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1. Introduction

Consider the nonlinear ordinary differential equation

(A) (|y′|α)′ + q(t)|y|β = 0

where α, β ∈ R, α 6= 0, are constants and q : [a,∞) → (0,∞), a ≥ 0, is a
continuous function.

By a solution of (A) on an interval J = [t0, T ), a ≤ t0 < T ≤ ∞,
we mean a function y ∈ C1(J) which has the property |y′|α ∈ C1(J) and
satisfies (A) at each point of J . If we denote by Ty the maximal existence
time of y, then we say that y(t) is proper if Ty =∞ and

sup{|y(t)| : t ∈ [τ,∞)} > 0 for any τ ≥ t0.

A solution y(t) is called singular if either Ty < ∞ or Ty = ∞ and there
exists T ∈ [t0,∞) such that

max{y(s) : t ≤ s ≤ T} > 0 for t ∈ (t0, T )

and y(t) = 0 for t ≥ T . In the later case, the interval [t0, T ) is called the
support of the solution y(t).

Our main objective here is to investigate the structure of the solution
set of (A) in the case α > 0 and to show that nonlinear equations of the
form (A) may have singular solutions of a new type satisfying

(1) lim
t→Ty−0

y(t) = const 6= 0 and lim
t→Ty−0

y′(t) = 0
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at the (finite) right end-point of the maximal interval of existence. By
analogy with the concept of “black hole” solutions, that is, singular solutions
defined on [t0, Ty) and satisfying

(2) lim
t→Ty−0

y(t) = const 6= 0 and lim
t→Ty−0

|y′(t)| =∞,

introduced by the present authors in [3] (see also [4], [7] and [8]), positive
solutions of (A) satisfying (1) as t approaches the maximal existence time
Ty <∞ are called white hole (singular) solutions.

An example of a nonlinear equation of the form (A) (with β = 0) which
possesses singular solutions of this new type is

(3) (|y′|α)′ +
(
α+ 1
α

)α
= 0,

where α > 0. Indeed, for any given T > a and c > 0, the function y(t) =
c+ (T − t)α+1

α defined and positive on [a, T ) is a decreasing solution of (3)
with a singularity of white hole type at T .

Similarly, for any c > 0, the function y(t) = c− (T − t)α+1
α provides an

example of a ‘local’ increasing white hole solution of (3) which is defined
and positive in some sufficiently small left neighborhood of the maximal
existence time T .

Another simple example of an equation of the form (A) having white
hole singular solutions is the following “almost linear” equation

(4) (|y′|)′ + |y| = 0.

As easily seen, for any real T and any c > 0, the function y(t) = c cos(T − t)
defined and positive on [t0, T ), t0 ≥ T − π

2 , is an increasing singular solution
of (4) which is of the white hole type.

While the existence and asymptotic theory for quasilinear second-order
differential equations of the form

(B) (p(t)|y′|αsgny′)′ + q(t)|y|βsgny = 0, t ≥ a,
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and for singular equations

(C) (p(t)|y′|αsgny′)′ + q(t)y−β = 0, t ≥ a,

where α > 0 and β > 0 are constants and p(t) and q(t) are positive continu-
ous functions on [a,∞), is well developed (see, for example, the papers [1],
[5-6] and [9-11] ), according to our knowledge there are no papers concerning
the existence of singular and proper solutions for the nonlinear equation (A)
(with α > 0) in our setting. This observation was one of the motivations
for the present paper.

The plan of this paper is as follows. In Section 2 we first show that,
regardless of positivity or negativity of β, Eq. (A) always has singular
solutions of white hole type iff α > 0. Our procedure for establishing the
existence of such solutions for (A) is based on the solution of appropriate
nonlinear integral equation via the Schauder fixed point theorem. Secondly,
we investigate the existence of another type of singular solutions of (A)
named “extinct solutions”. More specifically, it is shown that if either
0 < α ≤ 1 and |β| < α or α > 1 and −1 < β < α, then Eq. (A) possesses
a singular solution which extincts (together with its first derivative) at an
arbitrarily prescribed extinction point T > a.

In Sections 3-5 our consideration is focused on the set of proper solu-
tions of (A), i.e., solutions which exist on some interval [t0,∞) ⊂ [a,∞)
and are not identically zero in any neighborhood of infinity. Although the
equation (A) has a relativelly simple form, the totality of proper solutions
of (A) has surprisingly rich structure. This is demonstrated in Section 3
where the set of all possible proper solutions is classified into eight different
types according to their asymptotic behavior as t→∞.

In Section 4 we establish conditions guaranteeing the existence of in-
creasing proper solutions of each of the types (IV)-(VI) appearing in the
general classification scheme given in Section 3. We prove in particular that
if 0 < β < α, then for any given y0 > 0, Eq. (A) has a ‘global’ solution
y (i.e., a proper solution existing on the whole interval [a,∞)) satisfying
y(a) = y0 and growing to infinity as fast as a constant multiple of t as t→∞
if and only if the function tβq(t) is integrable on [a,∞). The next theorem
in Section 4 presents sufficient conditions under which Eq. (A) possesses an
increasing proper solution which grows at infinity like a positive constant
multiple of t(α+σ+1)/(α−β) for some σ ∈ R with 0 < (α+σ+1)/(α−β) < 1.
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As regards increasing proper solutions of (A) which remain bounded as
t→∞, the (‘local’) existence of such solutions satisfying limt→∞ y(t) = ω0

for arbitrarily prescribed terminal value ω0 > 0 is characterized by the
integral condition (38) below.

