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§0. Introduction

In this paper we give sufficient conditions for the solvability of set-valued
systems of the form

)

{0 € F(x, y)
0=g(x,y)’

where F and g are defined in the following way

F(x,y)=y—F(x,y)

and

g(x, y) =X - g(x7 y) B

where x € X, ye Y, with X, Y Banach spaces, F is an upper semicontinuous,
compact multivalued map, g is a continuous map; both maps are defined on
the closure of a suitable open subset U of the product X x Y and take values
in Y and X respectively. Our approach is a development, in various aspects,
of the one introduced in [8] in the case when F is a continuous, compact,
singlevalued map. Roughly speaking, we solve the first equation in terms of
y as a function of “the parameter” x considering the application x —o S(x) =
{ye Y:0€e F(x, y)}, and hence we introduce the solution set S(x) in the second
one. The fixed points of the composite function g(x, S(x)) are the solutions
of system (1). In recent years upper semicontinuous multivalued maps with
non convex values have been studied by several authors, see e.g. [1], [3], [6],
[7]. The paper is organized as follows.

In Section 1 we introduce the definition and the properties of UV*® sets
and recall a graph approximation theorem for upper semicontinuous multi-
valued maps with UV*™ values, given independently in [1] and [7]. Then we
state the definitions of weighted maps, introduced in (4]

In Section 2 we state two existence results for system (1).
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In Section 3 an application to control theory of the obtained results, is
given.

§1. Definitions, notations and preliminary results

Definition 1.1: Let X and Y be metric spaces. A set-valued map M
from X into Y, with nonempty values, is said to be upper semicontinuous at
x € X if for any neighborhood V of M(x) there exists a neighborhood U of
x such that M(u) = V for any ue U. If, for every xe X, M is upper semi-
continuous at x, then M is said to be upper semicontinuous (u.s.c.) on X.

If M sends bounded sets into relatively compact sets, then it is said
compact. M is said proper if, for each compact set K of ¥, M™(K) is compact.

We will denote a multivalued map M from X to Y with the symbol
M:X — Y. Tt is well known that, if M(X) is compact and M(x) is closed for
any xe€ X, then M is us.c. if and only if M has closed graph, ie. x,e X,
Xy = Xo» Yu = Yo» Yu € M(x,) implies yo € M(x,).

The multivalued map M: X — Y is said lower semicontinuous (l.s.c) on X
if, for every x € X and every neighborhood V of every y e M(x), there exists
a neighborhood U of x such that M@NV #0 for all ueU. If M:X oY
is both us.c. and ls.c. on X, then M is said continuous on X.

Definition 1.2: Let X be a metric space and let K be a compact subset
of X. We say that K is a UV™ set if, for any neighborhood U of K, there
exists a neighborhood V, K = V < U, such that any two points in ¥ can be
joined by a path in U, and there is a base point y, € K such that the inclusion
of V into U induces the trivial homomorphism 7,(V, y,) — n,(U, y,) for each
positive integer n.

Definition 1.3: Let X and Y be metric spaces and let M: X — Y be an
upper semicontinuous multivalued mapping. We say that M is a UV*®-map-
ping if the set M(x) = Y is UV for each x € X.

Definition 1.4: A map u: X — Y is said to be an e-graph approximation,
shortly e-approximation, of the multivalued map M: X — Y if Gr u c ¢ Gr M,
where Gr M denotes the graph of M and ¢ Gr M denotes the set of points
of distance less than & from the set Gr M. Moreover we will say that a map
w: X —» Y is a e-pointwise approximation for M: X —o Y if u(x)e eM(x) for all
xeX.

Lemma 1.1: ([7]) If for a compact set K, one of the following conditions
holds
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1) K is a fundamental absolute retract;
2) K has trivial shape;

3) K is an R; — set;

4) K is an absolute retract;

5) K is contractible;

then K is a UV® set.

The classes of absolute retracts and absolute neighborhood retracts are denoted
by AR and ANR, respectively, (see [5]).

Theorem 1.1: ([1], [7]): Let X be a compact ANR space, Y a metric
space. For any ¢ > 0 and any UV -mapping M: X —o Y, there exists a continu-
ous e-approximation, u: X - Y of M.

