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1. Introduction

The main purpose of the present paper is to get the solvability of the
following boundary value problem (BVP for short)

(E) (@)X () + (& x(1), x(a(1)), X' (1), X'(9(1)) =0,  te[a, b]

x(t) = ¢4(t), t<a

(BC)
x(@) + yx'(0) = §o(t), t=b,y=0

Here, I = [a, b], f:1 x (R"* — R" is a continuous function, p is a real valued
continuous and positive function defined on I, ¢ and ¢ are continuous real
valued functions defined and continuously differentiable on E(a), E(b)
respectively, where we assume that

— 0 <r(a) = IItlelln {o(t), 9(t)} <a
b <r(b) =max {o(t), g(t)} < + ©

and we set E(a) = [r(a), al, E(b)y=[b, r(b)] and J = [r(a), r(b)]. Also we
assume that the set {tel:g(t)=a or g(t) = b} is finite.

By a solution of the BVP (E)<(BC) we mean a function xeC(J, R")
nCYE(a)U E(b), R") which is piecewice twice differentiable on I, satisfies the
equation (E) for tel and the boundary conditions (BC) for teE(a)UE(b).

In order to show that the BVP (E)4(BC) has at least one solution, we
use in this paper the “Leray-Schauder alternative” which follows immediately
from the Topological Transversality Theorem of Granas [1]. This method
reduces the problem of the existence of solutions of a BVP to the establishment
of suitable a priori bounds for solutions of these problems. For applications
of Topological Transversality method for ordinary differential equations we
refer the reader to [2, 6], whereas, for differential equations with delay or
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deviating arguments in [7, 8, 10, 11] and the references therein.

In Section 2 we prove the basic existence theorem by assuming a priori
bounds on solutions and their derivatives. In order to apply this basic
existence theorem, we establish a priori bounds for solutions and their
derivatives in Section 3. The required a priori bounds for the possible
solutions are obtained via L*-estimates and a Nagumo type condition, by
using some ideas from [5]. We prove also and uniqueness results. It is
noteworthy that our results for the choice p(t) = e, k # 0, tel, o(t) = g(t) = ¢,
7 = 0 lead to the results of Mawhin [9], whereas for the choice p(t) = ¥, k # 0,
tel, o(t) = —t, y = 0 and f independent of x’ to the results of Gupta [3, 4].

2. The basic existence theorem
Let B be the space
B =C(J, RYnC*E(a)UE(b), R)nC (1, R

with the norm

— s !
Ix]ly = max {max [x(¢)l, max |x'(@)], max|x'(@)]},  xeB.

The following Lemma is an immediate consequence of the Topological
Transversality Theorem of Granas [1, p.61] known as “Leray-Schauder
alternative” [1, p.61].

Lemma 2.1. Let X be a convex subset of a normed linear space E and
assume 0eB. Let F: X - X be a completely continuous operator, i.e. it is
continuous and the image of any bounded set is included in a compact set, and let

E(F)={xeX:x = AFx for some 0 < ) < 1}.
Then either E(F) is unbounded or F has a fixed point.

Theorem 2.2. Let f: 1 x (R)* — R" be a continuous function. Assume that
there exists a constant K, such that

Ixil, <K,
for every solution x of the BVP
(E) (p@)x' (1)) + Af (6, x(t), x(0(), X'(t), x'(g(t)) =0,  tel

x(t) = ¢,(t), t€E(a)

(BC)
x(t) + yx'(b) = ¢, (1), teE(),y>0



Second Order Boundary Value Problems 61

where 2.€(0,1). Then the BVP (EY{(BC) has at least one solution.

