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Abstract

Uniform energy decay of solutions for the semilinear wave equations with a linear
dissipation will be given to the exterior mixed problems. In order to derive the total
energy decay property of a solution, an useful inequality due to Tkehata-Matsuyama
[3] will be used. In fact, we shall derive the decay rate such as (1 +¢)2E(t) < C
for small initial datum with the compact support, where E(t) represents the total
energy.

1 Introduction

Let Q C RV (N > 2) be an exterior domain with smooth compact boundary 2. Without
loss of generality we may assume 0 ¢ . In this paper we are concerned with the initial-
boundary value problem for the semilinear dissipative wave equation:

uy(t, ©) — Au(t, ) + us(t, v) = |u(t, )P 'u(t,z), (t,z) € (0,00) x Q, (1.1)
u(0,z) = up(x), w(0,2) =wui(z), =z €Q, (1.2)

ulogn =0, t€ (0,00). (1.3)

Throughout this paper, || - ||, means the usual L?(€2)-norm and in particular, we set

l-Il=1-1l2 - Furthermore, we adopt

(f,9) = [ F@)g(e)da

as the usual L?(Q)-inner product. The total energy E(t) to the equation (1.1) is defined
by

B(t) = 3 lualt, P + SVt I
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The main purpose of this paper is to derive a certain decay rate for the total energy
E(t) and L?-norm of the solution u(t, z) to the problem (1.1)-(1.3) with compact support
initial data in an ”exterior domain” through the multiplier method together with the
semigroup theory. Our argument is based on the results due to Ikehata-Matsuyama [3]
and Saeki-Ikehata [10] which derive the sharp decay estimates of the various norms of the
solutions to the linear equation:

utt—Au—i—ut:O.

For the related result, Nakao-Ono [9] studied the global solvability and energy decay to

the Cauchy problem (1.1)-(1.2) with Q = R through the modified potential-well method.
4 N+2

Roughly speaking, they have derived the following results: let 1 + N <p< ﬁ

Then, for small initial data ||ug||z + ||u1|] < 1 the Cauchy problem (1.1)-(1.2) with

Q = R" has a global solution u € C([0, +o0); H'(RN)) N C'([0, +00); L?>(R")) satisfying

lut, )P < C, E@) <O+t

For the present, it seems unknown whether the total energy E(t)Y/2? and more L?-norm

of a solution to the problem (1.1)-(1.3) in exterior domains decay faster than (1 + ¢)~!
or not. Our device is in the fact that we need not go through any so called the spectral
analysis in order to obtain the decay rate as in Dan-Shibata [1].

Now before stating our main theorem we shall define a function d(z) as follows:

d()—{“”' M= (1.4)
| |z[log(Blz)) N =2, ‘

2
where B > 0 is a constant such that in{fZ |z| > 5 > 0. We make some assumptions before
z€

introducing the main theorem.

N
<p<—— (N=3),

(A1) 1+ 5 —

(A2) 1+

Ni—? <p<+4oo (N=2).

Let p > 0 be a real number such that 92 C B,. Our final assumption is as follows: for
each fixed R > p,

(A.3) suppuoU suppu; C Q2N Bkg.

Here B, = {x € RY : |z| < r}. Further, set

Ty = Jluollzr + lluall + [ld(-) (uo + u1)]]-

Our result reads as follows:

Theorem 1.1 Let N = 3. Under the assumptions (A.1) and (A.3), there exists a real
number & > 0 such that if the initial data further satisfies Iy < 0§, then the problem
(1.1)-(1.3) has a global solution u € C([0,+00); Hy(2)) N C([0,4+00); L*(RQ)) satisfying

Et)<CLl1+t)7% u®)P<CrE(1+t)~"



Theorem 1.2 Let N = 2. Under the assumptions (A.2) and (A.3), we have the same
conclusion as in Theorem 1.1.

