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1. Introduction.
In this paper we are concerned with the Dirichlet problem (hereafter called

(DP)) for the quasilinear degenerate elliptic equation :

(1'1) —g(\x|,u)Au+f(|a:\,u):0 in  Bpg

(1.2) UZﬁ on aBR,

where Bgp = {r € R¥;|z| < R},N > 2,9 : [),R] x R — Rt = [0,00) is a
given continuous function, A is the Laplacian, and g is a real number such that
f(R.B) =0.

This investigation is a sequel of our previous work [3] where we studied the
existence, uniqueness, nonuniqueness and radial property of viscosity solutions of

the Dirichlet problem for the semilinear degenerate elliptic equation
(1.3) —g(Jz))Au+ f(|x|,u) =0 in Bpg,

where g is a nonnegative continuous function. We refer the reader to the Mono-
graph by Crandall, Ishii and Lions [1] for definitions, details and references of
viscosity solutions.

The main purpose of the present paper is to prove existence of viscosity so-

lutions, and to give a sufficient condition assuring the uniqueness and the radial

* Partially supported by Grant-in-Aid for Scientific Research (No 09640187)**,(No
10640169)* Ministry of Education, Science and Culture, Japan.
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symmetry of viscosity solutions of (DP). In what follows we consider the problem

(DP) in case N = 2, since we can treat it in case N > 3 by the same arguments.
Throughout this paper we make the following assumptions:

(H1) f(t,y) € C([0, R] x R) is strictly increasing in y for each fixed ¢ € [0, R].

(H2) There exists an implicit function ¢(t) of f(¢,y) = 0 satisfying

— (t
sp | 2B =0 _ gy e 110, B).
0<s<R,s#t s—1

It is clear that ¢(t) is continuous on [0, R] by (H1) and (H2).

We state our existence theorem.

THEOREM 1. Under the assumptions (H1) and (H2) there ezists a radial

viscosity solution of (DP).

In order to establish the uniqueness of viscosity solutions for (DP) we intro-
duce additional assumptions and a notion of standard viscosity solution.
(H3) ¥(t) € L*°(0, R), here ¥ is the function defined in (H2).
(H4) The function g satisfies the condition : if g(¢1,y1) = 0 then

g(s,y1) < Const. | s —t1 |> for Vse& N(t1),
9(s,y) < Const.(|s—t1 [+ [y—wy1|) for V(s,y) € N(t1,y1),
where N(t1) and N(t1,y;) are small neighborhoods of ¢; and (¢1, 1), respectively.

(H5) For f and g, we impose the following structure condition : if 0 < t < R,

y1 < y2 and g(t,y1) + g(t,y2) > 0, then

g(t’ yl)f(t7 y2) - g(t7 y2)f(t, yl) > 0.

Example Let a € C%([0, R]),b € C%([0, R];[0,1]). Define g € C?([0, R] x R)
by
g(t,y) =1 — cos[h(y — a(t); b(t))]
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for (t,y) € [0, R] x R, where h(y;b),0 < b < 1, is a C?(R)-function such that
(i) for every 0 < b < 1,

(i-1) h(y;b) =0 forally <b—band all y > 2 — b+ b,

(i-2) h(y;b) = b for all b <y < 2 — b,

(i-3) Z—Z(y;b) >0forallb—b<y<b,

(i-4) Z—Z(y;b)§0f0r3112—b§y§2—b+5;

(ii) for b=0,1,h(y;b) =0 for all y € R, i.e., h(y;0) = h(y; 1) =0 for Vy € R.

Here, for every b € (0,1),b:= (1/2) min{b,1 —b}.  Suppose f(t,y) = y — ©(t),
and that ¢(t) € C'([0,R]) is a given function satisfying a(t) + b(t) < ¢(t) <
a(t) +2 — b(t) for every t € [0, R] such that 0 < b(¢t) < 1. Then f(¢,y) and g(¢,y)

satisfy the assumptions (H1)-(H5).

