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1. Introduction

In the study of the motions of nonlinear vibrating string with peri-
odically oscillating ends, it seems to be interesting to investigate under
which conditions periodic motions exist.

In this paper, we shall consider an oscillating string of finite length
in the (x, u)-plane. Let the ends of the string move time-periodically
on the (x, u)-plane and a nonlinear time-periodic vertical external force
work on the string. We shall be concerned with the existence of the
time-periodic motions of the vibrating string under small vertical exter-
nal forces. This problem is mathematically formulated as the existence
problem of periodic solutions of the Dirichlet boundary value problem
for one-dimensional wave equation with a time-periodic nonlinear forc-
ing term, where the boundaries oscillate periodically in t on the x-axis
and the ends of the string are forced to move periodically in t in the
vertical direction.

Let Ω be a time-periodic noncylindrical domain in (x, t)-plane defined
by

a1(t) < x < a2(t), t ∈ R1.

Here a1(t) and a2(t) are periodic functions. The period is normalized
to 1, for simplicity. Consider BVP (the boundary value problem) for a
nonlinear one-dimensional wave equation :

∂2
t u− ∂2

x u = µp(x, t) + f(x, t, u), (x, t) ∈ Ω,(1.1)

u(a1(t), t) = νb1(t), u(a2(t), t) = νb2(t), t ∈ R1,(1.2)

where p(x, t) and f(x, t, u), and bi(t), i = 1, 2, are periodic with period
1 in t, and f(x, t, u) is of order more than or equal to 2 with respect to
u. p(x, t) and f(x, t, u) satisfy some compatible boundary conditions
(See (A4) later). As a typical example of f , if bi(t), i = 1, 2, identically
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vanish, then we give f(x, t, u) = ±um (m ≥ 2). µ and ν are small
parameters and are supposed to satisfy ν = ν(µ) = O(µ) (µ → 0)
continuous in µ. The above dependence of ν on µ is naturally imposed
because we shall look for the small amplitude solutions and the external
force working the whole string is of O(µ) (µ → 0). We assume that
a1(t) and a2(t) satisfy | a′i(t) | < 1 (i = 1, 2). This condition is natural
in the sense that the boundaries oscillate with slower speed than the
eigenspeed 1 of waves by (1.1). Otherwise, the shock waves come out.

The aim of this paper is to show the existence of time-periodic solu-
tions with small amplitude of BVP (1.1)-(1.2) with the same period 1
as that of the given data.

We define the following composed function A that is a fundamental
tool in this research. Let A be a composed function defined by

A = A−1
1 ◦ A2, Ai = (I + ai) ◦ (I − ai)−1, i = 1, 2,(1.3)

where I is an identity function, f−1 means the inverse function of f and
◦ means the composition operation of functions i.e. f ◦g(x) = f(g(x)).
Geometrically A is a map naturally defined by the reflected charac-
teristics in the (x, t)-plane. A is one dimensional periodic dynamical
system. It is known in a series of works ([Ya1]-[Ya4], [Ya6]) that A
and its rotation number ρ(A) play an essential role in studying the
qualitative behavior of solutions of IBVP and BVP in domain with
periodically oscillating boundaries. For the definition of the rotation
number, see Notation and Definitions in this section.

For the case where the ends of the string are fixed, BVP is of the
form

∂2
t u− ∂2

x u = F (x, t, u), (x, t) ∈ (0, a)×R1,(1.4)

u(0, t) = u(a, t) = 0, t ∈ R1,(1.5)

where a is a positive constant. In this case there are very many works
on the existence of time-periodic solutions of BVP (1.4)-(1.5) (see
[R1] [R2] [B-C-N] [W] etc. and see the references therein). It should
be noted that the ratio of the period of the forcing term F (x, t, u) to
the length a of the interval [ 0, a ] plays an important role in the study
of the behavior of the solution. That is, the behaviors depend on the
rationality or irrationality of the ratio. As is shown in [Ya8], even in
the linear case i.e., F (x, t, u) = F (x, t) in (1.4) it happens that there
are no bounded solutions, as a matter of course, no periodic solutions
of (1.1)-(1.2) if the Diophantine order of the irrational ratio is large and
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the differentiability of F (x, t) is small. It is known that if the Diophan-
tine order of a real number is large, the number is well-approximated
by the rational numbers.

On the other hand, in our moving-boundary problem (1.1)-(1.2)
the difficulty consists in the following. The length of the interval
[ a1(t), a2(t) ] varies continuously as time varies continuously. Hence
the ratio takes both rational and irrational values as time proceeds.
However, this difficulty is essentially overcome by introducing the ro-
tation number of A. In a series of papers ( [Ya4], [Ya6] and [Ya-Yo] ) we
clarified the interesting fact that the rotation number plays the same
role as the length of the interval as the ends are fixed.

We shall show that under the Diophantine condition on the rotation
number (See the assumption (A3) in this section) there exists a small
1-periodic solution of BVP (1.1)-(1.2) (Theorem 1.1). It is well-known
in number theory ( [Kh] ) that all real numbers with periodic continued
fraction expansions satisfy the above Diophantine condition. Especially
the set of all algebraic numbers of degree 2 is equal to the above set.

Our steps to show the results on the existence of periodic solutions
are as follows. First we shall reduce the function A to the affine func-
tion, using the Herman-Yoccoz reduction theorem ( [H], [Yoc] ) (see
Proposition 2.1) :

H ◦ A ◦H−1(x) = x+ ω.