We want to recall here (see [7]) that for an UV®-mapping the notion of
fixed point index with the usual properties is well defined. The relative defini-
tion is given by using Theorem 1.1.

Definition 1.5: Let U be an open subset of a compact ANR space X.
Denote by AU the boundary of U. Let ¢: U—E be an UV® mapping.
Assume that it is fixed points free on JU. Then we can define ind (X, ¢, U)
(see [7]). Notice that this index satisfies all the standard properties.

Definition 1.6: Let X and Y be topological Hausdorff spaces. A finite
valued upper semicontinuous map M: X — Y will be called a weighted map
(shortly w-map) if, to each x and y € M(x) a multiplicity or weight m(y, M(x)) €
Z is assigned in such a way that the following property holds:
if U is an open set in Y with U N M(x) = @, then

Y myMx)= 3> m@y,Mx))

ye M(x)NU y' e M(x')NU

whenever x’ is close enough to x, (see [4] and [8]).

Definition 1.7: The number i(M(x), Uy= >  m(y, M(x)) will be called

ye M(x)NU
the index or multiplicity of M(x) in U. If U is a connected set, the number

i(M(x), U) does not depend on xecX. In this case the number i(M)=
i(M(x), U) will be called the index of the weighted map M.

Definition 1.8: Let X be a Banach space and let B(0,r) be the closed
ball in X of radius r, centered at the origin. We will say that the upper
semicontinuous map M: B(0,r) —o X verifies the Borsuk—Ulam (B.U.) property
on 0B(0,r) if for all xedB(0,r) for which 0¢ M(x), M(x}) and M(—x) are
strictly separated by an hyperplane, i.e. for all x € dB(0, r) there exists a continu-
ous functional x* € X*, the dual space of X, such that x*(y) > 0 for all y e M(x)
and x*(y) <0 for all ye M(—x).
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For sake of simplicity, in the sequel we will write B instead of B(0, r).

Definition 1.9: Let X, Y be metric spaces. Given S < X x Y we denote
by

S(x)={yeY:(x,y) e S};

S(A)={yeY:(x,) €S, xeA};

S,=SN({x}xY¥) and S,=SN(AxY) fordcX;
S*={(x,y) e U:yeF(x,»)};

¥ = {xe X:SFNoU =@} .

If F is defined in all X x Y then 2" = {x e X: x is not a bifurcation point
from infinity of the equation 0 € F(x, y)}.

§2. An existence result

We want now to prove the existence of solutions for the system

{yeF(x,y) or {OE,V—F(XJ’)=F(X’)’)

1
M x = §(% 3) 0=x - §(x,y) = glx. y).

For this we have the following.

Theorem 2.1: Let X be a Banach space and let K be a compact, convex
subset of a Banach space Y. Let U be a relatively open, bounded, convex set
in X x K, F: U — K an UV*®-mapping and §: U— X a continuous compact
map. Suppose that there exists r >0 such that Bc< 2% and that ind (K,
F(0, *), U(0)) #0. Let T: B —o X be the application defined by T(x) = x — T(x),
where T(x) = g(x, S(x)) and S(x) = {ye K: ye F(x,y)}. Let us suppose that for
any x € 0B such that 0¢ T(x), T(x) and T(—x) are strictly separated by an
hyperplane. Then system (1) has a solution.

First, we prove that the map x — S(x) is upper semicontinuous. Observe
that, under our assumptions, S(x) is compact and nonempty for every x € Z*.

Lemma 2.1: The multivalued map x — S(x) is u.s.c. at every x € 9*.

Proof. Let x,e 2%, we shall prove that S is upper semicontinuous at
Xo, that is, if ¥ is an open neighborhood of S(x;), then there exists an open
neighborhood N of x,, N = 2F, such that S(x) = V, Vxe N. To prove this,
let y e S(x,) and let us consider neighborhoods of the form N, x V,, with
N,, a neighborhood of x, in 2F and V, a neighborhood of y in K, such that
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V,eUxe)NV and N, xV,cU.

By the compactness of S, = SN({x,} x K) there exists a finite number, say
s, of neighborhoods of the previous form covering S, . Let

N0=‘ﬂ N, and V’=.L=sj1 V.

