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1. Introduction

This paper is concerned with the oscillatory and nonoscillatory behavior
of solutions of fourth order quasilinear differential equations of the form

(1.1) (P17 ") + q(t)|ul’ " u = 0,

where «, [ are positive constants and p(t), ¢(t) are positive continuous func-
tions defined on [a, 00), a > 0. We assume that p(t) satisfies

I t 11/
1.2 {—] dt = oo,
(12) / p(t)
or, more strongly,
oo t oo t 1/a
1.3 ————dt =00 and [—] dt = oo.
] Gy |

By a solution of (1.1) we mean a real-valued function wu(¢) such that
u € C?[b, 00) and p|u"|*~1u" € C?[b, 00) and u(t) satisfies (1.1) at every point
of [b, 00), where b > a and b may depend on u(t). Such a solution u(t) of (1.1)
is called nonoscillatory if u(t) is eventually positive or eventually negative.
A solution u(t) of (1.1) is called oscillatory if it has an infinite sequence of
zeros clustering at t = co. Equation (1.1) itself is called oscillatory if all of
its solutions are oscillatory.



The main objective is to investigate the oscillatory and nonoscillatory
behavior of solutions of (1.1). We first study the structure of the set of
nonoscillatory solutions of (1.1). It is observed that a solution u(¢) which is
asymptotic to a positive constant as t — oo is “minimal” in the set of all
eventually positive solutions of (1.1), and a solution u(¢) which is asymptotic
to a positive constant multiple of the function

/at(t —5) [Iﬁ] 1/Olals

as t — oo is “maximal” in the set of all eventually positive solutions of
(1.1). We establish the necessary and sufficient conditions for the existence
of “minimal” and “maximal” solutions of (1.1). These necessary and suf-
ficient conditions are given by certain integral conditions on p(t) and ¢(t).
Under the assumptions o« > 1 > f and o < 1 < 3, we can present the nec-
essary and sufficient conditions for the existence of nonoscillatory solutions
of (1.1). In the case of @ > 1 > 8 [resp. a < 1 < f], the necessary and
sufficient condition is identical to the integral condition which characterizes
the existence of maximal [resp. minimal] solutions.
In the case a = 1, equation (1.1) is

(1.4) (p()u")" + q(®)|ul’"u =0,

and both of conditions (1.2) and (1.3) are

(1.5) /f}%dtmo.

The oscillatory and nonoscillatory behavior of solutions of (1.4) under the
condition (1.5) has been studied by Kusano and Naito [4]. The results of the
present paper generalize those of [4].

Now, consider the second order quasilinear differential equation

(1.6) (p®)']*""') + a(®)[ul""'u = 0,

where a > 0, 8 > 0, and p(t) and ¢(t) are positive continuous functions on
[a,00), a > 0. Suppose that

[ e ==
o [p@)]Ye '
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Then it is seen that a solution u(t) of (1.6) satisfying
(1.7) u(t) ~c(>0) as t — 00

is minimal in the set of eventually positive solutions of (1.6), and that a
solution u(t) of (1.6) satisfying

(1.8) u(t)wc/at[p(jﬁ (c>0) as t —> ©

is maximal in the set of eventually positive solutions of (1.6). Moreover it is
known (Elbert [1], Elbert and Kusano [2], Izyumova and Mirzov [3], Mirzov
[5, 6]) that the following results hold.

(a) Equation (1.6) has a solution u(t) satisfying (1.7) if and only if

(1.9) /aoo [I%t) /too q(s) ds] 1/adt < 00.
(b) Equation (1.6) has a solution u(t) satisfying (1.8) if and only if
(1.10) /aoo q(t) [/t ﬁ]ﬁdt < .

(c) Let o < 8. Equation (1.6) has a nonoscillatory solution if and only if
(1.9) is satisfied.

(d) Let « > . Equation (1.6) has a nonoscillatory solution if and only if
(1.10) is satisfied.

The results in the present paper for the fourth order equation (1.1) provide
parallel results to the second order equation (1.6).

