 > 0. Hence, we have

α|x̄− ȳ|+ ε|x̄| ≤ 2C1 + C2.

¿From (4.1) and (4.2), we argue as in the proof of [IL, Theorem III.1], to obtain a
contradiction after letting α →∞. QED

Proof of Lemma 2.7. The assertion (a) follows immediately from Lemma 2.3.
To show (b), we use the sup-inf and inf-sup convolutions ([LL]) and the techniques

of their use as adapted in [J2, CKSS]. We only prove the existence of v− having the
required properties. It is left to reader to show the existence of v+ fulfilling the required
properties.

Fix any ε > 0 and we first observe that the sup-convolution of uε gives a nice
approximation as a subsolution to (2.1). This is basically well-known, but the point is
to check this fact in our current situation. We only deal with the subsolution case, and
it is left to the reader to examine the other case .

Thus let ϕ ∈ C2(Rn) and ŷ ∈ Rn be such that u− ϕ attains a maximum at ŷ, and
we will show that

G(ŷ, uε(ŷ), Dϕ(ŷ), D2ϕ(ŷ)) ≤ σ(ε)

for some function σ : (0,∞) → [0,∞] satisfying σ(+0) = 0 which depends only on
n, θ, ωR, and R.

Indeed, according to the definition

uε(y) = max
x∈Rn

(
u(x)− 1

2ε
|x− y|2

)
,

we find a point x̂ ∈ Rn such that the function

u(x)− ϕ(y)− 1
2ε
|x− y|2
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attains a maximum at (x̂, ŷ).
Now, by the maximum principle [CIL2, Theorem 3.2], we see that for some X,Y ∈

Sn, we have

(4.3)
(

X 0
0 Y

)
≤ 3

ε

(
I −I
−I I

)
,

(4.4) G
(
x̂, u(x̂),

1
ε
(x̂− ŷ), X

)
≤ 0,

(4.5) −D2ϕ(ŷ) ≤ Y.

Note that (4.3) and (4.5) together yield

(4.6)
(

X 0
0 −D2ϕ(ŷ)

)
≤ 3

ε

(
I −I
−I I

)

Since Dϕ(ŷ) + ε−1(ŷ − x̂) = 0 and u(x̂) ≥ uε(ŷ), from (4.4) we get

G(ŷ + εDϕ(ŷ), uε(ŷ), Dϕ(ŷ), X) ≤ 0.

It is known (see [IL, Lemma III.1]) that (4.6) implies

(4.7) ‖X‖ ≤ C1(ε−1/2| tr (X −D2ϕ(ŷ))|1/2 + | tr (X −D2ϕ(ŷ))|)

for some constant C1 > 0 which depends only on n. Note that, since Dϕ(ŷ) = (1/ε)(x̂−
ŷ) ∈ D+u(x̂), we have |Dϕ(ŷ)| ≤ ‖Du‖L∞(Rn) ≤ R and that, since X + Y ≤ 0,
X −Dϕ(ŷ) ≤ 0. Using (4.6), (4.7), and this observation, we calculate that

0 ≥G
(
ŷ + εDϕ(ŷ), uε(ŷ), Dϕ(ŷ), D2ϕ(ŷ) + (X −D2ϕ(ŷ)

)

≥G
(
ŷ + εDϕ(ŷ), uε(ŷ), Dϕ(ŷ), D2ϕ(ŷ)

)
+ θ| tr (X −D2ϕ(ŷ)|

≥G
(
ŷ, uε(ŷ), Dϕ(ŷ), D2ϕ(ŷ)

)− sup
t≥0

(
−θt + ωR

(
εR[1 + R + C1(ε−

1
2 t

1
2 + t)]

))

Setting
σ(ε) = sup

t≥0

(
−θt + ωR

(
εR(1 + R + C1[ε−

1
2 t

1
2 + t])

))
,

we observe that σ : (0,∞) → [0,∞] satisfies σ(+0) = 0 and that

G(ŷ, uε(ŷ), Dϕ(ŷ), D2ϕ(ŷ)) ≤ σ(ε).
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Thus, as far as σ(ε) < ∞, uε is a subsolution of

(4.8) G(y, uε(ŷ), Dϕ(ŷ), D2uε(y)) ≤ σ(ε) in Rn.

Note that σ depends only on n, θ, ωR, and R.
Fix such a function σ, which may be assumed to be non-decreasing, and choose r > 0

so that σ(r) < ∞.
Let ε > 0 and δ > 0 satisfy ε + δ ≤ r. As is observed in [CKSS, S], we have

(4.10)
(
uε+δ

)
δ
≥ uε ≥ u in Rn,

(4.11)
(
uε+δ

)
δ
(y)− 1

2δ |y|2 is concave in Rn,

(4.12)
(
uε+δ

)
δ
(y) + 1

2ε |y|2 is convex in Rn,

and moreover,

(4.13) if
(
uε+δ

)
δ

is twice differentiable and
(
uε+δ

)
δ
(ŷ) > uε(ŷ) at a point ŷ ∈ Rn,

then the matrix D2
(
uε+δ

)
δ
(ŷ) has 1/δ as an eigenvalue.

In particular, the function
(
uε+δ

)
δ

has the W 2,∞ regularity.
We write v for

(
uε+δ

)
δ
. Let ŷ ∈ Rn be a point such that

(
uε+δ

)
δ

is twice dif-
ferentiable at ŷ and

(
uε+δ

)
δ
(ŷ) > uε(ŷ). Since D2v(ŷ) + 1

εI ≥ 0, using (4.13), we
get

tr
(
D2v(ŷ) +

1
ε
I
)
≥ 1

δ
− 1

ε
.