Clearly for each neighborhood N of x,, with N = N,, we have that N x V' < U
and V' < V. Let us prove that there exists a neighborhood N of x, such
that S(x) = V' for all xe N. Suppose not, then there exists a bounded
sequence {(x,, y,)} with x,— xo, y,€ F(x,,y,) and y,¢V'. As F is upper
semicontinuous with compact values and K is compact, we may assume (by
passing to a subsequence, if necessary) that y, —y,. Then y, e F(xo, yo), that
is yo € S(x), contradicting S(x,) = V. O

Lemma 2.2: Let X = R", K as in Theorem 2.1 and let B < 9F. Then
for each neighborhood W of S§ there exists ¢ > 0 such that if f: Uy— K is an
g-approximation of F.g,, then Sf < W.

Proof. S is a closed set. In fact, let {(x,,y,)} =S§ and (x,, y,) —
(X0, Yo). As {(x,, y»)} = SE, we have that y, e F(x,, y,) for any ne N. As F
is upper semicontinuous with compact values, then y, e F(x,, ), that is
(X0» Vo) € SE. Then S as a closed subset of B x K is a compact set. Let W
be a neighborhood of S%, V an &,-neighborhood of S5, V <« W, with 6V N oW =
@. Lete, =d(0V,0W)and A = Ug\V. Since A is a compact set, we have that

inf {|s—7,seF(& )} =¢e>0.
(%,9)eAd

Let ¢ = min {¢;, &,, &;} and let f: U — Y be an ¢-approximation of F\5,. Let
(x, y)eUg\ W and let y = f(x, y), so (x, y) is in S%, then there exists (X, y)e Uy
such that

(%, 3) = (&% P+ 1f(x, y) —zl <e  for some z€ F(%,7).

As |(x, y) — (X, y)| < ¢ it follows that (X, y) ¢ S§. Since y - f(x,y) we get that
|9 —z| <& then (%, 7)¢A. Thus (X,7)eV\SE. This is an absurd, since
(X, y) € UB\W and |(X, y) - (')_Ca y)l <eg, and so (25 j)-) ¢ V.

Lemma 2.3: Let X = R" and let K be a compact, convex subset of Y =
R™. There exists an &, > 0 such that for all & < ¢, there exists f: U — Y, such
that f\v,, is an e-approximation of F\ﬁB and
a) S} is a finite subset of U(x), Vx € B;
b) ind(K, F(0, -), U(0)) = ind(K, f(0, -), U(0)).

Proof. Theorem 4.5 in [7] ensures the existence of a positive number,
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say &y, with the property that for any ¢ <e, every ¢-approximation of F g,
has the same index of F\p,. Fix ¢ < ¢, and let f: Uy — K be an ¢/2 approxima-
tion of F\z,. Using the same arguments of Lemma 2.4 of [8] we can prove
that there exists f;: Uy — K, &/2-pointwise approximation of f, that satisfies
property a). Then f; is an e-approximation of F\(—,B that satisfies property
a). The map f is then any continuous extension of U of f;, and b) follows
immediately from the choice of &. O

Lemma 2.4: Let X be a Banach space and K a convex, compact subset
of any Banach space Y. Let U be an open subset in X x K. Let us suppose
that for all x € 9 the equation y e F(x, y) has only isolated solutions. Then
the application x —o S(x) is a w-map and i(S) = ind(K, F(x, -), U(x)), for any
x e 9.

Proof. We have already seen that the map x —o S(x) is an upper semi-
continuous map. We want to prove that it is possible to associate an integer
m(y, S(x)) to any ye S(x) with the property of Definition 1.6. If y is an
isolated solution for F, then there exists a neighborhood € of y such that
QNS(x)={y}. Let us define m(y, S(x)) = ind(K, F(x, -), Q). Using the exci-
sion property of the fixed point index, m(y, S(x)) does not depend on the
choice of Q.

Let W be an open set in K such that S(x)NéW =@. As S is upper
semicontinuous there exists a ball B(x, r) such that Vx’ e B(x, r) we get S(x')N
oW = @.