Here ω is the rotation number of A and H is a conjugate function
that is one-dimensional periodic dynamical system of C∞. Then, using
the conjugate function H, we shall construct a domain transformation
Φ : R2 → R2 in section 2 :

ξ =
(
H ◦ A−1

1 (x+ t)−H(−x+ t)
)
/2,

τ =
(
H ◦ A−1

1 (x+ t) +H(−x+ t)
)
/2.

Φ is the bijection of the noncylindrical domain Ω to a cylindrical do-
main D = (0, ω/2)×R1, maps the boundaries of Ω, x = a1(t),x = a2(t)
onto the boundaries of D, ξ = 0, ξ = ω/2 (resp.) and preserves the
d’Alembertian form (Proposition 2.2). The last statement means that
the transformed differential operator contains only d’Alembertian but
has no lower order differential operators. Such transformations were
developped in [Ya4], [Ya6] and [Ya-Yo]. It should be noted that the
above d’Alembertian preserving property has good advantage to study
the qualitative behavior of the solutions. Second, applying the do-
main transformation Φ to BVP (1.1)-(1.2), we shall obtain BVP in the
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cylindrical domain D :

∂2
τ v − ∂2

ξ v = µq(ξ, τ) + g(ξ, τ, v), (ξ, τ) ∈ D,(1.6)

v(0, τ) = νc1(τ), v(ω/2, τ) = νc2(τ), τ ∈ R1,(1.7)

where q(ξ, τ) and g(ξ, τ, v), and ci(τ), i = 1, 2, are 1-periodic in τ , and
g(ξ, τ, v) is of order more than or equal to 2 with respect to v. Then
we shall show the existence of an 1-periodic solution of BVP (1.6)-(1.7)
(Theorem 3.1). In case of ci(t) ≡ 0, i = 1, 2, the problem (1.6)-(1.7)
was considered by [BN-Ma] and [Mc]. Under some monotonicity con-
ditions and the Lipshitz condition on g and the Diophantine condition
on the ratio of the length of the interval to the period of g, they showed
the existence of periodic weak solution.

To show our results, first we shall decompose BVP (1.6)-(1.7) into
two linear homogeneous BVPs

∂2
τ v1 − ∂2

ξ v1 = 0, (ξ, τ) ∈ D,(1.8)

v1(0, τ) = c1(τ), v1(ω/2, τ) = 0, τ ∈ R1,(1.9)

∂2
τ v2 − ∂2

ξ v2 = 0, (ξ, τ) ∈ D,(1.10)

v2(0, τ) = 0, v2(ω/2, τ) = c2(τ), τ ∈ R1,(1.11)

and nonlinear BVP

∂2
τ w − ∂2

ξ w = µq(ξ, τ) + g(ξ, τ, ν(v1 + v2) + w), (ξ, τ) ∈ D,(1.12)

w(0, τ) = 0, w(ω/2, τ) = 0, τ ∈ R1.(1.13)

Then we shall show the existence of periodic solutions of BVP (1.8)-
(1.9) and (1.10)-(1.11) (Proposition 3.1), using the method of [Ya3]. In
order to show the existence of a periodic solution of BVP (1.12)-(1.13),
we shall apply the standard contracting mapping principle in suitable
function space to our BVP (1.6)-(1.7). This is similar to the existence
theorem ([Ya5], pp.519 - 521) of periodic solutions of nonlinear evolu-
tion equations of second order. Then by the principle of superposition,
v = ν(v1 + v2) + w is the 1-periodic C2 solution of BVP (1.6)-(1.7).
Finally, by operating the inverse Φ−1 of the domain transformation Φ
to the above v, we shall obtain the desired 1-periodic solution of BVP
(1.1)-(1.2).

Notation and Definitions.
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Rotation Number. Let F (x) = x+G(x) be one dimensional periodic
dynamical system. This means that F (x) is a continuous monotone
increasing function and G(x) is an 1-periodic function. We denote the
set of such functions F by D(T 1). D∞(T 1) is the subgroup of D(T 1)
whose elements are of C∞-class. According to H. Poincaré, the rotation
number ρ(F ) of F ∈ D(T 1) is defined by

ρ(F ) = lim
n→±∞

F n(x)− x
n

,

where F n(x) is the n-th iterate of F (x). It is well-known ([H]) that
ρ(F ) is independent of x and the convergence is uniform with respect
to x. As we regard ρ(F ) as a functional of F , ρ(F ) is continuous
with respect to sup0≤x≤1 |F (x)|. Note that the rotation number has the
conjugate-invariant property. Namely, one has the following identity

ρ(F ) = ρ(φ ◦ F ◦ φ−1)

for any φ ∈ D(T 1). Since clearly the rotation number of Rα(x) = x+α
(α : constant) is equal to α, it follows that ρ(φ ◦Rα ◦φ−1) = α for any
φ ∈ D(T 1). For more details of the rotation numbers, see [H].

Some Function Spaces. Let s be a nonnegative integer. Let G be an
open set in Rn. Let L2(G), Hs(G) and Hs

0(G) be the usual Lebesgue
space and Sobolev spaces (resp.) with norms | · |L2(G) and | · |Hs(G).
Cs(G) is defined as usual with norm | · |Cs(G). We omit G in the norms
if there is no confusion. We write | · |C0 as | · |C .

Let (0, ω/2)×R1 be denoted by D. Let D∞0 (D) be a function space
whose elements f(x, t) are defined in D, of C∞(D), 1-periodic in t and
have the supports contained in D. We denote a set (0, ω/2) × (0, 1)
by D0. Let Ks

0(D) be the completion of D∞0 (D) with respect to norm
| · |Hs(D0). We define function spaces Ds

0(Ω) and Ks
0(Ω) in the same

way, where Ω is the noncylindrical domain defined by in section 1. In
this paper, we write Hs(D0) and L2(D0) as Hs(D) and L2(D) (resp.).
All the function spaces Ks

0(D), Hs(D), Ks
0(Ω) and Hs(Ω) are Hilbert

spaces with the above norms.