Finally, in Section 5, the existence of decreasing proper solutions of (A)
is discussed. First, it is shown that the necessary and sufficient condition for
the existence of a decreasing proper solution of (A) which remains positive
as long as it exists and tends to a given positive constant ω0 as t→∞ is the
same as the condition characterizing the existence of bounded increasing
proper solutions for (A). Next, we establish conditions guaranteeing the
existence of positive proper solutions which decay to zero at infinity like a
positive constant multiple of the function t(α+σ+1)/(α−β) for some σ < −1
where (α+ σ + 1)/(α− β) < 0. We end Section 5 with the existence result
characterizing the situation in which Eq. (A) (with 0 < β < α) possesses
an eventually negative decreasing proper solution emanating from a given
point (a, y0), y0 > 0, with specific asymptotic behavior as t→∞.

2. Existence of “white hole” solutions

From (A) with α > 0 we easily see that if β < 0 and y(t) is a singular
solution of (A), then Ty <∞ and either y′(t) > 0 and y′(t) is decreasing on
J = [t0, Ty) or y′(t) < 0 and y′(t) is increasing on J . Thus, the following
three cases are possible: either

(I) lim
t→Ty−0

y(t) = 0 and lim
t→Ty−0

y′(t) = 0,

or

(II) lim
t→Ty−0

y(t) = const 6= 0 and lim
t→Ty−0

y′(t) = 0,

or

(III) lim
t→Ty−0

y(t) = 0 and lim
t→Ty−0

y′(t) = const 6= 0.

A solution of the type (I) (resp. (III)) is usually referred to as an extinct
solution of the first kind (resp. an extinct solution of the third kind ), while a

4



solution of the type (II) is a singular solution of a new type that we suggest
to call a white hole singular solution.

We remark that by extinct solutions of the second kind we understand
singular solutions satisfying

lim
t→Ty−0

y(t) = 0 and lim
t→Ty−0

|y′(t)| =∞,

where Ty <∞ is the right end-point of the maximal interval of existence of
y which may exist for equations of the form (A) with α < 0. Clearly, Eq.
(A) with α > 0 and positive q cannot have extinct solutions of this kind.

If β ≥ 0, then along with singular solutions of the new type (II), the
equation (A) may have also “usual” singular solutions which are defined in
some neighborhood of infinity (i.e., Ty =∞) and are identically zero for all
large t. If [t0, T ) is the support of such solution, then obviously (I) holds
with Ty replaced by T and we may again call such a singular solution an
extinct solution of the first kind (with the extinction point T ).

Our first result in this section concerns the existence of increasing white
hole solutions of (A) which are eventually positive, that is, singular solutions
satisfying

(5) lim
t→Ty−0

y(t) = c > 0 and lim
t→Ty−0

y′(t) = 0

at the right end-point of the maximal interval of existence. One can char-
acterize the existence of such singular solutions, as the following theorem
shows.

Theorem 1. A necessary and sufficient condition for Eq. (A) to have,
for any given T > a and c > 0, an increasing white hole solution defined in
some left neighborhood of T and satisfying (5) is that α > 0.

Proof. (The “only if” part.) Let y(t) be a positive increasing solution
of (A) with dom(y) = [t0, Ty), a ≤ t0 < Ty <∞, satisfying (5). Assume to
the contrary that α < 0.
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From the integrated form of Eq. (A)

(6) |y′(t)|α = |y′(t0)|α −
∫ t

t0

q(s)|y(s)|βds, t ∈ [t0, Ty),

we see, in passing to the limit as t→ Ty−0, that the left hand side tends to
∞, whereas the right hand side has a finite limit. This contradiction shows
that α must be positive.

(The “if” part.) Suppose that α > 0. Let T > a and c > 0 be given
arbitrarily. Put q∗(t, T ) = maxs∈[t,T ] q(s), a ≤ t ≤ T, and choose t0 ∈ [a, T )
so large that

(7)
α

α+ 1
[q∗(t0, T )]1/α(T − t0)

α+1
α ≤ j−

β
α

( c
2

)1− βα

where j = 1 if β < 0 and j = 2 if β ≥ 0.
Consider the set Y ⊂ C[t0, T ] and the mapping F : Y → C[t0, T ]

defined by

Y = {y ∈ C[t0, T ] :
c

2
≤ y(t) ≤ c, t ∈ [t0, T ]}

and

(Fy)(t) = c−
∫ T

t

[∫ T

s

q(r)(y(r))βdr

]1/α

ds, t ∈ [t0, T ].

It is easily verified that F is continuous and maps Y into a compact subset
of Y , and so F has a fixed element y ∈ Y by the Schauder fixed point
theorem. Differentiating the integral equation y(t) = (Fy)(t), we see that
y(t), when restricted to [t0, T ), is the solution of (A) which satisfies (5).
This completes the proof of Theorem 1.

An inspection of the sufficiency part of the proof of Theorem 1 shows
that if t0 = a and T > a are fixed and c > 0 is taken so that (7) is satisfied
(with j = 1 if β < 0 and j = 2 if β ≥ 0 and α 6= β), then the desired
increasing white hole solution is guaranteed to exist on the entire given
interval [a, T ) and Theorem 1 can be re-formulated as follows.

6



Theorem 1’. (‘Global’ existence) Let α 6= β. For any T > a, Eq. (A)
has an increasing white hole solution defined on [a, T ) and satisfying (5) for
some c > 0 if and only if α > 0.