DEFINITION A function u is called a standard viscosity solution of (DP) if u

is a viscosity solution and u(z) = ¢(z) for all z € Bg\ {0} satisfying g(z,u(z)) =0

By making use of a notion of standard viscosity solutions, we shall prove the

uniqueness for (DP) :

THEOREM 2 Under the assumptions (H1)-(H5) there exists a unique viscos-
ity solution u of (DP). Moreover, every viscosity solution of (DP) is standard

and radially symmetric.

The authors would like to express their hearty gratitude to the referee for

kind and helpful advice.
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2. Approximate equations
We begin with observing the properties of solutions for the following boundary

value problem :

~ g0 + 530) + [ty@) =0 = (0,R]

9(0) =0 and y(R)=p(R),

(2.1)

where ¢(t) is a positive and continuous function on [0, R].

LEMMA 2.1 There exists a unique classical solution u € C([0, R]) N C?(0, R)
of (2.1).

Proor. This lemma is a consequence of [3; Proposition 3.4].

LEMMA 2.2 Let y(-) be the solution of (2.1) in Lemma 2.1. Then, for 0 <

t < R we have

(2-2) Ly(t) < TR [ o(t) |
(2.3) | ty(t) |< RU(t).

Proor. We first remark that a C? function y satisfies the equation of (2.1)

in (0, R) if and only if y and its derivative y satisfy the integral equations

y(t) = y(to) + toyo(to) log(t/to)

(2.4) t
+/t (10gt—10g8)sg(s)_1f(s,y(s))ds’
(2.5) t(t) = toy(to) + /t s0(5) " £(5. y())ds,

respectively, where 0 <ty < Rand 0 <t < R.
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To prove y(t) < maxo<i<r | ¢(t) | for 0 <t < R, by contradiction we suppose
y(to) > maxo<i<r | ¢(t) | for some 0 < tp < R. We first assume y(tp) > 0. By
virtue of y(R) = ¢(R), there exists a t1,to < t;1 < R such that y(t1) = ¢(t1)
and y(t) > ¢(t) in (¢o,t1), hence f(t,y(t)) > 0 in (¢o,t1). From (2.4), we have
y(t1) > y(to) > maxo<i<r |@(t)| > ¢(t1) ; this is a contradiction.
We next assume 9(tg) < 0. There exists a t3(0 < ¢t < tg) such that y(t2) = ¢(t2)
and f(t,y(t)) > 0 in (t2,%0). From (2.4) we know y(t2) > y(to) > ¢(t2); this is a
contradiction. Then we get y(t) > ¢(t) for 0 < t < t5. Then by (2.5) we have
g(t) < (to/t)y(to) < 0, hence lim;_,o §(t) = —oo which contradicts §(0) = 0.

Similarly, we can prove y(t) > —maxo<i<r | ¢(t) | for 0 <t < R. Thus (2.2)
is proved.

To prove (2.3) by contradiction we suppose | toy(to) |[> R¥(t0),0 < to < R.
Assume toy(to) > ¥(to)R and y(to) > ¢(t0),0 < to < R. Then, by (2.4), we
have y(t) > ¢(t) on [to,to + 0) C [to, R). If there exists g < t; < R such that

y(t1) = o(t1) and y(t) > ¢(t) in (to,t1), we get

y(t1) — y(to) > toy(to) log(t1/to) > ¥ (to)R1og(t1/t0)

[p(t1) — o(to)|
= (t1 —to)n

> ¢(t1) — #(to)-

(tl — to)R (to <n< tl)

Then we have ¢(t1) — ¢(to) > ¢(t1) — ¢(to) which is impossible.

Next, assume toy(to) > U(to)R + € and y(to) < ¢(t0),0 < to < R where ¢ is
a sufficiently small positive constant. There exists a sufficiently small positive
constant ¢ such that

elog(t/to) +/ logt/ssg(s)™ f(s,y(s))ds < —e(to —t)/to + Const(ty — t)* < 0

to
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forany t : 0 < to —¢t < 6 . Then we may assume y(tp) < ¢(to). We use the
similar method to the above. If there exists to < to such that y(t2) = ¢(t2) and
y(t) < o(t) in (t2,t0), we have

y(t2) — y(to) < p(t2) — p(to)-

This is a contradiction. Thus we get y(t) < ¢(t) on (0,t9). Hence by (2.4),
we see y(t) < y(to) + toy(to)log(t/ty), which implies limy_,oy(t) = —oo. This
contradicts (2.2). Thus, we have tg(t) < ¥(¢)R for all 0 <t < R. Similarly, we
have t9(t) > —RY(t) for all 0 < ¢ < R. Consequently, (2.3) is proved. The proof

of Lemma 2.2 is complete.