Main Theorem

We formulate our main result. Assume the following conditions. Let
s be an integer ≥ 4.

(A1) ai(t), i = 1, 2, are of C∞ and 1-periodic, and satisfy a1(t) < a2(t)
and | a′i(t)| < 1 for t ∈ R1.
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(A2) bi(t), i = 1, 2, are of C∞ and 1-periodic.

(A3) The rotation number ω of A satisfies the following Diophantine
condition : There exists a positive constant C such that the Diophan-
tine inequality

|n−m/ω| ≥ Cn−1

holds for all n, m ∈ N .

(A4) p(x, t) is of Cs-class with respect to (x, t) ∈ Ω̄ and 1-periodic
in t. f(x, t, u) is of Cs+2-class with respect to (x, t, u) ∈ Ω̄ × R1 and
1-periodic in t and satisfies

f(x, t, 0) = ∂uf(x, t, 0) = 0.

p(x, t) and f(x, t, u) satisfy compatible boundary conditions :

p(ai(t), t) = 0, i = 1, 2,

holds for all t ∈ R1, and there exists a positive constant ν0 such that
for any ν with |ν| ≤ ν0,

f(ai(t), t, νbi(t)) = 0, i = 1, 2,

holds for all t ∈ R1.

Remark 1. It is well-known in number theory ([Kh]) that all numbers
with periodic continued fraction expansion satisfy (A3). Note that the
set of all algebraic numbers of degree 2 coinsides with the above set.

Remark 2. f(x, t, u) satisfying (A4) is written of the form

f(x, t, u) = u2r(x, t, u),

where r(x, t, u) is of Cs-class with respect to (x, t, u) ∈ Ω̄×R1. As an
example of f(x, t, u) that satisfies the compatible boundary condition
in (A4), we can take r(x, t, u) with r(ai(t), t, u) = 0, i = 1, 2, for all
(t, u) ∈ R1

t × R1
u. f possibly depends on the parameter ν. As such

an example we give r(x, t, u) = R(x, t, (u− νb1(t))(u− νb2(t))), where
R(x, t, U) satisfies R(ai(t), t, 0) = 0 for all t ∈ R1.

Remark 3. If a1(t) and a2(t) are constants, e.g. a1(t) ≡ a and
a2(t) ≡ b, then we have A1(t) = t + 2a and A2(t) = t + 2b, whence
A(t) = t + 2b − 2a and ρ(A) = 2b − 2a. This means that ρ(A)/2 is
equal to the length of the interval.
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The existence of the boundary functions that satisfy both of an analyt-
ical condition (A1) and a number-theoretic condition (A3) is assured
by the following proposition.

Proposition 1.1. Let ω be any real number. Then there exists 1-
periodic C∞ functions ai(t), i = 1, 2, such that ρ(A) = ω. Here A
is defined by (1.3).

Proof. Note that the rotation number of Rα(x) = x + α is equal to
α and the rotation number is conjugate-invariant. For a given ω, we
define Aφ by

Aφ(x) = φ ◦Rω ◦ φ−1(x)

for φ ∈ D∞(T 1). Then clearly ρ(Aφ) = ω. For simplicity, we set
a1(t) ≡ 0. Then A1 = I and Aφ = A2. We set a2(t) = a(t), for
simplicity. Then by (1.3) we have an equality

(I + a) ◦ (I − a)−1(t) = Aφ(t) ≡ (I +Bφ)(t),

where Bφ(t) is an 1-periodic C∞ function and satisfy |B′φ(t)| < 1. Then

setting y = (I − a)−1(t), we have

a(y) = (1/2)Bφ ◦ (I − a)(y).

We consider a function G(y, a) = a− (1/2)Bφ(y − a) of C∞-class with
respect to (y, a) and apply the implicit function theorem to a functional
equation G(y, a) = 0. Since Bφ satisfies |B′φ(t)| < 1 for any t ∈ R1 and
hence we have

|Ga(y, a)| ≥ 1− (1/2)|B′φ(y − a)| > 1/2 > 0,

this functional equation has a C∞ solution a(y). Q.E.D.

Our main theorem is the following.

Theorem 1.1. Assume (A1), (A2), (A3) and (A4). Then there exists
a positive constant µ0 such that for any µ satisfying |µ| < µ0 BVP (1.1)-
(1.2) has an 1-periodic solution of C2-class with respect to (x, t) ∈ Ω̄.

2. One Dimensional Periodic Dynamical Systems and

Domain Transformation

In this section we shall construct a bijective transformation of Ω̄ to D̄
that preserves the d’Alembertian. This is made by the conjugate func-
tion in the reduction theorem ([H],[Yoc]) of one dimensional periodic
dynamical systems.
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Consider one dimensional periodic dynamical system

F (x) = x+G(x), x ∈ R1.(2.1)

Here F (x) is a monotone increasing continuous function and G(x) is
a periodic function with period 1. We denote all such functions F by
D(T 1). It is clear that D(T 1) ia a group with respect to composition of
functions. Let D∞(T 1) be a subgroup of D(T 1) whose elements are of
C∞-class. Let ρ(F ) be the rotation number of F . Assume the following
numerical condition.

(N) The rotation number ρ(F ) satisfies the following Diophantine
condition : There exist positive constants C and d > 1 such that the
Diophantine inequality

|n−m/ρ(F )| ≥ Cn−d

holds for all n ∈ Z\{0} and m ∈ Z.