2. Existence of specific nonoscillatory solutions

This section is devoted to the study of the structure of the set of nonoscil-
latory solutions of (1.1). In particular, we establish the necessary and suffi-
cient conditions for the existence of specific nonoscillatory solutions of (1.1).
To this end, we first give the results on the signs of

(2.1) (p@[u"(®)* ")), u"(t) and u'(t)

for a nonoscillatory solution u(t) of (1.1).
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Let u(t) be an eventually positive solution of (1.1). There is T' > a such
that u(¢) > 0 for ¢t > T. By (1.1) we have

(22) (@@ ") = —a®)u®)Tut) <0, t>T,

and so we easily find that the signs of the derivatives of u(¢) in (2.1) are
eventually of constant signs.

Lemma 2.1. Suppose (1.2) holds. If u(t) is an eventually positive solu-
tion of (1.1), then

(2.3) (p(t)|uw"()|* " (t)) > 0 for all large t.

Proof. There is T > a such that u(t) > 0 for ¢t > T. By (2.2),
(p(t)|u"(t)|* " u"(t))" is decreasing on [T, co). Assume that

(p(t) " (t)|* " (2))’
for some ty > 1. We have

(p()[u"()* " (1) < (p(&)lu" ()" u" (1))’

<0
t=to

=—c <0, t2>t,
t=to

and

p() " () |* " (t) < plto) [u” (t0)|* u" (to) — co(t — to), T > to.
Therefore there are t; > ty and 0 < ¢; < ¢o such that u”(f) < 0 and
p(t)|u" (t)|* " (t) < —cyt for t > t. Thus we get

ol 1/a
u"(t) < —c [—] . >t

p(t) B

Integrating this inequality from ¢; to ¢, we have

s 11/

¢
) < ' (ty) — 1/“/ [— ds, t>t.
u'(t) <u'(t) — o w Lp(s) s 1zl

Then condition (1.2) implies Jim u'(t) = —o0, and so Jlim u(t) = —oo. This

contradicts the hypothesis that u(t) > 0 for ¢ > T. Thus we obtain (2.3).
The proof of Lemma 2.1 is complete.

Lemma 2.2. Suppose that (1.3) holds. If u(t) is an eventually positive
solution of (1.1), then one of the following cases holds:
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(A) () >0,u"(t) >0, (p(t)|[u"(t)|* u"(t)) >0 for all large t;

(B) w/(t) >0, u"(t) <0, (p(t)|u"(t)|* " (t)) >0 for all large t.

Proof By Lemma 2.1, (p(¢)|u"(t)|* *u"(t))' >0 for all large ¢, and hence
p(t)u" (t)|* " (t) is eventually increasing. We have the two possibilities:
u”(t) > 0 for all large ¢ or u”(t) < 0 for all large ¢. Suppose first that
u”(t) > 0 for all large t. There is T' > a such that

()" (@) u" ()" > 0 and p(t)|u"(t)[* " u"(t) >0, ¢>T.
Then
p() [ (@)|* " (t) > p(T)|u"(T)[*u"(T) = ¢ >0, t>T.

We rewrite this inequality as
Cl /o

(2.4) u'(t) > [p(tOW’ t>T.

Multiplying (2.4) by ¢ and integrating over [T, t], we get

tu’(t) - Tu/(T) —u(t) + l/a/ B l/a s, t>T,
which yields
tu'(t) > constant + e/ /t % gs, t>T
N O [p(s)]e T

Then it follows from (1.3) that tu'(t) — oo as t — oo, and consequently
u'(t) > 0 for all large t. Thus we have the case (A).

Suppose next that u”(t) < 0 for all large ¢. We claim that «'(¢) > 0 for
all large ¢t. Assume to the contrary that u'(¢) < 0 for all large ¢. There is
T > a satisfying u”(t) < 0 and v'(t) < 0 for ¢ > T. Then we see that

u(t) < u(@) +d' (Tt =T), t>T,

and so u(t) — —oo as t — oo. This is a contradiction. Therefore, u'(t) > 0
for all large ¢, and we have the case (B). The proof of Lemma 2.2 is complete.