We shall next consider the family of approximate equations of (1.1) such that
(2.6) —9ge(|z|, ue)Aue + f(|z|,ue) =0 in Bpg
with the boundary condition uc(z) = ¢(R) on 0Bg, where g.(t,y) = g(t,y) + ¢
and ¢ is a small positive parameter.

LEMMA 2.3 Let v € C([0, R]). Then there exists a unique classical solution

Yv,e Of

. 1. .
(27) B gv’e(t) (yvve(t) + zyv,e(t)) + f(t7 yv,e) =0 in (0, R)
yv,e(o) =0 and yv,e(R) — QO(R),

where g, ((t) = g(t,v(t)) + . Moreover, for y, . we have the same estimates as

(2.2) and (2.3).
Proor. From Lemmas 2.1 and 2.2, this lemma follows.

LEMMA 2.4 There exists a classical solution y. of

— e(t,4e) () + i) + Sty) =0 in (0, )

Ye(0) =0 and y.(R) = ¢(R),

(2.8)
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Moreover, for y. we have the same estimates as (2.2) and (2.3).

Proor. The argument below is based on reduction to the Schauder fixed

point theorem. From g, (0) = 0 it follows

(2.9) Joe(t) = 2 /0 500.o(5) "1 F (5, yu.c(5))ds.

t

Since |y (t)| < Const from (2.2) and g, () > € we have
. t
(2'10) | yv,e(t) |S Cga

where C is a constant independent of v and e.

We put

D= { € C([0, ) : gmax | o(8) < ma | o(0) |} .

We denote a map 7' from D to C([0,R]) by T'(v) = yu,, where y, . is the solution
in Lemma 2.3. From the estimates (2.2) and (2.10), it follows that {y, .} are
uniformly bounded and equicontinuous on [0, R]. Hence T is a compact map from
D to D. Let lim,, o vy, = Vs in C([0, R]). By y,, we denote the solution y,, . Since
the map T is a compact operator, there exists a subsequence {ynj} converging to
Woo in C([0,T]). Then it follows wy, is the solution of (2.7) replaced v by v. By
the uniqueness of solutions of (2.7) replaced v by v, the map T is continuous in
C([0, R]). From the Schauder fixed point theorem there exists a fixed point y. of

the map T'. Moreover, for 0 <t < R, we have

1 <
) 10 |< max o) |

(2.11) o
2) |tge) < max PO =05

T 0<s<R,s#t s—1
3. Existence : Proof of Theorem 1
With the help of the estimates (2.11) for approximate solutions we can prove

the existence of a radial viscosity solution of (DP).
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ProprosiTION 3.1 Suppose (H1) and (H2). Then there erists a radial vis-
cosity solution u € C(BR) of the following boundary value problem :
an Flul(z) = —g(|ol, w)Au + f(|al,u) =0 i Br\ {0}
3.1
u(z) = ¢(|z|) on OBg.
Proor. Since the solutions {y.} of (2.8) are locally equicontinuous on Bp \

{0} and uniformly bounded by (2.11), there exists a subsequence {y.} such that
lim y., =y locally uniformly in (0, R].
j—00

Putting u(xz) = y(| = |) and using the stability theorem [2], we see that u(z) is a
radial viscosity solution of (3.1).

We next show that y(-) is continuous at ¢ = 0. For the simplicity we put y., = y;.
Since y;(t) are uniformly bounded on [0,R] it follows that |y(¢)| < Const for any
t € (0, R]. Iflim;_,oy(t) = lim, ,,y(¢) and putting y(0) = lim;_,oy(¢) it follows that
y(+) is continuous at ¢ = 0. Suppose lim;_,oy(t) > lim, ,oy(¢t). Then there are
{t;} and {s;} such that lim;_, t; = lim;_,c 5; = 0 and {y(¢;)} (resp. {y(s;)})
are local maximum (resp. minimum) values. Since either lim;_,oy(t) > ¢(0) or
lim, ,,y(t) < ¢(0) holds, we have a contradiction by the definition of viscosity
solution.

