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§1. Introduction and theorem

We consider the Maxwell-Higgs equations in space time dimensions 2 4+ 1 and 3

+ 1:
(1.1) 0,0" At — 09, AY = j*, (t,z) € RH'"’,

1 2m? n
(1.2) DuD"¢ = 5(m*e = 3prlele), (o) € R,

where n = 2 or 3, M and m are positive constants, A" are real-valued functions, ¢

is a complex-valued function and

i = —i{p(Drp) — (D" )G},
DI — 9t 1 AN,

Here and hereafter, we follow the convention that Greek indices take values in
{0,1,--- ,n} while Latin indices are valued in {1,--- n}. Indices repeated lower
and upper are summed. The space R™t! is the n + 1 dimensional Euclidean space

equipped with the flat Minkowski metric

(9og) = diag(1,—1,---, —1).

Indices are raised and lowered using the metric gog and its inverse g°?. We put
2% =t and 9, = 9/0z”.

The potential V(|¢|) = %(142/2 — |¢|*)? associated with the right hand side
of (1.2) is called the Higgs potential and it has equilibria 0 and z = Me'?/v/2,
6 € R. The latter equilibria correspond to the degenerate ground state, which is
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the vacuum with vacuum expectation value M//2. All equilibria z = Mei? /\/2,
6 € R are equivalent from a physical point of view, because this system has U(1)
symmetry. If one of them is spontaneously chosen, for example, if z = M/\/2
i1s chosen as a vacuum equilibrium, then the so-called spontaneous breakdown of
symietry will happen and the photon described by A* will have mass M. This 1s
called the Higgs mechanism.

We look at this mechanism in more details (see [1, Section 13.3]). We first note

that equations (1.1)-(1.2) are invariant under the following gauge transformation:

Py L

¢ = e X,

where x(t, z) is an arbitrary smooth real-valued function. If ¢ is close to the vacuum
equilibrium M/v/2, then we can take y = argy, —7 < argy < w. In that case,
both A* and ¢ become real-valued functions. Such choice of gauge is called the
unitary gauge. Again we denote Ar and @ by A" and ¢, respectively. We put
¢ = ¢+ M/\/2 and suppose that the fluctuation (A", ¢) from the vacuum (0,0) is
small in the new dynamical variables. Then, the Cauchy problem for (1.1)-(1.2) is
reduced to the following:

(1.3) (O 4 M?)A" — 9"9,A” = —2/2M A" $ — 24" §?,
(t,z) € R'T™,

2N o % v v 2 3

(1.4) (O4+m)p = \@A,,A + A, A% \/_M¢ MZ(ﬁ
(t,z) € R!'*T™,
(1.5) (A%(0),0:4"(0)) = (a,8"),  (4(0),8:6(0)) = (o, b1),
M

(1.6) 0, A" +24,0"p + E6,¢1ﬂ =0, (t,z) R,

where O = 0,0". The constraint (1.6) is a gauge condition associated with the
unitary gauge.

If $ > —M/\/2, we can rewrite (1.3) by using (1.6) as follows.

(1.7) (O + M?)A" = 20" ((¢ + M/V2) 7' 4,0"9)
— V2M A" — 2A* H?

2faﬂ(A 3" ¢) — 2V2M A"

—2AM 4 f(¢, Ay, 0", 0" A,,0"0" ), (t,z) € R,
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where f is a nonlinear function belonging to
C®((-M/V2,00) x R"*" x R x R x RITT)

and f is cubic around zero.

Remark 1.1. In (1.7) the nonlinearity includes the second derivatives of ¢. Never-
theless, the system (1.4) and (1.7) can actually be handled as a semilinear system
of Klein-Gordon equations with mass terms M and m (see the proof of Lemma 2.4

in Section 2).

Remark 1.2. If the solution (A”, ¢) of (1.3)-(1.5) satisfies the unitary gauge condi-

tion (1.6), the following compatibility conditions on initial data must hold.

, . : M :
(1.8) b0B° + o0 + 2(andy + ;& do) + ﬂ(ﬁo + 90’ ) =0,
(1.9) (A = M*)a® — 0;87 — 2v/2Ma’ ¢y — 20°¢F = 0.

The relations (1.8) and (1.9) follow from (1.6) and (1.3) with u = 0, respectively.
Furthermore, if ¢ > —M//2, the solution of (1.3)-(1.6) satisfies equation (1.7).
Conversely, if the initial data satisfy (1.8) and (1.9), then the solution of (1.7) and
(1.4) must automatically satisfy the unitary gauge condition (1.6) and consequently
satisfy (1.3), as long as ¢ > —M/+/2 (for the details, see the proof of Lemma 2.4
(ii) in Section 2). Therefore, in most cases, we consider the problem (1.7), (1.4)
and (1.5) under assumptions (1.8) and (1.9) instead of (1.3)-(1.6).