Furthermore, recalling that ‖v‖L∞(Rn) ≤ ‖u‖L∞(Rn) ≤ R, if δ ≤ ε then we have

G(ŷ, v(ŷ), Dv(ŷ), D2v(ŷ)) = G
(
ŷ, v(ŷ), Dv(ŷ),−1

ε
I + D2v(ŷ) +

1
ε
I
)

≤G
(
ŷ, v(ŷ), Dv(ŷ),−1

ε
I
)
− θ tr

(
D2v(ŷ) +

1
ε
I
)

≤G(ŷ, v(ŷ), Dv(ŷ), 0) + Θ
n

ε
− θ

(1
δ
− 1

ε

)

≤MR +
nΘ + θ

ε
− θ

δ
.

Fix ε ∈ (0, r) and choose δ ≡ δ(ε) ∈ (0, ε) so that MR + nΘ+θ
ε − θ

δ ≤ 0. Then it is
easy to check that v = (uε+δ)δ is a subsolution of

G(y, v(y), Dv(y), D2v(y)) ≤ σ(ε) in Rn.

Note here that the function ε 7→ δ(ε) depends only on n, θ, Θ, and MR.
Finally, noting the well-known facts that there is a modulus γ, which depends only

on R and the function δ of ε, such that

‖(uε+δ)δ − u‖L∞(Rn) ≤ γ(ε)
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and that ‖v‖L∞(Rn) ≤ ‖u‖L∞(Rn) and ‖Dv‖L∞(Rn) ≤ ‖Du‖L∞(Rn), we finish the proof.
QED

Lemma 4.1. Let Ω be an open subset of Rn and f : Ω → Rn a semiconvex function.
Then

J2,+f(x) ⊂ J
2
f(x) for x ∈ Ω.

This is an observation due to Jensen [J1].

Proof. Fix x ∈ Ω and (p,X) ∈ J2,+f(x), and choose a function ϕ ∈ C2(Ω) so that
(f−ϕ)(y) = 0 < (f−ϕ)(x) for y ∈ Ω\{x}. As a simple consequence of [CIL2, Theorem
A.2 and Lemma A.3], we find sequences Ω 3 xj → x and Rn × Sn 3 (pj , Xj) → (0, 0)
such that (pj , Xj) ∈ J2(f − ϕ)(xj) for all j. ¿From this, we conclude that (p,X) ∈
J

2
f(x). QED

Proof of Lemma 2.4. Set w(x) = u(x)− v(x) for x ∈ Rn. Choose R > 0 so that

max{‖u‖L∞(Rn), ‖v‖L∞(Rn), ‖Du‖L∞(Rn), ‖Dv‖L∞(Rn)} ≤ R.

We begin by showing that

(4.14) P−(D2w)− LR|Dw| ≤ 0 in Rn.

To this aim, we first apply Lemma 2.7 to u and v to find for each ε > 0 uε, vε ∈
W 2,∞(Rn) ∩ C(Rn) such that

‖u− uε‖L∞(Rn) ≤ ε, ‖v − vε‖L∞(Rn) ≤ ε,

G(x,Duε(x), D2uε(x)) ≤ ε,

G(x,Dvε(x), D2vε(x)) ≥ ε.

Set wε(x) = uε(x) − vε(x) for x ∈ Rn. Let x ∈ Rn and (p,X) ∈ J2,+wε(x). By
Lemma 3.6, we find a Y ∈ Sn such that (Dvε(x), Y ) ∈ J

2
vε(x) and (p+Dvε(x), X+Y ) ∈

J2,+u(x). Now, setting (r, Z) = (p + Dvε(x), X + Y ), we have

2ε ≥G(x, r, Z)−G(x,Dvε(x), Y )

≥G(x, r, Y )−Θtr (Z − Y )+ + θ tr (Z − Y )− −G(x,Dvε(x), Y )

≥LR|r −Dvε(x)|+ P−(Z − Y ) ≥ P−(X)− LR|p|.

Therefore,
P−(D2wε(x))− LR|Dwε(x)| ≤ 2ε in Rn.

According to the stability property of viscosity solutions, we conclude by sending ε → 0
that (4.14) holds.
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Using a limiting argument as in the proof of Lemma 2.7, we see that we may assume
that u− v attains a maximum at some point z ∈ Rn. The rest of the proof is somehow
standard, for which we refer to [BD]. QED

The second author learned from Mariko Arisawa that w satisfies (4.14) in the above
proof. He is grateful to her for this.

Proof of Lemma 3.6. We choose a function ϕ ∈ C2(Ω) so that v − ϕ attains a
maximum at x̂. Since v is semiconcave, we can find a Y ∈ Sn such that (Dv(x̂), Y ) ∈
J2,+v(x̂). Since v is semiconvex, by Lemma 4.1, we have J2,+v(x̂) ⊂ J

2
v(x̂). Now,

by the assumption that u − v − ϕ has a maximum at x̂, we see that J2,+(v + ϕ)(x̂) ⊂
J2,+u(x̂). Combining these we get

(p + Dv(x̂), X + Y ) ∈ (p,X) + J2,+v(x̂) ⊂ J2,+u(x̂).

This concludes the proof. QED
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