Then we get lim;_,oy(t) = lim, ,,y(t) = y(0). Thus y(-) is continuous at ¢ = 0.

The proof of Proposition 3.1 is complete.

In the rest of this section we shall prove that u satisfies F[u](0) = 0 in the
viscosity sense. Let us denote y.,; by y;, where {y;} are the classical solutions of
(2.8) converging to y locally uniformly in (0, R]. Since {y;(0)} is bounded, we may

assume that lim;_, . y;(0) = c.
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LEMMA 3.2 If g(0,u(0)) > 0, then u(x) belongs to C*(Bs) where § is a suf-
ficiently small positive number. Moreover, u satisfies F|u](0) = 0 in the viscosity

Sense.

ProoF. Put g(t) = g(t,y(t)). Noting that g(¢t) > 0 for all ¢ € [0,02) with
small J, > 0, we see that there exists a unique C2-solution w of the following

two-point boundary value problem :

.. 1. _ -
(3.2) —g(O)(@() + (1)) + f(t,w) =0 (61,52)

w(dy) =y(d1) and w(d2) = y(d2),

where 97 is an arbitrary positive number such that 0 < §; < 2. By Proposition
3.1 and the standard argument in the viscosity theory (cf. [3; Lemma 3.6]), we see

that w(t) = y(t) on [d1, 53], hence y € C?(0, §3]. From g(0) > 0 we have

Hence, by L’Hopital’s rule

lim 1g(t) = %g(O,y(U))_lf(an(O))-

t—0t

1
Therefore, from (2.1), we get 7}ir% §(t) = 4(0) = 59(0, y(0))71£(0, y(0)), hence u €
—

C?(Bs,). The second assertion is proved in [3]. The proof of Lemma 3.2 is complete.
We shall next study the case when ¢(0,y(0)) = 0.

LEmMMA 3.3 Suppose g(0,u(0)) = 0 and f(0,u(0)) = 0. Then u € C(BRr) is

a viscosity solution of (DP).

ProoOF. It is evident that u satisfies F[u](0) = 0 in the viscosity sense, whence

w is a viscosity solution of (DP).

LEMMA 3.4 Suppose g(0,u(0)) = 0 and f(0,u(0)) > 0. Then u satisfies

Flu](0) = 0 in the viscosity sense.
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Proor. We first note that the assumptions g(0,(0)) = 0 and f(0,«(0)) > 0
implies

Flu](0) > 0 in the viscosity sense.

Therefore, it suffices to prove F[u](0) < 0 in the viscosity sense.

We recall that y; in the proof of Proposition 3.1 are the classical solutions of (2.8)
converging to y locally uniformly in (0, R] and y is the continuous function on
[0, R]. Let us suppose that lim;_, ., y;(0) = « exists from 1) of (2.11). For a while
let 5 be sufficiently large numbers.

We divide our considerations into three cases such that o > y(0), o = y(0) and
a < y(0).

Case 0: a > y(0). From y(0) > ¢(0) it follows f(¢,y;(t)) > 0 at the small
neighborhood of ¢ = 0 . By (2.9) we have

1

(3.9 () = 7 [ slalsy(5) + )7 (s, s

Since y;(t) is positive we see that y,(t) is increasing at the small neighborhood of
t = 0. From the continuity of y we have y(¢) < y(0) + (o — y(0))/2 for a small
neighborhood of ¢t = 0. Thus, by the local uniform convergence of y; in (0, R], it
follows y; has a local maximum point in the small neighborhood of ¢ = 0 . This is
a contradiction by the maximum principle. Thus this case can not occur.

Case 1: o =y(0). We shall show that y; converges y uniformly in [0, R]. To this

end, we suppose the contrary: thereis ¢ > O0such that lim sup |y,(t) —y(t) |> 6.
J—00 ¢efo,R]

Then we will get a contradiction.

