Funkcialaj Ekvacioj, 38 (1995) 1-9

The First Eigenvalues of Some Abstract
Elliptic Operators

By

Tomoyuki IpoGawa and Mitsuharu Otant
(Waseda University, Japan)
Dedicated to Professor Hiroki Tanabe on the occasion of his 60th birthday

1 Introduction

Let Q be a bounded domain in RY with smooth boundary 0%, and
consider the following well-known Poincaré’s inequality:

(P) lulpy < CIVulpe ueWpb?(@), 1<p < co.

Since the injection from W,!'?(Q) into L’(Q) is compact, it is easy to find an
element u #0 in W''?(Q) which attains the best possible constant for (P),
that is to say

R() = sup {R(); ve WH7(@), v # 0} ﬂi’ R() = [olyo/ 7050

1

Then it can be shown that u must satisfy the equation:

E), {—Apu=/1|u|"_2u in 2'(Q),

ue Wyt (Q),
with A = 1,, where 4,u = div (|[Fu|"~*Vu).

For the case p =2, as a matter of course, 4, is the first eigenvalue of
— 4 with zero Dirichlet boundary condition and it is well known that the
associated eigenfunctions form a one dimensional linear subspace of Hj(€),
ie., 4, is simple. As for the case p # 2, this kind of result was first obtained
by Otani [7] for the case N = 1, where it is shown that all the eigenvalues
forms a countable set and they are all simple.

For higher dimension N > 2, Sakaguchi [11] showed that the first eigen-
value A, is simple, provided that 0€2 is connected. His method of proof relies
on a maximum principle for — 4.

The main purpose of this paper is to present a method based on “vari-
ational principle” to show the following properties without assuming that 0Q
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is connected.

(I) The first eigenvalue 4, is simple;

(1) (E), has a positive solution if and only if A = 4, (i.e., other eigenfunctions
must change their sign.)

Anane [1] also proved these results. However, her method of proof
essentially depends on the peculiarity of the operator 4, and it seems that
this does not work for other types of operators. Our method of proof is
quite different from those of [1], [11] and [12] and is based on the variational
method. Therefore, as far as the simplicity of the first eigenvalue is concerned,
the regularity of solutions required here is only C(£2)n Wy'?(2), much less
than the usual regularity (say C! (2)). Our results are formulated in an
abstract form and can cover the eigenvalue problems for other different types
of operators. Especially, we would like to emphasize that our abstract
framework can be applied also for proving the uniqueness of positive solutions
of some subprincipal elliptic equations, i.e., the homogeneous degree of the
perturbed term is less than that of the principal term.

2 Main results

In order to formulate our results in an abstract form, we need the notion
of subdifferential, a generalized notion of Fréchet derivative. Let V be a real
Banach space with dual space V* and let (-, - > be the duality between V* and
V. We denote by &(V) the family of all proper lower semicontinuous convex
functions ¢ from V into (—oo, + o0], where “proper” means that the effective
domain D(¢) = {xe V|p(x) < + 0} of ¢ is not empty. The subdifferential d¢
of ¢ at u is defined by

dp(u) = {heV*; o(v) — o) = {h,v —u) YveD(p)}

with domain D(0@) = {ueV; dp(u) # ¢}. In general, d¢ is ‘a multivalued
operator. However, for the sake of simplicity, we here always assume that
Jo is single valued. If @ is convex and Fréchet differentiable, then the notion
of Fréchet derivative coincides with the notion of subdifferential. (For
fundamental facts, we refer to [2] and [10].)

Let us consider the following abstract eigenvalue problem:
(AE), Au = ABu.
We impose the following conditions on 4 and B.

(A1) (i) A=0f" and B = df? with f1, f2e®(V),
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(ii) D(fY=D@Ef* =",
(i) V is a function space defined on a domain © < RY such that
V< L Q).

loc

(A2) (i) R(v]) = R(@®):=f*@)/f*(v) YveV,
(ii) f'(v)=0 YveV and f'(v) =0 if and only if v =0.
(i) JueV s.t. u#0 and R(w) = sup {R(v); veV,v #0} > 0.