4 6
Remark 1.1 In the assumptions (A.1),(A.2), we have 1 + N >1+ Nio Therefore,

the restriction to the range of p can be weaken in our case as comparing with that of [8].

2 Proof of Theorem 1.1

In this section we will prove Theorem 1.1. First we shall prepare several facts concerning
the linear problem:

u(t,x) — Au(t,z) + u(t,z) =0, (t,z) € (0,00) x Q, (2.1)
u(0,z) = up(x), w(0,2) =wui(z), z€Q, (2.2)
ulagn =0, t€ (0,00). (2.3)

Define a semigroup S(t) : H}(Q) x L?(Q) — H} () x L?(Q2) by

Uo ’U,(t, )]
S(t) : — ,
( ) [u1‘| lut(t’ )
where u(t,-) € C([0,4+00); H}(£2))NC* ([0, +00); L*(€2)) is a unique solution to the ”linear”

problem (2.1)-(2.3). Then in [3] and [10] they have derived the sharp energy decay rates
of the solution to the problem (2.1)-(2.3) using the following Hardy type inequality.

Lemma 2.1 Let N > 2. For each u € H}(Q) it holds that

(/. 'Zéﬂdx)% < C*|[vu

x)?
with a function d(z) defined in (1.4).

Theorem 2.1 (Ikehata-Matsuyama [3]) Let N > 2. If [ug,u1] € Hy(Q) x L*(Q)
further satisfies ||d(-)(ug + u1)|| < +o00, then it holds that

Ju(t, )| < CiIp(1+ 1)~
Set

u
1|21 = e+ 19

Theorem 2.2 (Saeki-Ikehata [10]) Let N > 2. If [ug,u1] € Hi(2) x L*(Q) further
satisfies ||d(-)(ug + u1)|| < 400, then it holds that

16|22l < Cuuti-+2)
1




Theorem 2.2 plays an important role in this article, so that we shall give a brief proof
of this one. Although in [10] we relied on the Nakao inequality, for making the dependence
of the coefficient clear we will give an alternative simple proof.

Proof of Theorem 2.2. To begin with, we start with the well-known 2 identities given
by the linear equation (2.1):

B() + [ (s, ) Pds = B(), (2.4)
d 2 1d 2 2
S (ualt, ) ut, ) + 1Vt P+ 5 e, I = s, )| (2.5)

Because of (2.4), since the function ¢ — E(t) is decreasing, we see

7 (1+1)’E(t)} <2(1+t)E(?),

so that one has
(1+)*E(t) < B(0) + /Ot(l +8)(IVu(s, )I* + llus(s, -)[I”)ds (2.6)

On the other hand, multiplying the both sides of (2.5) by (1 + t) and integrating it over
[0,t] we have

[ @+ 9lIvuts, ) |ds
= [0+ )l s = 5 [ (4 )l Pds = [0+ 5) 5 Guls, ), us, )ds.

Integration by parts gives

[ @+ 9lIvuts, )|ds
= [+ )l Mo = 50+ Dllute, P+ Sl + 5 [ s, s

—(L+8)(welt, ), ult, ) + (u1, uo) + %Hu(t, NP = §|Iuoll2-

Since —E'(t) = [lu(t, )| (see (2.4)), we get
[+ 5)vuts, ) Pas
s—é%r+@3@w&+whwr+(+wwm It )
b3 [ s, )Pds + S (e, )P
< [ Bls)ds + BO) + (u,u0) + (1 + )ll(t, (e, )

b3 [ s, ) Pds + 3 (e, )P

(1+1) 2
5 Mt ) +

(1+t)

lu(t, )1

< /OtE(s)ds + E(0) + (uy, uo) +



5 [ hulo, )P + 5 e, I (2.7)

In [3] (see also Theorem 2.1), we have already proven
(1+0)lu(t, )| < 213, / lus, )|[%ds < C2I3. (2.8)

Furthermore, the following estimates are well-known and standard(for example,see [10]):

