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1 Introduction

The purpose of this paper is to show that we can take coordinate systems
determined by the Bicklund transformations as coordinate systems of the man-
ifolds of Painlevé systems constructed by K. Okamoto ([10]) (except the first
one) and that the manifolds with parameters equivalent under the corresponding
affine Weyl groups are mutually isomorphic.

The J-th Painlevé system (J = II,I11,1V,V,VI) which is equivalent to the
J-th Painlevé equation is the following Hamiltonian system

(HJ,a) 51] = {HJ(Q)thaa)aq}a 6p = {HJ(qapataa)ap}a

where § = d/dt for J = II,1V, § = td/dt for J = III,V, § = t(t — 1)d/dt for
J=VI,{,-} is the Poisson bracket defined by

and the Hamiltonian H;(q,p,t,a), a = (ap,q1,...) being parameters with a
relation, is given by

Hiulapta) = 50 (@ + gp—ong
(g + a1 =1),
Hi(g,p,t,a) = ¢plp—1)+ql(ao + az2)p — ao] + tp
(o + 201 + a2 = 1),
Hiv(g,p,t,0) = gp(p—q—2t) — 20up — 2aaq
(g +a1+az =1),
Hy(g,p,t,a) = q(g—1p(p+1) — (a1 + az)gp + a1p + astq

(g + a1 +as +az =1),



Hvi(g,p,t,a) = qlg—1)(q—t)p" — [(a0 —1)qlg — 1) + au(g — 1)(q — t)
+azq(q —t)]p + az(o1 + az2)(qg — t)
(o + 01 + 202 + a3 + ag =1).

We notice that the forms of the Hamiltonians for J = II1,IV,V given here are
slightly different from those in [2],[14],[4]. The Hamiltonian for J = III or IV
or V is obtained from that for J = ITI' or IV or V in [2] respectively by certain
change of variables (see Section 3).

Each Painlevé system determines a complex one dimensional nonsingular
foliation of C? x By (3 (g, p,t)) where

Brr=Biv=C, Brr=By=C-{0}, By;=C-{0,1}.

The system is holomorphically extended to one on a manifold E;, which is a
fiber space over By having the C? x By as a fiber subspace and the extended
system defines a uniform foliation F;, of E;, although the foliation of the
C? x By is not uniform ([14],[4],[10]). Here the uniformity of the foliation Fy 4
means that, for any point Py € Ej,, every curve in By starting from m;(Fp)
is lifted on the leaf passing through Py, where m is the projection from Ej, to
Bj. We notice that the uniformity of the foliation is equivalent to the so-called
Painlevé property for the Painlevé system, that is, if (¢(t), p(t)) is a local solution
of (Hyqa) determined by an arbitrary initial condition g(to) = go € C, p(ty) =
po € C with tg € By, then both q(t) and p(t) can be meromorphically continued
along any curve in B with a starting point ty. The fibers of E; , are called the
spaces of initial conditions([10]). Each E;, is described by the original chart
C? x By and a finite number of copies C7 x By of C? x B; where coordinate
transformations are certain birational symplectic ones ([14],[4]).

On the other hand, each Painlevé system admits a Backlund transformation
group of certain birational symplectic transformations each of which preserves
the form of the Hamiltonian and changes the parameters «; as an element of an
affine Weyl group ([6],[7],[8],[9]). This fact was first recognized by K. Okamoto
([11]), but our presentation in the following is different from his.

Let K = C(g,p,t,a) (@ = (ap,01,...) ) be a differential field of rational
functions of g, p, t, o with a derivation § defined by

6f = % ' {HJ(qapataa)aq} + % ’ {HJ(qapataa),p} + 6If’ f € K’

where §' is 0/0t for J = II,IV, t0/0t for J = III,V, and t(t — 1)0/0t for
J = VI. (Notice that da; = 0.) Then, there is a Bécklund transformation
group W which is a lift of an affine Weyl group acting on the a-space such that

(i) each w € W is an isomorphism from the field K to itself,

(ii) ow = wd, forw e W,

(iii) w{f, g} = {w(f),w(g)} forweW, f,geK.



The group W is generated by a finite number of reflections s;.

For w € W, consider a birational symplectic change of variables from (g, p, t)
t0 (qw, Pw,tw) defined by

Gw =w(q), Pw=w(p), tw=w(t).

Then the Hamiltonian system (H,,) with a9 + ... = 1 is transformed to
(HJ,w(a)):

6(]111 = {HJ(qTUJPWJtWJw(a))qu}J 5pw = {HJ(Qwapw:tw:w(a))apw}a

where w(a) = (w(ayg),w(ay),...) with w(ag) + ... = 1. (We notice that ¢, =t
for every w € W in the case of J # III and t,, = =+t in the case of J = II]
and § = J,, where J,, is the derivation with respect to t,,.) Hence w extends the
domain of definition C? x By of the system (Hj,) to C?> x ByUC2 x By /[ ~,
where ~ is an identification of the points (g, p,t) € C2 x By and (qu, pw,tw) €
C2 x Bj,,(~ C?xBy) by the above relation. The system (H Jow(a)) is considered
to be the restriction of the extended Hamiltonian system on the chart CZ x By .