Remark. Every number satisfying (N) is irrational. As is well-known,
almost all real numbers satisfy the above condition (N). Here ”almost
all” is taken as the usual Lebesgue measure sense. According to the
famous Roth Theorem of number theory, all algebraic numbers of de-
gree ≥ 2 satisfy (N). The familiar transcendental numbers π and e also
satisfy (N) with suitable d.

The following reduction theorem of one dimensional periodic dynam-
ical systems is due to Herman and Yoccoz ([H], [Yoc]) and is important
to construct the domain transformation.

Proposition 2.1 (Herman and Yoccoz). Assume that F is an element
of D∞(T 1) and its rotation number satisfies (N). Then there exists a
function φ in D∞(T 1) such that F is conjugate to the rotation :

φ ◦ F ◦ φ−1(ξ) = ξ + ρ(F )(2.2)

holds.

We apply this theorem to the composed function A. Clearly it follows
from (A1) that A is an element of D∞(T 1). By this and (A3) A satisfies
the assumptions of Proposition 2.1. Hence there exists a function H ∈
D∞(T 1) such that

H ◦ A ◦H−1(ξ) = ξ + ω(2.3)
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holds, where ω is the rotation number of A. Using H, we define the
domain transformation Φ : R2 → R2 by

ξ =
(
H ◦ A−1

1 (x+ t)−H(−x+ t)
)
/2,(2.4)

τ =
(
H ◦ A−1

1 (x+ t) +H(−x+ t)
)
/2.(2.5)

for (x, t) ∈ R2. The inverse transformation Φ−1 is written by

x =
(
A1 ◦H−1(ξ + τ)−H−1(−ξ + τ)

)
/2,(2.6)

t =
(
A1 ◦H−1(ξ + τ) +H−1(−ξ + τ)

)
/2.(2.7)

Then Φ has several natural properties to study our problem (cf. [Ya6],
[Ya-Yo]).

Proposition 2.2. Assume (A1) and (A3). Φ is the bijection of Ω̄ to
D̄, and maps the boundaries x = a1(t) and x = a2(t) onto the bound-
aries ξ = 0 and ξ = ω/2 (resp.) bijectively. Moreover the d’Alembert
operator is preserved by Φ as follows. Let u(x, t) be of C2 in (x, t) ∈ R2

and v(ξ, τ) be defined by u(Φ−1(ξ, τ)). Then the following identity holds

(∂2
t − ∂2

x)u(x, t) = K(ξ, τ)(∂2
τ − ∂2

ξ )v(ξ, τ),(2.8)

where K(ξ, τ) is defined by

4H ′ ◦H−1(ξ + τ)H ′ ◦H−1(−ξ + τ)(A−1
1 )′ ◦ A1 ◦H−1(ξ + τ).

K(ξ, τ) is 1-periodic in τ .

For the proof of this proposition, see [Ya6] (Proofs of Proposition 4.1
and 4.2).

3. BVP in Cylindrical Domain

In this section we show the existence of periodic solutions of BVP
(1.6)-(1.7) in the cylindrical domain D = (0, ω/2)× R1. Through this
section, we assume that ω is a positive number, but not necessarily the
rotation number of A. [Mc] and [BN-Ma] also treated the fixed ends
case i.e., ci(τ) ≡ 0, i = 1, 2, in (1.6)-(1.7) and showed the existence
of the weak periodic solutions of BVP, under the equivalent numerical
condition as ours and some conditions on semilinear terms q+g. In our
BVP, we shall deal with the case where the vertical external forces ci(τ),
i = 1, 2, work on the string ends. By these external forces the resonance
may happen. In order to make clear the representation of solutions of
BVP (1.6)-(1.7), we shall independently treat this case. In this paper,
we are concerned with classical solutions. In order to obtain classical
solutions, we shall need several estimates of the semilinear term and
its derivatives.
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We consider BVP in the cylindrical domain D = (0, ω/2)×R1 :

∂2
τ v − ∂2

ξ v = µq(ξ, τ) + g(ξ, τ, v), (ξ, τ) ∈ D,(3.1)

v(0, τ) = νc1(τ), v(ω/2, τ) = νc2(τ), τ ∈ R1.(3.2)

We assume the following numerical condition on ω which is stated
in (A3) in section 1.

(C0) ω satisfies the following condition : There exists a positive
constant C such that a Diophantine inequality

|n−m/ω| ≥ Cn−1(3.3)

holds for all n ∈ N and all m ∈ N .

Remark. Note that (C0) implies (N).

We assume the following conditions. Let s be an integer ≥ 4.

(C1) q(ξ, τ) is of Cs-class in D̄ and 1-periodic in τ . g(ξ, τ, v) is of
Cs+2-class in (ξ, τ, v) ∈ D̄ ×R1, 1-periodic in τ and satisfies

g(ξ, τ, 0) = ∂vg(ξ, τ, 0) = 0.

q(ξ, τ) and g(ξ, τ, v) satisfy boundary conditions :

q(0, τ) = q(ω/2, τ) = 0

holds for all τ ∈ R1, and there exists a positive constant ν0 such that
for any ν with |ν| ≤ ν0

g(0, τ, νc1(τ)) = g(ω/2, τ, νc2(τ)) = 0

holds for all τ ∈ R1.

(C2) ci(τ), i = 1, 2, are 1-periodic and of C∞-class.