(L + ) Juet, )I* < 20+ 1) E(t) < Crlluollz + lluall®), (2.9)
t
/0 E(s)ds < Ci([luollzn + lluall®). (2.10)
Finally, again we have

t t t
/(1+s)||ut(s,-)||2ds= —/ (1+ 5)E'(s)ds < E(O)+/ E(s)ds. (2.11)

0 0 0
(2.6),(2.7) and (2.8)-(2.11) imply the desired estimates. 1

Lemma 2.2 (Gagliardo-Nirenberg) Let 1 < r < g < 2N/[N — 2]*. Then, if u €
H} (), we have
lully < Kollull;™*|IVu]”,

where Ko > 0 1s a constant independent of u and

6= (1/r—1/q)(1/N —1/2+1/r)"}

Futhermore, we shall prepare the following well-known inequalities. For the sake of
the reader’s convenience, we will give the proof of (1) only, and the proof of (2) is left to
the reader’s exercise.

Lemma 2.3 If B > 1, then there exists a constant Cg > 0 depending only on B such
that

(1) /Ot(1 +t—s) (14 8)Pds < Cu(1+1)3,

t
2) /0(1 +t— )" 1+ s)Pds < Cg(1+ 1)
for allt > 0.

Proof of (1). First we devide the left hand side of (1) into two parts:

[l stmria bzt

where
(1+t)/ .
:/ 1+t—s)_5(1+s)_ﬂds,
0
14 .
/ +t—5)"2(1+s) Pds.
1+t)/



Here

(1+t)/2 1 t 1
L(t) g/o (1+t—(%))_5(1+s)_ﬂds
1+t 1 pa+p)/2
= (——2*— )_5/0 (1+5s)Pds

=22 —1)"Y(14+t) {1 -1+ %)WU} <2V2(B—1)'(141)?

provided that 8 —1 > 0.

Next
1+t .
L(t) < (1+t—s)"25Pds
(144)/2
1 t 1+t 1 1
< (i)—ﬁ/ (1+t—s)"2ds = 2°+1271/2(1 4 )= (F=3),
2 (1+t)/2

1 1
Since B > 1, we see that § — 3 > 3" Thus we have

L(t) < Cp(1 +1)71/2

with some constant Cz > 0. These arguments imply the desired estimates. 1

Now based on these decay estimates for the linear problem (2.1)-(2.3) we shall derive
the decay property of a nonlinear problem (1.1)-(1.3). By a standard semigroup theory,
the nonlinear problem (1.1)-(1.3) is rewritten as:

U(t) = SO + | "S(t — 5)F(s)ds, (2.12)
where U (t) = Li((i’,.-))]’ Us = m F(s) = [ ; (u&.))l with f(u)(z) = |u(@)]? u(z).

Proposition 2.1 Let N > 2 and suppose 1 < p < N/[N —2|*. For each Uy = [ug, u1] €
H(Q)x L*(Q) there exists a real number Ty = T (||uol 1, ||u1]|) > 0 such that the equation
(2.12) has a unique solution u € C([0,T}); H}(R2)) N CL([0,T1); L*(R)).

We proceed our argument based on the way of Nakao [7]. In order to show the global
existence, it suffices to obtain the a priori estimates for E(¢) and ||u(t,-)|| in the interval
of existence. As a result of Theorems 2.1-2.2, first one has

Lemma 2.4 Under the assumptions as in Theorem 1.1, we have
1St Uslle < Cilp(1 + 1)
on [0,T7).
Furthermore, if
I(s) = [If (uls, ) + () f (uls, )] < +o00
for each s € [0,¢] with ¢ € [0,7}), then from Theorem 2.2 we have

1S(t — $)F(s)||m < CLI(s)(1 + ¢ — 5)~. (2.13)



Thus from (2.12) one can estimate U(t) as follows:
t
Uz < Cilo(1+1)~t + 01/0 (14t —s)"tI(s)ds.
Take K > 0 so large and choose T € (0,77) so small such as