The unique global solvability of the Cauchy problem of (1.1)-(1.2) was proved
by Eardley and Moncrief [9], Burzlaff and Moncrief [4] and Schwarz [34] for the
classical solution and by Klainerman and Machedon [27] and Keel [23] for the finite
energy solution without restriction on size of initial data. In this paper, we study
the stability of constant vacuumn equilibria for (1.1)-(1.2), which is reduced to the
stability of zero solution for (1.3)-(1.6). The stability problem of constant equilibria
seems to be important, because if they are not stable, the unitary gauge can not be
defined for all times. This problem apears in the abelian Higgs model for n = 3 and
in the relativistic superconductivity theory for n = 2 (for the physical background,
see [1], [22] and [40]).

Remark 1.3. The existence of topologically non-trivial stationary solutions is known
(see, e.g., [3], [22] and [40]). These solutions are called vortices for n = 2 and
monopoles for n = 3. The stability and instability of these solutions are studied,

for example, by [19] and [20], but many problems still remain open to be solved.
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Before we state our theorem, we list several notations. For k, s € N U {0}, we

define the weighted Sobolev space H** as follows.
H* ={v e L? |[v||gr. < oo}
with the norm
follme = ([ 10+ P72 = )20 de)
For simplicity, we write ||u(t)|| gx = ||u(t)|| gr.0o. We put
Quy = 2,0, — 2,0, [ # v.

We denote the generators of the Poincaré group by

n?+3n+2

P:(P]7]:177 9 ):(alMQ,u]J/'L:OJ]W7n7]:177n7:u<])

For ke N, 1 € R and u € C([0,00); S(R™)), we put

u(t, z)[x = > |Tu(t,z)],
|

a|<k

lu(@llka =Y L+ ¢+ o) Tu(®)] 2,

la| <k

[l = llu(®)]xo0-

For s € R, let [s] denote the largest integer that does not exceed s. We put
0= (00,01, ,0n).
We have the following theorem.

Theorem 1.1. Let n =2 or 3,let k be an integer with k > 24 and let 0 < § < 1/4.
We assume that 2M # m for n =2 and (a®, B*, do, ¢p1) € HE-LE—1 g gh-2k=1 g
Hkk-1 ¢ gh-1k=1 Then, there emists an g > 0 such that if the initial data
(ak, B", ¢o,¢1) satisfy

1

> (e lmsmrams + 18" apemnims) + ol zress + o]l mesims < e
p=0
for some ¢ with 0 < ¢ < eg and the compatibility conditions (1.8) and (1.9) for the

unitary gauge are satisfied, then the Cauchy problem (1.8)-(1.6) has a unique global
solution (A", ¢) satisfying

(1.10) O°TP A (1), 3°T7¢(t) € C(R; L*(R™)),
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|a|§1a|ﬁ|§k‘_2a|’7|§k_la

L) Y (10 AT W)lles + 10%6(1)]lx-5) < Ce, tER,
|| <2

(1.12) Y (L D00 A () lk—2 + 10°6(D)][k-1) < Ce,
la <1

teR,
3M

(1.13) e[z < 4\/57 tc€R,

(1.14) 3 (10 A" (¢, @) ko2 + [0° (1, @) k—11)
lo] <2

SO+t +|z)™"2,  (tz) e R,

where C' does not depend on ¢. Furthermore, A" and ¢ have free profiles (a!y, B,
bot, d14) € HF 2 @ HF 6 @ H** & H*® such that

(115)  [AR) — ah(O)llms + 0P (0) = Bale(t)lpme — O
(t — £o0),

(116)  6(6) — a()llmems + 10(1) — Bba(t)llips  —> O
(t = +o0),

where a'y and ¢y are the solutions of the following free Klein-Gordon equations:

Dai + ]\Izai =0, (aim)’atai(o)) = (O‘iﬂﬁi)a auai =Y
Oy + m’ds =0, (¢+(0),0:9+(0)) = (do+, b1+).

Remark 1.4. (i) The time decay property (1.14) in Theorem 1.1 implies the asymp-
totical stability of zero solution for (1.3)-(1.4), which corresponds to the asymptot-
ical stability of the constant vacuum equilibrium (0,]\1/\/5) for (1.1)-(1.2) in the
unitary gauge. By the U(1l) symmetry of the original system (1.1)-(1.2), we can
conclude that other constant vacuum equilibria (O,J\/.few/\/ﬁ), 6 € R are asymp-
totically stable in the same sense.

(ii) By the argument of Glassey [18] and Matsumura [30], we can prove that if
n = 2 and 2M = m, the relations (1.14), (1.15) and (1.16) fail in a certain sense.
More precisely, the wave operators can not be well-defined for n = 2 and 2M = m.
In that case, the long range phenomenon should take place.