We extend the domain of definition C? x By of (H,,) by all w € W. Let
E}, be amanifold obtained by gluing the copies C2, x By, w € W of C*> x B;
via the relations

G =W N qw), Pw =wWw T (D), tw =ww ()

for any w,w' € W :

Efa::(|_| CfoBJ,w>/~.

wew

The identification ~ is well defined since W is a group. We often consider each
C2 x By, a subset of ng’a.

The manifold E}’Ya is a fiber space over B; and the extension of the Painlevé
system (H,,) on ng’a defines a complex one dimensional nonsingular foliation

of E}, each leaf of which is transversal to fibers.
The main result of this paper is stated as:

Theorem 1. The identity mapping ¢ from C? x By C EK’Q to the original
chart C? x By of Ej o can be extended to an isomorphism

¢: E), — Ej,.

In general, for any w € W, the mapping ¢, from the chart C2, x By, 3
(qu,Pw,tw) of E}’Ya to the original chart C* x By 5 (¢,p,t) of Ej(a) defined
by (¢,p,t) = (qu, Pw, tw) can be extended to an isomorphism

D - E.‘]}Ya — EJ,w(a)-



Here an isomorphism means a biholomorphic mapping which preserves fibers
and leaves of the foliations.

In the proof of the theorem, the uniformity of the foliation Fjo of Ejq
plays an essential role. One can find a proof of the uniformity in [15],[18],[1], for
example. By means of the theorem, we can say that the manifold E; , is covered
by the coordinate systems C2, x By,,w € W. The coordinate systems are
convenient in that the Hamiltonians on them are easily obtained by the changes
of parameters. The following important fact is also an immediate consequence
of the theorem.

Corollary. The manifolds E;o and Ejo are isomorphic if there exists
w e W such that o' = w(a).

In a private communication, we were informed that H. Umemura and J.
Matsuzawa had also obtained the corollary.

We notice that the manifold ng/a is covered by a finite number of coordinate
systems although it is defined by infinitely many ones. The fact is verified by
the above corollary, the following theorem in which s; are the generators of W,
and the property that, for any «, there is a w € W such that none of w(a;)
(and w(ay + az) for J = VI) vanish. The theorem is also used in the proof of
Theorem 1.

Theorem 2. (The case of J = II,II1,IV,V) If none of a; vanish, then

(02 XBJI—I(LlCi XB_],Sl.)>/N ZE_],Q.

(The case of J = VI) If none of a; and oy + as vanish, then

C2XBVI|—|( |_| Cgl XBV_[)I—ICis2 XBVI /N :EVI,a-
1=0,2,3,4

In Section 2, we give lists of certain generators of Biacklund transformation
groups of Painlevé systems and show some propositions which will be used in the
proof of Theorem 1. In Section 3, we review the descriptions of the manifolds
Ejo ([14],/4]) and give lists of Hamiltonians on all charts and then we show a
proposition. The succeeding sections are devoted to proving Theorems 1 and 2.
We first prove Theorem 2 in Section 4 and then prove Theorem 1 in Sections
5 and 6. In the case of J = VI, there appear divisors in E}"fa and a divisor
in Ej, at infinity of the original chart which are invariant with respect to the
foliations, and hence we have to observe them precisely.

In the end of this section, we note a work by H. Watanabe in which he has
given some relations between Bicklund transformations and suitable descrip-
tions of the manifolds ([16],[17]).



2 Backlund transformation groups

In this section, we give explicit forms of some natural generators s; of the
Bécklund transformation group W of each Painlevé system and some proposi-
tions. We give also generators of the extended Bécklund transformation group
W although it is not used in this paper. Each list consists of the type of
affine Weyl group, Dynkin diagram, generalized Cartan matrix, the fundamen-
tal relations of the generators of the Béacklund transformation group W and
the extended Béacklund transformation group W, and the explicit forms of the
generators. Except for the case of Prrr the group W is the full symmetry group
which preserves the independent variable ¢.

2.1 Thecaseof J =11

@G o 2 -2
A§1): o& o (a0+a1:1) A:|:_2 9 :|
1
W(AY) = (sg,81): s2=s2=1.
W(A@) = (s0,81,m): sa=s7=1; 72 =1, wsg = 817, TS = Sq.
[e7) aq q p
2
S0 —Q) a1 +2a9 | g+ ﬁﬂ p+ p_‘ig;gq_t + (p—22;20—t)2
s1 | ag + 2aq —Qaq q+ % p
P a1 o —q —p+2¢° +t
The last list must be read as
So(ao) = —Qq, 80(041) = Qa3 + 20[0,
o 4opq 203
s = — s = -
and so on.

2.2 The caseof J =111

1 ag Qa1 Qo 2 -1 0
02() O=> 0«0 (a0+2a1+a2:1) A= —2 2 -2
0o -1 2
W(Cél)) =(s0,51,82): si=s1=s2=1, (s051)* = (s182)* =1.
~ s2=s7=3s3=1, (s0s1) = (s182)*=1,
W(Cél)) = (80, 81,82, 7) : 02 ! 2 (s051) (s152)
¢ =1, TSg = Sam, TS1 = S1T, WSy = SoT.