Proof. Define T: B— B by

$4(0), te E(a)
Tx(t) =< o(t) + jb G(t, 8) f(s, x(5), x(a(s)), X'(5), x"(g(s)))ds, tel
P, (t) — (TxY (b), te E(b)
where
_ $,(b) — ¢1(a)
w(t) = ¢,(a) + SO 17 p(b)h(t),  tel
tds
h(t) = . % > tel

and G is the Green’s function which is given by the formula

R [)Jp()Jrv} ), a<t<s

‘ p(S)

G(t, s) =

T is clearly continuous. We shall prove that T is completely continuous. For
this purpose we consider a bounded sequence {x,} in B, i.e.

[x,l; <M, for all v,
where M is a positive constant. Then we have
I'Tx, [l < M,
where
M, =max {OK, + 4,, OK, + A,},

K,, K, constants with

b b
|G(t, s)|ds < K4, flG,(t,s)]dsSKz, tel,

O = max {|f(t= U, Uy; U, Ul)| : IEIa |u|7 |u1‘9 lvl’ |01; < M}a

and A, A, constants with
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$2(b) — ¢1(a) ,
sup { ¢1(a) + mp(b)h(t) : tEI} < Al
Sup{ $2(b) — $1(a)| | h(b) ;tel} <4,
p(B)h() +y || p(1)

Next we shall prove that the sequences {Tx,} and {(Tx,)'} are equicontinuous.
Indeed, for any ¢,, t, in J and arbitrary v we have

| Tx,(t,) — Tx,(t,)] = <Kty — 1]

JIZ (Tx,Y (s)ds

1

where

K = {K6 + 4,, max |¢1 ()], max |¢3(1)[},
which proves that {Tx,} is equicontinuous. On the other hand for any t,, t,
in I and for arbitrary v we have
|(Tx,) (t,) — (Tx,) (£2)| = <Oty —1,].

f " (Tx) (9)ds

1

This relation and the fact that ¢, ¢, are continuously differentiable functions
imply, obviously, that {(Tx,)} is an equicontinuous sequence.

Thus the mapping T is completely continuous. Finally, we observe by
hypothesis that the set E(T) = {xeB:x = ATx for some Ae(0, 1)} is bounded.
Hence, by Lemma 2.1 the operator T has a fixed point xeB. This means
that the BVP (E){(BC) has as least one solution. The proof of the theorem
is now complete.

3. Applications

In order to apply Theorem 2.2 we must impose conditions on f which
imply the existence of the needed a priori bounds. In the next theorems we
assume that ¢,(a) = ¢,(b) = 0. With this restriction is no loss in generality,
since an appropriate change of variables reduces the problem with ¢,(a) # 0 #
¢,(b) to this case.

Theorem 3.1. Let f:I x (R)*—R" be a continuous function, and

o,¢9:1— R are such that

1 1
')l =2 — and |g(t)i=—, tel
Cq ¢z ;
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for some constants ¢, >0 and ¢, > 0.
Assume that: ‘
(H{) There exist nonnegative constants A, B, C, D and G with

44+ By ” @

7[2

3.1
(1) b

T

< Po

+ [4(C + D/c;) + 2B/ 2¢, (b — a)(r(b) — b)]

where p, = min {p(t):tel} such that
(3:2) <, f(t, u, uy, v, 0,)> < Aluf® + Blul|ug| + Clul|v| + Dlu||v,| + G|u]

(H,) There exist a continuous function h: R* — R™ and a constant N such that

b-a

N
d
(3.3) f 2 S oreMm?
R2M2 h(S)

where R = max {p(t):tel},

(3.4)
2G(b—a)/b—a

4

.
2wvﬂm¢m+¢ﬂmeD¢wawwmm1n“+
B (b—a)®

7[2

M

—[4(C+D./c;)+2B/2¢,(b—a) (r(b)—b)] b-a

a
T .

po—4(A4+B/c)

and
(3.5) [<v, f(t, u, uy, v, v1)3] < h(|p(t)v]*) p(t) |v]?

for all tel and |uly < /b —aM.
(Here ||ull® = [%|u(t)|*dt).
Then the BVP (E)-(BC), with ¢,(a) = ¢,(b) = 0, has at least one solution.