If there exists {t;} such that y;(t;) > a+6/2 and lim;_, . t; = 0 it follows y; has
a local maximum point in the small neighborhood of ¢t = 0 from y(t) < y(0) 4 6/2
for a small neighborhood of ¢ = 0 . Then this is a contradiction. Next, we assume
that y;(t;) <a—4d. From y;(0) > ¢(0) and (3.3) we see that y;(t) is increasing

at the small neighborhood of ¢ = 0. Then we know that y; has a local maximum
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point in the small neighborhood of ¢ = 0. Thus it is a contradiction.

Therefore, noting the locally uniform convergence of {y;} we obtain that {y;}
converges y uniformly on [0, R].

Applying the stability theorem [2], we conclude that u is a viscosity solution of
(DP).

Case 2: a < y(0). We shall show J% u(0) = ¢.

From y € C([0, R]) there exists a small positive number ¢ such that y(t) > y(0) —
do/4 for all t € [0, §] where §p = min{(y(0) — «), (y(0) — ¢(0))}. Let v; and 2 be
y(0) — 360/4 and y(0) — dp/2 respectively. Then there exist {t1 ;} and {t3 ;} such
that y1 = y;(t1;) <72 = y;(t2,;), t1; <te;andlim; .ty ; =0,p=1,2. Then
we find {t;} satisfying

. Y2 — 7N
yi(tj) = ———

= s t17j < tj < tg’j and yj(t) > 7 n (tj,5)
b2, —t1j

where j > jo with large jo. Thus, we have y;(n) > 0 for any t; < n < 0. By

y(t) = limj_,o y;(¢) and Fatou’s lemma, we have
! ~1
(0) ~y(n) > [ (ot ~ log 5)sg(s,y() ™ (5, (s))ds

n

for every n <t < 4. Tending n to 0, we get

y(t) — y(0) > / (logt — log 5)sg(s, 4(s)) ™" £ (5, 4(s))ds > 0.

Then by L’Hépital’s rule
AT

from this it follows that J2Tu(0) = ¢.

Therefore u satisfies F[u|(0) < 0 in the viscosity sense. The proof of Lemma 3.4

is complete.

In a similar way, we have
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LEMMA 3.5 Suppose g(0,u(0)) = 0 and f(0,u(0)) < 0. Then u satisfies

Flu](0) = 0 in the viscosity sense.

Now we are ready to prove Theorem 1.
Proof of Theorem 1. If g(0,4(0)) > 0, then combining Proposition 3.1 and
Lemma 3.2 implies Theorem 1. On the other hand, if g(0,4(0)) = 0, then we apply

Proposition 3.1 and Lemmas 3.3-3.5 to conclude that u is a viscosity solution (DP).

4. Uniqueness : Proof of Theorem 2

In this section we shall prove the uniqueness of viscosity solutions of (DP).
Throughout this section we assume the assumptions (H1)-(H5) and that u denotes
the viscosity solution of (DP) obtained in Theorem 1. We start with the next three

lemmas which will help us to prove the uniqueness.
LEMMA 4.1 wu is radial and standard.

Proor. It suffices to prove that u is standard. Suppose g(zo, u(zo)) = 0 and
xo # 0. We seek to show f(|zo|,u(zp)) = 0. We note that u is locally Lipschitz
continuous in Bpr \ {0} by the assumption (H3). Denoting ¢ty = |z¢|, we have by

the assumption (H4)

[ s venas =00 o [ atsv(e) s =

Thus from [3; Lemmas 4.3, 4.4 and 4.5] it follows that f(|zo|, u(zo)) = 0, that is,

u is standard.

LEMMA 4.2 Suppose g(0,u(0)) = 0 and f(0,u(0)) < 0 (resp. f(0,u(0)) > 0).
u(z))

Then there ezists a neighborhood B of 0 such that u(0) > u(x) (resp. u(0) <

for all x € By.