Suppose that (1.2) holds, and let u(t) be an eventually positive solution
of (1.1). Then we can conclude that there is k3 > 0 such that

t

(2.5) u(t) <k [ (¢ =)

S 1/a
—] ds for all large t.

p(s)

In fact, if «/(t) < 0 for all large ¢, then u(t) is a bounded function, and
therefore (2.5) is clearly satisfied for some ko > 0. If u”(t) < 0 for all large
t, then u(t)/t is a bounded function. Then (2.5) is also satisfied for some
ko > 0 since (1.2) implies

1 rt 1/a
;/(t—s)[zﬁs)] ds — o0 as t — oo.

Suppose that both u'(t) and u”(t) are eventually positive. By Lemma
2.1, we have (p(t)[u"(t)|* 'u"(t))’ > 0 eventually. Take a number T > a
such that u(t) > 0, v'(t) > 0, v"(t) > 0 and (p(¢)|u"(¢)|* *u"(t)) > 0 for
t>T. By (2.2), (p(t)|u"(t)|* i u”(t))" is decreasing on [T, 0o). Therefore

(p@u" @) " (1) < (p(E)|u" ()™ "u" (1))

for t > T. Integrating this inequality repeatedly, we obtain

co (> 0)

t= T

c1+ cols — T)]l/a .
p(s)

(2.6)  u(t) < 03+02(t—T)+/Tt(t—s)[

for t > T, where ¢; = p(T)|u"(T)|*'u"(T), c; = v'(T) and c3 = u(T). Then
it is easy to verify that (2.6) implies (2.5) with ks > ¢j/® > 0. Thus, if (1.2)
holds and if u(t) is an eventually positive solution of (1.1), then (2.5) holds
for some constant ks > 0.

We observe by (2.5) that, in the set of all eventually positive solutions of
(1.1), a solution u(t) which satisfies

(2.7) Jim “(t)s =k 0<k<os,
[t —s)[——] "“ds
/ p(S)]

can be regarded as a “maximal” solution.
Suppose that (1.3) holds, and let u(t) be an eventually positive solution
of (1.1). We have u'(t) > 0 for all large ¢ (see Lemma 2.2), and so there
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is k1 > 0 such that u(t) > k; for all large ¢. Thus a solution u(t) of (1.1)
satisfying
(2.8) lim u(t) =k, 0<k < oo,

t—00
can be regarded as a “minimal” solution in the set of all eventually positive
solutions of (1.1).
In the following theorems, the necessary and sufficient conditions are
established for the existence of special types of nonoscillatory solutions sat-
isfying (2.7) and (2.8).

Theorem 2.1. Suppose (1.2) holds. A necessary and sufficient condition
for (1.1) to have a nonoscillatory solution u(t) which satisfies (2.7) is that

(2.9) /aooq(t){/at(t—s) i] Y s }ﬂdt< .

p(s)
Proof. (Necessity) Let u(t) be a nonoscillatory solution of (1.1) satisfying
(2.7). Then there is T' > a such that

g/at(t — ) [1%8)] s < u(t) < 2 /:(t _ ) [1%] s t>T.

Integrating (1.1) from 7 to ¢, and using Lemma 2.1, we have

> [ g(o)lu(s)Pds

(p@)u" O " @) _,. >

> (g)ﬁ/; q(s){ /as(s —r) [p(r—r)] l/adr}ﬂds, t>T.

/Too q(s){ /as(s — ) [2%] 1/adr}ﬁds < 00,

which implies (2.9).
(Sufficiency) We assume that (2.9) holds. Let & > 0 be an arbitrary
number. There is 7" > a such that

(2.10) /Too q(t){ /at(t _ ) [L] Uads}ﬂdt < (ZkgT)_ﬂm

p(s)

This yields



To prove the sufficiency part of the theorem, it is enough to show that equa-
tion (1.1) has a nonoscillatory solution u(¢) having the property