Remark. As we stated in Remark 2 in section 1, g(ξ, τ, v) satisfying
g(ξ, τ, 0) = ∂vg(ξ, τ, 0) = 0 in (C1) is written in the form

g(ξ, τ, v) = s(ξ, τ, v)v2,(3.4)

where s(ξ, τ, v) is of Cs in (ξ, τ, v) ∈ D̄ × R1. As an example of
g(ξ, τ, v) that satisfies the compatible boundary condition in (C1), we
give s(ξ, τ, v) with s(0, τ, v) = s(ω/2, τ, v) = 0 for all (τ, v) ∈ R2. As
will be seen in the proof of Theorem 3.1, g possibly depends on ν. As
such an example we give s(ξ, τ, v) = J(ξ, τ, (v − νc1(τ))(v − νc2(τ))),
where J(ξ, τ, V ) satisfies J(0, τ, 0) = J(ω/2, τ, 0) = 0 for all τ ∈ R1.
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Now we have the following theorem.

Theorem 3.1. Assume (C0), (C1) and (C2). Then there exists a posi-
tive conatant µ1 such that for any µ satisfying |µ| < µ1 BVP (3.1)-(3.2)
has an 1-periodic solution v locally unique in Hs(D) ∩K1

0(D).

In order to prove this theorem, we decompose BVP (3.1)-(3.2) into
the following three BVPs :

∂2
τ v1 − ∂2

ξ v1 = 0, (ξ, τ) ∈ D,(3.5)

v1(0, τ) = c1(τ), v1(ω/2, τ) = 0, τ ∈ R1,(3.6)

∂2
τ v2 − ∂2

ξ v2 = 0, (ξ, τ) ∈ D,(3.7)

v2(0, τ) = 0, v2(ω/2, τ) = c2(τ), τ ∈ R1,(3.8)

and

∂2
τ w − ∂2

ξ w = µq(ξ, τ) + g(ξ, τ, ν(v1 + v2) + w), (ξ, τ) ∈ D,(3.9)

w(0, τ) = 0, w(ω/2, τ) = 0, τ ∈ R1.(3.10)

If each BVP has an 1-periodic solution, then we have the periodic
solution u = ν(v1 + v2) + w of BVP (3.1)-(3.2).

First we shall solve BVP (3.5)-(3.6) and (3.7)-(3.8). We have the
following proposition.

Proposition 3.1. Assume (C0) and (C2). Then each of BVP (3.5)-
(3.6) and BVP (3.7)-(3.8) has a unique 1-periodic solution v1 and v2

(resp.) of C∞-class in D̄ with∣∣∂jτ ∂kξ vi(ξ, τ)
∣∣ ≤ Const. sup

0≤m≤j+k+3, 0≤τ≤1
|(d/dτ)mci(τ)|

for any nonnegative integers j, k, where Const. depends on only j, k.

Proof of Proposition 3.1. It is enough to deal with BVP (3.5)-(3.6).
We rewrite c1 and v1 by c and v (resp.), and τ and ξ by t and x (resp.).
By the d’Alembert formula we represent solutions of (3.5) as

v(x, t) = f(−x+ t) + g(x+ t).(3.11)

From the boundary conditions (3.6) we have

f(t) + g(t) = c(t),

f(−ω/2 + t) + g(ω/2 + t) = 0.

By this we have

v(x, t) = f(−x+ t)− f(x+ t) + c(x+ t)(3.12)
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and

f(−ω/2 + t)− f(ω/2 + t) + c(ω/2 + t) = 0.

The latter equation becomes

f(t+ ω)− f(t) = c(t+ ω).(3.13)

We look for a solution f(t) of (3.13) of the form

f(t) = αt + F (t),

where F (t) is 1-periodic and satisfies

∫ 1

0

F (t)dt = 0, and α is a con-

stant. We expand c(t+ ω) into the Fourier series∑
n

cn exp (2πint).(3.14)

We formally expand F (t) into the Fourier series

F (t) =
∑
n6=0

fn exp (2πint).

Substituting this and (3.14) into (3.13) and comparing the Fourier co-
efficients of both sides, we have

fn = cn/ (exp (2πinω)− 1) (n 6= 0), α = c0/ω.(3.15)

Since c(t+ ω) is of C∞, the Fourier coefficients cn decay to 0 with any
polynomial order of n as n grows up to infinity. More precisely, by
integrating the integral of cn by parts, we have

|cn| ≤ Cd/(|n|+ 1)d(3.16)

for any n ∈ Z and any fixed d > 0. Here

Cd = Const. sup
0≤j≤d, 0≤t≤1

|c(j)(t)|,

where Const. depends only on d. By simple calculation we have

| exp (2πinω)− 1| ≥ 4 |nω −m|
for any n ∈ Z \ {0} and some m = m(n) ∈ Z. By (C0) we have

| exp (2πinω)− 1| ≥ 4C ω |n|−1.(3.17)

It follows from (3.15)-(3.17) that

|fn| ≤ (1/4C ω)Cd/(|n|+ 1)d−1

for any n ∈ Z and any d > 0. This means that f(t) is of C∞. We have∑
n

|n|k|fn| ≤ (1/4C ω)Cd
∑
n

1/(|n|+ 1)d−k−1 ≤ Const. Cd
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for d > k + 2, where Const. depends on only d. Hence it follows that∣∣F (k)(t)
∣∣ ≤ Const. sup

0≤j≤d, 0≤t≤1

∣∣c(j)(t)
∣∣

for d > k + 2. Since v has the form

v(x, t) = −2(c0/ω)x+ F (−x+ t)− F (x+ t) + c(x+ t),

v(x, t) is 1-periodic in t and has the estimate∣∣∂jt ∂kx v(x, t)
∣∣ ≤ Const. c0 + 2 sup

0≤t≤1

∣∣F (j+k)(t)
∣∣+ sup

0≤t≤1

∣∣c(j+k)(t)
∣∣

≤ Const. sup
0≤j≤d, 0≤t≤1

∣∣c(j)(t)
∣∣

for nonnegative integers j, k satisfying d > j + k + 2. This shows
the estimates of v. It is clear from the construction that v is unique.
Q.E.D.