Let us consider now the following homotopy:

H:[0,1] x W — K defined by

H(t,y) = F(tx + (1 — t)x', y).

As tx + (1 — t)x" € B(x,r) for all te[0,1], H is an admissible homotopy be-
tween F(x, )\ and F(x’, *)p. From this fact, using the additivity property
of the index, we get

Y. m(y, S(x)) = ind(K, F(x, -), W) = ind(K, F(x', -), W)

yeS(x)NW

= )  m(ySKx)). O

yeS(x') NwW
The following lemmata, whose proof can be found in [8], also hold.

Lemma 2.5: Let B be an open ball in R" and let M: B — R" be a w-map
with i(M) #0. If M verifies the B.U. condition on 0B, then there exists x € B
such that 0 € M(x).

Lemma 2.6: Let M =1 — M: B — X be a compact vector field satisfying
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the B.U. property. Then there exists € > 0 such that every e-approximation of
M, 0 < ¢ < g, satisfies the B.U. property.

We can now give the proof of Theorem 2.1

Proof of Theorem 2.1. Observe that the system (1) has solutions if and
only if 0 € T(x), for some x € B. Assume to the contrary that 0 ¢ T(x) for all
x € B. Then there exists ¢, > 0 such that 0¢e, T(g,;x) for all xe B. In fact
if not, then there exist sequences {¢,}, &, — 0, {x,} = B such that 0 € ¢, T(e,x,).
It follows that there exists {x,} = B and {y,} such that y,e T(x)), |Vul < &
|x, — x,| <é&, As y,—0 and T is an upper semicontinuous compact vector
field, there exists a subsequence {x, } < {x;} such that x; —»xe B, and Oe
T(x), absurd. On the other hand from Lemma 2.6 there exists &, such that
every e,-approximation T” of T, T': B — X verifies the B.U. property. Let
d =min {¢,, ¢, } and let V < U defined by V = {(x, y) € U: (x, g(x, y)) € 6 Gr T}.
Clearly V is an open set being the inverse image of the open set 6 Gr T,
trought the continuous map (I, g), where I stands for the identity map.

We divide now the proof in three parts.

First part: X =R", K<Y =R".

Let ¢* be that one given in Lemma 2.2, i.e. every &* approximation f of
F has the property that S c V. Let ¢, given by Lemma 2.3 and let & =
min {¢*, &y, }. By Lemmata 2.3 and 2.4 there exists a continuous map f:
¥V — R™ which is an ¢-approximation for F on ¥; and such that the set-valued
map §': B —o R™ defined by x — §'(x) = §(x) is a w-map such that S; = V.

The index of the map is given by

i(S") = ind(K, F(0, -), V(0)) = ind(K, F(0, -), U(0)) #0.

The set valued map T'(x) = g(x, S'(x)) is a w-map with index i(T’) =i(S") #0
(see [4]). As Sz V we have that Gr T' < 6 Gr T; but T’ verify the B.U.
property, then there exists x € B such that O e T'(x). Then 0 e §T(dx), which
contradicts the fact that 0¢ ¢, T(e;x), as 0 < ¢;.

Second part: X = R", K = Y Banach space.

As Uy is a compact ANR there exists a ¢//2-approximation f of F on
Up. On the other hand there exists a ¢/2 pointwise approximation f of f
whose range is contained in a finite dimensional convex set K.

By Lemma 2.2 and the properties of the index, we get

0 # ind(K, F(0, -), ¥(0)) = ind(K, f(0, *), ¥(0)) = ind(K,, f(0, ")\, VO NK,),

with ¥V, = VN(X x K;) and S§ = V;. Then S§ #0, with f =1 —f. Letg, =
gw, and f; = f,. These two maps satisfy the hypotheses of Theorem 2.1,
then, for the first part of the proof, the set valued map T”(x) = g,(x, $*(x))
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has a zero in B. As S§i(x) = V we have that Gr T” < § Gr T, contradicting
the fact that O ¢ ¢, T(e,x).

Third part: X, Y Banach spaces.