Similarly, it can be shown that if α > 0, T > a and c > 0 are given
arbitrarily and t0 ∈ [a, T ) is chosen such that

α

α+ 1
(q∗(t0, T ))1/α(T − t0)

α+1
α ≤ j−

β
α c1−

β
α

where j = 1 if β < 0 and j = 2 if β ≥ 0, then the mapping F defined by

(Fy)(t) = c+
∫ T

t

[∫ T

s

q(r)(y(r))βdr

]1/α

ds, t ∈ [t0, T ],

has a fixed element in the set Y of continuous functions defined by

Y = {y ∈ C[t0, T ] : c ≤ y(t) ≤ 2c, t ∈ [t0, T ]}.

That this fixed point y = y(t), when restricted to [t0, T ), is a decreasing
singular solution of (A) with desired properties follows from differentiation
of the integral equation y(t) = (Fy)(t).

Since the necessity of the condition α > 0 for the existence of decreasing
singular solutions of white hole type can be proved in a similar manner as
in the proof of Theorem 1, we have the following

Theorem 2. For any T > a and any c > 0, Eq. (A) possesses a
decreasing white hole solution defined on some interval [t0, T ), a ≤ t0 < T ,
and satisfying (5) at T if and only if α > 0.

If we are interested in ‘global’ existence of decreasing solutions of white
hole type, then the above result can be re-formulated as follows.

Theorem 2’. Let α 6= β. For any T > a, Eq. (A) has a ‘global’
decreasing white hole solution defined on [a, T ) and satisfying (5) for some
c > 0 if and only if α > 0.
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Our next result in this part is the following theorem which shows that
there is a class of equations of the form (A) for which one can construct ex-
tinct solutions of the first kind with arbitrarily prescribed extinction points.

Theorem 3. Let 0 ≤ β < α. Then, for any T > a, Eq. (A) has an
extinct solution of the first kind defined on [a,∞) with the support [a, T ).

Proof. Let T > a be given arbitrarily. Denote

q∗ = min
t∈[a,T ]

q(t), q∗ = max
t∈[a,T ]

q(t),

and put

(8) K =
(
α− β
α+ 1

)[
α− β
α(β + 1)

]1/α

.

Define

(9) c1 = (q∗Kα)
1

α−β and c2 = (q∗Kα)
1

α−β .

Since 0 ≤ β < α implies c1 ≤ c2, we can consider the subset Y of the set
of continuous functions C[a, T ] and the integral operator F : Y → C[a, T ]
defined by

Y = {y ∈ C[a, T ] : c1(T − t)
α+1
α−β ≤ y(t) ≤ c2(T − t)

α+1
α−β , t ∈ [a, T ]}

and

(Fy)(t) =
∫ T

t

[∫ T

s

q(r)(y(r))βdr

]1/α

ds, t ∈ [a, T ].

It is easily checked that (i) F (Y ) ⊂ Y , (ii) F is continuous, and (iii)
F (y) is compact in C[a, T ]. Therefore, there exists a fixed element y ∈ Y
of F by the Schauder fixed point theorem. This fixed element y = y(t)
satisfies the integral equation

y(t) =
∫ T

t

[∫ T

s

q(r)(y(r))βdr

]1/α

ds, t ∈ [a, T ],
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which implies that y(t) is a solution of (A) on [a, T ) and satisfies

lim
t→T−0

y(t) = 0 and lim
t→T−0

y′(t) = 0.

Since this y(t) may be continued to the right of T by putting y(t) = 0 on
[T,∞), this establishes the existence of the desired extinct solution of the
first kind for (A) defined on [a,∞) with the support [a, T ).

Theorem 3’. Let either 0 < α ≤ 1 and −α < β < 0 or α > 1 and
−1 < β < 0. Then, for any T > a, Eq. (A) has an extinct solution of the
first kind with [a, T ) as its maximal interval of existence.

Proof. Let T > a be given arbitrarily. Define

(10) c1 = (Kβ
1K

α
2 )

α
α2−β2 and c2 = (Kβ

2K
α
1 )

α
α2−β2

where K1 = (q∗)1/αK, K2 = (q∗)1/αK and q∗, q
∗ and K are as above.

If either 0 < α ≤ 1 and −α < β < 0 or α > 1 and −1 < β < 0, then c1 ≤ c2
and we can consider the set Y ⊂ C[a, T ] and the mapping F : Y → C[a, T ]
given as in the proof of Theorem 3. Since the rest of the proof is similar to
that of the case 0 ≤ β < α, we can again conclude by the Schauder fixed
point theorem that the operator F has a fixed element y ∈ Y which (when
reduced to [a, T )) gives the desired extinct solution of the first kind for (A)
with the maximal interval of existence [a, T ).

Example 1. Consider the equation

(11) (|y′|α)′ + γ|y|β = 0

where α > 0, β ∈ R and γ > 0 are constants. According to Theorem 3, if
0 ≤ β < α, then, for any T > a, Eq. (11) has an extinct solution of the
first kind defined on [a,∞) with the support [a, T ). Indeed, for any T > a,
the function y∗ defined by

(12) y∗(t) = c(T − t)
α+1
α−β , if t ∈ [a, T ), and y∗(t) = 0, if t ∈ [T,∞),

where

(13) c =
[
γ(α− β)
α(β + 1)

∣∣∣∣α− βα+ 1

∣∣∣∣α]
1

α−β

,
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is the extinct solution of the first kind of the equation (11) if

(14)
α+ 1
α− β

> 1

which is clearly satisfied if 0 ≤ β < α holds.
Similarly, if either 0 < α ≤ 1 and −α < β < 0, or α > 1 and −1 < β <

0, then, for any T > a, the function

y(t) = c(T − t)
α+1
α−β ,

where c is given by (13), is the extinct solution of the first kind of (11) with
the maximal interval of existence [a, T ).