(iii) When we consider the vortex solutions and the monopole solutions, the case

of 2M = m is of special interest (see Plohr [33] and Jaffe and Taubes [22]).
5



The standard proof of global existence results for small initial data consists of the
energy estimate and the time decay estimate. Theorem 1.1 for n = 3 follows imme-
diately from the L™ — L? decay estimate by Klainerman [25] (see also Hormander
[21], Georgiev [12]-[15]). In the two dimensional case, this decay estimate is not
sufficient for the proof of Theorem 1.1 and we need to use the technique of normal
form by Shatah [34] in addtion to the L> — L? decay estimate (see Ozawa, Tsutaya
and Tsutsumi [31] and [32]). However, Shatah’s argument does not always work
if M # m. For example, in our problem the restriction 2M > m is required to
apply Shatah’s argument of normal form. Here we improve the proof by Kosecki
[28] to overcome this difficulty, which gives an alternative proof of the result in [31]
or [32] as well as an extension to the system of nonlinear Klein-Gordon equations
with different mass terms.

We illustrate our proof of Theorem 1.1 for n = 2. The proof of Theorem 1.1 is
based on the null condition technique, which compensates for the insufficiency of
decay rate in two spatial dimensions. In [26], Klainerman introduced the notion of
the null condition to prove the global existence of solutions for massless nonlinear
wave equations with small initial data (see also Christodoulou [6]). Here, we give not
a precise definition of the null condition but several typical examples of quadratic
forms satisfying the null condition. For smooth functions u(t,z) and v(t,z), we

define the quadratic forms Qo(u,v) and @y (u,v) as follows.

(1.18) Qo(u,v) = Gudpv — Vu - Vo,
(1.19) Quv(u,v) = yudyv — J,udyv, p# .
It is known that Qo(u,v) and @, (u,v) satisfy the null condition (see [26]). Let

S = 2"0,. These quadratic forms can be rewritten by using Q,; and S in the

following forms.

(1.20) Qo(u,v) =t~ (Sudov — J;uldg;v),

(1.21) Qjk(u,v) =t~ (9juQorv — FuQojv + Q;rudov),
(1.22) Qoj(u,v) = —Qjo(u,v) =t~ (GouQjv — Qojudov).

These relations show that the quadratic forms Qo and @, have better decay esti-
mates than other quadratic nonlinearity. On the other hand, we have the following

commutation relations.
[QH]" D] = 07 [Sa D] = —201

Because of the second commutation relation, the radial vector field S is incompatible

with the Klein-Gordon operator 00 + M?, while it is useful for the D’Alembertian
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(0. Therefore, we need avoid to use Qo when we consider the nonlinear Klein-
Gordon equation. However, because of the first commutation relation, the Q,;’s
are compatible with both the Klein-Gordon and the wave equations. So, @, are
often called strong null forms (see Georgiev [12]). We introduce new dynamical
variables to rewrite equations (1.3) and (1.4) so that all the quadratic nonlinear
terms of the resulting equations can be expressed in terms of the strong null forms
Quv. This is inspired by Bachelot [2] and Kosecki [28]. Our proof is a kind of
combination of the L® — L? decay estimate and the normal form like the proofs by
Bachelot [2, Part V] and Kosecki [28].

The plan of this paper is the following. In Section 2, we summarize several
lemmas needed for the proof of Theorem 1.1. Especially, Lemma 2.2 in Section 2 is
a key to our proof of Theorem 1.1, which enables us to control the solution globally
in time. At the end of Section 2, we prove the unique local existence of solution
for (1.3)-(1.6) (see Lemma 2.4). In Section 3, we prove Theorem 1.1 by using the

lemmas in Section 2.

§2. Leminas
We first state the lemma concerning the time decay estimate for the inhomo-

geneous linear Klein-Gordon equation. We consider the following Klein-Gordon

equation.
(2.1) Ou+ M*u = f(t,z), teR, ze&R"
(2.2) u(0,2) = uo(z), Oou(0,z) =ui(z), zeR".

We have the following lemma.

Lemma 2.1. Assume that n = 2 or 3. Let k be an arbitrary nonnegative integer
and let u be a solution of (2.1)-(2.2). We put l(n) = [(n 4+ 5)/2]. Then, we have

the following estimate:
(L ]t] + |2 )™ 2 [ut, 2) |k < C{Jlwoll grrrromtrmtiomts + [[un || grseorsio+2

+2 2 sw ] 1F(lksimy+22}, >0, xR,

where Iy = [0,1], I; = [27=1,20%1] (5 > 1) and C is a positive constant depending

only on k. For t <0, the same estimate as above holds.