Let 7,: Uy —» X be an e-pointwise approximation of § on U, with finite
dimensional range. Let X, < X be the subspace containing the range of g, and
let g, =1 — Gyp\x,xxn7, a0d F, = F\x ,xnp,- Let T:B' =BNX,; —o X, de-
fined by T'(x) = g,(x, S(x)). T’ is an e-approximation of T,z then, by Lemma
2.6, for ¢ > 0 sufficiently small, T’ satisfies the B.U. property on éB’. By the
second part of the proof T’ has then a zero on B' = B, which is absurd. [

With a similar proof to that one of Theorem 1.4 of [8] we can prove the
following

Theorem 2.2: Let X and K as in Theorem 2.1. Let U be an open,
bounded set in X x K and let F: U —o K be an UV®-mapping. Consider a
compact, convex set Q — X such that for every x<Q we have y ¢ F(x,y) on
dU(x). Assume that for some (and hence for all) x € Q we have ind(K, F(x, -),
Ux))#0. If g:So— X is any continuous map such that g(x, S(x)) = Q for
any x € Q, then there exists a solution (x, y)e U of (1) with x € Q and y € S(x).

§3. Application

Consider the following nonlinear boundary value control problem

X+ x=hit, x, x,u), t e [0, m]
© x(0) = x(n) , x(0) = X(n) ,
u(t)e U(t, x(t)), aa.te[0,n].

Assume the following conditions

h,) the function h:[0, 7] x R3"— R", given by (t,p,q,r)— h(t,p, q,7), is t-
measurable and (p, g, r)-continuous;

Co) the multivalued map U: [0, n] x R" — R", (t, p) —o U(t, p) is t-measurable
and p-continuous for a.a. ¢t € [0, 7] with nonempty and compact values;

c;) OeU(t,p) for aa. te[0, ] and any pe R". Moreover, the set U(t, p) is
star-shaped with respect to the origin for any (¢, p) € [0, n] x R",

c,) there exists p > O such that |U(t, p)| < p for a.a. t € [0, 7] and any p € R".
In order to formulate our conditions on the control law t— u(t), u(t) =
(uy(2),...,u,t)) e U, x(t)), we need some preliminaries. First, we recall that
every essentially bounded function ve L*([0, n], R) can be regarded, except
for a set of measure zero, as the uniform limit of a sequence of simple functions
{¢,}ne » Where, for any fixed ne N,

n-2n
$o= Y G Xg,> ; = essinf u(r)
j= ’ teE;
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and the sets E;, 1 <j<n-2" are given by
E;={te[0,n]:j-27"<v@® <(j+1)27"},

(see [2]). Obviously if v is a simple function, ¢, =v for sufficiently large
values of n. (The convention yy = 0 is assumed).

From the covering theorem of Vitali, we have that for all 1 <j<n-2"
there exists a finite or countable family of nondegenerate closed intervals
having no internal point in common {If}fY) such that, except for a set of
measure zero, we get

K(@j)
E={)I.

J J
k=1

Lo K()
Let (af, B))2Y be the connected components of the set () I¥ where D(j) is
k=1
finite or infinite, and let D, be the set: D, = {D(1), D(2), ..., D(j), ..., D(n-2")}.

Let R be any positive constant. Let us denote by Uy the closed ball
B(0, R)= L*([0, #], R). For all ve Uy let us consider now the sequence {Gutnen
where

.2n

n-2n n N N
h="Y @t = Y Tt af=aVieD().
j=

J=1 ieD())
n-2n
The last equality holds except for a set of measure zero. Let d, = Y D(j)
Jj=1
and define d(v) = limsup d,. For u e L*([0, =], R") we define d(u) = max d(u,(t)).

n-+ow

Let n: RU{o0} - RU {00} a continuous, non decreasing, non negative function
with #n(o0) = co.

Assume the following condition on the controls u
c3) There exists N € R, such that 5(d(u)) < N for all ue L*([0, n], R") such
that u(t) e U(t, x(t)) for any x € AC([0, =], R").
The meaning of the function #(d(-)) is to indicate that we pay a cost each
time that we allow the control function to be nonconstant or jump. Therefore
we confine ourselves to consider only piecewise constant controls with a finite
number of switches.