(A3) Fo>1 s.t. fi(to) = 1*f'(v) Yve V™' = {weV; w(x) >0 ae. xeQ}, V>0,
i=1,2 :

A4) (i) faVw) +fluAw <fHw+ f1(w), Yu, Ywe V™,
(i) fruVw) +PuAw) =W+ f2(w), Yu, YweV ™",
where (u V w)(x) = max (u(x), w(x)) and (u A w)(x) = min (u(x), w(x)).

Furthermore we assume

(A0) Every non-negative nontrivial solution u of (AE), belongs to C(£2)
NL*(Q) and satisfies u(x) > 0 for all xeQ.

Then our main result can be stated as follows.
Theorem L. Assume (A0)-(A4). Put A, =1/sup {R(v); veV, v#0}. Then
we have ‘

(1) (AE), has no nontrivial solution for 1€(0, 1,),

() A, is simple, i.e., (AE),, has a positive solution and the set of all solutions
of (AE),, is a one dimensional linear subspace of V.
Theorem II. Assume (AO)-(A4) and

(AS) f' is strictly convex,

(A6) Bu)<B(v) if 0<u<w.

Furthermore, we assume

(AOY  Every positive solution u of (AE), satisfies ueC YQ) and ou/dn(x) <0
on 0Q.

Then (AE), has a positive solution if and only if A= 4,.
Remark 1.

(i) Take V= W"P(Q), f1(v) = [Vvlf,/p and f*(v) = |v|}s/p, then (E), can
be reduced to (AE),, and all conditions (A0)-(A4) above and (AS), (A6),
(AQY in Theorem IT are satisfied.
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(ii) If Au=diva(x, u; u) + ao(x, u; u) and Bu = b(x, u), then some suffi-

cient conditions for (A0) can be given in terms of a, a, and b. Since
these are somewhat complicated, but general enough, we do not go into
the details here. (See Ladyzhenskaya and Ural’tseva [5], Trudinger
[14] and Tolksdorf [13].)

(iii) Conditions (A1)-(A4) are not enough to assure the simplicity of 4,. In
fact, it is easy to give a trivial counterexample by taking f1 = f2 = f
for a suitable f. In this case, 4; =1 and the set of all eigenvectors
becomes V. It is also possible to give a nontrivial counterexample:
Let V=R? and put f(x) = x} + x3 and f?(x) = x}x2 for all x =
(xy, x). Then it is easy to show that (A2)-(A4) are fulfilled and that
2y =2 and the set of all eigenvectors is the set {x = (x, x,); x; = x,
or x; = — x,}, which is not a linear subspace of V.

Remark 2.

To assure condition (AO), one must prove a Hopf-type maximum principle,
and generally this is not so ecasy. In this sense, this is rather restrictive.
However, in most cases, we can exclude this condition by applying some
approximation procedure. (Say for the case B(u) = |ulf~?u, set B,(u) =
b, (x)|ulP~2u with b,(x)=1 if dis(x, 0Q) > ¢, b,(x) =0 if dis(x, Q) <¢ and
prove the corresponding first eigenvalue A% converges to 4, as ¢ tends to
Zero.
IT for a sufficiently small ¢) The details will be discussed in a forthcoming

Then it suffices to repeat the same argument as in the proof of Theorem

3 Proofs of theorems

Proof of Theorem I
(i) First of all, we see that (A3) implies

ofiw), vy = afi(v), VveV,i=1,2.