) u(t
(2.11) Jim — T =k 0<k <o
(t — s)[ } ds
T p(s)
For convenience, we put
(2.12) H(t:T) /t(t )[S - T]l/ad t>T
: T = — 5 s, t>T.
T p(s)
Then it follows from (2.10) that
oo B (2k)> — Kk~
. H(t;T —
(2.13) J, ao[EED] 6 < =0

Let I = [T,00) and let C[T,00) be the space of all continuous functions
u : I — R with the topology of uniform convergence on compact subintervals
of [T, 00). Define the subset U of C[T, o) by

U={ueC[T,00): kHt;T) < ult) < 2kH(:T), t > T}

The set U is a closed convex subset of C[T, 00). We also define the mapping
V: U — C[T,o0) by

t

(@u)(t) = [ (¢~ 5) []ﬁ L (e [T @) pa)ar] s, t>T.

T
Note that ¥ is well defined on U. We will show that ¥ has a fixed point u(t),
ie.,

(2.14) u(t) = (Yu)(t), t>T,

by using the Schauder-Tychonoff fixed point theorem.
(1) ¥ maps U into U. Let u € U. By means of (2.13), we have

o < [e-a [ (ke en [T aolren]a)a] s

T T r

t s — T/
< — =2kH(t:T >T
< 2 [ s)[p(s)] ds = 2kH(t:T), t>T,




and
s—T

p(s)

(Tu)(t) > k/Tt(t— s)[ ]st: RH(ET), t>T.

Thus Vu € U.
(i) ¥ is continuous on U. Suppose that {u,}>°, C U and u € U, and
that lim u, = u in the topology of C[T,00). Let T* > T be fixed. We have

(W) (1) — (Pu) (1),

< fo-alg] Nk k“+/ ©)l6) )]

/Ts(k“+ / u(©)|Pdg)dr]"" | ds
<[ @k ”aFn(s> as, te[T,T,
where
Fo(s) = ‘/ k"+/ €)un(€ |ﬂdg)dr]
[k [T a©lu)Pdg)ar] s e 11,7

Evidently, nh_)ngo F,(s) =0 for each s € [T, T*]. Further we get

0<F(s) <2 [ ke 4 (2n) [ @) dear e

T r

< 4k(T* = T)Y*, s e [T, T,
which means that there is M > 0 such that |F,(s)] < M for s € [T, T*|.
Then, applying the Lebesgue convergence theorem, we have
T*

lim (T —s) [

n—oo Jr

1/a
Zﬁ] F,(s)ds = 0.

Thus we obtain
‘(\I!un)(t) — (Tu) (t)‘ — 0 (n— oo) uniformly on [T, T*] C I,

which implies RIL% Yu, = Yu in the topology of C[T,00). This shows that
U is continuous on U.



(iii) YU is relatively compact. Let T* > T be fixed. In (i) we have showed
that kH(t;T) < u(t) < 2kH(t;T) for t > T. In particular, YU is uniformly
bounded on [T, T*]. Since

0< (Du)(t) = A[ / +/ W@Mﬂ“}s

T* s — la
2 T T C I
kéﬂ[m$] ds, tel[l,Tcl,

VAN

WU is equicontinuous on [T, T*] C I. Therefore, by the Ascoli-Arzela theo-
rem, we conclude that WU is a relatively compact subset of C[T, c0).

We can apply the Schauder-Tychonoff fixed point theorem to the mapping
U : U — U. There is a point u € U such that (2.14) holds. It is easy to
verify that u(t) satisfies (2.11), and is a positive solution on [T, 00) of (1.1).
The proof of Theorem 2.1 is complete.

Theorem 2.2. Suppose (1.3) holds. A necessary and sufficient condition
for (1.1) to have a nonoscillatory solution u(t) which satisfies (2.8) is that

(2.15) /aoot [p(l—t) /too(s —t)q(s)ds 1/adt < 00.