Qo Qay Q2 t q p
50 —aQg a1+ ag Qs toq+ p
s1 | ag + 201 - as + 20 | —t q D— 2% + qiz
52 a0 o tay - toa+ 5 p
T Qo aq o —t —q 1—-p

We remark that the Bécklund transformations of the Hamiltonian system
(Hyrr) can also be described in terms of an extension of the affine Weyl group
W(Agl)) X W(Agl)). In this paper, however, we make use of W(Cz(l)) for con-
venience, since it is directly related to the description of the manifold Efr,q
given in the next section.

2.3 The caseof J =1V
a %0 N 2 -1 -1
AV GNG? (o+ortan=1))  A=| -1 2 -1
-1 -1 2

W(Agl)) = (80, 51, 82) : sg = sf = s% =1, (3031)3 = (5152)3 = (5230)3 =1.

W(AY) = (s0, 81, 52,7) : sp=s1=s3=1, (5051)% = (s152)° = (5250)° = 1,
2 - ) ) ) .

m =1, TS) = 81T, TS| = Som, WSy = ST.
(e7)] aq (e %] q p
s —a ar+ag as+ag | g+ 22 p+ —%
0 0 1 0o a2+ PR—T; P
st |lag+or  —ap as+ta q p— =t
2
S2|apt+az a1 +tay  —an g+ =32 D
T ai Qs Qg —p —-p+q+2t

2.4 Thecaseof J=V
ag 2 -1 0 -1

a; O «
Agl) : 0110303 (ag+ar+as+as =1) A=
Q2

W(ASY) = (s0,81,82,83) 1 s2=1, (sisip2)?=1, (sisip1)’ =1,
si=1, (sisir2)®=1, (sisi41)° =1,

W A(l) = ? 7 ’ ? :
( 3 ) (SO 51,82, 83 7T) 7_‘_4 — 1’ TS = SipaT- (l € Z/4Z)



Qg a1 P a3 q p
S0 —ap a1 + o a9 a3+ o | g+ % p
s$1 | ap+ a1 —Qq as + oy as q p— %
ED) Q) o1 + o —Q az+az | g+ % P
s3 | ap+ a3 o azt+az  —o3 q P— 2
T aq (o5 (0%} Qo —f (g—1)

2.5 Thecaseof J=VI

0o X2 o a3
Dﬁl) o] g>°<g s (ao+or+2az+az+ay = 1)

W(Dz(il)) = (S0,51,82,83,54) S}

WD) =

233217

(sis)? =

<30,81,32,33,84,001|34;003|14,004\13) :

2 _
Sz'—

53 =1,

(Sz'Sj)2 = 1,

(sis2)’ =

A=

2 -1 0 0
0 -1 0 0
-1 -1 2 -1 -1
0 -1 2 0
0 -1 0 2
1, (sis2)®=1.
1, (4,5 #2)

001|34(30,81782;S3;54) = (31,50;82,34;83)001|34;
003|14(30,$1782,$3,S4) = (53,84,82,50,81)003|147

004|13(80,81,82,83,84) = (84,53,82,81,30)004|13-

The Diagram automorphisms og;34, 003/14, 00413 generate the Klein group of

order 4.
ap a1 a2 a3 (7] q p

S0 - o axtoag  ag oy q P— 35

81 Qo —Qq az + o as Qay q p

s2 |aptor artar  —ar azta ator| ¢+F P

83 0 oy oz +az  —ag ay q P

84 Qo ay az + oy a3 —0y q p— %
001|34 (o %1 o7} (o7 oy o3 ﬂ;_;tll +1 —MWI
00314 as Qy Qz Qg Qi % —w
00413 ay as as ay ag _;_Ti +1 —(qfl)((g:ll)p—{—ag)

2.6 Propositions

Recall the definition of the manifold ng’a by gluing the copies C2 x B, w €
W of C? x By via the identification determined by the Biicklund transformations.
We first give a proposition concerning the extension of the domain of definition,
which will be used in the proof of Theorem 1.



We see that the Hamiltonian system

0qw = {Hj(qu, Pwstw, w()),Pw}, 00w = {Hj(qw, Puw> tw, w(@)),quw}

on C2 x By, is changed to the Hamiltonian system

(SQ'ws = {HJ(QU)sypwsy tws; ws(a));pws}y 6pws = {HJ(QU)s;p'ws; tw57 U}S(Oé)), q’ws}

on C%, x Bj,s, where w € W and s is a generator of W. Let us denote by

Dyws C Cfus X Bjs the divisor defined as the complement of Cfu X By
Dy ws = C2 X By s — C2 x By,. We notice that D,, s can be an empty set.

Then we have

Proposition 2.1. In the case of J # VI, every divisor Dy, s is transversal
to leaves. In the case of J = VI, every divisor Dy, s (s # s2) is transversal to
leaves, however the divisor Dy, s, (w(az) # 0) is invariant with respect to the
foliation if w(ay) = 0.