Proorv. If there exists an {z.} such that lim._,o z. = 0 and g(|z¢|, u(z:)) = 0,

then f(0,u(0)) = 0, since u is a continuous and standard. This is a contradiction.
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Thus g(|z|,u(z)) > 0 in € Bs \ {0}. Suppose f(0,4(0)) < 0, and that there
exists a sequence {z.} such that lim. oz = 0 and wu(z.) > u(0). Remarking

y € C%(0,6), we get 5(to) > 0 and
y(t) = y(to) + toJo(to) log(t/to)

+ / (logt — log s)sg(s, y(s))) " f (5, y(s))ds,

to

where 0 < ¢t < tg < 4. Since f(s,y(s)) <0 for 0 < s < §, we see

y(t) < y(to) + toyo(to) log(t/to),

hence lim;_, y(t) = —oo; this is a contradiction.

LEMMA 4.3 Under the assumption (H5), for each t > 0, the function g(t,-)
1s one of the following five types :
(1) g(t,y) > 0 for all y € R.
(2) g(t,y) =0 for all y € R.
(8) There exists a §1 = §1(t) such that g(t,y) > 0 for all y > §1 and g(t,y) =0
for all y < 9.
(4) There exists a §o = §a2(t) such that g(t,y) > 0 for all y < g and g(t,y) =0
for all y > 5.
(5) There exist two points y1 = y1(t) and Y2 = Y2(t), 71 < Y2, such that g(t,y) > 0

for all j1 <y < §a and g(t,y) =0 for all y < g1 and all y > Fs.

Moreover, it follows f(t,§1) < 0 in the type (3), f(t,92) > 0 in the type (4), and
f(t,51) <0 and f(t,92) > 0 in the type (5).

Proovr. Suppose there exist three points y1,ys and y3 such that y; < yo <
y3,9(t,y1) > 0,9(t,y2) = 0 and ¢(t,y3) > 0. Then, by the assumption (H5), we
immediately see f(t,y2) > 0 > f(t,y2) which is impossible. Thus g is one of the
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above five types. By the assumption (H5), we can easily verify the latter half. The

proof is complete.

Let v(z) € C(Bg) be an arbitrary viscosity solution of (DP). For z € Bg,

define

(4.1)  V(z) =sup{v(Qz);Q € O(N)} and V(z)=inf{v(Qz);Q € O(N)},

where O(NN) denotes the set of orthogonal N x N matrices. Since O(N) is compact
and closed (in the matrix norm), we can replace "sup” and ”inf” in (4.1) with

"max” and "min”, respectively.

LEMMA 4.4 ([3; Lemmas 4.1 and 4.2]) We have the following:
(1) V.(z) and V(z) are continuous on Bg.
(i) V(z) is a radial viscosity subsolution of (DP).

(ii1) V() is a radial viscosity supersolution of (DP).
Now we are going to show the next key proposition.

ProproOsSITION 4.5 Let u be the standard and radial viscosity solution ob-

tained in Theorem 1, and let v be an arbitrary viscosity solution of (DP). Then

we have
(4.2) V(z) <u(z) on Bg
(4.3) V(z) > u(z) on Bg.

PROOF. Let us prove (4.2). Since we seek to prove V(z) < u(x) on Bg, we
suppose to the contrary that V(z) > u(z) for some z € Bg; it follows that V — u

attains its positive maximum at some point & € Bp.
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Case 1 : ¢g(|Z|,u(2)) > 0. As in the proof of Lemma 3.2, we have u €
C?(Bs(&)), where Bs(%) is aneighborhood of Z. Noting (Du(z), D?u()) € J>+V (),

we have by Lemma 4.4(ii) and definition

—g(12], V(@) Au(z) + f(|2], V() < 0

— g(|2, u(#))Au(2) + f(|2], u(2)) = 0.
This implies
g(|z],u(@)) f(|2], V(2)) — 9(|2], V(2)) f (2], u(2)) < 0.

On the other hand, from V(£) > u(£) and the assumption (H5), it follows

g(12],u(@))f(|2], V(2)) — g(12], V(£)) £ (|2], u(#)) > 0;

this is a contradiction.

