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Abstract

First we shall derive the basic decay estimates of the total energy and L%-norm
of a solution to the mixed problem for the linear dissipative wave equation in an
exterior domain with the initial data satisfying some further restrictions as |z| —
+o0o. That decay estimates are faster than the usual one. Second we shall apply the
decay estimates above to the exterior mixed problem of the semilinear dissipative
wave equation in an exterior domain and we shall derive the small data global
existence property to that problem with the power satisfying 1 +4/(N +2) <p <
N/(N — 2)(N = 3,4,5) on the nonlinear term |u?.

1 Introduction

Let © C RV(N > 3) be an exterior domain with compact smooth boundary 0Q. Without
loss of generality we may assume 0 ¢ . In this paper we are concerned with the initial-
boundary value problem for the linear dissipative wave equation:

ve(t,x) — Av(t,z) + v (t,z) =0, (t,z) € (0,00) x Q, (1.1)
v(0,2) = vo(z), v(0,2) =v1(x), =z€Q, (1.2)
v|an =0, t € (0,00), (1.3)

and the semilinear dissipative wave equation:

ug(t, ) — Au(t,x) + w(t, ) = |u(t,z)P,  (t,x) € (0,00) X Q, (1.4)

uw(0,z) = up(x), w(0,2) =wui(z), z€Q, (1.5)

’LL|3Q =0, te (0, OO) (16)

Throughout this paper, || ||, and ||- || z1 mean the usual L¢(Q)-norm and H; (2)-norm,
respectively, and in particular, we set || - || = || - ||2 for simplicity. Furthermore, we adopt

(f.9) = [ F@)g(x)da



as the usual L?(Q2)-inner product. The total energy E,(t) to the equation (1.1) and (1.4)
is defined by

1 1
Eo(t) = Sllut, ) + 5190, )2

The first purpose of this job is to derive certain decay estimates for the total energy
E,(t) and the L?-norm of a solution v(¢, x) to the linear problem (1.1)-(1.3) faster than the
usual one through the (modified) time integral method developed in Ikehata-Matsuyama
[3]. In that occasion, we do assume some further restrictions on the initial data as |z| —
+00. On the contrary, Ikehata-Matsuyama [3] and Saeki-lIkehata [11] adopted another
weight condition on the initial data. For the exterior mixed problem, these restrictions
on the initial data seem to be new (for conditions on the initial data with the compact
support, see Dan-Shibata [1]). For these restrictions as || — +oo on the initial data to
the ”Cauchy problem” of the equation (1.1), there are lots of related results and we refer
the reader to Kawashima-Nakao-Ono [6], Matsumura [8] and the references thererein.

The second purpose of this paper is to determine the exponent p of the semilinear
exterior problem (1.4)-(1.6) for which the small data global existence property holds. Very
recently, in Tkehata-Miyaoka-Nakatake [4] and Todorova-Yordanov [12] they have derived
such a critical (Fujita type) exponent p. = 1+ 2/N to the Cauchy problem of (1.4) in the
framework of L' x L! assumption on the initial data and of the initial data with compact
support, respectively (for another type of critical exponents like p. = 1 + 2m/N for the
Cauchy problem of (1.4) with L™ x L™ assumption on the initial data, see also Tkehata-
Ohta [5]). These works are fully based on the decay estimates for the linear equations
due to Matsumura [8] and Kawashima-Nakao-Ono [6]. Thus, it seems to be difficult
to apply those decay estimates for the linear equations due to [6] and [8] to the present
exterior mixed problem (1.4)-(1.6). On the other hand, in the framework of the compactly
supported initial data Tkehata [2] has already constructed a small global solution to the
exterior problem (1.4)-(1.6) with the power 14+ 6/(N +2) <p < N/(N —2)(N = 3) or
14+6/(N+2)<p< +oo(N = 2). His result is based on the decay estimates for the
linear equations which are developed in [3] and [11]. By using decay estimates for the
linear equations developed in the former part instead of those developed in [3] and [11],
we can exclude the compactness of the support on the initial data as in [2] to the problem
(1.4)-(1.6) with further relaxed exponent, and we can also treat the higher dimensional
case N = 4,5 (for another exponent p. = 1+ 4/N, see Nakao-Ono [10]).

In the following, we set

Lo = lJuollar =+ |Jus]] + lluo + ullony(vs2)-
Then our first result reads as follows.