Proof. We need only to establish the a priori bounds for the BVP
(E;)-(BC). Let x be a solution of (E;)-(BC). By taking the inner product
of the equation (E,) with x(¢), integrating by parts over I and use of the
boundary conditions and (3.2), we get

b b

|x(6)*dt + Bf [ x(@)] |x(a(0))|dt

a

J p(O)]x (1) dt < p(b) (X' (b), x(b) + AJ

a a

b b b
+CJ IX(t)IIX’(t)IdtwLDJ IX(I)IIX’(g(t))IdtJrGJ | x(t)dt

a
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which implies, by Cauchy-Schwarz inequality and y > 0 (if y = 0 then x(b) = 0)

1

pollx|? < — %mbnx(bnz +Alx|?+ Blx]| (f |x<a(t)>12dr>2

(3.6 . 1
+ Cllx| X + DIx| <f IX’(Q(t))lzdt> + Gllx|/b—a
But
b b 1
J |x(a(t))?dt < j ——|x(a(t))|*d(a(2))
a a O- (t)
SJ |x(t))*dt
o (I}
=c1<r|x(t)|2dt+f |x(t)|2dt+f |x(t)|2dt>
a E{a) E(b)
= cl[IIXII2 + 1, 117 +f |p,(t) — VX’(b)Izdt]
E(b)
(3.7)

<o [IxI1” + 11112 + 211 ¢ 117 + 29 X' (B)I*(r(b) — b)]

=c [Ix1*+ 1o * + 21 ¢ 117 + 21x(B)*(r(b) — b)]

(since x(b) = — yx'(b))

<crllxI? + 1o l? + 20 o 17 + 211X |7 (r(b) — b) (b — a)]

(by the Wirtinger’s inequality |x|, = sup {|x(t)|:tel} <. /b—a|x'|)
and likewise

b
(3-8 J [X(g@)IPdt < e, [Ix1 + o117 + 11317

Subtitute (3.7) and (3.8) into (3.6) to obtain

poll X' 17 < A x|)?
+B/ey IxI{lIx] + 1o+ /21,1 +/20(6) = b)(b — @) x|}
+ CUS I+ Dea X ILIX T+ 193] + 1951} + Glxll /b~

. . . b — a)?
Next by applying Wirtinger’s inequality | x||*> < (72‘1)
T

Ix'[1* we get,
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b —a?

7Z2

Ix(12 + 2[By/cy (o1l + /21 62 1)

b—a b—a
Ix']| + 4(C + Dy/c,)

T T

T B2, (r(6) — D)6 — ) 20 =D 2 4 260 = Z’V ALy

T

poll X' II> < 4(4 + B /<))

1"

+ D/, (11911 + 1951)

Therefore we deduce

{po s+ o)

7'[2

_4(C + D /o) + 2B /26100) — By b — a1 - “)} ™

<2[B/c;(I$:] + /21621
+ Dol + 19501

a+2G(b—a)./b—a

T

which implies, by (3.1) and (3.4)

(3.8) x| < M.

By the Wirtinger’s inequality |x|, = sup {|x(¢)|: tel} < \/m [ x'|| we have
Ixlo <</b—aM =M,.

Also, (3.8) implies, by the mean value theorem, that there exists t, eI such that

(b —a)|x'(to)* < M?
or

(39) P2 (t0) X' (to)|? < I;ZM i

Now, taking the inner product of (E,) with x'(t) we have, by (3.5)

< 2h(lp@®)x' () p* (@)X ()1

ijtm(t)x(mz
or

(3.10)

d [lrox®I*> gg
— —| < 21p()x'(H)|?
yr J h(s)' |p()x"(£)]
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Integrating (3.10) and using (3.9) we get

lo@x O gq lotto)x"(to)}? g b
J — < J — ZJ [p2(t)x'(t)|*dt

a h(s)  Ja h(s) a
[p(to)x’ (to)|?
< J ﬁ +2R2M?
a h(s)
J‘W ds J” ds JN ds
< — + — = —
«  h(s) Jr2h(s) ], h(s)
Hence
lp@x'®)* <N
or

poIX (O <lp®)x'(t))* <N
which implies
1
IXlo<—+/N=M,, tel
Po
Consequently the required a priori bounds are established and the proof of

the theorem is complete.