The following conjecture has been motivated by the gap between (14)
and the conditions of Theorems 3 and 3’.

Conjecture 1. For any T > a, Eq. (A) has an extinct solution of the
first kind (defined on [a,∞) or [a, T ) according to whether β ≥ 0 or β < 0)
with the extinction point at T if and only if (14) holds.

As we remarked in the introductory part of this section, if β < 0, then
Eq. (A) may have also extinct solutions of the third kind, that is, singular
solutions satisfying (III) at the (finite) right end-point of the maximal in-
terval of existence. The following theorem establishes the existence of such
singular solutions.

Theorem 4. Suppose that −1 < β < 0. Then, for any T > a, Eq. (A)
has an extinct solution of the third kind with [a, T ) as its maximal interval
of existence.

Proof. Let T > a be given arbitrarily. Put q∗ = maxt∈[a,T ] q(t) and
select c > 0 so that

(15)
1

β + 1
cβ−αq∗(T − a)β+1 ≤ 2α − 1.
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Consider the set Y ⊂ C[a, T ] and the mapping F : Y → C[a, T ] defined by

Y = {y ∈ C[a, T ] : c(T − t) ≤ y(t) ≤ 2c(T − t), t ∈ [a, T ]}

and

(16) (Fy)(t) =
∫ T

t

[
cα +

∫ T

s

q(r)(y(r))βdr

] 1
α

ds, t ∈ [a, T ].

That F maps Y into itself is an immediate consequence of (15). One eas-
ily verifies that F sends Y continuously into a compact subset of Y . The
Schauder fixed point theorem then guarantees the existence of a fixed ele-
ment y ∈ Y of F , which in view of (16) satisfies

(17) y(t) =
∫ T

t

[
cα +

∫ T

s

q(r)(y(r))βdr

] 1
α

ds, t ∈ [a, T ].

From (17) it follows that this function y(t), when restricted to [a, T ), gives
a positive extinct solution of the third kind of (A) with extinction point at
t = T . This completes the proof of Theorem 4.

It may happen that the equation (A) has no other singular solutions
except for white hole ones, as is demonstrated by the following theorem.

Theorem 5. Suppose that α > 0 and q ∈ C1[a,∞). If β < −1, then
the only decreasing singular solutions of (A) are white hole solutions.

Proof. Let y(t) be any decreasing singular solution of (A) on J =
[t0, Ty). Assume that it is not a white hole solution. Then limt→Ty−0 y(t) =
0 and since y(t) is decreasing, we may assume that y(t) > 0 on J . Define
the function W [y](t) by

(18) W [y](t) = − α

α+ 1
(−y′(t))α+1 +

q(t)
β + 1

(y(t))β+1, t ∈ J.

We easily have

d

dt
W [y](t) =

q′(t)
β + 1

(y(t))β+1, t ∈ J,
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from which, noting that W [y](t) < 0, t ∈ J , and

− q′(t)
β + 1

(y(t))β+1 ≤ −
q′+(t)
β + 1

(y(t))β+1 ≤
q′+(t)
q(t)

|W [y](t)|, t ∈ J,

we find that
d

dt
|W [y](t)| ≤

q′+(t)
q(t)

|W [y](t)|, t ∈ J,

where q′+(t) = max{q′(t), 0}, which implies that

|W [y](t)| ≤ |W [y](t0)| exp
(∫ t

t0

q′+(s)
q(s)

ds

)
, t ∈ J.

Thus,

− q(t)
β + 1

(y(t))β+1 ≤ |W [y](t0)| exp
(∫ t

t0

q′+(s)
q(s)

ds

)
, t ∈ J,

which is a contradiction with the assumption limt→Ty−0 y(t) = 0. Thus,
y(t) must be a white hole solution.

3. Classification of proper solutions of (A)

Our purpose in this section is to classify the set of all possible proper
solutions of (A) with α > 0 and q(t) positive on [a,∞) according to their
asymptotic behavior as t → ∞ and to derive nonlinear integral equations
for proper solutions of each of the classified types. These integral equations
will play a crucial role in establishing the existence of proper solutions of
various kinds in the next section.

Let y(t) be a proper solution of (A) on [t0,∞), t0 ≥ a, and suppose first
that this solution is positive and increasing for t ≥ t0. Then, by (A), y′(t)
is decreasing on [t0,∞) and the limit limt→∞ y′(t) ≥ 0 exists and is finite.
It follows that there are three possibilities for the asymptotic behavior of
y(t) as t→∞: either

(IV) lim
t→∞

y(t) =∞ and 0 < lim
t→∞

y′(t) <∞
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or

(V) lim
t→∞

y(t) =∞ and lim
t→∞

y′(t) = 0

or

(VI) 0 < lim
t→∞

y(t) <∞ and lim
t→∞

y′(t) = 0.

We call a proper solution satisfying (IV), (V) or (VI) a dominant, an
intermediate or a subdominant solution, respectively.

From two integrations of (A) it follows that if y(t) is an increasing
proper solution with y(t0) = y0 > 0, y(∞) = limt→∞ y(t) =∞ and y′(∞) =
limt→∞ y′(t) = ω1 ≥ 0 (i.e., a proper solution of dominant or intermediate
type), then it solves the nonlinear integral equation

(19) y(t) = y0 +
∫ t

t0

[
ωα1 +

∫ ∞
s

q(r)(y(r))βdr
] 1
α

ds, t ≥ t0.