A+l < Kl on [0,T),

(1+ 02 u)|| < KI, on [0,T).
Since the initial data satisfies (A.3), we see that

suppu(t,-) C QN Bry

for each t € [0,T'). So, in the case when N = 3 we can estimate as

1d() f (uls, DII* < (R+ 3)2/9 [u(s, z)| P da.
By applying Lemma 2.2 we see
1d(-) f (uls, NI < (R + 9)||uls, )|, < Ko(R+ s)l[uls, ) [IPE [ Vu(s, ) [
with # = N(p —1)/2p € (0,1]. Similarly one has
1 (u(s, DI < Kollu(s, )PSO Vuls, ) |7,
Therefore, as long as (2.15)-(2.16) holds one gets
()£ (uls, DI < Ko(R+ s){KIo(1+ ) /2P KIo(1+5) 1}

= Ko(R + s)KPIE(1 4 5)7P(1+0)/2,

(2.14)

(2.15)

(2.16)

(2.17)

Here note that 1+60 = (N(p—1) + 2p)/2p. By these and similar estimates to || f(u(s,-))||

one has

Lemma 2.5 As long as (2.15)-(2.16) hold on [0,T) we have
1d() f(u(t, NI < Ko(R+ £)KPIE(1 + 1)~V E=D/4p/2
LA (ult, DI < KoKPIE(Q +1)~N0=014=02,

By applying Lemma 2.5 to (2.14) we see that

U || < Cilp(1 4+~ + Cy /Ot(l +t—5) TKoKPIP{(R+s)(1+5)""+ (14 5) "}ds

i
<O p(1+1)"t + ClKOKpIg’/O (1+t—s)" (145 {(1+R) +s}ds

t
<1+ + Ci(L+ R)KKPT [ (14— s)7 (14 5)'7ds,
0



where

_Np-1) p
TE g Tty

Setting 5 = v — 1, we see that 8 > 1 because of the assumption (A.1). Thus we have
U@z < Cilo(1+t) ' +Ci(1+ R)KoKPI§ /Ot(l +t—s) Y1+ s) Pds,
so that from Lemma 2.3 it follows that
IU®)|le < Cilo(1+ 1) + CrEoKPIF(1 + )~

with some constant Cr > 0. Setting

Qo(lo, K) = C1 + CrKoKP I},
we get the following lemma.
Lemma 2.6 As long as (2.15)-(2.16) hold on [0,T) we get

IU#) e < 1oQo(fo, K)(1+1) .

Next let us derive the L*-estimates for the local solution u(t,z) to the problem (1.1)-
(1.3). Indeed, since (2.16) are valid on the interval [0, T') we have from (2.12) that

t
lu(t, )| < Colo(1 + 1)1 + 01/ (141t — ) 21(s)ds.
0

Therefore, it follows from Lemma 2.5 that

lu(t, )l < Cilo(1 + 1) 12

t
+C4 / (1+t—8)"PRGKPIE[(R + s)(1 + s)"N®O=D/A7P2 4 (1 4 5)"NE=D/4=/2) g
0
< Cilp(1+1¢)7/?

t
+Cy (1 + R)KOKPIg/ (141t —s) 2(1 4 5)t N D/4p/244
0

t
< Cilo(1+1) '/? + CrE KP I /0 (1+t—s)"?(1+s)"ds

with some generous constant Cr > 0, where 8 = -1+ N(p —1)/4+ p/2 > 1 because of
(A.1). This together with Lemma 2.3 implies

lu(t, || < Cilo(1 +t)"V2 + CrK KPID(1 +t)~V/2.
Thus we have

Lemma 2.7 As long as (2.15)-(2.16) hold on [0,T) it follows that

lu(t, )| < IoQo(Io, K) (1 + 1) 2



Take K > (] so large and take I so small such as

CrK KPIV™' < K — C. (2.18)
For such K > 0 and I, we have
Qo(Io, K) < K.
Therefore, by combining this with Lemmas 2.6-2.7 we see that
UM < KIo(1+1t)7, (2.19)
lu(t,-)|| < KIo(1+1t) /2 (2.20)

on [0,7). Thus (2.15)-(2.16) and (2.19)-(2.20) show that under the assumption (2.18),

the local solution u(t,-) exists globally in time and these estimates hold in fact for all
K-C

t > 0. Taking § = (CRTOK}P)U@_D’ the proof of Theorem 1.1 is now finished.