Proof. The proposition is verified by observing the Hamiltonian system on
C2, X By 5. For example, consider first the case of J = I, s = s;. Since g, =
quws — W(Q1) /Pws; Pw = Pws, We have Dy, s = {pws = 0} if w(ay) # 0. (Notice
that if w(ay) = 0, then Dy, s = 0.) By 0pws = {H1r(qus, Pws, t, ws()), Puws }
and {H11(qws, Pws» t, WS(®)), Pws }Hpw.=0 = —w(0a), we see that Dy, 45 is transver-
sal to leaves. We consider next the case of J = VI,s = s5. In the case, we have
Dyws = {pws = 0} if w(az) # 0, 6pws = {Hv1(quws,Pws,t, ws(a)),pws}, and
{Hv1(qws, Pws, t, Ws()), Pws }Hpw,=0 = w(a2)w(aq), and then we obtain the last
assertion.

The following proposition will also be used in the proof of Theorem 1.

Proposition 2.2. In the case of J # VI, for any a, there is a w € W such
that w(a;) # 0 for all i. In the case of J = V1, for any «, there is a w € W
such that w(ay + az) # 0 and w(a;) # 0 for all i.

Proof. This fact follows from the actions of translation operators contained
in the affine Weyl group W with respect to the root lattice.

3 The manifolds £,

In this section, we give descriptions of the manifolds E; ., Hamiltonians on
all charts of the manifolds, a proposition which will be used in the proof of
Theorem 1.

3.1 Descriptions of E;,

The manifolds E, = E;, for J = I1, ...,V I are described by gluing C*x B >
(g,p,t) and a finite number copies C? x B; 3 (zi,yi,t) of C* x B, via the



following birational symplectic transformations:

g = 1/, p—2¢°> —t=zo(—a0 — ToYo),
q = 1/%17 p=z1(—a1 —T1Y1)
for J = I1;
q = l/xo, p = zo(—ao — ZoYo),
20(1 t
g = 21, P=H1t—_—— — 5
X1 oy
q = 1/;1:2, p=1 +$2(—a2 —xzyz)
for J = III;
q = 1/mo, p—q—2t=x0(—200 — Toyo)
¢ = yi(2ar —z1p1), p=1/y1,
q = 1/(1}2, p= 332(—2@2 —$2y2)
for J =1V,
= 1/xo, p+t=mzo(—a0 — ZoYo),
= yiloa —z141), p= 1/?41:
= 1/zy, p=z2(—02 — T2y2),
g—1 = ys(az—=x3y3), p=1/y3
for J=V;
g—t = yolao — xoyo), p=1/yo,
q = 1/z2, p=z2(—0a2 — T2y2),
g—1 = ys(las —z3y3), p=1/ys,
g = yilog —zays), p=1/ys,
q = 1/[y12(a1 - $12y12)], p = —y12(01 — T12912) (01 + 2 — T12912)
for J=VI.

We remark that the Hamiltonians H (g, p,t,a) (J # III) in this paper are
obtained from those Hj(\, u, t, k) in [2] by the following change of variables and
constants:

A=¢q, p=p, a=o—1/2
for J = I1;
)‘:(b u:p/Q, Ko = a1, Koo = —Q2



for J =1IV;

A=1D@g-1)=1, A-Dp+(@-1p=—-a,

Ko =01, k= —(a1+2a+0a3), Koo =az, n=-1
for J =V;
A=¢q p=p, kKo=04, K =03 K =0, FKeo=0
for J =VI and Hrri(q,p,t, ) is obtained from Hyrp (A, p,t, k) in [2] by
A=t/q, p=—qlgp+ o)/t

Ko = —2(ag + 1), Koo =201, 7o =TNoo = I.

3.2 Hamiltonians on the other charts

Hamiltonians H; = Hy ;(z;,y:,t, ) on the charts C? x By 3 (z;,y;,t) of the
manifolds E;, are of the following forms, where z,y are used instead of z;, y;:

1 1 1 1
Hy = §x4y2 + (a0$3 — §ta:2 - 1) Y+ 504(2)3:2 - aaotaz,
1 1 1 1
H, = §m4y2 + <a1$3 + §tm2 + 1) Y+ 501%1'2 + ialtx
for J = IT;
Hy = 2%+ [tz + (a0 — o)z + 1]y — aptr,
H = 224+ [—:172 + (g + 4a1 + az)z — tly — (o + 20q)z,
Hy = 2%+ [tz + (—aop + az)z — 1]y — stz
for J =III;
Hy = 2%+ [(4ao + 2a1)2? — 2tz — 1]y + dag (oo + a1z,
Hy = -2+ (401 + 200)xy® + 2tz — 4a1(oq + a2)ly — =,
Hy, = 2%y + [(4as + 201)x? + 2tz + 1]y + 4az (a1 + a9)z
for J =1V;
Hy = (=2°+2%)y* +[-(2a0 +a1)2® + (=t + 2ap + a1 + a3)z + tly — ag(ag + a1),
H = tz*y®+ [3172 — (200 + ag)tw]y2 +[(t — a1 + az)z + aq (a1 + a2)tly + z,
Hy = (=24 2%)y +[—(a1 +2a)2® + (t + a1 + 209 + a3)z — tly — as(ar + az)z,
Hs = tx*y® + [z — (a2 + 2a3)t]2y® + [(—t + a1 — a3)z + az(as + a3)tly — «

10



for J =V;