From (19) it follows in particular that the function q(t)(y(t))β is integrable
on [t0,∞) for both types (IV) and (V), and that [

∫∞
t
q(s)(y(s))βds]1/α is

non-integrable if y(t) is a proper solution of type (V).

Similarly, if y(t) is a positive increasing proper solution defined on
[t0,∞) with “terminal values” y(∞) = ω0 > 0 and y′(∞) = 0 (i.e., a
positive proper solution of subdominant type), then

(20) y(t) = ω0 −
∫ ∞
t

[∫ ∞
s

q(r)(y(r))βdr
] 1
α

ds,

for t ≥ t0. An immediate consequence of (20) is that both q(t)(y(t))β and[∫∞
t
q(s)(y(s))βds

]1/α
are integrable on [t0,∞) for a proper solution y(t)

of this type.

Now let y(t) be a proper solution of (A) on [t0,∞) with y(t0)0 and
y′(t0) < 0. Then, by (A), such a solution is decreasing on the whole [t0,∞)
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and so either y(t) remains positive on [t0,∞) or there exists t1 ≥ t0 such
that y(t) < 0 for t ≥ t1. (Clearly, the latter case is possible only when
β ≥ 0.)

If y(t) is a positive decreasing solution of (A) on [t0,∞), then either

(VII) 0 < lim
t→∞

y(t) <∞ and lim
t→∞

y′(t) = 0

or

(VIII) lim
t→∞

y(t) = 0 and lim
t→∞

y′(t) = 0.

We call positive solution y(t) a weakly decreasing proper solution if it satis-
fies (VII) and a strongly decreasing (or decaying ) proper solution if (VIII)
holds.

Integrating (A) twice from t to∞, we obtain that if a positive decreas-
ing function y(t) defined on [t0,∞) is a decreasing proper solution of (A)
with terminal values y(∞) = ω0 ≥ 0 and y′(∞) = 0 (i.e., weakly or strongly
decreasing proper solution according to whether ω0 > 0 or ω0 = 0), then it
satisfies the integral equation

(21) y(t) = ω0 +
∫ ∞
t

[∫ ∞
s

q(r)(y(r))βdr
] 1
α

ds, t ≥ t0.

From (21) it is clear that the functions q(t)(y(t))β and [
∫∞
t
q(s)(y(s))βds]1/α

are integrable on [t0,∞) for proper solutions of types (VII) and (VIII).

Classification of the set of eventually negative decreasing proper solu-
tions emanating from a point (t0, y0) with y0 > 0 can be done in a similar
manner as in the case of positive increasing solutions, and so we have that
either

(IX) lim
t→∞

y(t) = −∞ and −∞ < lim
t→∞

y′(t) < 0

or

(X) lim
t→∞

y(t) = −∞ and lim
t→∞

y′(t) = 0
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or

(XI) −∞ < lim
t→∞

y(t) < 0 and lim
t→∞

y′(t) = 0.

From repeated integration of (A) it follows that if y(t) is a decreasing
eventually negative proper solution of (A) emanating from the point (t0, y0)
with y0 > 0 and satisfying limt→∞ y′(t) = −ω1 ≤ 0, then

(22) y(t) = y0 −
∫ t

t0

[
ωα1 +

∫ ∞
s

q(r)|y(r)|βdr
] 1
α

ds, t ≥ t0.

From (22) we see that the function q(t)|y(t)|β is integrable on [t0,∞) and
that [

∫∞
t
q(s)|y(s)|βds]1/α is non-integrable if y(∞) = −∞ and ω1 = 0,

that is, if y(t) is an eventually negative proper solution of type (X).
Finally, if y(t) is an evenually negative decreasing proper solution of

(A) defined on [t0,∞) with terminal values y(∞) = −ω0 < 0 and y′(∞) = 0
(i.e., a proper solution of type (XI)), then it satisfies

(23) y(t) = −ω0 +
∫ ∞
t

[∫ ∞
s

q(r)|y(r)|βdr
] 1
α

ds, t ≥ t0.

Clearly, q(t)|y(t)|β and [
∫∞
t
q(s)|y(s)|βds]1/α are integrable on [t0,∞) in

this case.

4. Existence of increasing proper solutions

We start with the existence of increasing proper solutions of dominant
type.

Theorem 6. Let 0 < β < α. For any given y0 > 0 there exists a
positive increasing proper solution satisfying y(a) = y0 and the asymptotic
relations (IV) if and only if

(24)
∫ ∞
a

tβq(t)dt <∞.
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Proof. (The “only if” part.) Assume that (A) has a positive increasing
solution y(t) of dominant type defined on [a,∞). Integrating (A) over
[t,∞), t ≥ a, we obtain

(y′(∞))α − (y′(t))α +
∫ ∞
t

q(s)(y(s))βds = 0,

which implies in particular that

(25)
∫ ∞
t

q(s)(y(s))βds <∞, t ≥ a.

Since limt→∞ y′(t) = limt→∞[y(t)/t] = const > 0 by (IV), there exist pos-
itive constants c1, c2 and t1 > a such that c1t ≤ y(t) ≤ c2t for t ≥ t1.
Combining this observation with (25) yields

cβ1

∫ ∞
t1

sβq(s)ds <∞,

which verifies the truth of (24).
(The “if” part.) Assume that 0 < β < α and (24) is satisfied. Let

y0 > 0 be given arbitrarily and choose ω1 so that

(26)
∫ ∞
a

q(t)[y0 + jω1(t− a)]βdt ≤ (2α − 1)ωα1 .