In order to show the existence of periodic solutions of BVP (3.9)-
(3.10), first let us deal with BVP for a linear nonhomogeous wave
equation and obtain the necessary estimate of the solutions, by which
the d’Alembertian has the bounded inverse in a suitable function space,
for later use. Consider BVP

∂2
τ ζ − ∂2

ξ ζ = r(ξ, τ), (ξ, τ) ∈ D,(3.18)

ζ(0, τ) = ζ(ω/2, τ) = 0, τ ∈ R1.(3.19)

We have the following proposition.

Proposition 3.2. Assume (C0). Let r(ξ, τ) be of Hs(D) ∩ K1
0(D)

and 1-periodic in τ . Then BVP (3.18)-(3.19) has a unique 1-periodic
solution ζ in Hs(D) ∩K1

0(D). The solution has the estimate :

|ζ|Hs ≤ C0 |r|Hs ,

where C0 is a constant dependent only on s.

To prove this proposition we prepare a lemma.

Lemma 3.1. Let ζ(ξ, τ) be an element of H1(D) satisfying the bound-
ary condition ζ(0, τ) = ζ(ω/2, τ) = 0 for almost all τ ∈ (0, 1). Then ζ
belongs to K1

0(D) and vice versa.

Proof of Lemma 3.1. This is proved in the standard way. We set
a = ω/2, for simplicity. Let φn(ξ) be a function of C∞0 (0, a) with
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0 ≤ φn(ξ) ≤ 1 and |φ′n(ξ)| ≤ C n

φn(ξ) = 0

(
0 ≤ ξ ≤ 1

n
, a− 1

n
≤ ξ ≤ a

)
= 1

(
2

n
≤ ξ ≤ a− 2

n

)
,

where C is a constant. Then ζn(ξ, τ) = φn(ξ) ζ(ξ, τ) is an element of
K1

0(D). We set In = A1
n∪A2

n, A
1
n = [0, 2/n] and A2

n = [a− 2/n, a]. We
show

|ζn − ζ|H1 −→ 0 as n→∞.(3.20)

We first estimate

|ζn − ζ|2L2 + |∂τ (ζn − ζ)|2L2 =

∫
D0

(1− φn(ξ))2
(
ζ(ξ, τ)2 + ζτ (ξ, τ)2

)
dξdτ

(3.21)

≤
∫ 1

0

∫
In

(
ζ(ξ, τ)2 + ζτ (ξ, τ)2

)
dξdτ → 0

as n→∞. Second, we have

|∂ξ(ζn − ζ)|L2 = | − φ′nζ + (1− φn)ζξ|L2(3.22)

≤ |φ′nζ|L2 + |(1− φn)ζξ|L2

The second term is estimated in the same way as (3.21) and tends to 0
as n→∞. For the first term, taking into (3.19) account we note that

ζ(ξ, τ) =

∫ ξ

0

ζξ(x, τ)dx and ζ(ξ, τ) =

∫ ξ

a

ζξ(x, τ)dx(3.23)

for almost all τ ∈ (0, 1). We calculate the following :

|φ′nζ|
2
L2 =

∫ 1

0

∫
In

(φ′n(ξ)ζ(ξ, τ))
2
dξdτ ≡ J1 + J2,(3.24)

where

Ji =

∫ 1

0

∫
Ain

(φ′n(ξ)ζ(ξ, τ))
2
dξdτ (i = 1, 2).
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We have, from (3.23) and by the Schwarz inequality,

J1 ≤ Cn2

∫ 1

0

∫
A1
n

ζ(ξ, τ)2dξdτ

≤ Cn2

∫ 1

0

∫
A1
n

(∫ ξ

0

ζξ(x, τ)dx

)2

dξdτ

≤ Cn2

∫ 1

0

∫
A1
n

ξ

(∫ ξ

0

ζξ(x, τ)2dx

)
dξdτ

≤ Cn2

∫ 1

0

(∫ 2/n

0

ζξ(x, τ)2dx

)∫
A1
n

ξdξdτ

≤ Const.

∫ 1

0

∫ 2/n

0

ζξ(x, τ)2dxdτ → 0 (n→∞).

We can estimate J2 in the same way. Hence from (3.21), (3.22) and
(3.24), (3.20) is shown.

We show the converse. Let ζ be an element of K1
0(D). By the Fubini

Theorem clearly ζ(·, τ) belongs to H1(0, a) for almost all τ , whence by
the Sobolev embedding theorem ζ(ξ, τ) is continuous in ξ for almost all
τ ∈ (0, 1). We take a sequence {fn} ⊂ D∞0 (D) so that |fn−ζ|H1(D) → 0.
It follows that there exists a measure-zero set N contained in (0, 1) and
a subsequence {fnj} of {fn} such that |fnj(·, τ)− ζ(·, τ)|H1(0,a) → 0 for
any τ ∈ (0, 1)\N . By the Sobolev embedding theorem we have

max
0≤ξ≤a

|fnj(ξ, τ)− ζ(ξ, τ)| ≤ Const. |fnj(·, τ)− ζ(·, τ)|H1(0,a).