Theorem 1.1 Let N > 3. For each [vg,n1] € (HE(Q) N L2N/N+2(Q)) x (L*(Q) N
L2NI(N+2)(Q))), the weak solution v € C([0, +00); HE(€2))NC([0, +00); L2()) to the linear
problem (1.1)-(1.3) satisfies the decay estimates:

lo(t,)II” < CIg, (1 + 1),

lve(t, N + IV (E,)II” < CIg, (1 +8)72 (1.7)

with some generous constant C > 0.



Next we shall make some assumptions before treating the semilinear problem (1.4)-(1.6).

N
1 < 1.8
+ <P< g g (1.8)

N+2

Now based on these decay estimates for the linear equations as in Theorem 1.1 our second
result to the semilinear problem reads as follows.

Theorem 1.2 Let N = 3,4,5. Under the assumption (1.8), there exists a real num-
ber & > 0 such that if the initial data [ug,u,] € (HE(Q) N L2V N+2(Q)) x (L2(2) N
L2NI(N+2)(Q)) further satisfies Iy, < 0, the problem (1.4)-(1.6) has a unique global solu-
tion u € C([0,+00); Hy () N C*([0, +00); L3(Q)) satisfying

lut, )I* < CIg,(1+18)

lue(t, I + [ Vult, )P < CIg, (1 +1) 7

with some generous constant C' > 0.

Remark 1.1 In the case when N = 3, Theorem 1.2 completely contains the result in
Ikehata [2]. Furthermore, (1.8) is more relaxed condition than that in [2]. For N = 2, this
is completely open. Note that in the case when N = 2, formally we get 1 +4/(N + 2) =
1+ 2/N. On the other hand, the results in Theorems 1.1 and 1.2 seem sharp if we take
m = 2N/(N +2) in Tkehata-Ohta [5, Theorem 1.2]. Finally, for the nonexistence of global
solution to the equation (1.4) in R" with power p less than the critical exponent we refer
to Li-Zhou [7], Todorova-Yordanov [12] and Tkehata-Ohta [5].

2 Proof of Theorem 1.1

In this section we shall prove Theorem 1.1. Our discussion shall be based on the following
well-posedness result to the mixed problem (1.1)-(1.3). This is rather standard.

Proposition 2.1 Let N > 2. For each [vy,vi] € H(Q2) x L*(2), there exists a unique
weak solution v € C([0,+00); Hy(Q)) N C*([0,+00); L(2)) to the linear problem (1.1)-
(1.3) satisfying

B0 + [ s, s = B,0),

d

2 (et ), 0t ) + Vot )P + (vt ), w2, ) = llealt, 1P

We use the following fundamental Sobolev inequality.
Lemma 2.1 Let N > 3. For each u € H(Q) it holds that

[ullony -2y < C*[[Vul]
with some constant C* > 0.

First we shall derive the L?-decay estimate. The following lemma is known more or less
and is already announced (at least) in Saeki-Tkehata [11].



Lemma 2.2 Let N > 2. If [vg,v1] € Hy(Q) x L*(Q), the weak solution
v € C([0,+00); Hi () N CH([0, +00); L*(Q)) to the linear problem (1.1)-(1.3) satisfies

A+ Dl < Cllvollzr + [l l)? +0/ lv(s, -)|I*ds

with some constant C > 0 which is independent of the initial data.

The next lemma is crucial in our argument and this part plays an essential role in deriving
Theorem 1.1.

Lemma 2.3 Under the same assumptions as in Theorem 1.1, it holds that
lo(t, )2 +/ [o(s, ) IPds < C{l[woll + llvo + villawy(ns2)}

with some constant C > 0.

Proof. The proof will be done along the same line as in Ikehata-Matsuyama [3] except for
using Lemma 2.1 instead of the so called Hardy inequality. Indeed, set

w(t,x) = /Otv(s,x)ds.