Consider the set Y ⊂ C[a,∞) and the integral operator F : Y → C[a,∞)
defined by

(27) Y = {y ∈ C[a,∞) : y0 + ω1(t− a) ≤ y(t) ≤ y0 + 2ω1(t− a), t ≥ a}

and

(28) (Fy)(t) = y0 +
∫ t

a

[
ωα1 +

∫ ∞
s

q(r)(y(r))βdr
] 1
α

ds, t ≥ a.

The requirement (26) ensures that F maps Y into Y . It can be shown
routinely that F is a continuous mapping and that F (Y ) is a relatively

16



compact subset of C[a,∞). Therefore, by the Schauder-Tychonoff fixed
point theorem, there exists an element y ∈ Y such that y = Fy, that is,

(29) y(t) = y0 +
∫ t

a

[
ωα1 +

∫ ∞
s

q(r)(y(r))β
] 1
α

ds, t ≥ a.

From (29) we easily see that y(t) is an increasing proper solution of (A)
which is positive on [a,∞) and satisfies y(a) = y0 and limt→∞ y′(t) = ω1 >
0. This completes the proof.

The next theorem concerns positive increasing solutions of intermediate
type, that is, the proper solutions y(t) satisfying limt→∞ y(t) = ∞ and
limt→∞ y′(t) = 0.

Theorem 7. Suppose that there exist constants q1, q2 > 0 and σ ∈ R
such that

(30) q1t
σ ≤ q(t) ≤ q2t

σ

for all large t. Moreover, let either

(i) σ ≥ −1 and −α < β < −σ − 1;
or

(ii) σ < −1 and one of the following two cases hold:

a) 0 ≤ β < −σ − 1 < α,

b) 0 < −β < α, −σ − 1 < α.

Then Eq.(A) has an intermediate increasing proper solution.

Proof. Let t1 ≥ a be so large that (30) is satisfied for t ≥ t1. Put

L =
α− β

α+ σ + 1

[
− α− β
α(β + σ + 1)

] 1
α

and define

(31) c1 = (q1L
α)

1
α−β , c2 = (q2L

α)
1

α−β ,

17



if β ≥ 0, that is, the case (ii)(a) holds, and

(32) c1 = (Lα1L
β
2 )

α
α2−β2 , c2 = (Lα2L

β
1 )

α
α2−β2 ,

where L1 = (q1)1/αL and L2 = (q2)1/αL, if β < 0 (i.e., (i) or (ii)(b) is
satisfied). Then c1 ≤ c2 and we can define the set Y by

(33) Y = {y ∈ C[t1,∞) : c1t
α+σ+1
α−β ≤ y(t) ≤ c2t

α+σ+1
α−β , t ≥ t1},

which is clearly a closed convex subset of the locally convex space C[t1,∞)
equipped with the topology of uniform convergence on compact subintervals
of [t1,∞). Define the integral operator F : Y → C[t1,∞) by

(34) (Fy)(t) = c1t
α+σ+1
α−β

1 +
∫ t

t1

[∫ ∞
s

q(r)(y(r))βdr
] 1
α

ds, t ≥ t1.

From (30) and (34) we see that, for any y ∈ Y and t ≥ t1,

(Fy)(t) ≤ c1t
α+σ+1
α−β

1 + (cβi q2)1/α

∫ t

t1

[∫ ∞
s

rσrβ
α+σ+1
α−β dr

] 1
α

ds

= [c1 − (cβi q2)1/αL]t
α+σ+1
α−β

1 + (cβi q2)1/αLt
α+σ+1
α−β

≤ (cβi q2)1/αLt
α+σ+1
α−β = c2t

α+σ+1
α−β ,

where i = 1 if β < 0 and i = 2 if β ≥ 0, and

(Fy)(t) ≥ c1t
α+σ+1
α−β

1 + (cβi q1)1/α

∫ t

t1

[∫ ∞
s

rσrβ
α+σ+1
α−β dr

] 1
α

ds

= (cβi q1)1/αLt
α+σ+1
α−β = c1t

α+σ+1
α−β ,

where i = 2 if β < 0 and i = 1 if β ≥ 0, which implies that Fy ∈ Y , and
hence F maps Y into itself.

We can prove routinely that F is continuous and F (Y ) is a relatively
compact subset of C[t1,∞). Therefore, the Schauder-Tychonoff fixed point
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theorem guarantees that F has a fixed point y ∈ Y , giving rise to the desired
positive increasing intermediate proper solution y(t) of (A).

Example 2. Applying Theorem 7 to the equation

(35) (|y′|α)′ + γtσ|y|β = 0, t ≥ a > 0,

where α > 0, β, σ ∈ R and γ > 0 are constants, we obtain that (35) has
an intermediate proper solution if either σ ≥ −1 and −α < β < −σ − 1,
or σ < −1 and one of the conditions (a) and (b) of Theorem 7 is satisfied.
Clearly, the function y(t) given by

(36) y(t) = ct(α+σ+1)/(α−β), t ≥ a > 0,

where

c =
[
γ

α

(
−α+ β

β + σ + 1

) ∣∣∣∣ α− β
α+ σ + 1

∣∣∣∣α]1/(α−β)

,

is an increasing proper solution of type (V) for the equation (35) if

(37) 0 <
α+ σ + 1
α− β

< 1.