Since fnj(0, τ) = fnj(a, τ) = 0, we have ζ(0, τ) = ζ(ω/2, τ) = 0 for
τ ∈ (0, 1)\N . Q.E.D.

Proof of Proposition 3.2. We denote (2/
√
ω) exp (2πikτ) sin (2π/ω)jξ

by ejk. Since {ejk} is a complete orthonormal system in L2(D), we ex-
pand r into the Fourier series in L2(D):

r =
∞∑

k=−∞

∞∑
j=1

rjk ejk,

where rjk = (r, ejk)L2(D). We formally expand ζ into the Fourier series

ζ =
∞∑

k=−∞

∞∑
j=1

ζjk ejk.
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Substitute these into (3.18) formally and compare the coefficients in
both sums. Then we have

ζjk = (1/2π)2 rjk
(j/ω + k)(j/ω − k)

.

Hence it follows from (C0) that

|ζjk| ≤ Const. |rjk|.(3.25)

Hence it follows that

|ζ|L2(D) ≤ Const. |r|L2(D).

By diffrentiating (3.18) with respect to ξ, τ , we have

∂2
τ ζξpτq(ξ, τ)− ∂2

ξ ζξpτq(ξ, τ) = rξpτq(ξ, τ)

for p+ q ≤ s. Since rξpτq belongs to L2(D), it follows that

|ζξpτq |L2(D) ≤ Const. |rξpτq |L2(D).

This means |ζ|Hs ≤ C0 |r|Hs . It remains to show that ζ belongs to
K1

0(D). It is shown that {ejk} is complete in K1
0(D). In fact, let f be

an element of K1
0(D). Suppose that (f, ejk)H1(D) = 0 for all j, k. This

means that

I0 + I1 + I2 = (f, ejk)L2(D) + (∂ξf, ∂ξejk)L2(D) + (∂τf, ∂τejk)L2(D) = 0.

Integrating by parts and using Lemma 3.1, we have

I1 = (2/
√
ω)(∂ξf, (2πj/ω) exp 2πikτ cos(2π/ω)jξ)L2(D) = (2πj/ω)2I0,

I2 = (2/
√
ω)(∂τf, (2πik) exp 2πikτ sin(2π/ω)jξ)L2(D) = (2πk)2I0.

Hence we have

(f, ejk)H1(D) = ajk (f, ejk)L2(D),(3.26)

where ajk = 1 + (2πj/ω)2 + (2πk)2. Thus we obtain (f, ejk)L2(D) = 0.
By the completeness of {ejk} in L2(D) it follows that f = 0. Thus

{ẽjk} = {ejk/a1/2
jk } is a complete orthonormal system in K1

0(D). Since

r is an element of K1
0(D), it is expanded into the Fourier series in

K1
0(D) :

r =
∑
k, j

r̃jk ẽjk.

Clearly it follows from (3.26) that r̃jk = ajk rjk. Set ζ̃jk = ajk ζjk. Then
we have, from (3.25)

|ζ̃jk| ≤ Const. |r̃jk|.
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Hence it follows that
∑

j,k ζ̃jkẽjk converges to ζ in K1
0(D). Noting that

ζ is continuous inD, by Lemma 3.1 (3.19) follows. Thus the proposition
is proved. Q.E.D.

Theorem 3.1 is proved by applying the contraction mapping theorem.
To this end, we first show the lemma on the nonlinear term.

Lemma 3.2. Assume (C1). Then the followings hold.
(1) For v ∈ Hs(D) g(ξ, τ, v(ξ, τ)) belongs to Hs(D). If |v|Hs ≤ L and
|v|C ≤M hold, then

|g(ξ, τ, v(ξ, τ))|Hs ≤ c1 Cs(M,L)|v|2Hs .(3.27)

(2) For vi ∈ Hs(D), i = 1, 2, with |vi|Hs ≤ L and |vi|C ≤M ,

|g(ξ, τ, v1)− g(ξ, τ, v2)|Hs(3.28)

≤ c1 Cs(M,L) max (|v1|Hs , |v2|Hs)|v1 − v2|Hs .

holds. Here ci are positive constants dependent only on s and Cs(M,L)
is a positive constant dependent on M, L and s.

Proof of Lemma 3.2. We note from Remark of (C1) that g(ξ, τ, v) is
of the form v2s(ξ, τ, v), where s(ξ, τ, v) is of Cs-class.

We show the statement (1). Since for s ≥ 4, Hs(D) is a Banach
algebra and g(ξ, τ, v(ξ, τ)), v ∈ Hs, belongs to Hs(D) from Theorem,
Appendix in [Ya7], it follows that

|g(ξ, τ, v)|Hs = |v2 s(ξ, τ, v)|Hs

≤ |v|2Hs |s(ξ, τ, v)|Hs .

Using Theorem in [Ya7] again, we have, for v with |v|Hs ≤ L and
|v|C ≤M ,

|g(ξ, τ, v)|Hs ≤ |v|2Hs |s(ξ, τ, v)|Hs

≤ |v|2Hs cs(M)(|v|Hs + 1)

≤ Cs(M,L)|v|2Hs .

This shows the statement of (1).
Next we show the statement (2). Let vi, i = 1, 2, be elements of

Hs(D) with |vi|Hs ≤ L and |vi|C ≤ M . Then using Theorem in [Ya7],
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we have

|g(ξ, τ, v1)− g(ξ, τ, v2)|Hs

≤ |v2
1(s(ξ, τ, v1)− s(ξ, τ, v2))|Hs + |(v2

1 − v2
2) s(ξ, τ, v2)|Hs

≤ |v1|2Hs |s(ξ, τ, v1)− s(ξ, τ, v2)|Hs + |v2
1 − v2

2|Hs |s(ξ, τ, v2)|Hs

≤ |v1|2Hs c′s(M,L) |v1 − v2|Hs

+ 2 max (|v1|Hs , |v2|Hs)|v1 − v2|Hs(c′s(M,L)L+ 1)

≤ Const.max (|v1|Hs , |v2|Hs) |v1 − v2|Hs ,

where c′s(M,L) are similar constants to Cs(M,L). This shows the
statement of (2). Q.E.D.