Case 2 : g(|2],u(2)) = 0. For each € > 0, we define

1

_ 1 P )
O(w,y) =V (z) —uly) - 5 T —y|? - 2—€|x—:'3|2 — %Iy—ﬂc‘\2

for every (x,y) € Bgr X Br. Let (z.,y.) € Br X Bgr be a maximum point of ®

over Br x Bg. Remarking that 0 < V(2) — u(2) = ®(&, %) < ®(x.,y.), we have

(4.4) 1\;6 12+ 1|x —:%|2+i| — &2 < V(ze) =V (2)+u(®) —u(y.) < C
. 2g 1€ Ye 9g 7€ 2% Ye > € Ye) = 0,

where C' is a constant independent of €. From this, it follows

(4.5) |ze —ye| >0, |xze—%—0 and |yo—% —0 as €0,

hence by (4.4) and continuity of V and u,

1 1 1
(4.6) g|x€—y€|2—>0, g|x5—§3|2—>0 and g|y€—af:|2—>0 as €/0.
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Now applying [1; Theorem 3.2], we see that there exist {X.} and {Y.} C SV such
that (pe, Xe) € J2TV (ze), (ge,Ye) € J> u(ye) and

4(1 O X, O 1 (71 —51I
(4.7) _E<O I)5<0 —Y;)§E<—5I 71)’

where p. = (1/¢)(ze —ye) + (1/€)(xe — &) and ge = (1/e)(xe —ye) — (1/€)(ye — Z).
By (4.7), we have

4
(4.8) —-N < Tr(Xe) < gN and — ZN < Tr(Y.) < =N.

M |

We see, by Lemma 4.4 and definition

(49) —g(|x€|,7(x€))Tr(X€) + f(|£C€|,V(£C€)) S 0
and
(4'10) _g(|y6|’ u(ye))Tr()/E) + f(|ys|a u(ys)) 2 0.

From now on we divide our considerations into two cases.

Case 2-1: g(|Z|,u(£)) = 0 and Z # 0. In this case, combining that u : standard
viscosity solution and the assumption (H5), we have g(|Z|,v) = 0 for all v € R".
Hence by the assumption (H4) we have g(|y.|, u(ye)) < Cly. —%|?. Combining this
with (4.6) and (4.8), we have

C .
=9(Igel, u(ye)) Tr(Ye) < —lye =2 =0
as € | 0. Similarly,

_ C .12
—g(|zel, V(ze)) Tr(Xe) > _E|$s —Z* =0
as € | 0. Thus, letting € | 0 in (4.9) and (4.10), we have

F12,V(2) <0< £(|2], w(@));
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this is a contradiction because V (2) > u(%).

Case 2-2 : g(|Z|,u(£)) = 0 and Z = 0. In this case, for the function g(0,-), there
are four types (2)-(5) in Lemma 4.3 to consider. If ¢(0,-) is the type (2), i.e.,
9(0,y) = 0, then we get a contradiction by the same argument as in Case 2-1.
Let us consider the case where ¢(0,-) is the type (3). In this case, from the fact

u(0) < g, and f(0,%1) < 0 it follows
(4.11) £(0,u(0)) < 0.

On the other hand, by Lemma 4.2 we have u(y:) < u(0) (0 < e < &g,€&0 small),
hence g(0,u(ys)) = 0. Therefore, by the same argument as in Case 2-1, we have
f(0,u(0)) > 0 which contradicts (4.11). We next consider the case where ¢(0, -) is

the type (4). In this case, from V(0) > u(0) > 2 and f(0,%2) > 0 it follows
(4.12) £(0,7(0)) > .

Remarking V(z.) > 92 (0 < & < €¢,¢&0 small), we have g(0,V(z.)) = 0. Hence,
by the same argument as in Case 2-1, we have f(0,V(0)) < 0; this contradicts
(4.12). Tt remains to consider the case where g(0, ) is the type (5). By proceeding
the above arguments, we can easily have a contradiction. The proof of (4.2) is
complete.

The proof of (4.3) is essentially the same as that of (4.2) and is therefore

omitted. The proof of Proposition 4.5 is complete.

Proof of Theorem 2.

Theorem 2 is an immediate consequence of Proposition 4.5.
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