Proof. (Necessity) Let u(t) be a nonoscillatory solution of (1.1) satisfying
(2.8). There is T > a such that £/2 < u(t) < 2k for t > T. Evidently, the
case (B) in Lemma 2.2 holds. Thus we may suppose that u(t) > 0, v'(t) >
0, u”(t) < 0 and (p(t)|u"(t)|* *u"(t)) > 0 for t > T. Integrating (1.1) from
t to 7, we have

[ ) ()2 () ds = = [ q(s)[u(s)ds.
Letting 7 — oo, we get
(2.16) (p(8) [ ()2 0" (2) >/ (s)%ds, t>T.

Integrating (2.16) from ¢ to 7, we obtain

p(r)[u (7)|* " (7)
> p(t)|u"(t)| > " (t) —I—// (r)Pdrds, T>t>T,



and in the limit 7 — oo,

1/a
[ // ﬂdrds] , t>T.

Further, as in the above procedure we have

(2.17) / [ // de{fdr] P t>T.

Finally, integrating (2.17) from T to t, we have

(2.18(t) > u(T +//[ // ]ﬁdndg] drds, t>T.

Then, since u(t) has a positive finite limit as ¢ — oo, we conclude by (2.18)

that . ) N a
/T (s—=T) [@/s (r — s)q(r) dr] ds < oo,

which gives (2.15).
(Sufficiency) We assume that (2.15) holds. Let k£ > 0 be a given constant.
There is T" > a such that

oo 1 oo 1/a k
2.19 / t—T[—/ —t d] dt < .
1) [Te-D) ] [T = eeas] e < g
Let I = [T,00) C R and let C[T,00) be the set of all continuous functions
u : I — R with the topology of uniform convergence on compact subintervals
of [T, o0). Define the set U by

U={u€C[T,00): |u(t) <2k t>T},

which is a closed convex subset of C[T,c0). Define the mapping ¥ : U —
C|T, o) by

1

(2:20§u)(t) = k — /too(s - [@

Obviously, W is well defined on U.

/:o(r — s)q(r)|u(r)\ﬂdr] 1/Otds, t>T.
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(i) ¥ maps U into U. If uw € U, we have

1 1/a

@] < k+ ek | (s—t)[@ [T =)ty ar| s
< ktk=2k (>T

This means YU C U.
(ii) ¥ is continuous on U. Let {u,} be a sequence in U and let u be an
element of U. Suppose that nll)rgo u, = u in C[T, 00). We have

(Pua) (1) = (Pu) (1)
< [Ce=n) I = amieran)
("t = ) lutr) Par)

< [Ts-1) [ﬁ] Y ps)ds, t>T,

1/a

ds

where
1/

Fu(s) = ([0 = 9)alr)ualr) Pr)
([t = 9)a)lu(r)ar) "

S

, s>T.

Since lim F, (s) =0 for each s > T and

IFy(s)] < 2(2k)/ [ / “r— s)q(r)dr]l/a, s>T

an application of the Lebesgue convergence theorem gives

Jim Too(s -T) [Zﬁ] 1/OtFn(s)ds = 0.

Therefore
(@u) (1) = (Tu)(t)] =0 (n— o0) uniformly on I = [T, o),

and, in particular, ¥ is continuous on U.
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(iii) WU is relatively compact. Since YU C U and U is uniformly bounded
on I, it is evident that WU is also uniformly bounded on I. Differentiation
of (2.20) gives

0< (u)(t) = lw[5é51“0~—@qvnuvn%wrmds
< (2k)Ple /Too [}% /soo(r —5)q(r) dr] 1/ads, t>T, wel,

which implies that WU is equicontinuous on I. Therefore WU is a relatively
compact subset of C[T’, c0).
By the Schauder-Tychonoff fixed point theorem, there is a function u € U
such that
u(t) = (Yu)(t), t>T.

Then it is easily seen that u(t) is a solution of (1.1) on [T, 00) and satisfies
(2.8). The proof of Theorem 2.2 is complete.

3. Existence of nonoscillatory solutions

In the preceding section we have established the necessary and sufficient
conditions for the existence of specific nonoscillatory solutions of (1.1), that
is, solutions u(t) of (1.1) which satisfy the asymptotic conditions (2.7) and
(2.8). This section is devoted to the study of the existence of nonoscilla-
tory solutions of (1.1). For nonoscillatory solutions, we do not impose any
asymptotic conditions, such as (2.7) or (2.8).