Hy = —2%y*+ Bag + a1 + 2042):1:23;3
+[(2t = )z — (303 + 2ap0a; + dapas + aran + a3)]zy®
+{[—(4ag + 201 + das + a3z + as)t + (2a0 + a1 + 205 + a3)]z
+ag(ao + a2)(ao + a1 +a2) ty
—t(t — Dz,
Hy = z(z-1)(tz—1)y*
—[(ag — Ditz(z — 1) + a1(z — 1)tz — 1) + azz(tz — 1)]y
+aa (a2 + as)tz,
Hs = —2%y* + (a1 + 200 + 3a3)2%y®
—[(t = 2)x + (102 + 20103 + a3 + dasaz + 3a3)|zy”
+H{[(ag — aq)t — (a1 + 202 + 3a3)]z + az(az + az)(ag + as + a3)ty
+(t -1z,
Hy, = —2y"+ (a1 + 20 + 3a4)2%y®
—[(t+ Dz + (g + 2104 + a3 + dasay + 303)]zy?

H{[(a — az)t + (1 + 202 + a3 + 2a4)]x + g2 + o) (1 + a2 + a4)}y

—tz,
Hy, = -ty + (B + 200 + ay )ty
—[(t+ 1)z + (3a] + 4aras + 2104 + @3 + asay)t]zy?

H[(2a1 + 2a2 + as + o)t + (a1 — a3)]z + a1 (o1 + a2)(oq + a2 + aa)t}y

-

for J=VI.

3.3 A proposition

We study here if the leaf passing through a point on a divisor at infinity of
the original chart intersects the original chart.

We notice that E, is a disjoint union of the original chart C?x By 3 (q,p,t)
and a finite number of divisors:

Ej .= (C?x By) |_| (UDi)>

where
D; := {(zi,yi,t) € C? x Byr | 2, =0} i=0,1

for J = 11;

D; :={(zi,yi,t) € C? x Brrr | #; =0} i=0,1,2

11



for J = IIT;

D;: = {(wi,yi,t)EC%Xij|:L'i:0} 1=0,2,
Dl = {(-%1;?/1;75) € C% X BIV | y1 = 0}
for J =1V;
D;: = {(zi,y;,t) €C? x By | 2, =0} i=0,2,
D;: = {(z4,y,t) €EC; xBy |y; =0} i=1,3
for J =V;
D;: = {(xhy’i:t) € Cz2 x Byg | Yi = O} i = 073747 12
Dy: = {($2,y2,t)€C§XBVI|ZL'2:0}
for J =VI.

We can verify the following proposition by observing the Hamiltonian sys-
tems in the neighborhoods of the above divisors.

Proposition 3.1. In the case of J # V1, every leaf P(Q;t),t € By passing
through a point ) € D; instantly enters into the original chart C? x By, namely,
P(Q;t) € C% x By for every t with 0 < |t — 7;(Q)| << 1.

In the case of J = VI, we have

(i) every leaf passing through a point in D;, i =0, 3,4 instantly enters into
the original chart,

(ii) if a1 # 0, every leaf passing through a point in D;, i = 2,12 instantly
enters into the original chart,

(iii) #f a1 = 0, every leaf passing through a point in Dia(x12 # 0) also
enters into the original chart, however every leaf passing through a point on
DyU D15 (x12 = 0) stays in it and a leaf passing through a point on D1s(x12 = 0)
instantly enters into Dy. Here Dis(x) denotes a subset of Dis satisfying the
condition *.

4 Proof of Theorem 2

We prove the assertion in the case of J = VI only. The other cases can be
verified similarly. Notice that the left-hand side of the relation in the theorem
for J=VIis C? x ByrU{gs, —t =0} U {ps, =0} U{gs;, —1 =0} LU {gs, =
0} U {gs,;s, = 0} and the right-hand side Ey 4 is C? x By U {yo = 0} U {z2 =
0} U {ys =0} U {ys = 0} L {y12 = O} as sets.

We first observe the relation between the chart Cgo X By of the left-hand
side and the chart C% x By of Eyr . We have

Lo

—t=1yo(awg —x =
qso yo( 0 OyO)a Dso Qo _moyoa

12



or
Gso — t

Qo — ToYo
Then we see that, if ag # 0, the divisor {¢gs, —t = 0} corresponds biholomor-
phically to the divisor {yo = 0} in Ey,.

By the same way, we can verify that the divisors {ps, = 0}, {¢gs; — 1 = 0},
{¢s, = 0}, {¢s,5, = 0} correspond biholomorphically to those {z2 = 0}, {y3 =
0}, {ya = 0}, {y12 = 0} respectively. For example, the relation between the

Zo = —Pso [aO + (q30 - t)pso]a Yo =

chart CZ , x By of the left-hand side and the chart Cf, x By of Eyy,, is as
follows:
Gsiss = —Yi2(n — z12912) (1 + @2 — T12Y12),
P - _ T12
o182 (a1 — z12y12) (1 + @2 — T12Y12)’
or
12 = —Psiso (Oél - qslszpslsz)(al + az — qslsgpswz):
_ q8182
Y2 = —

(al - qs182p8152)(a1 +as — qs132p8182) .

Thus we have obtained Theorem 2.