We can write the problem

{)’é + x = h(t, x, X, u)

(CI) X(O) = x(n) s X(O) = x(n) s
in the form

(CV) {i (0:) izz—(;)K (t, 2, u) ,  where A= [_OI (I):I , z= [; ] and
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0

We put |z| = |x| + |x,], X = L*([0, =], R"), Y = L*([0, =], R"), Z = AC([O, =],
R?"), and V = LY([0, ©], R*").

Consider .the linear operator L: D(L) = Z — V defined by D(L) = {ze Z:
z(0) = z(n)} and

(Lz)(t) = 2(t) — Az(r) for a.a. te[0,n].

The operator L admits an inverse ¥4: V' — D(L) defined by z = 9w where

{z’ —Az=w

2(0) = z(m)
For a fixed ueY, let A°(-,u). V>V be the Nemitskii operator generated by
K, that is

Az, u) = K(t, z(t), u(t)) for aa. te[0,n].

Therefore problem (CV) can be rewritten, for a given u € Y, in the operator form

z=g(zu),
where g: V x Y—> V is given by

g=GoA

It is clear that g is a compact operator on V x K, for any compact set K c Y,
via the compact imbedding of D(L) into V' and the continuity of the operators
% and A. Let us define now the multivalued Nemitskii operator F: V—o Y
as follows

F(z):= {ue Y:u(t) e U(t, x(?)) for aa. t e [0, n]; n(d(w) < N},

where the vector x = x(t) represents the n-first components of z; obviously,
we can also denote the set F(z) by F(x). Finally, we can write the problem
(O) in the form

) {ueF(z)

z=g(z,u)
In order to apply Theorem 2.1, we have to prove the following

Proposition 3.1:
i)y 0eF(x) for all xe X;
ii) F(x) is star shaped with respect to the origin for all x € X;
iiiy ImF is a compact subset of Y;
iv) F is us.c. for all xeX.
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Proof. i) follows immediately from hypothesis c,).

ii) Assume u e F(x); we want to show that iue F(x) for all 1€ [0, 1].
Since u(t) € U(t, x(t)) a.e. on [0, n] and u(u) < N, then from c,) it follows that
Ju@®)e U(t, x(¢)) and pu(iu) < N for every Ae[0,1] and for-a.a. te[0,n].
Hence Au e F(x) for every A€ [0, 1].

iiiy From c,) it follows that the Im F, ie. F(X), is a bounded set of Y,
say it is contained in a ball of radius M > 0. Using c;) and the arguments
of [9] we can prove that it is also compact.

iv) Let {x,} be a sequence in X, x,— x; let {u,} be a sequence such
that u, »u and u, € F(x,), i.e. u,(t)e U(t, x,(t)) ae. on [0,n] and u(u,) < N.
Hence, passing to a subsequence if necessary, u,(t) — u(t) for a.a. ¢t € [0, 7] and
so from ¢,) it follows that u(f) € U(t, x(t)) a.e. on [0,n] and u(u) <N. So F
has closed graph and the statement is proved. O

Moreover, assume that the following conditions are satisfied.
h,) |K(t z u)| < alz| + blu| ae. in [0, n] and for all u € R" and z € R*", where

0<a<land b>0
i

hy) let ig(t, z, u) = {z, Az + K(t, z, u)) = {z, K(t, z, u)), where {«, B) denotes
the inner product of a, B € R*".
Assume that

LS 1 (A4
J 11m1nf1£(# >0 for every ue R" such that |u| <M.
0 lz|=e

Here M is the constant of Proposition 3.1-(ii). We have the following result.

Theorem 3.1: If assumptions h;), hy), h;), o), ¢;), ¢;), ¢3) are satisfied,
then problem (C) has solutions.