This kind of decay estimate for the inhomogeneous linear Klein-Gordon equation
was first proved by Klainerman [25] and was improved by Bachelot[2], Hormander

[21] and Georgiev [13]-[16]. For the proof of Lemma 2.1, see [14, Theorem 1].
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In the following Lemmas 2.2 and 2.3, we do not use the convention that indices

repeated are summed. We consider a system of Klein-Gordon equations:

(2.3) (O0+ M2)u = au’® + Z b;l)uvj + Z b;z)uw]’
1<5<; 1<5<1>
+ > Slvmt Y o+ Y Ywjui+ f=F
1<j<k<h, 1<j<h 1< <k<ly
1<k,

(t,z) € R't™
(2.4) O+ M*)v; =g, (tz)eR™T" 1<5<,
(2.5) (O+m*w; =h;, (tz) e R, 1<5 <1y,

where a, b;q) and cg-%) are constants, [y and [, are positive integers and f, g; and h;
are smooth functions. We now state the key lemma to our proof of Theorem 1.1,
which reveals that quadratic nonlinear Klein-Gordon equations generically have the

null condition structure.

Lemma 2.2. Let u, v; and w; be solutions of (2.3), (2.4) and (2.5), respectively.
Assume that (2M — m)(M — 2m) # 0. Then, there ezist constants p, q§ ),(jgl)(
J<h), ¢,¢P0<i<h), U <ik<h), DA< <1<k <),

and r(k),r(i;’c)(l < 7,k <1l3) such that if we put

(2.6)
2y = Oyu — 2pulyu — Z ( )8 uv]—l—q ua v;)
1<5<l
Z ( )a uw; + 7D ud wj) — Z (r(l)a v;v —}—N(l) 0
j T4 yWj jk GV Uk T T3 U V)

1<G<ts 1<, k<h

Z (rﬁ)a,,vjwk + F;i)vja,,wk) — Z (rg-z)a,,ijk + f;‘z)wj&,wk),
S e

then z, satisfies the following equation.

(2.7)
(O+ M*)z, = —4p Z Quv(u, 0"u)
0<p<n
nEv
—2 Z <q;’1) Z Quv(vj, 0" u) + ¢ N(l) Z Quo(u, 8" UJ))
1$5<t 0<p<n 0<p<n
p#EV pFEV
=2 3 (g7 Y Quu(w;,0"u)+ 5 D Quu(u,0"wy))
1<G<l;  0<p<n 0<p<n
e e
-2 Z (1) Z Quv(vi, 0" v;) +Fﬁ) Z Quv(vj,0" vk))
1<5,k<ty 0<u<n 0<u<n
n#v n#v



_9 Z (2) Z Qv (Wi, 0"vj) Z Quv(vj, 0" wk))

1<j<h | 0<p<n ¥ oL
1<kl n#v JTE3%
-2 Z (rﬁ) Z Quv(w, 0" w;) +r(%) Z Qv (wj, 0" wk))
GRSl 0<p<n 0<p<n
n#v n#v
where
(2.8) H = -2p(3F0,u + ud,F)
>, (q;-l)aquj + (g (! )+2q )O0yugj + (261( )+ N(l))Fa vj +q( 'ud,g;)
1<5<h
Z (q;-z)@,,ij ( (2) +2q(2))8 uhj + (2¢ (2) + ~(2))F@ w +q( )ua h; )
1<j<ls

- EE: (r ]k)ayg]vk + (7 (1) +—2rUJ)8 Vigk +—(2r() +—r )g]8 vk-+1ik)vjaygk)
1<5,k<l

Z ( (2 )0,,g]wk —I—( (2) fﬁ))a vjhy + (27"( ) —I—F;,c))g]@ Wi 47t it v]6 hk)

1<j<h

1<k<
Z ( ik (9 hjwy —l—( (3) Fﬁ))a wjhy + (21“;-? + ~(3))h Oy wi +7“ ik w]a hk)

1S]ak5l2
Especially, of cﬁ) = 0, we do not have to assume M # 2m and if 65-2) = cﬁ) =0,

we do not have to assume 2M # m.

Remark 2.1. When we apply Lemma 2.2 to equation (1.7), we choose the v;’s and

the w;’s as follows.
(vj; 1<35<2(14n))=(4,,0"4,; 0<v <n),
(wj; 1<7<2(14n))=(0"¢9,0"0"¢; 1 < v <n).

In the above choice, we regard A, on the right hand side of (1.7) as one of the v;’s
5)

and so a = b(- = 0. We can employ another choice of the v;’s so that A* itself is
excluded from the v;’s. When we apply Lemma 2.2 to equation (1.4), we choose

the v;’s and the w;’s as follows.

In this case, we do not need to consider equation (2.4). At the end of Section 3,
we state a remark on the application of Lemma 2.2 to the general quasilinear case
(see Concluding Remark in Section 3).

For the proof of Lemma 2.2, we start with the following observation due to

Kosecki [28].



Lemma 2.3. Let u be a smooth function on RYT™ and let v be a solution of the

following inhomogeneous linear Klein-Gordon equation.
Ov+ M?*v =h, (t,z) € R'"T",
where h is a smooth function on R'T™. Then, the following identity holds.