As easily seen, any of the conditions (i), (ii)(a) or (ii)(b) implies (37).

The above example motivated us to believe that the following conjec-
ture is true.

Conjecture 2. Suppose that there exist constants q1, q2 > 0 and σ ∈ R
such that (30) holds for all large t. Then Eq. (A) has an intermediate
proper solution if and only if (37) is satisfied.

In our next result we present a necessary and sufficient condition for the
existence of increasing proper solutions of (A) of type (VI) with arbitrarily
prescibed positive terminal value ω0. Proper solutions of this type can be
regarded also as increasing solutions with finite nonzero “white holes” at
infinity.
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Theorem 8. For any given ω0 > 0, Eq. (A) has an increasing proper
solution defined on some interval [t0,∞) ⊂ [a,∞) and satisfying (VI) with
limt→∞ y(t) = ω0 if and only if

(38)
∫ ∞
a

[∫ ∞
t

q(s)ds
]1/α

dt <∞.

Proof. (The “only if” part.) Let y(t) be a positive proper solution
of (A) defined on [t0,∞), t0 ≥ a, which is of type (VI). Then, as pointed
out in the preceding section, both q(t)(y(t))β and [

∫∞
t
q(s)(y(s))βds]1/α

are integrable on [t0,∞). This fact combined with the inequality y(t) ≥
y(t0)0, t ≥ t0, if β ≥ 0 (resp. the inequality y(t) ≤ y(∞), t ≥ t0, if β < 0)
implies (38).

(The “if” part.) Assume that (38) holds. Let ω0 > 0 be fixed arbitrarily
and choose t0 ≥ a so large that

(39)
∫ ∞
t0

[∫ ∞
t

q(s)ds
] 1
α

dt ≤ j−
β
α

(ω0

2

)1− βα
,

where j = 1 if β < 0 and j = 2 if β ≥ 0.
Consider the set Y ⊂ C[t0,∞) and the mapping F : Y → C[t0,∞)

defined by

Y = {y ∈ C[t0,∞) :
1
2
ω0 ≤ y(t) ≤ ω0, t ∈ [t0,∞)}

and

(Fy)(t) = ω0 −
∫ ∞
t

[∫ ∞
s

q(r)(y(r))βdr
] 1
α

ds, t ≥ t0.

It is a matter of simple computation to show that F is a continuous
operator mapping Y into a relatively compact subset of Y . Therefore, by
the Schauder-Tychonoff fixed point theorem, there exists an element y ∈ Y
such that y = Fy, i.e., y(t) satisfies the integral equation (20) for t ≥ t0.
From (20) it is clear that y(t) is a positive increasing solution of (A) defined
on [t0,∞) and satisfying limt→∞ y(t) = ω0, which completes the proof.
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Theorem 8 is “local near ∞” in the sense that it guarantees the ex-
istence of a desired subdominant proper solution y(t) for arbitrarily given
terminal value ω0 > 0 only in a sufficiently “small” neighborhood of infinity.
A close look at the proof of the above theorem shows that under the addi-
tional assumption α 6= β, the initial time t0 = a may be fixed and ω0 > 0
can then be selected so that the condition (39) is fulfilled. Since the rest
of the proof is the same as before, we have the following global existence
version of Theorem 8.

Theorem 8’. Let α 6= β. The equation (A) has an increasing proper
solution defined on the whole given interval [a,∞) and satisfying (VI) with
y(∞) = ω0 for some ω0 > 0 if and only if (38) is satisfied.

5. Existence of decreasing proper solutions

Now we turn our attention to the problem of existence of decreasing
proper solutions of (A). As we already know from Section 3, if y(t) is one
such solution, then it either remains positive as long as it exists and belongs
to one of the types (VII) and (VIII), or it is eventually negative and satisfies
one of the relations (IX), (X) or (XI).

Our consideration will first be focused on the set of weakly decreasing
proper solutions of (A). More specifically, we intend to show that the ‘local’
existence of such solutions with arbitrarily prescribed terminal value ω0 > 0
can be characterized by the same integral condition (38) as the existence of
increasing proper solutions of subdominat type established in the preceding
section.

Theorem 9. For any given ω0 > 0, Eq. (A) has a decreasing proper
solution which exists on some interval [t0,∞) ⊂ [a,∞) and satisfies (VII)
with limt→∞ y(t) = ω0 if and only if (38) is satisfied.

Proof. (The “only if” part.) If y(t) is a weakly decreasing solution
of (A) on [t0,∞), t0 ≥ a, satisfying y(t0) > 0 and (VII), then from the
integrability of q(t)(y(t))β and [

∫∞
t
q(s)(y(s))βds]1/α on [t0,∞) combined

with the inequalities y(t0) ≥ y(t) ≥ y(∞), t ≥ t0, we easily obtain (38).
(The “if” part.) Suppose that (38) is satisfied. If ω0 > 0 is given

arbitrarily and t0 ≥ a is chosen so large that
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(40)
∫ ∞
t0

[∫ ∞
t

q(s)ds
] 1
α

dt ≤ j−
β
α (ω0)1− βα ,

where j = 1 if β < 0 and j = 2 if β ≥ 0, then it can be shown that the
mapping F defined by

(Fy)(t) = ω0 +
∫ ∞
t

[∫ ∞
s

q(r)(y(r))βdr
] 1
α

ds, t ∈ [t0,∞).

has a fixed element in the set Y of continuous functions defined by

Y = {y ∈ C[t0,∞) : ω0 ≤ y(t) ≤ 2ω0, t ∈ [t0,∞)}

which gives rise to a desired weakly decreasing proper solution y(t) with
the property limt→∞ y(t) = ω0. This sketches the proof. The detailed
verification is left to the reader.