Theorem 3.1. Suppose that a« > 1> 3 and that (1.3) is satisfied. Then
equation (1.1) has a nonoscillatory solution if and only if (2.9) holds.

Proof. By Theorem 2.1 we immediately see that if (2.9) holds, then (1.1)
has a nonoscillatory solution u(t) (satisfying (2.7)).

Conversely, assume that (1.1) has a nonoscillatory solution u(t). We may
suppose that u(t) is eventually positive. Then, u(t) satisfies either (A) or
(B) in Lemma 2.2. We first discuss the case where u(t) satisfies (A). Take a
sufficiently large number 7" > a such that

(3.1) u(t) >0, u'(t)>0, u'(t)>0, and (p()|u"(t)|*  u"(t)) >0
for t > T. Then it is easy to see that

1/a

W) > [ [ @) @)y L > T

13



Integrating this inequality twice, we have

w2 [ [ [ ooy Caa izt
By equation (1.1) we find that

(p()[u" ()| Mu" ()" = —q(t) [u(t))’

{//[ j e N‘”"(&))d&] drds}ﬂ
s—{(p(t)lu”(t)\“u" }5/" {// [%/Tds]l/adrds}, -

where the fact that (p(¢)|u”(¢)|*'u"(t))" is decreasing on [T, 00) is used in the
last step. We multiply this inequality by {(p(t)[u"(t)[*"u"(t))'} =¥/ > 0
and integrate the resulting inequality from 7" to co. Then, noting that o > /3,

we obtain
) T} e >/ a(t) {// [T_ ]l/adrds}ﬂd.

ey GITLOL Ol

In particular, we have

(3.2) /oo q(t){ /Tt(t —3) [s — T] 1/Olds}ﬂdt < 00,

T p(s)

which implies (2.9).
We next discuss the case where u(t) satisfies (B) in Lemma 2.2. Choose
a sufficiently large number 7" > a so that
(3.3) u(t) >0, u'(t)>0, u'(t) <0, and (p(t)|u"()|* " (t))' >0
for t > T. We put
v(t) =pO)lu"(O)* (1), t=T.

Then, v(t) < 0,'(t) > 0 and v"(t) < 0 for ¢t > T. Let Cy = —v(T).
Evidently we have |v(t)| < Cy (t > T). Let H(t;T) be the function defined

14



by (2.12). Then, noting that « > 1, we can compute as follows:

aEn) < [ [T s

T p(r)

= v(t) /t [T_T]l/adr—/tv(s)[s_T]l/ads

7 L p(r)

< oIS

< /01 (1/a)| l/a[ ()]l/ads

o [t s — T/
= o [ [p(s>|u"(s>|a | as

p(s)
< Cé_(l/a) /t [u"(s)[(s =T + 1)ds
= —Cp Y u@t—T+1) = (T) — ult) + u(T))
< e u’(T) ”‘”u(t)
_ o-yeu@) 1-(/a),,
< Kuf(t)

I

T

for t > T, where K = Ca /® [ ((T)) + 1] Consequently, we obtain u(t) >
u

K='H(t; T)v'(t) for t > T. On the other hand, an integration of (1.1) from
t to oo gives

V() = GO O O) > [T P ds, =1,
Therefore we find that

aOu®F > KPqO[HET)] [ a@ue)Pds), t>T.

t

Hence, noting that 1 > 3, we obtain
1 ﬁ

I A OO ey A [ at,

which yields (3.2). Thus we have (2.9). This completes the proof of Theorem
3.1
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Theorem 3.2. Suppose that « < 1 < ( and that (1.3) holds. Then
equation (1.1) has a nonoscillatory solution if and only if (2.15) holds.