Then w € C'([0, +00); Hy (2)) N C?(]0, +00); L*(2)) satisfies

wy(t, ) — Aw(t, ) + wi(t, ) = vo +v1, (t, ) € (0,00) x Q, (2.1)
w(0,2) =0, w(0,2) =wvo(z), z€Q, (2.2)
wlog =0, te(0,00), (2.3)
and
—||wt( *+ —||Vw II® +/ lwe(s, -)||*ds

1 9 t
= Sllool + [ (v + v, wils, )ds. (2.4)

0

Now because of (2.2) we have

t
/0 (vo + v1, wi(s,))ds = (w(t, ), vo + v1),
and from the Holder inequality we see

(w(t, ), vo +v1) < |lw(t, -)|lavy(v—2)llvo + villan/(vr2)-

So, by using Lemma 2.1 and (2.4) one has

1
St )I” + —IIVw ||2+/||wt )|[*ds

1 (&) Cae
< §||Uo||2 + ?Hvo + Ul||§N/(N+2) + 7||Vw(t, %



with some constants C; > 0(i = 1,2). Because of w; = v, this inequality implies

1 1 t
5 llv, ?+ 5 (1= Cee)|[Vu(t, II? +/ lu(s, )|[*ds
0

1 C
< §||UO||2 + ?”UO + v1l3n (v 1e)

for any € > 0. Taking € > 0 so small, we have arrived at the desired estimate. 1
Therefore, L2-decay estimate in Theorem 1.1 is a direct consequence of Lemmas 2.2

and 2.3. Once we have obtained the L?-decay estimate in Theorem 1.1, the energy estimate

(1.7) is calculated along the same way as in Ikehata [2] and so, we shall omit its proof.

3 Proof of Theorem 1.2

In this section we will prove Theorem 1.2. We proceed our argument based on the following
local well-posedness.

Proposition 3.1 Let N >3 and 1 < p < N/(N —2). Then for each [ug,u1] € H}(Q) x
L?(Q), there exists a mazimal existence time Ty, > 0 such that the problem (1.4)-(1.6) has
a unique solution v € C([0,T,,); H{ (Q2)) N C([0, T;n); L2()). Furthermore, if T,, < +o0,
then it holds that

Tim [ffue(t, )| + [lu(t, )llam] = +oo.
First we shall prepare several facts which come from Theorem 1.1 concerning the linear
problem:

v(t,x) — Av(t,z) +w(t,z) =0, (t,z) € (0,00) x Q, (3.1)
v(0,z) = vo(x), v(0,2) =v1(x), z€Q, (3.2)
'U|aQ =0, te (0, OO) (33)

Define a semigroup S(t) : H} () x L*(Q) — H(Q2) x L*(Q2) by

o[}

U1

where v(t, -) € C([0, +00); H3(Q))NC ([0, +00); L*(2)) is a unique solution to the ”linear”
problem (3.1)-(3.3). The following two lemmas are direct consequences of Theorem 1.1.
In the following context, C' > 0 denotes the various generous constant.

Lemma 3.1 Let N > 3. If [vy, v1] € H}(Q) x L*(Q) further satisfies ||ug+ u1||an/vt2) <
+00, then it holds that
lo(t, )l < Clou(1+ 1)

Set
U
| . & = [[v]l + [[Vull.



Lemma 3.2 Let N > 3. If [ug, u1] € Hy(Q) x L*(Q) further satisfies ||uo+u1||2n/(v+2) <
400, then it holds that

15[ e < a1 +07,
1

In order to control the nonlinear term, we shall prepare the well-known Gagliardo-
Nirenberg inequality.

Lemma 3.3 Let 1 <r < q<2N/(N —2)(N > 3), 2 < q. Then, if u € H}(Q), we have
lully < MY2|ull;=[IVu]l’,
where M > 0 is a constant independent of u,
0=(1/r—1/¢)(1/N —-1/2+1/r)~" € (0,1],
and p is a positive real number satisfying (1.8).

Futhermore, we shall prepare the following well-known inequalities. For the proof, see

2].

Lemma 3.4 If 8 > 1, then there exists a constant Cg > 0 depending only on 8 such that

N[=

(1) /Ot(1+t—s)—%(1+s)—ﬂds < Cy(1+10)%,

@) /Ot(1 +t—s) (1 +5) Pds < Cy(1+1)"
for allt > 0.

Now based on these decay estimates for the linear problem (3.1)-(3.3) we shall derive
the decay property of a nonlinear problem (1.4)-(1.6). By a standard semigroup theory,
the nonlinear problem (1.4)-(1.6) is rewritten as:

U(t) = SOV + | "S(t — 5)F(s)ds, (3.4)

where U(#) = [“(t")], Uy = m F(s) = [f( 0 ] with £(u)(z) = |u(z)]P.

ut(ta') U(S,'))

We proceed our argument based on the Nakao method [9]. In order to show the global
existence, it suffices to obtain the a priori estimates for E, () and ||u(t,-)| in the interval
of existence [0,7,,). For simplicity, we set Iy = I,. As a result of Lemmas 3.1 and 3.2,
first one has

Lemma 3.5 Under the assumptions as in Theorem 1.2, we have
ISt Uslle < CLy(1+1) !

on [0,T,,).