Indeed, noting

Of'w), v> = % Of (o), 1o — v

t*—1
t—1

IA

{fitr) = fiv)} = fiy  (for t>1),

1
t—1

and letting t » 1 £ 0, we get the relation above. Hence, if u is a solution of
(AE), with 1€(0, 4;), then multiplication of (AE), by u gives

1)

aft(u) = Aof?(u), ie, R(u)=1/A



Some Abstract Elliptic Operators 5

This is a contradiction, since 1/4 = R(u) > 1/4, = sup R(v).
(i) Set J;(v) = f1(v) — Af?(v), then

) J,(v) <0 if and only if R(u)(>)1 /A

Therefore it follows from (iii) of (A2) that there exists ue V such that u # 0 and
(3) min {J, (v); veV, v #0} =0=J, (u).
Hence we get

Q) — 1) = A, f2(v) — A, f2(w) = 4, 0f*(w), v — u) for all veV.

Consequently, of(u) = A,0f*(u), ie., u becomes a nontrivial solution of
(AE),,. Conversely, if u is a solution of (AE), , then, by (1), J,,(u) = 0. Thus
we find that

4) u is a solution of (AE),, if and only if J;,(u) = 0.
Furthermore, by (2), (3) and (i) of (A2), J,,(u) = 0 implies J;,(Ju|) = 0. Thus
(5) If u is a solution of (AE),,, then |u| is also a solution of (AE),,.

Then, by (A0), |u| has no zero in 2. Consequently, every nontrivial solution
u of (AE),, is positive or negative in Q.

1

Let u, v be two positive solutions of (AE),, and put
M({t, x) = max (u(x), tv(x)) and m(t, x) = min (u(x), tv(x)).
Then, by (A4), we get
0<J,,(M) + J,,(m) < J; () + J;, (tv) = J;,(w) + ¢°J,,(v) =0,

whence follows J, (M) = J, (m) =0. Hence, by (4), M and m turn out to be
solutions of (AE),, for all ¢t > 0.

Here we note that since every solution u of (AE), belongs to C(Q)
NW"2(2), u is absolutely continuous in each variable (on segments in Q) for
almost all values of the other variables, and its partial and generalized
derivatives coincide almost everywhere, (see [6]). Moreover, by virtue of the
facts that v(x) >0 in Q and u, ve L*(Q)nW,"'?(Q), u/v also belongs to C(2)
N Was?(92).

For a.e. xoe€Q, set t, = u(x,)/v(xo) > 0. Then, for any unit vector e, we
have

u(xo + he) — u(xo) < Mity, xo + he) — M(ty, xo),
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tov(xo + he) — tov(xe) < M(ty, Xo + he) — M(ty, Xo).
Dividing these inequalities by h > 0 and h < 0 and letting ¢ tend to + 0, we get
Vaulxo) = V. M(to, Xo) = LoV w(xo)-

Hence
l7x<% (x0)> = (V,u(x0)v(xXo) — u(xq)V,0(x0))/v(x,)* = 0.

Thus we see that u(x)/v(x) = Const. in €. (QED)

Proof of Theorem II.
By using convex analysis, we can prove the following lemma.

Lemma 3. Assume (1) of (A4) and (AS). Then Au < Av implies u < v.

Proof of Lemma 3.
Put [u — v]" (x) = max (u(x) — v(x), 0), then it is easy to see that [u —v]" =
uVv—v=u—uAv Then taking the duality between Av — Au and [u—0v]",
we find, by (i) of (A4),

0<{Av— Au, [u —v]*)
= {Av,uNVv—vy + {Au,uNv—u
< Vo) - 1)+ Tun) - 1w <0,
which implies {Av, u Vv —v)=f1uVv)—f(v).
Hence we obtain
t{ffwVo)—f1}=<Av, tu Vo) + {1 —t)o—0v)

<fHtw Vo) + (1 — 1)) — ()
<tf*wVo)+ (1 —0f'© )
=t{f*uVv)—fW}

whence follows
Vo) + 1 —0v)y=tf*w Vo) + (1 — 1) f ).
Then the strict convexity of f* says that u Vv =u, i.e. u <uv. (QED)