Now we shall prove Theorem 3.1.

Proof of Thorem 3.1. Let vi, i = 1, 2, and ζ be the same functions in
Proposition 3.1 and 3.2 (resp.). Here we take r in Proposition 3.2 as q
in (C1). We take w = µ(ζ+U). Then BVP (3.9)-(3.10) is transformed
to the following BVP :

∂2
τ U − ∂2

ξ U = µ−1g(ξ, τ, ν(v1 + v2) + µ(ζ + U)), (ξ, τ) ∈ D,(3.29)

U(0, τ) = U(ω/2, τ) = 0, τ ∈ R1.(3.30)

Since g(ξ, τ, v) is equal to s(ξ, τ, v)v2 and ν = O(µ) (µ→ 0), the right
hand side is continuous and bounded in µ in some interval (−δ, δ), δ > 0
and of O(µ) (µ→ 0). Set

F (ξ, τ, U, µ) = µ−2g(ξ, τ, ν(v1 + v2) + µ(ζ + U)).(3.31)

Then F (ξ, τ, U, µ) is 1-periodic in τ , of Cs+2-class with respect to
(ξ, τ, U) and bounded and continuous in µ ∈ (−δ, δ) of O(µ) (µ → 0).
For simplicity, we abbreviate µ in F . By the boundary condition of
(C1) F satisfies F (0, τ, 0) = F (ω/2, τ, 0) = 0. Let L be a fixed positive
constant and define BL = {U ∈ Hs(D) ∩ K1

0(D)||U |Hs ≤ L}. From
Lemma 3.2, (1) we have, for U ∈ BL

|F (ξ, τ, U)|Hs ≤ |µ|−2c1Cs(M)|ν(v1 + v2) + µ(ζ + U)|2Hs

(3.32)

≤ c1Cs(M)C(δ)(|v1|Hs + |v2|Hs + |ζ|Hs + |U |Hs)2

≤ C(L, δ)(1 + |U |Hs),
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where M is a constant = (Sobelev constant) × L. Similarly we have,
for U, V ∈ BL

|F (ξ, τ, U)− F (ξ, τ, V )|Hs ≤ |µ|−2c1Cs(M)|µ(U − V )|2Hs(3.33)

≤ c1Cs(M)|U − V |Hs

≤ C(L, δ)|U − V |Hs .

(3.29) is rewritten :

∂2
τ U − ∂2

ξ U = µF (ξ, τ, U, µ), (ξ, τ) ∈ D.(3.29)

For simplicity, we denote the d’Alembertian ∂2
t −∂2

x by A. Let R be the
inverse operator of A. It follows from Proposition 3.2 that R is a linear
bounded mapping of Hs(D) ∩ K1

0(D) to Hs(D) ∩ K1
0(D). We shall

show that there exists a positive constant µ1 such that for µ satisfying
|µ| < µ1, a nonlinear mapping µR ◦ F has a fixed point in BL. In
fact, we shall show that µR ◦ F is a contraction mapping of BL to
BL. Set Z = µR ◦ F . It follows from Lemma 3.1 and Lemma 3.2 that
F (ξ, τ, U(ξ, τ)) belongs to Hs(D) ∩ K1

0(D) for U ∈ Hs(D) ∩ K1
0(D).

Hence Z maps Hs(D) ∩ K1
0(D) to Hs(D) ∩ K1

0(D). It follows from
Proposition 3.2 and (3.32) that for U ∈ BL

|Z(U)|Hs ≤ |µ|C0 |F (ξ, τ, U)|Hs

≤ |µ|C0 C2(L, δ)(|U |Hs + 1)

≤ |µ|C3(L, δ),

whence for any µ satisfying |µ| < µ1 with µ1 < L/C3, |Z(U)|Hs ≤ L
holds. This shows that Z maps BL to BL. Next estimate Z(U)−Z(V ).
From Proposition 3.2 and (3.33) we have

|Z(U)− Z(V )|Hs ≤ |µ|C0 |F (ξ, τ, U)− F (ξ, τ, V )|Hs

≤ |µ|C0 C2(L, δ) |U − V |Hs

≤ |µ|C3(L, δ)|U − V |Hs .

Hence for µ1 with µ1 < 1/C3 the mapping Z is contracting. This shows
the existence of the solution of BVP (3.9)-(3.10). Thus Theorem 3.1 is
proved. Q.E.D.

Theorem 3.1 implies Theorem 1.1. In fact, it follows from Propo-
sition 2.2 that BVP (1.1)-(1.2) is transformed to BVP (3.1)-(3.2) by
the domain transformation Φ defined by (2.4)-(2.5). The transformed
functions q(ξ, τ) and g(ξ, τ, v), and ci(τ), i = 1, 2, satisfy (C1)and (C2)
(resp.), and the rotation number ω of A satisfies (C0). We know that
from Theorem 3.1 BVP (3.1)-(3.2) has an 1-periodic solution v(ξ, τ) of
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C2-class in D. Hence by the inverse transformation Φ−1 BVP (1.1)-
(1.2) has an 1-periodic solution u(x, t) = v ◦ Φ(x, t) of C2-class in Ω.
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