As in the case of increasing proper solutions of subdominant type, if
we assume that α 6= β, then we can modify the sufficiency part of the proof
slightly so that we fix t0 = a and take ω0 > 0 so large that the condition
(40) is satisfied. This modification of the proof enables us to re-formulate
Theorem 9 as the following ‘global’ existence result.

Theorem 9’. Let α 6= β. Then Eq. (A) possesses a decreasing proper
solution of type (VII) defined on [a,∞) and satisfying limt→∞ y(t) = ω0 for
some ω0 > 0 if and only if (38) holds.

Our next task is to construct proper solutions of type (VIII), that is,
strongly decreasing positive solutions of (A). The existence of such proper
solutions is guaranteed by the following theorem.

Theorem 10. Suppose that there exist constants q1, q2 > 0 and σ <
−1 such that (30) is satisfied for all large t. Moreover, let either

(i) 0 ≤ β < α < −σ − 1,
or

(ii) σ + 1 < −α < β < 0.
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Then Eq. (A) has a strongly decreasing proper solution.

Proof. Assume that t1 ≥ a is such that (30) holds for t ≥ t1. Put

L = − α− β
α+ σ + 1

[
− α− β
α(β + σ + 1)

] 1
α

and with this L define the constants c1 and c2 by (31) or (32) according
as β ≥ 0 or β < 0. With such a pair of constants c1 and c2, which clearly
satisfy c1 ≤ c2, define the set Y by

Y = {y ∈ C[t1,∞) : c1t
α+σ+1
α−β ≤ y(t) ≤ c2t

α+σ+1
α−β , t ≥ t1}

and the integral operator F : Y → C[t1,∞) by

(Fy)(t) =
∫ ∞
t

[∫ ∞
s

q(r)(y(r))βdr
] 1
α

ds, t ≥ t1.

It can be verified in a routine manner that F (Y ) ⊂ Y , F is continuous
and F (Y ) is a relatively compact subset of C[t1,∞). Therefore there exists
y ∈ Y such that y = Fy by the Schauder-Tychonoff fixed point theorem,
that is, y(t) satisfies the integral equation

y(t) =
∫ ∞
t

[∫ ∞
s

q(r)(y(r))βdr
]1/α

ds

for t ≥ t1. Since obviously limt→∞ y(t) = limt→∞ y′(t) = 0, it follows that
y(t) is a desired strongly decreasing solution of Eq. (A). This completes the
proof.

Example 3. Consider again the equation (35) with a positive con-
stant coefficient γ. Theorem 10 ensures the existence of strongly decreasing
proper solutions for (35) if σ < −1 and σ + 1 < −α < β < α < −σ − 1.

As is easily verified, if

(41)
α+ σ + 1
α− β

< 0
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which is obviously satisfied if the conditions of Theorem 10 hold, then the
function y(t) given by (36) is a strongly decreasing proper solution of (35).

The following conjecture has been motivated by the gap between (41)
and the conditions of Theorem 10.

Conjecture 3. Let there exist constants q1, q2 > 0 and σ ∈ R such that
(30) holds for all large t. Then Eq. (A) has a strongly decreasing proper
solution if and only if (41) is satisfied.

Our final theorem establishes the (global) existence of eventually neg-
ative decreasing proper solutions of (A) satisfying (IX) and y(a) = y0 with
arbitrarily prescribed initial value y0 > 0.

Theorem 11. Let 0 < β < α. For any given y0 > 0, Eq. (A) has an
eventually negative decreasing proper solution satisfying y(a) = y0 and (IX)
if and only if

(42)
∫ ∞
a

tβq(t)dt <∞.

.

Proof. (The “only if” part.) Suppose that (A) has a decreasing proper
solution y(t) on [a,∞) with y(a) > 0 which is eventually negative and
satisfies (IX). From (IX) it follows that there exist constants k1, k2 > 0
and t1 > a such that −k1t ≤ y(t) ≤ −k2t for t ≥ t1. Combining these
inequalities with a known fact that the function q(t)|y(t)|β is integrable on
[t1,∞) for decreasing proper solutions of type (IX), we easily obtain (42).

(The “if” part.) Suppose that 0 < β < α and (42) holds. Let ω1 > 0
be a constant such that

(43)
∫ ∞
a

(y0 + 2ω1(t− a))βq(t)dt ≤ (2α − 1)ωα1

and consider the set Y ⊂ C[a,∞) and the mapping F : Y → C[a,∞)
defined by

Y = {y ∈ C[a,∞) : y0 − 2ω1(t− a) ≤ y(t) ≤ y0 − ω1(t− a), t ≥ a}
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and

(Fy)(t) = y0 −
∫ t

a

[
ωα1 +

∫ ∞
s

q(r)|y(r)|βdr
]1/α

ds, t ≥ a.

Then, as is easily verified, the Schauder-Tychonoff fixed point theorem ap-
plies, and there exists an element y ∈ Y such that y = Fy, that is, (22)
holds for t ≥ a. It follows that y(t) is a decreasing proper solution of
(A) on [a,∞) which is eventually negative and satisfies y(a) = y0 and
limt→∞ y′(t) = −ω1 < 0. This completes the proof.
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J. Jaroš, Department of Mathematical Analysis, Faculty of Mathemat-
ics and Physics, Comenius University, 842 48 Bratislava, Slovakia

26