(u,0yv) = Z Qv (u, 0"v) + (8,u)(—M?v + h),
o<u<n
pEV

0<v<n.

Lemma 2.3 follows from a direct calculation ( see [28, Lemma 2.1]). Now we

state the proof of Lemma 2.2.

Proof of Lemma 2.2. Let z, be difined as in (2.6). We let the Klein-Gordon operator
(D + ]\/[2) act on z, to have

(D+M2)Zu =G+ Gy + Gs,

where
(2.9) G1 = —4pQo(u,Oyu)
-2 Z (qﬁ-l)Qo(a,,u,vj) + (jgl)Qo(u,a,,vj))
1<;<1,
-2 Z )QO Oyu,wj) +q] )Qo(u 0, w]))
1<5<ls
-2 Z Qo 0, v],vk) +T']k Qo(vj,a vk))
1<Lk<h
-2 Z Qo Oyvj,wg) + 7 k)QO(U],a wy))
1<5<h
1<k<l,
—2 Z QO (Oywj,wg) ‘}'T]k Qo(wj, Dy wk))
1<, k<ls
(2.10) Gy = —2p(FO,u + ud, F)
-9 Z 8Fv]—}—8 ug])—{—q (Fa U]—}—ua,,g]))
1<;<l
~2 Y (¢80 Fwj + dyuhj) + 357 (FO,w; + ud,h;))
1<j<ls
-2 Z - ,,(]]Uk + 0, 1)]L]k> + r( (gja,,vk + Uja,,gk))
1<, k<1,
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-2 Z (Tﬁ)(a,,gjwk + 0, hi) + F;i) (g;0,wy + Uja,,hk))

1<5<h
12k
—2 Y (1D 0uhjwr + 8,wjh) + 753 (hdywi + w0y ki),
1<, k<ls
(2.11) Gs = 2(a + M*p)ud,u
+ 3 AW + 220, uv; + (0 + M2V Yud,v;}
1<5<h
+ Z {( b(Z) +m2q!? ))8,,uwj + (b( ) 4 m2g¢? ))ua,,wj}
1<j<Is
+ Z { (1) J\erﬁ))ayvjvk —I—( . )—I—J\/fz (1 ))Uja,,vk}
1<), k<l
+ Z { +mr )8,,vjwk+(()+m2())v](9wk}
1<;<h
1<k<l>
+ Z { (3) J\/[2 2)7"5-?)8,,11)]'70]6
1<), k<l

+ (el = (M? = 2m)i ) yw; 0, wic ).

Here, we apply Lemma 2.3 to G and so we have (2.7) with the following extra
terms in the right hand side.

(2.12)
2(a + 3]\12p)uayu

+ Z {(b;l) + 1\12(];-1) + 2ﬂ42(j§-1))8y11,1)j + (b;l) + 2]\12(];1) + J\/[2(j§-1))ua,,vj}
1 <5<t

+ Z {(65-2) + m?%q ( )—}—sz ;(2 ))a,,uwj + (b( ) +2M?q ( )—}—mz ;(2 ))ua,,wj}
1<5<l

+ Y )+ M) on 0, o0 + () + 2M?r ) + MR Yo 0,01}
1<5,k<ly

+ Z { (2 )+m2r( )—}—2m2r( ))(9 U]wk—}—( (2) + 2M %y ( )—}—mQ (2 ))U]@ wg }

1<i<h
1<k,

+ Z { (3) (M?* —2m )()+2m2())8w]wk
1<, k<ls

+( (3 )+2m ’(k) (]\42 —2m? ) (3 ))wJ8 wy }

If all terms vanish in (2.12), we have the desired equation (2.7). Therefore, we have

only to solve the following algebraic equations.

(2.13) a+3M°p =0,
11



(2.14)
bV a2glV 4 2m?gl) =0, oY 4+ 420a2glY + Mg =0,

(2.15)

B2 12 4 om?g® =0, 2 420242 4 m2g? =0,
(2.16)

M) +eMPrY) =0, <+ 2m) + MY = o,
(2.17)

C‘(ﬁc)_l_m T'(z) +2m ~(2) 0’ (2) +2J12 (2) +m2 ;i) — 0’
(2.18)

(3) (.7\42 2m2)r(-3) —}—2m27‘(i) =0,
( )—|—2m2 (3) (le 2m? ) 7(3) = 0.

A necessary and sufficient condition for all equations (2.13)-(2.18) to have solutions

(s) ~(s) () ()

a, q; 5 45 s and r 1s the following:

(2M — m)(M — 2m) # 0.

The restriction 2M # m comes from (2.15) and (2.17), and the restriction M # 2m
comes from (2.18). Accordingly, if b;z) = cﬁ)
2M # m and if c( ) = 0, we do not need the restriction M # 2m. This completes

the proof of Lemma 2.2, 0O

= 0, we do not need the restriction

We now mention several remarks on Lemima 2.2.