Suppose now that (AE), with 4 > A, has a positive solution v, and let u be
a positive solution of (AE),,. By virtue of (A0) and the fact that tv is also

a solution of (AE),, we may assume without loss of generality that u <v.
Then, by (A.6), we get

Au=A,Bu < A;Bv = iB(w) = A(p) with n=(1,;/H)Y* V<1,
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where we used the fact that B is a homogeneous operator of order
o — 1. Hence it follows from Lemma 3 that u <nv. Now, repeating this
argument n times, we obtain 0 <u < n"v. Therefore, by letting n tend to
infinity, we finally deduce u =0. This is a contradiction. (QED)

4 Applications
4.1 The Eigenvalue problems

As is mentioned above, our abstract framework can cover some problems
more complicated than (E),. For example, let V= WP(Q) and put

fHw) =%f {(@ () ul* + ay () Pul)P'? + a*(x) [ulP} dx,

2 =2 f b(x)|ul?dx,
DJa

where a; (i = 1, 2, 3), be L*(2); a,(x), as(x), b(x) = 0, a,(x) > p > 0 a.e. xeQ.
Then
Au = 0f Y (u) = div ((a, |u]® + a, [Fu|H)®~2/2q,Vu)
+(ayjul® + ay [FuP)*~22a,u + ay|ulP 2u
Bu = 0f?(u) = b|u|? " u.
It is obvious that (i) of (A2), (A3) with a = p, (AS) and (A6) hold. Furthermore,

(i) and (iil) of (A2) are assured by Poincaré’s inequality and Rellich’s
compactness theorem respectively. .

By virtue of Stampacchia’s theorem (see Kinderlehrer and Stampacchia
[4]), uVw and u Aw also belong to V* = (W"?(Q))" for all u, weV ™ and
the equalities in (i) and (ii) of (A4) hold. Applying the same Moser’s method
as in [8], we can derive the L®(Q) bound for solutions of (AE),. Hence, it
follows from the results by Ladyzhenskaya and Ural’tseva [5] and Trudinger
[14] that every non-negative solution u of (AE), belongs to C*(2) and u(x) > 0
for all xe. Thus conditions (AQ)-(A6) are all fuifilled for this case, so the
assertion of Theorem I is valid.

For the case where a, =0, the much stronger condition (AO) can be
verified by Proposition 3.7 of [13] and Lemma 4 of [9] together with Lemma
3. Then Theorem II is applicable for this case.
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4.2 The uniqueness of positive solutions for sub-principal elliptic equations

It should be noted that our abstract framework for eigenvalue problems
can cover apparently different type of problems, i.e., the uniqueness problems
for positive solutions of some elliptic equations with sub-principal terms. A
typical example is stated as follows.

Theorem 4. Let be L™ (Q), b(x) >0 a.e. xeQ and 1 < q <p. Then

{—Apuzb(x)[mq_zu in 2'(Q),

(6) ue WP\ {0}, u(x) = 0 ae xef

has a unique solution.

Proof of Theorem 4.
The existence part is easy, (see e.g. [8]). Let V= W,"?(Q), and put fl(v) =

ljgqull’dx and f*(v) =l(jgb(x)lvf’1dx)"/q. Then (AE), becomes
p p

(7) — A= Ab"ulP7b(x)|ult " 2y,

and all assumptions in Theorems I and II are satisfied. (f? satisfies (ii) of
(A4) if and only if ¢ <p.)

Let u and v be different solutions of (6). Then u and v satisfy (7) with
A= |b'4u|i;? and A= |b'p|%;P respectively. Then Theorems I and II say
that

Ay = |bYu)2,? = [bY9p|1;P and u = tv for some t > 0,
whence follows u = v. (QED)

Remark 5.

A same type of result as Theorem 4 is already obtained by Diaz and
Saa [3]. But their result does not cover the case where meas {xeQ; b(x) = 0}
> 0.
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