5 Proof of Theorem 1 — for J =11, III,IV,V

5.1 Extension of ¢ and ¢,

We first prove that the identity mapping ¢ can be extended to an embedding
o from ng’a into Ej,o, where embedding means injective holomorphic mapping
preserving fibers and leaves of the foliations. The assertion is easily verified
by step by step procedure from C2 x By, to Cfus!, X Bjs; if the following
fundamental proposition is established, because the divisor Dy, s, in C2, X

Bj.ws; which does not intersect C2 x B, is transversal to leaves by Proposition
2.1 in the case of J # V1.

Proposition 5.1. Letw € W and ¢ : C% x By, — Ej, be an embed-
ding. If the divisor Dy, s is transversal to leaves, then ¢ can be extended to an
embedding from C2%, x By s into E; . for every generator s of W.

Proof. We only verify the proposition in the case where J = V,s = s5. We
suppose w(az) # 0 in order that D, s # 0. The other cases can be shown
quite similarly.

We notice that t,, = ¢ for any w € W in the present case. Since ¢,s =
Gu +w(Q2)/Pwss Pws = Pw, Namely ¢y = qus — w(Q2)/Puws, Pw = Pws, the divisor
Dy, ws is {pws = 0}, and it is transversal to leaves because w(az) # 0. By the

13



hypothesis of the proposition, ¢ is defined for (qus, pws,t) € C2; X By — {pws =
0}. Therefore we have to define ¢ for every (qus,Puws,t) = (¢, 0,1).

Let (qus(t), pws(t),t) be the leaf passing through the point (g,0,%). Since
DPws(t) # 0 for any 0 < |t — ¥|_<< 1, P(qus(t), pws(t),t) := ©(quws(t), Pws(t),t) €
Ey,qo is defined for 0 < |t — ¢| << 1. On the other hand, since the foliation of
Ey , is uniform, the limit point P(gys (%), pws(t),t) € By, exists. We define the
point as (g, 0, ?).

We can easily verify that the ¢ thus defined is injective.

What we have to prove is holomorphy of ¢. We show it by using p,s as
a local parameter of leaves in stead of t. Take a point (g,,0,%) € C2, X By
arbitrarily and fix it. In the system tdgys/dt = OHy (quws,Pws; t, ws(a))/Opuws,
tdpys/dt = —OHvy (qus, Pws, t, ws(a))/Oquws, we notice that the right-hand side
on the second equation takes the value w(as)t # 0 on pys = 0. Therefore the
system is equivalent to the system

dt 1 dguws

5.1 = —— 4 pusO(1),
( ) dpws ’IU(Oéz) P ( ) dpws

=0(1),

where O(1) denotes a function of gus,pws,t holomorphic and bounded in a
neighborhood of (quws,Pws,t) = (Gg,0,%). Denote by t(q,pgjs,f),qws(ﬁ,pws,f)
the solution of (5.1) satisfying the initial condition ¢(0) = ¢,g.s(0) = . Let
Gp, = {(ﬁapws,f) € C*> x By | |q_qo|;|pws|alf_f0| < po}- It is easy to see
that if po > 0 is sufficiently small then the mapping fo from G, to fo(G,,) C
C?2 _ x By defined by (quws (@, Pws, ), Pws, t(Q, Pws, t)) is biholomorphic. We take
the system (g, pws,t) € Gp, as a coordinate system of a neighborhood of the
point (gy,0,%) € C2,x By. In the coordinate system, (g;,p1,t1) and (gy, pa, t2)
are on the same leaf if and only if (g;,%1) = (Gy,t2)-

Now we show the holomorphy of g o fo : G,, = Ev,, which is simply
denoted by .

Let B' C By be a simply connected domain and F' be the restriction of the
foliation Fy,o of By, on E' := m;'(B'). Denoting by P(Q;t),t € B' the leaf
passing through the point @ € E', we recall the following facts:

(i) P(Q;t) is holomorphic in (Q,t) € E'.

(i) If Q1,Q2 € E' are on the same leaf of F', then P(Q1;t) = P(Q2;t) for
any t € B'.

We fist notice that o(q,p',t) = ¢(qus(q,p',t),p',t(q,p',t)) is holomorphic in
(g, t) for any fixed p’ with 0 < |p'| < po. We next verify

0(G; Pws, t) = P(o(T 0", 1); t(T, Pws» 1))-

Since the right-hand side does not depend on the choice of p' # 0, we obtain
the equality for p,s # 0 by putting p’ = pys. The equality for p,s = 0 follows
from the above definition of ¢ for (g,0,f) € C2, x By. From these and the
above facts (i) and (ii), it follows that ¢ is holomorphic in G,,. Thus we have
completed the proof of Proposition 5.1.
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By the same way as above, we obtain that, for any w € W, the mapping
¢w from (Qwapw;tw) € Cfu X Bjw C E.‘]/E/a to (QJpat) € C? x By C EJ,w(a)
defined by (q,p,t) = (qw, Pw, tw) can be extended to an embedding from ng/a
into EJ,w(a):

Pw (E_I]/E/a) C EJ,w(a), we W.

5.2 Surjectivity of ¢ and ¢,

In the preceding subsection, we have shown that
O(E},) CEja  @u(EY,) C Eppe) weW.