Remark 2.2. (i) Even if we consider complex-valued solutions, Lemma 2.2 also
holds.

(ii) If either M or m vanishes, Lemma 2.2 still holds for a certain class of qua-
dratic nonlinearity. Because (2.18) in the proof of Lemma 2.2 is solvable, when
either M or m vanishes. Therefore, for example, we can apply Lemma 2.2 to the

first equation in the following system:

(D + l\lz)u = '02,
Ov = f(u,v,0u,dv).

This system is closely related to the Dirac-Proca system in the intermediate vector
boson model for the weak interaction of elementary particles (see Aitchison and
Hey [1, Section 10.1]). The argument analogous to Lemma 2.2 was applied to the
Dirac-Proca equations in [39].

(iii) Suppose that f is cubic nonlinearity in (2.3) and g¢; and h; are quadratic

nonlinearity in (2.4) and (2.5). Then, Lemma 2.2 implies that if we consider new
12



dynamical variables z, instead of u itself, equation (2.3) can be transformed into a
new system of Klein-Gordon equations with strong null forms and cubic nonlinearity
only.

We conclud this section by giving the local existence theorem for the Cauchy
problem (1.3)-(1.6). Because the unique local solvability of the problem (1.3)-(1.6)
seems to be interesting itself. We consider the problem (1.4)-(1.7) instead of (1.3)-
(1.6). The proof of the following Lmma 2.4 reveals a semilinear feature of the
system (1.4) and (1.7), that is, we can regard all nonlinearity in (1.4) and (1.7) as
lower order perturbation with respect to the d’Alembertian . From now on, we

again use the convention that indices repeated are summed.

Lemma 2.4. Let n be spatial dimensions with n > 2 and let k be an integer with
k> [n/2]+ 2.
(1) We assume that

(a“,5“,¢o,¢1) € Hk—l,k—l @ Hk—Z,k—l @ Hk,k—l @ Hk—l,k—l.

Then, there exist kg > 0 and T > 0 such that of the initial data (o, B*, ¢o, ¢1)
satisfy
||| grmrzes + 185 grnsn + N boll grmrase + (|Gl grinsaen < &

for some k with 0 < k < kg and the compatibility conditions (1.8) and (1.9) for the
unitary gauge are satisfied, then the Cauchy problem (1.4)-(1.7) has a unique local
solution (A", ¢) on [0,T] satisfying

9rAM(t), 9°¢(t) € C([0, T H ), ol <k =1, || <k,
1

> (1B A ()l rtnsz141-5 + 10561l rtnrz142-5) < Cw, € [0, T),

J=0

3M
o0l < 775

where T 1s determined only by n and ko, and C' does not depend on k.
(11) Let I be an arbitray interval in R. We put

€ [0, T,

XE = (4", ¢); 92 A (1),0°¢(t) € C(I; HOF7Y), o] <k —1,|8| <k,

3M
oDl < 775

Then, the solution in X§ of (1.7), (1.4) and (1.5) with supplementary conditions
(1.8) and (1.9) is a solution in X¥ of (1.8)-(1.6) and the converse is also true.

tel}.

Proof. We first show part (ii). For that purpose, we observe that if the initial data

satisfy (1.8)-(1.9) and ¢ > —M/+/2, the problem (1.3)-(1.6) is equivalent to (1.7),
13



(1.4) and (1.5) in the following sense. We put ¢ = ¢+ M/y/2 and rewrite (1.3)-(1.4)
and (1.6) as follows.

(2.19) DA" - 9"9, A" = —2A"¢?,

2m?
(2.20) Op = Ay A% + 5 (m*e — S lelPe),
(2.21) (8, A" ) +24,8" = 0

We note that when we take the derivatives in 2" of equations (2.19) and sum up
the resulting equations over p, we have equation (2.21), that is, the unitary gauge
condition. Using the unitary gauge conditon (2.21), we replace equations (2.19) by
the following.

(2.22) OAF + 0 (24, (8% ¢)p™ ') = —2AF 2.

Equation (2.22) makes sense, since ¢ is expected to remain close to M/\/2. We
now regard equations (2.22) and (2.20) as a system with which we start. If we have
a regular solution (A", ) of system (2.22) and (2.20) with ¢(¢,2) > 0 and initial
data at t = 0 satisfy (1.8)-(1.9), we can easily restore the unitary gauge condition
(2.21). Indeed, we take the derivatives in z* of equations (2.22) and sum up the

resulting equations over i to obtain

(2.23) (O 4+ 2p?)(9, A” +24,(0"p)p ") = 0.

By assumptions (1.8)-(1.9) and equation (2.22) with 4 = 0, we also have
(2.24) O (8,A" +24,(8"¢)p™")(0) =0, j=0,1.

