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§0. Introduction

Triangular functions of Schwarz satisfy third order algebraic differential
equations. Painlevé states these equations in some sense cannot be reduced
to a finite number of algebraic differential equations of order at most 2 (confer
p. 721 in [6]). We give here the proof of his statement from the standpoint
of differential algebra, which was attempted in the previous paper [5].

Let A, 4 and v be three rational numbers with

1

p=A"1, gq=ut r=v'eN and A1+pu+v<l.

Consider the following algebraic differential equation over C with respect to
the differentiation ' = d/dx

1
1) Dy)= — Ey’ZQ ).
Here the left hand side denotes the Schwarzian derivative of y with respect to x:
1
D) =0"/yY = J0"/y)

and

1—2%2 1—pu? 224+ p2—v2-1
o) = —, . - :
y -1 yy—1)

By the use of the result of [5] we shall prove the following theorem.

Theorem. For any finite chain of differential field extensions of
C.:C=RycR;c--cR, with tr.degR;/R;_; £2 (1 £i<m), R, contains
no nonconstant solution of (1).
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§1. Continuity of differentiation

Let K be a field of characteristic 0 and R be an algebraic function field
of one variable over K. Suppose R is moreover an ordinary differential field

with a single differentiation . Here we need not assume K is a differential

subfield of R.

Lemma. Suppose that K is algebraically closed. If a valuation ring A
of R containing K has the property that K’ is included in some fractional ideal
J of A, then the differentiation ' is continuous with respect to the topology
induced by A.

Proof. Let (1) be the maximal ideal of 4, te A. The completion R of
R is represented as the field of formal power series K((f)). R can be regarded
as a subfield of R. Let i denote the embedding map of R into R. In R
we introduce the continuous differentiation * as

Qoast)* =Y (@)t + Yia;t'~a(t).

This is well-defined because K’ =J. In this sense R turns out to be a
differential subfield of R. 1In fact clearly a* = 1(a’) for ae K and t* = 1(t'). We
must show 1(u)* =1(u') for any u in R. If u is an element of K[t], the
assertion follows readily. Hence the assertion holds true for the subfield K(t)
of R. Let u be an arbitrary element of R\K(f). It then satisfies the
irreducible equation over K(t)

w+au T +4a,=0, n>1, aeK(t).
Differentiating this equality, we have
(" '+ m—Dau" >+ +a,_Ju+auw 4+ +a,=0.
On the other hand from the equality
wwy + (a1t + -+ 1(a,) =0
we have
{n1)" '+ (n — Da(a)i@)" 2 + - + 1(a,_ ;) }1(w)*
+1(a)* 1w + -+ 1(a,)* = 0.
The fact that 1(af) = i1(a;)* implies
{niwy ' + (n — Dila @) 2 + - + 1(a, )} -
(1) —1(w)*} =0
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Noting the term in the first braces is equal to the image of
" 4+ (m— Dau -+ a,_, #0,
we find 1(u’) = 1(w)*. This completes the proof.

Proposition. Let k be a differential subfield of R and suppose R is an
algebraic function field of n variables over k. If a valuation ring A of R
includes some intermediate subfield K between k and R with tr. deg R/k=n — 1,
then the differentiation of R is continuous with respect to the topology induced
by A.

Proof. Let v be the valuation of R associated with A. Let L denote
the algebraic closure of K. Note that v is trivial on the algebraic closure of
K in R. Then v can be extended to the valuation w of LR which is trivial
on L. The field extension LR of k turns out to be a differential field extension
of k with a unique extension of the differentiation. To say precisely let x;
(1 £i < n— 1) be a transcendental base of K over k and define a differentiation
by

u = Dou + Y (D;u) x|

for u in L, where D, denotes the derivation of L which coincides with ' on
k and satisfies Dyx; =0 for every i, D, (1 £i<n— 1) are derivations of L
over k with D;x; =0 (i #j), 1(i =j). Clearly L is included in L+ Lx{ + - +
Lx,_,, therefore in some fractional ideal of the ring of w. By the above
lemma we complete the proof.

§2. Riccati equation

Let K be a differential field of characteristic 0 with a single differentiation
"and p and g be two elements of K. Consider the following linear differential
equation over K

2 y'+py +qy=0.

Recall that a differential field extension R of K is called a weakly liouvillian
extension of K if there is a finite chain of differential field extensions:
K =Ry = Ry =---= R, = R such that for each i, R; is an algebraic extension
of R;_(t;) of finite degree and either ¢/ or t{/t;eR,_,. If the further condition
that the fields of constants of K and R are the same is satisfied R is called
liouvillian over K. Elements of a [weakly] liouvillian extension of K are
called [weakly] liouvillian over K. (cf. [7].)
In (2) if we let u=y'/y+ p/2 and v'/v=y'/y + p/2, we have
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(3) u +u*+5s/2=0,
) v" + sv/2 =0,

where s = — p’ + 2q — p*/2e K. The following theorem is due to Liouville
(cf. [3] or p. 97 in [4]).