Proof. Hypotheses h,) and h,) ensure the existence of a constant R >0
such that, if z is a solution of (CV) corresponding to a control ue Y with

luly < M, then max |z(t)] < R.
te[0,n]

In fact, assume the contrary. Then there exists a sequence {z,} of z-
periodic solutions of (CV), with corresponding u, € F(z,) such that max |z,(?)*
te[0,n]
o d |z :
— o0 as n—oo. Consider i 3 {z,(t), 2,(8)> = {z,(t), Az, (t) + K(t, z,(t),
u,(t)> a.e. on [0,7]. Dividing by 1 + |z,()|* and integrating over [, t], T € R,
t € [1, T + 1], taking in account of h,) and the boundedness of {u,}, we obtain

1 _ [ €2l Azf9) + K6, 2409), 15
Sn(1 +12,0P) = In(l + |z,(@)) = f T

<C;

ds
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since z, is a periodic function we get

In max (1 +|z,®)?) <2C +1n min (1 + |z,(0)[?)
te[0,7) te[0,n]

so that min (1 4 |z,(t)|*) > oo for n > 0. Hence |z,(t)] # 0 for large n and we

te[0,n]
have f G2l 42,9 + K6, 2408 l9)> ;| |2a(m)]

Z,) "= ,0)

=0 for large n. Using

h,) we obtain

0 = lim inf ds,

n—o0

J " <2ls), Azy(s) + K(s, 2,(), un(8)) j " ik (8, Z,(8); Un(5))
0 |Zn(S)|2 - 0 IZn(S)lz

contradicting hj).

Let B an open ball in V containing ail the solutions of problem (CV)
corresponding to a control ue Y with |uly < M. Since Im F is a compact
subset of Y, then coIm F is a convex and compact subset of Y. Take
K = Y an arbitrary compact and convex subset such that K > ¢o Im F, KN
tolmF=0. Let W=Bx K. Clearly all the possible solutions of (3.1) are
in W and Bc 2F. Finally, consider the following homotopy: H: [0, 1] x
K —o K defined by H(A,u) = AF(4,0), where F:K x V — K is given by
F(u,z) =F(z)c K for any ue K. We have that u¢ H(A,u) for any ue
0K and any Ae[0,1], since Oe F(u, z) for any (u,z)e Y x V. Therefore,
ind(K, F(-,0), U(0)) # 0, where U(0) is any relatively open set in K such that
U(0) > F(0). O

We end with the following result.

Lemma 3.1: For sufficiently large R >0, the map T(z) =z — g(z, S(2)),
with S(z) = F(z), satisfies the B.U. condition on 0B = 0B(0, R) = V.

Proof. The proof is based on the following result stated in [8].

—A map T:%(0,R) = — V satisfies the B.U. condition if and only if the
multivalued map T(z) = Q(co T(2)) — &(T(—z)) has no zeros on 0%B.—

Here Q(A) = {Aix: A€ [0, 1], x € A} and €o(A) is the closure of the convex hull
of A. Cons1der now v e g(z, S(z)), for z e d%(0, R). We have that

{13 — Av = K(t, z(t), u(t))
v(0) = v(n)

for some u € S(z). Therefore v(f) = j G(t, s)K (s, z(s), u(s))ds
0
[e* =D+ Net™™ 0<s<t<m,

where G(t,8) = {(e'A _ [y teAts) 0O<t<s<n.
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We get [v(t)] < J |G(t, s)| |K(s, z(s), u(s)}lds. Using the fact that the logarithm
0

norm u(A) of the matrix A is zero we obtain

o) < fﬂ |K(s, z(s), u(é))lds < anR + bnM .

By h,), for sufficiently large R > 0 we have that |v|;: < R. Assume now that
there exists ze 0B(0, R), 4 €0, 1], y, € ©0(T(z)) andy, € €o(T(—2z)) such that

Az— Ay, +z+y,=0.
Thus
0=114+ Dz — Ay, —y)l =0 + Dzl — Ayilp + 12l >0,

since |yylpt, |yl < R. Therefore, using the above result of [8], we can con-
clude that T: B(0, R) — V satisfies the B.U. condition. O

Remark 3.1 Let xe X and let f: R" x R" — R" defined as follows

1 if u(t)e U(t, x(t))

S(x(e), u(e)) = {m it u(t) ¢ Ut x(0) .

If ueY, we have that j f(x(t), u(t))dt =1 if and only if u(t) e U(t, x(¢)) ae.
0

on [0,7]. Hence we can define the map F: X — Y as follows

F(x) = {u eyY: Jn f(x(@®), u@t)dt < M, p(u) < N} .
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