Therefore, if ¢(t,2) > 0, we can derive (2.21) from (2.23) and (2.24). Thus, we
conclude that the Cauchy problem of system (2.19)-(2.21) is equivalent to that of
(2.22) and (2.20) under assumptions (1.8) and (1.9), as long as ¢ > 0. This implies
that if the initial data satisfy (1.8)-(1.9) and ¢ > —M/+/2, the problem (1.3)-(1.6)
is equivalent to (1.7), (1.4) and (1.5), which shows (ii) of Lemma 2.4.

We next show part (i), that is, the unique local existence of solution for (1.4)-

(1.7). For that purpose, we consider the following nonlinear mapping.

N{(A", ¢)] = (a",b) + (N1, N2),
14



where w = (—A)]/Q and
a'(t) = coswt o + w™ ! sinwt BH,
b(t) = coswt ¢g + w !l sinwt ¢y,
t
NMal(4r,9)) = [ w7 sinalt — ) [0 (24,(0°6)(6 + M/VE) )
0
— 24" (¢ + M/ﬁ)Z] ds,

Ny [(A*,9)] = /0 w ' sinw(t —s) (— \\/{

m2
f M M?
Let T be a constant with 0 < 7' < 1 to be determined later. We put

+ A, A — 3) ds.

1
_ ﬂCJ 0. T]; B0 g () €9((0, 7] HIM/AIT29)),

J=0 =0

1A%, &)lln = ZZ 5 1A Ollncs + s 1O e

1n=0j

(A“,qo) cH.

We consider A* as an element in C([0,T]; H["’/Z]'H), while ¢ is considered as an
element in C([0,T]; H*/21%2). Because the nonlinear function N; includes the

second derivatives of ¢ and we only have by the Sobolev embbeding theorem
Ny[(A*, $)] € C([0, T); HI"/A+

for (A", ¢) € H. On the other hand, we note that N2 [(A*, ¢)] belongs to C ([0, T; H[”/2]+2)
for (A", ¢) € H. By the assumption on initial data, we have

I(a”,b)|ln < Cor,

where Cj 1s a positive constant independent of k and 7' with 0 < T < 1. We define

the complete metric space X1 as follows.
Xr ={(4",¢) € H; [[(A",9)|ln < 4Cor}
with the metric

(A", ¢), (B",4)) = [[(A" = B*,¢ — )| u.

Now, we choose £ > 0 so small that for any second component ¢ of element in X7,

we can have by the Sobolev embedding theorem

3M
42’

15
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which implies

(t ) , (t ) M S M
T) = x) + —
A P \/i - 4\/§7

(t,z) € [0,T] x R".

Then, if we choose T' > 0 small, the standard contraction argument yields the
unique fixed point (A*,¢) € X7 of the nonlinear mapping N (for the details, see,
e.g., Ginibre and Velo [17]). This fixed point (A", ¢) € X7 is a unique local solution
on [0, 7] of the Cauchy problem (1.7), (1.4) and (1.5) with supplementary conditions
(1.8) and (1.9). The rest of Lemma 2.4 (i) is easily proved. O

§3. Proof of Theorem 1.1

In this section, we give an outline of the proof of estimates (1.11), (1.12) and
(1.13) in Theorem 1.1 for n = 2, which is the main part of the proof for Theorem
1.1. If we have showed (1.11), (1.12) and (1.13), it is easy to prove the rest of
Theorem 1.1.

The difficulty to treat quadratic nonlinearity for n = 2 consists in the insuffi-
ciency of decay rate. For example, We take the L?(R?) norm of the first term on
the right hand side of (1.7) to have by Holder’s inequality

(3.1) IV2M A2 < CJA* (1) = || (t)]| -
Since we may expect that ||¢(¢)]| 2 is bounded for all ¢ and
1A (@)oo ~ [EI7F (8] = o0),

the right hand side of (3.1) is not integrable on R. So, it is difficult to control the
quadratic nonlinear terms on the right hand side of (1.7) and (1.4) as they are.

Therefore, we introduce new dynamical variables((B"),,,) as follows:

(3.2) (B"), = 8,A" — C10,0" A,8"¢ — C,0" A,0"0,¢
— C30,A,070"$ — C4A,079" D, ¢
— 050,AP — CsAD, b,

(3.3) by = Byd — 2070, Ay A" — 2050y,

where C;, 1 < 7 < 8 are real constants to be determined by Lemma 2.2. We apply
Lemma 2.2 to equations (1.7) and (1.4), by‘choosipg a= b;s) = cﬁ) = cﬁ) =0 and
I =1, =2(1 4+ n) for (1.7) and bg-s) = cﬁ) = cﬁ) = 0 and /5, = 1 with the roles
of M and m exchanged for (1.4) (see Remark 2.1 in Section 2). Here we note that

when we apply Lemma 2.2 to (1.7), we regard A* on the right hand side of (1.7)
16



as one of the v;’s and so a = b;s) = 0. If we choose C;, 1 <3 < 8 by Lemma 2.2,

we have the following new system with respect to dynamical variables ((B*),,,).