If we take w € W so that w(a;) # 0 for all 4 by Proposition 2.2, then by
Theorem 2 we have

S%(E};f/a) D ¢u(C® x By U (U;Chy, X Bruws;) / ~) = Ejw(a),

namely ¢y, : E"}f’a — Ejw(a) is surjective and then is an isomorphism. Therefore
the foliation of E}f’a is uniform, because that of Ej , ) is uniform.

On the other hand, E;, = C?x B,;U(U;D;) and every leaf passing through a
point on D; instantly enters into the original chart (Proposition 3.1). Therefore,
by the same argument as in the proof of Proposition 5.1, we have go(EK’a) =
Eja.

Similarly, we can obtain apw(EE’a) = Eju(a) for every w € W, which com-
pletes the proof of Theorem 1 for J =11, I11,IV,V.

6 Proof of Theorem 1 — for J =V1I

In the case of J = VI, the divisors D, s, in EK’O‘ and Ds in Eyr, can be
invariant with respect to the foliations, and then more precise study than that
in the preceding section is needed.

6.1 Extension of ¢ and ¢,

We prove here that ¢ can be extended to an embedding ¢ from E‘V,VI’a into

Evia: ¢(EYr,) C Evia.
Since the divisors Dy, s (s # s2) are transversal to leaves by Proposition
2.1, we have only to show that for every w of the form

! ! ! ! ! ! ! !
(6.1) W = W, SoW,, 182 WiS2, Wi,..,w, €W wi, ., w,_;Fe

can be extended to an embedding from C2 x By into Ey ., where
w El

W' :=< sg,81,53,84 > .
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We prove it by induction with respect to n in an expression (6.1) by using
the following three propositions, in which we need auxiliary coordinate systems
(Tw, Yuw,t) (w € W) defined by

Ty = w(x2) =w(1/q), Yuw =w(y2) = w(g(—a2 — qp)).

We also introduce a symbol &,,; for w' € W’,i = 0,1, 3,4 defined as follows:
0ui = 1 if s; is a factor of w' and d,+; = 0 otherwise.
We first give and prove the propositions.

Proposition 6.1. Suppose that ww'(az) # 0,ww'(ay) = 0 where w €
W,w' € W'. Then {(quu’ss, Pww'ss»t) € C’xByr | Pwwss = 0} = {(Tw, Yu, 1) €
02 X BVI | Ty = 0}

proof. We obtain the relation of (quw’s, s Pww'ss>t) and (T, Yw,t). Since

Owioo  Owrzas Gy

wl(p) = pP- - - )
g-—t g-1 q
quw = 1/ww7 Pw = mw(_w(a2) - -'Ewyw)y
we have
Puww'sy = wwlsz(p) = U)’U)’(p)
_ _ wW(0woao) w(0uwrzas)  w(dwracs)
Y Gquw —t quw — 1 Quw
W(0w000)Tyw  W(0wr303)Ty

= mw(—UJ(OLQ) - mwyw) - - w(6w:4a4)xw

= —zy{w(az + duwo + dyrsas + dyraca)
Ty [y'w + w(éw’OQO)t + w(éw’3a3)] + O(x'zzu)}a

where O(z2) denotes a function holomorphic in (Z.,%w,t) in a neighborhood
of z,, = 0, having z2, as a factor. If 6,1 = 0, then

w(az + Suoto + Swzas + duraay) = w(w' (az)).
If 6,1 =1, then

w(ag + duwoao + duwrzas + dyray)
= w(aa + 6w + O30z + dyay) — ww' () = ww' (az2)),

since ww'(a1) = 0 by the assumption of the proposition. Hence we have
Puww’'sy = _xW{wwl(OQ) + Zy [yw + w(5w'000)t + w(dw’3a3)] + O(.’L‘?u)}
We have also an expression of g5, as a function of (2, yw,t) as follows:

Q ww' (o
Qows, = ww'sy(q) =ww' (g + —) = qu + ww'(a2)
Puww'ss
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1 ww' ()
Tu  Tu{ww (2) + Ty + w(woao)t + w(dwsas)] + O(a2)}
Yw + W(0yr0ao)t + w(dyrzasz) + O(y)
ww' (a2) + To[Yw + W(woao)t + w(duwrzas)] + O(x2)’

Then we obtain Proposition 6.1.

Proposition 6.2. Suppose that ww'(az) # 0 where w € W,w' € W'. Then
{(xww’syyww’syt) € 02 X BVI | Tww'se = 0} = {((wa’apww’at) € quuwl X
BVI | Puww' = 0}

Proof. From
ww' ()
Quw’ = GQuw'sy — s Puww' = Pww'sss
Pww’ss
1 1
Quuw'ss — s Pww'ss = Twuw'ss (ww (a2) - www’szyww'sz)y
Tww’ so
it follows that
Yww' s2
Guw’ - ! )
ww (a2) — Tww'soYww! s2
_ !
Pww' = Twuw'ss (ww (042) - www’SQyww’é‘g)a

which shows the proposition.