Lemma. Let C denote the field of constants of K and suppose C is
algebraically closed. If the equation (2) admits a nonzero solution which is
weakly liouvillian over K, then either the equation (4) has a fundamental system
consisting of algebraic elements over K or the equation (3) admits as a solution
an algebraic element over K of degree at most 2.

Proof. Suppose y; # 0 is weakly liouvillian over K, satisfying (2). If we
set y = zy, in (2), then (2) reads

yiz" + 2y1 + py)z' =0.

If z is a nonconstant solution then (2) has the fundamental system y;, zy,
which are weakly liouvillian over K. By virtue of a theorem of Kolchin [2]
there exists a fundamental system for (2) consisting of solutions which are
liouyvillian over K. Applying the theorem of Kaplansky [1, §19], we get the
desired result. (cf. [4, §12-13].)

Now let ‘us consider the hypergeometric differential equation

©) x(1=x)y" +{y =1 +oa+p)x}y —afy=0

with complex numbers «, § and y. This time the equations (3) and (4) read
(6) u +u? +s(x)/2=0,

) v" + s(x)v =0,

where ‘

1—/12+ 1—u? 1 =22 —pu?+v?
S =
2x? 2(1 — x)? 2x(1 — x)

b

=1—y u=y—a—p v=a-4

The equation (5) is reducible (in the sense of linear operator) if and only if
(6) has a rational solution. The following facts are known.

(I) The equation (5) is reducible if and only if one of «, 8, y —a, 7y — f
is a rational integer. (cf. p.7 in [4].)

(I) Under the irreducibility of the equation (5) and the condition that
0<i<l1l, O<pu<l1, 0<v<l1, whenever (5) has a non-trivial algebraic
solution, the numbers A, u and v must be rational numbers with 4 + u+v > 1.
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(cf. p. 17 in [4].)

(IIT) Under the irreducibility of the equation (5), whenever (6) has a
non-trivial quadratic irrational solution, two of 4 — 1/2, u — 1/2, v — 1/2 must
be rational integers. (cf. pp. 96-100 in [4], or [7].)

According to these facts and the above lemma, we shall prove the
following.

Proposition. There exists no algebraic solution of
8) W +u?+Q(x)/4=0,
where Q denotes the rational function mentioned in the introduction.

Proof. Suppose there exists an algebraic solution u of (8). If u is a
rational function, then the equation (5) is reducible. Hence by (I) one of
o f,y—a, y— B is a rational integer. This is however impossible because

1

1
o= (U= h— ), f=—i—p—,

1 1
v—cx=5(1—/1+u—V), v—b’=5(1—l+u+V),

and A+ pu+v<l, all 4, p, v being positive rational numbers < 1/2. The
equation (5) is therefore irreducible. If u is a quadratic irrational function,
then by (III) two of A — 1/2, 4 — 1/2 and v — 1/2 are rational integers. Since
each of 4, i, v has an inverse in natural numbers, no two of them coincide with
1/2, we meet a contradiction. From the lemma it follows that the equation
(7), therefore the equation (5), has a fundamental system consisting of algebraic
solutions. The numbers A, y, v must satisfy the inequality in (II). But this
is absurd.

§3. Proof of the theorem

Conversely assume that there exists a finite chain of differential field
extensions of C: C=R,c R, c---c R, such that tr. deg R,/R,_; 2 (1 Zi<m)
and R,, contains a nonconstant solution of (1). We may assume without loss
of generality m is the minimum and each R; (1 £i<m — 1) is algebraically
closed. Then tr. deg R,,/R,,_; = 2. In fact if it is not the case, by Theorem 1
in [5], R, _,; contains a nonconstant solution of (1), which contradicts the
minimality of m. Let k= R,,_; and y be a nonconstant solution of (1) which
is contained in R,. By our assumption y satisfies a second order algebraic
differential equation over k, but none of the first order. Hence y' is
transcendental over k(y). Let K be the algebraic closure of k(y). Define the
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differentiation in the field of Puiseux series K{{1/y’}} in 1/)" over K as

(Zaiyrli)r — Za?yr}.,- + Zaiyy/),,' +1 + zliaiy,li - ly”,

where 4; (0 £ i) are descending rational numbers with a common denominator,
ay, # 0, * denotes a derivation of K which coincides on k with ' and satisfies
y* =0, and g;, denotes the derivative of a; with respect to y. Then KR,
may be regarded as a differential subfield of K{{1/y'}} according to the
proposition in §1. If we let z = y”/y’, the equation (1) reads

" !

=)'z,
©) Y L
r_ - 2+A 12 :0
7oy o)

If we express z =Y a;y'* (0 <), ay # 0,

Z’ — Za;ky/),,- + Zaiyy,li +1 + Z)“iaiy,lizaiydi'

It is readily seen that A, =1 and

1 1
a0y+§a(2)+ EQ(_V)=0

The element u = a,/2 is algebraic over k(y), so that it is algebraic over kq(y)
for some finitely generated field extension k, of the rational number
field. Hence u is regarded as an algebraic function in y over C. This
contradicts however the proposition in §2, which completes the proof.
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