Proof. 1t follows from Theorem 2.2 that if (2.15) holds, then (1.1) has a
nonoscillatory solution. To prove the converse, assume that (1.1) possesses a
nonoscillatory solution u(t). Then, u(t) satisfies either (A) or (B) in Lemma
2.2. Consider first the case (A). We take a number 7" > a so that (3.1) is
satisfied for ¢ > T'. Integrating (1.1) from ¢ to oo, we have

(OO O) = [T a@lu(s) ds, t>T.

Further, integrating this inequality from 7" to ¢, we get
PO (O] - > [ [T an) )P drds, 1>,
from which it follows that
1/a
(3.4) [ / / (r)]? dr ds] , t>T.
Let 77 > T be fixed. We have
// (r)[u(r) ]’Bdrds>/ / drds—C’0>O t>T.

Then, noting that o < 1, we see that

[/ / (r))’ dr ds] . > C§” / / Yu(r)Pdrds, t>T.

By virtue of (3.4) it is seen that

(3.5)  u"(t) > M- [ ]l/a/ / (r))Pdrds, t>T.

Integration of (3.5) gives

dH) > ol /t[ ]l/a// £)]° dé dr ds
> o [P [ [—]W [ dr s
> SOy (p)] / £)de / [ ]st

16



for t > T). Multiplying this inequality by [u(#)]™® and integrating from T}
to 0o, we have

1 (1/(1 s |: 1 ] 1/a
. -1 |—= ds.
(3655 [u(m)] ™ @ [ - ) ol drds
Here, we have used the condition 3 > 1. Then, (3.6) implies

L[ atdsds <o,

and, in consequence,
(3.7) / (s —t)g(s)ds < oo for all t > Tj.
t

Using (3.6) again, we find that

! [u(Tl)]l_ﬂZ CfH/e /Oo(s —T) [L)] e /Oo(r — 8)q(r) dr ds.

p—1 7 p(s s

Since we have (3.7), it is possible to take T, > T} so that

/oo(r —35)q(r)dr <1 for s> Ts.

Then, noting that oo < 1, we get

3 S fu] > e [

which gives (2.15).
Next we consider the case (B). Let T > a be a number such that (3.3)
holds for ¢ > T'. We have

GO O O) > [T a@us) ds > w®F [ q(s)ds, ¢>7T.

An integration of this inequality over [¢,00) yields

—pOl" @) > W) [T [T gt drds = @) [ (s—Da(s)ds, =T,

and so

o0

1 1/a

o) /SOO(T —5)q(r) dr] ds,

p(s

(s—Tg)[

1/

/too(s —t)q(s) ds} , t>T.
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Then, integrating the above inequality from ¢ to oo, we get

oo 1 oo 1/a
(38) W) > wOP [ [— [ = 9)a) dr] ds, t>T.
t Lp(s) Js
Multiplying (3.8) by [u(¢)]"#/®) and integrating from 7T to oo, we obtain

1-(B/a % oo % 1/a
W[U(T)] (8/e) > /T /3 [1%/1" (& —r)q(§) dg] dr ds
o 1 1/a

= /T (s=T) [— /:o(r —5)q(r) dT] ds.

p(s)
This gives (2.15). The proof of Theorem 3.2 is complete.

By Theorems 3.1 and 3.2 we have the following corollaries, in which os-
cillation of equation (1.1) is characterized by integral conditions on p(t) and

q(t).

Corollary 3.1. Suppose that o > 1 > (B and that (1.3) holds. Then
equation (1.1) is oscillatory if and only if

/aoo q(t) { /at(t —3) Lﬁ] 1/ads }ﬁ dt = cc.

Corollary 3.2. Suppose that o < 1 < B and that (1.3) holds. Then
equation (1.1) is oscillatory if and only if

[ttty di=co or
/aootq(t)dt<oo and /aoot[]%t)/too(s—t)q(s) ds l/adt:oo'

If 0 < a < 1, then the condition (1.3) is reduced to the single integral
condition

o ¢
(3.9) / PO

Similarly, if & > 1, then (1.3) is reduced to (1.2) . Therefore we can replace
the condition (1.3) in Theorem 3.2 and Corollary 3.2 [resp. Theorem 3.1 and
Corollary 3.1 by (3.9) [resp. (1.2)].
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