(3.4) (O+M?)(B Z 3 DYQy (0" A,,07070)
y=00<n<2
n#v
+Z 3" DY@ (07¢, 070" A, +Z Y DY Quu(Ay,07070" )
y=00<n<2 y=00<n<2
n#v n#v
Z Y DY Qu(070"$,0"A,) + Y DL)Q,.(A",07¢)
y=00<n<2 0<n<2
n#v n#v
+ Y DY Quu(¢,07A")
0<n<2
nF#v
+ N (0°47,0%¢; o] < 38,18 <4), =R,
(3.5) (O+m?)y, = Z D(V) Z Qnv(Ay, 0"TA")
0<n<L2 o<u<2
n#v
Y D Qu(6,0"0)
0<n<2
nF#v

+ N(0°A7, 0% ¢; |a| <2,|8| <3), z€R’

where D;Z) are constants and Nl(y) and NZ(V) are cubic nonlinearity with respect to
(0%A7,0%¢; |a| < 3,|8] < 4) and (0°AY,0%¢; |a] < 2,|8| < 3), respectively.

All terms on the right hand side of (3.4) and (3.5) are strong null forms or cubic
nonlinearity, which have the sufficient decay property.

For simplicity, we consider the case of ¢ > 0 only, because the proof for the case

t <0 is the same. We put

(3.6)
A el = >, > Sup (o A" (s)]lk=s + [10%4(s)[lk—5)

0<u<2 |a]<2 0SS!

+ 30 30 sup (149) 7 (10° A () -2 + 076(5) 1)

0<n<2 |al<1?

+ Z Z sup (1+ s+ |z])~ <|aO‘A"(s z)|k—12 + |0%¢(s, @) |- 11)

o<u<2||<25€°t)
eR?

By using the standard argument, Lemma 2.1 and (1.21)-(1.22), we can derive the
energy estimates of order < k — 4 and of order < k — 5 and the decay estimates of

order < k — 9 and of order < k — 8 from (3.4) and (3.5) for 0%(B*), and 0%%¢,),
17



|a] < 1, respectively. From these estimates and (3.2)-(3.3), we easily obtain the
energy estimates of order < k — 6 and of order < k& — 5 and the decay estimates of
order < k — 11 and of order < k — 10 for 0% A" and 0%¢, 1 < |a| < 2, respectively.
Once we have the estimates of derivatives of the solution, we recover the estimates
of the solution itself by using the fact that the Klein-Gordon equation has a mass

term. Thus, we have

(3.7)
SN (10 AR(B)l[k=s + [0St —s)
0<p<2 o] <2
3 S (Ut )T (AR () ko + [0%(E 7)s-10)
0<n=2a|<2

< Cle+ A" Q)OI + A" S)DII*), 20, =eR”

But the energy estimates derived from (3.4) and (3.5) have an undesirable feature
of derivative loss. Hence, we need to return to the original system of (1.3) and
(1.4), when we derive the estimates of higher order. Equations (1.3) and (1.4)
yield the energy estimates without derivative loss, but we lose the boundedness for

102 A" ()| k=2, [[0%(t)||k—1, |a] < 1 by [t|°. Accordingly, we have

(3.8) ST sup (149 (104 () ko2 + 19°6(s) k1)

0<p<2 [af<1 VS9ST
< Cle+ A" Q)OI + A", &)Y, t=0.

If we choose ¢ > 0 sufficiently small for any positive constant 7, then estimates

(3.7) and (3.8) implies that

A", Q)OI <n, 20,

which shows (1.11), (1.12) and (1.14). For the details, see, e.g., [26], [28] and [31].

Concluding Remark. (1) The proof in this paper is applicable to the quadratic quasi-
linear case, that is, the case that the quadratic nonlinearity depends on derivatives
of unknown functions up to second order except for the second derivative in ¢ and
depends linearly on the second derivatives. In that case, we have only to choose
(vj) = (Oyu,Ouju) to apply Lemma 2.2 to the equation of u.

(ii) The problem whether the constant equilibria are stable for 2M = m or not
seems very interesting. There are several papers treating the global solution of
system with long range effect and the small data blowup (see, e.g., [7], [8], [10] and

[11] for the long range problem and [24] for the small data blowup problem). The
18



author does not know whether the proofs in those papers will be applicable to our
case 2M = m.

(iii) Recently, Sunagawa [38] has studied a system of cubic nonlinear Klein-
Gordon equations with different mass terms in one space dimension by using an
argument analogous to Lemma 2.2 in Section 2. The difference between the ar-
guments in this paper and in [38] is how to eliminate undesirable terms Qg in
the process of transforming the original equation into a new system with strong
null forms and cubic nonlinearity only. In this paper, we consider derivatives of
unknown functions to eliminate terms (Jg, while the definition of new dynamical
variables includes terms Qg in [38].
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