Furthermore, if
I(s) = IIf (u(s, DI+ NS (uls, )llanyv+2) < 400
for each s € [0,t] with ¢ € [0, T,,), then from Lemma 3.2 we have
1St —s)F(s)||lg < CI(s)(1+t—s)"".
Thus from (3.4) one can estimate U(t) as follows:
t
U@z < Clo(1+t)~" + C/ (14t —s)"tI(s)ds.
0
Take K > 0 so large and choose T € (0,7},) so small such as
A+ )IU@De < KLy on [0,T),
(1+)Y2u)|| < KI, on [0,T).
Then because of Lemma 3.3 we can estimate such as
£ Culs, Nllonyvrzy = lluls, Mopnyvrzy < Mlluls, PE][Vuls, )P
with 6, = (Np — N — 2)/2p € (0, 1]. Similarly one has
£ Culs, NI < MJuls, )P Vs, -) P
with 6, = N(p — 1)/2p € (0,1]. Therefore, as long as (3.7)-(3.8) hold one gets
£ Culs, Dllawyrz) £ M{KTo(1+ ) /2P LK T (14 5) 71"

= MKPI{(1 4 s)7P1H00/2

and
1/ (u(s, ) < M{KIo(1 4 5)7/2PP O KTy (1 + )71}

= MKPIP(1 + 5) PO+02)/2,
Setting v; = p(1 + 6;)/2(i = 1, 2), we have
Lemma 3.6 As long as (3.7)-(3.8) hold on [0,T) we have
1f Cult, Dllonyovezy < MEPIG1+ )77,
1f(ut, DI < MEPIF(1 +¢)77".

So, by applying Lemma 3.6 to (3.6) we see that

t
U@ || < CL(1+t)~' + C’MK”Ié’/O (1+t—s8) {1 +s)" +(1+s5)"}ds.

Note that 71 < 7, in the present case. Thus, we have

t
U@z < CL(1+t)" + CMKPI(’)’/O (1+t—s)""(1+s)"ds



with some generous constant C' > 0. On the other hand, we see that y; > 1 because of
the assumption (1.8), so that from Lemma 3.4 it follows that

WUD|e < CL(1+t) '+ CMKPIF(1+1t)~

Setting
Qo(Io, K)=C +CMKPI?™,

we get the following lemma.

Lemma 3.7 As long as (3.7)-(3.8) hold on [0,T) we get
U@ < LQo(Lo, K)(1+1)7".

Next let us derive the L*-estimates for the local solution u(t,z) to the problem (1.4)-
(1.6). Indeed, we have from (3.4) and Lemma 3.1 that

t
[u(t, )| < CIo(1+ )72 + 0/ (14t — s)"21(s)ds.
0

Therefore, it follows from Lemma 3.6 that

lut, )| < CLo(1 + )7/

t
+CMK”I€/ (L+t—5) 2{(L+s) ™+ (L+s) "}ds
0

with some generous constant C' > 0. Since one has y; < 72 and 7; > 1 again because of
(1.8), this together with Lemma 3.4 implies

lu(t, )| < CL(1+)~* + OMKPIE(1 + )~ Y/2.
Thus we have
Lemma 3.8 As long as (3.7)-(3.8) hold on [0,T) it follows that
llut, )l < ToQo(Lo, K) (1 + )72,

Take K > C so large and take I; so small such as

CMK*I;™' < K —C. (3.9)
For such K > 0 and I, we have
Q()(I(), K) < K.
Therefore, by combining this with Lemmas 3.7 and 3.8 we see that
UM || < KI(1+t) 1, (3.10)
lu(t, )| < KIp(1 +t)"'/? (3.11)

on [0,7). (3.7)-(3.8) and (3.10)-(3.11) show that under the assumption (3.9), the local
solution u(t, -) exists globally in time and these estimates hold in fact for all ¢ > 0. Taking

— (/-1 i i
§= (C’MKP) , the proof of Theorem 1.2 is now finished.
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