The next theorem concerns uniqueness results for the BVP (E)-(BC) in
the case when y=0. We remark that in this case the corresponding
Wirtinger’s inequality becomes

b—a?
Ix)2 < =2 X
T

and relation (3.1)

(3.1y (A + B/c;)

C=a byt <y,

2 7

Theorem 32. Let f:1x(R)* > R" be a continuous function, and
0,9:1—> R are such that

1 1
lo'®)| >~ and |gt)|=—, tel
€y Ca

for some constants ¢, >0 and ¢, > 0.
Assume that:
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(H3) There exist nonnegative constants A, B, C and D satisfying (3.1 and such
that

(3.11)
<M—X,f(t, U, Uy, 0, Ul)—f(t, X, X15 Vs y1)>
< Alu — x|* + Blu — x||u; — x;| + Clu — x||v — y| + D|u — x||v, — y,|

Then the BVP (E)(BC) with ¢(a) = ¢,(b)=0 and y=0 has at most one
solution.

Proof. Let u, x be two solutions of the BVP (E)-(BC). Then we get

b

0= — ] @' @) — (p)x' (1)), u(t) — x(1)) dt

— | @& u@), u@@), y@©), w(g®) — £t x(2), x(a(1), x'(1), X' (g (£)))> dt

>po | W) —x'(O)*dt — 4 Jb |u(t) — x(®)*dt

Ja

—-B f lu(@) — x(@O)lu(a(1)) — x(a(r))| dt

a

b

- CJ lu(t) — x(@)f ' (1) — x' (1) dt — DJ |u(®) — x @1 (g(0) — x'(g(t))] dt

a a

z[po—(AJrBJcT)(b_“)z —(cwﬁ)b”“] I — x|

n? 7

z[po—(uwa)(b_“)z—(cwﬁ)b_“} " u—x]?

n? 7 |(b—a)

Therefore by (3.1) we conclude that u(t) = x(t) for every tel, which proves
the theorem.

Corollary 33. Let f:Ix (R —>R" be a continuous function, and
o,9: 1> R are such that

1 1
lo’'(t)] = — and |g'(t)] > —, tel
€1 )
Jor some constants ¢; >0 and ¢, > 0.
Assume that conditions (H,) and (H3) hold. Then the BVP (E)-(BC) with
¢1(a) = ¢,(b) =0 and vy =0 has a unique solution.
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Proof. By (3.11) with x =x, =y =y, = 0, we obtain

<“9 f(to U, Uy, v, Ul)>
< Alu® + Blullu;| + Clul|v| + Dlul|v;| + |ul| f(z, 0, 0, 0, 0)].

That is, condition (3.2) with G =max {|f (s, 0,0,0,0)|,tel} holds. This
complete the proof.

Remark 34. If p(t)=é", k#0, tel, = [0, ] equation (E) gives
(Ey) x"(t) + kx'(2) + h(t, x(t), x(a(2)), X'(2), x'(g(2))) = 0
where

h(t, x (1), x(5(0), X'(2), X (g(1))) = € £ (&, x(2), x(a (1), X'(2), x(g(1))).

Moreover if o(t) =g(t) =t our Theorems 3.1 and 3.2 immediately imply
Theorems 1 and 2 respectively of Mawhin [9]. Also if o(t)= —¢,
tel, =[—1, 1], i.e. if we have boundary value problems involving reflection
of the arguments, and f is independent of x’, our Theorems 3.1 and 3.2 imply
immediately the results of Gupta [3] and [4] for constant matrix A.
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