3 Proof of Theorem 1.2.

In this section we shall prove Theorem 1.2 which is the N = 2 dimensional case and this
part demands a little technical skill in comparison with the previous section 2 in order to
handle with the logarithmic function.

Let N=2and 1+
of (2.17), we have

N2 < p < +oo. Since d(z) = |z|log(B|z|) in this case, because

1d(-) f (uls, DIl < (R + s) log(B(R + s))[u(s, ) l[5,-
Next take € > 0 so amall such as € € (0,1/2) = (0,(4 — N)/2N)

and N—|€—2 <p—(1+NL+2). Then we have
1+ 0 + e <p < +oo
N+2 N+2 ’
so that,
v—QQ+e)>1, (y=N(p-1)/4+p/2)
and
LR R
N+2 N+2 N
For € > 0 above it holds that
log(B(R +t)) <C.
(R+t)e —

with some constant C, > 0 depending only on B, R and p. So it follows from the similar
calculation to Lemma 2.5 we have

Lemma 3.1 Let N =2. As long as (2.15)-(2.16) hold on [0,T) one has
() f (u(t, )| < KoCu(R A+ 1) KPIT (1 + 1)~ VoD,

£ (u(t, )| < KoKPIE(1 + t)~N@-1/4=p/2



Therefore, from the same derivation as in Lemma 2.6 we see that

UM < Cilo(1+18)7
t
+C) /0 (14t —8) KoKPIP{C.(R+ 8)"*(1+5) 7 + (1 + 5) "}ds

<O I(1+1) " + CrKoKP I /Ot(1 Ft—8) (14 8) (14 ) Fds
with a generous constant Cp = Cg(R, C,) > 0. This implies
|Ut)|ls < Cilp(1+t) ' + CrK K I§ /Ot(1 +t—s) '(1+s) O 9ds,
with v = N(p —1)/4 + p/2. Since
y—1—€>1,
it follows from Lemma 2.3 that
IUD|e < Cilp(1+1)7! + CrKoKPI§(1 + )71, (3.1)

Thus we have arrived at the following result.
Lemma 3.2 Let N =2. As long as (2.15)-(2.16) hold on [0,T) we get

IU®)|s < 1oQo(lo, K)(1+1)7".

Let us derive the L?-decay rate for the solution under the condition (2.15)-(2.16).
Indeed, from Lemma 3.1 and the proof of Lemma 2.7 we also have

lu®)]] < Culo(141)"1/?
t
+C /O (14— 8) VKKPIZ{C. (R + 5)* (1 + 5)77 + (1 + 5)""}ds

< CiIp(1 +1)7Y% 4 CrKKP I} /(:(1 +t— )"V 1+ 5)7T7(1 + 5)Heds
with a generous constant C'r > 0. This means
lu()|| < CLI(1 4 1) V2 + CrK KPT} /(:(1 +t—5) Y21+ 5) (1 9gs,
Therefore, it follows from Lemma 2.3 that
lu@®)l] < Cilo(1 + 1) + CrEKPI(1 +1)71/?
with a generous constant C'r > 0. This yields the following decay estimate.
Lemma 3.3 Let N =2. As long as (2.15)-(2.16) hold on [0,T) we get
[u@®)ll < ToQo (Lo, K)(1 +1)~1/2.

As in the proof of Theorem 1.1, from Lemmas 3.2 and 3.3 we have the desired state-
ment.
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