Proposition 6.3. Suppose that ww)ssw| (1) = wwh(az) = 0 where w €
W, wi,wy € W'. Then wwh(ar) = 0 and {(Twwlssw! 52> Ywwhsow! s2,1) € C* X
Byr | Lwwhsawi sz — 0} = {(mww;syyww;syt) € C* x By | Lwwhsy = 0}.

Proof. First notice that wwh(a;) = 0 follows from ww}(az) = 0 and

wwh (a1 + as) = wwhss(ay) = Fwwhssw) (ay) = 0.

Next we obtain the relation between (Zww syw! 52> Ywwhsaw) 52 t) A0 (Twwy 55 Ywwhss» t)-
We have

1
— _ 2
Lwwhssw,sa = T T Ywwlsaw! sa = _qu’ZSQw’lstwaSQwisy
ww252w152
1
Quwlss = ., Pwwlsy = _xwwé”yww’zsy
wwl, so
and
Quwhsowiss — Quwlsas
! ] !
ww252(6w’10a0) ww282(5w;3043) ww232(6w/14a4)
Puwwlsow'ss — Pwwhss — - - )
2 ' 2 t Quwhss — 1 Quwlso

wa; s2
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by the assumptions of the proposition. Then, noting again the assumptions, we
have

LTywhsow,sa = LTwwhsas

Ywwhsawlsa = Ywwhss T ww,252(‘Sw’IOQO)tL + ww§$2(5w;3043) + O(mww;sz)a
which proves the proposition.

Now we prove the assertion of this subsection by induction. Suppose that
¢ is extended to an embedding from CZ x By into Ey I,a for every w of the
form (6.1) with n < m — 1. Let w be any element expressed as (6.1) where n is
replaced by m. We can suppose w, sz - - - whsswy (aa) # 0, which is the condition
for a new divisor to appear. We can also suppose that w}, sa - - - whsswi (a1) = 0,
because if not the appearing divisor is transversal to leaves. We see that the
appearing divisor {g, € C,py = 0} is equal t0 {Zuw; sy--wso = 0, Yur, s0--wlss €
C} by Proposition 6.1. Assume that there exists k > 2 such that

wh 82w (ae) #0

and let [ be the least of such k’s. Then by using Proposition 6.3 repeatedly, we
obtain that {g, € C,p, = 0} is equal to {Zw: 5,0/, € CYut, s5wis, = 0},
which is equal to {qwlm32...w; € C,pu, 550w = 0} by Proposition 6.2. Since ¢ is
extended to the chart C? / X By by the assumption of induction, it

w;n32---wl+1sg

is also extended to the chart Cfui”sZ___w;st; x By because w; € W'. If such
k does not exist, we see that {g, € C,p, = 0} is equal to {z2 = 0,y2 € C},
which is just the divisor Dj in Eyr . Thus we have proved ¢ is extended to an

embedding from EY; , into Eyr ,.

We notice that the assertion for general ¢,, is also obtained.

6.2 Surjectivity of ¢ and ¢,

We show that ¢(Ey; ,) = Evr,q, namely all divisors D;, i =0,2,3,4,12 are
included in @(EY; ,)-

Take w so that none of w(a;) and w(ay + az) vanish by Proposition 2.2.
Then, by Theorem 2, ¢,, : E‘V,VI’Q — Eju(a) is surjective, namely, an isomor-
phism. Then the foliation of E‘%’a is uniform because that of Ey,(q) is
uniform. On the other hand, every leaf passing through a point on the divisors
D;,i =0,3,4 instantly enters into the original chart by Proposition 3.1, and then
we can verify that these divisors are included in go(E“ﬁvI,a) by the same argument
as in the proof of Proposition 5.1. We can also verify that D5, D15 C go(E“’,VI’a)
if ay # 0 and Dys(z15 #0) C <p(E‘V,VI’a) if a; = 0. Note that every leaf passing
through a point in Di5(z12 = 0) instantly enters into D5 in the case of a; = 0.
Therefore we have only to study the divisor D5 in the case of a; = 0.
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If as # 0, then ¢(Des,) = Do where D, s, = {ps, = 0}. Then we study the
remaining case as = aq = 0. In this case, at least one of «;, i = 0,3,4 is not
equal to 0 since ag + a; + 22 + asz + a4 = 1.

The case ag # 0. We can verify that

_ DPsoss _ (Oéo - QS052p3032)2(q3032 - t)
xQ —_- - y2 - bl

Qg — qSOSszOSz Qo + tpS()Sz - qSOSszOSz

which shows that ¢(Ds, s0s,) = D2 where Dy, 505, = {Psoss = 0}-
The case az # 0. Since

2
o = Psszss Yo = ((13 - q5352p5382) (q5332 — 1)
2 - > 2 — )
Q3 — (s3s3Ps3s0 Q3 + Pszsy — UszsoPssss

SO(DS3,S3S2) = D, where Dy 555, = {p8382 = 0}'
The case ay # 0. Since

T2 = _m#; Y2 = Qsys2 (054 - qS432P3432);
Q4 — (Qs450Ps450
SD(DS4,S4S2) = D, where D, 5,5, = {ps482 = 0}'
Thus we have proved ¢ is surjective and then is an isomorphism. By the
same way, we can prove that ¢, is extended to an isomorphism ¢,, from EK’Q
to Ej y(a) for every w € W.
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