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On Non-Local Problems for Elliptic Linear Equations

By

J. CHABROWSKI1
(The University of Queensland, Australia)

In this article we investigate the existence and uniqueness theorems for a
class of non-local problems for elliptic linear equations. The first general
formulation of a non-local problem can be found in [1]. Since then several
authors have developed the ideas of this paper in many ways for parabolic and
elliptic equations (see [2], [3], [4], [7], [8], [9] and {11]). The main purpose
of this work is to extend the recent results of [11]. In particular we derive
the maximum principle and some apriori bounds for solutions of non-local
problems in bounded domains. The existence of solutions then follows from
the Fredholm theory of the integral equations. In the final part of this paper
we discuss some non-local problems in the half space.

1. Uniqueness results

Let Q = R" be a bounded domain with the boundary dQ. In Q we
consider the equation

1) Li= 3 a0l 3 b2+ ciu = ).

b.
= 0x;0x + z ’(x)ﬁxi

j i=1

We make the following assumptions:

(A) there exists a positive constant a such that
n
alA? < Y ay(x)A4
i,j=1

for all xe Q and A€ R". Moreover the coeflicients a
in Q with ¢(x) < 0 on Q.

Let I, and I" be open subsets in dQ and let Iy,NTI'=F, Al =0 =y
and I'UI,Uy = aQ.

To formulate a non-local problem associated with (1) we introduce a
mapping F: I' x C(Q)— R. 1In this paper we investigate the following non-
local problem: given functions f, ¢ and ¥ defined on Q, I, and I, respectively,
find a solution u € C3(Q)N C(Q) of (1) satisfying the conditions

(2) u(x) =¢(x)  only,

b;, ¢ and f are bounded

ij°
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and
(3) u(x) + F(x, u()) = P(x) onl.

The condition (3) determines the non-local character of the problem (1), (2), (3)
in which the values of a solution on the part I" of the boundary are connected
with values of u on Q.

We commence with the following uniqueness results.

Proposition 1. Suppose the mapping F is linear in u and has the following

property:
(Ay) for every xeI and ue C(Q) with u#£ 0 on Q there exists a point
% € Q such that

) |F(x, u(*))] < [u(X)] .
Then the problem (1), (2) and (3) admits at most one solution in C*(Q)N C(Q).
Proof. Let ue C*Q)NC(Q) be a solution of the homogeneous problem
Lu=20 onQ,
u=0 only,
and

u(x) + F(x,u(-))=0 onT.

Suppose that u#0. We may assume that u takes on a negative value at
certain point of Q. By the strong maximum principle ([5] Theorem 3.5 p. 35)
there exists a point x° € I” such that u(x°) = mingu < 0. By (A,) there exists a
point x* € Q such that

|u(x®) = [F (% u(-) < u(x?)]

If u(x') <0, then u(x') < u(x®) = mingu and we get a contradiction. Hence
u(x') >0 and consequently there exists a point x?>e @ such that u(x?)=
maxgu > 0. Again by the strong maximum principle x> € I. It follows from
(A,) that there exists a point x> € Q such that

u(x?) = |F(x* u())| < Ju(x*)].

If u(x®) > O we get a contradiction, hence u(x®) < 0. Now we must distinguish
two cases

[u(x)] < u(x?) or |u(x®)| = u(x?).

In the first case |u(x®)| < u(x?) < |u(x?)|, since both values u(x°) and u(x3) are
negative we obtain a contradiction. Similarly in the second case
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u(x?) < |u(x®) < |u(x')| = u(x")
and again we obtain a contradiction.

As an example of mapping F having property (A;) we can give

(6) F(x,u) = L u()uw*dy),  xel,

where for each xeI” p*(-) is a Borel signed measure on Q with property
|u*| < 1 for each x e I' (here |u¥| denotes the total variation of u*).

Propesition 2. Suppose the mapping F is linear in u and that
(A,) for each x € I" and u € C(Q) there exists a point X € Q such that

4) [F(x, u()l < u(x)] .
Then the problem (1), (2) and (3) has at most one solution in C*(Q)N C(Q).

The proof is similar to that of Proposition 1 and is therefore omitted.
The mapping (5) fulfills condition (A,) provided supp u* = Q and |u*| <1 for
each x e I.

We now establish the following variant of the maximum principle.

Proposition 3. Suppose that

(a) —1<F(x,1) for every xe T,

(b) for every point x°e I' such that F(x° 1) > —1, F(x° -) is decreasing
and F(x° Iy =1 F(x° 1) for every constant I,

(c) for every point x° € I such that F(x°, 1) = —1 and every u € C(Q) there
exists a point X € Q such that

—F(x% u(")) < u(®).

Let ue CX(Q)NC(Q). If Lu=0 (<0) in Q, u(x)<0 (=0) on I, and
u(x) + F(x, u(-)) <0 (=0) on T, then u(x) < 0 (>0) on Q.

Proof. It suffices to prove the first part of the theorem. We may assume
that there exists x° € I" such that 0 < u(x°) = maxgu. Now we distinguish two
cases

F(x°,1)> —1 and F(x,, 1)= —1.
In the first case it follows from (b) that
u(x®) + F(x° Du(x®) < u(x®) + F(x% u) <0

and consequently u(x®) <0 and we get a contradiction. In the second case
according to (c) there exists a point x' € Q such that
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u(x®) < —F(x° u) < u(x")

and u takes on a positive maximum at x! € Q and we get a contradiction.

2. Apriori bounds

Proposition 3 can be employed to derive apriori estimates for solutions of
the problem (1), (2) and (3).

Theorem 1. Let ¢(x) < —d on Q for some positive constant d and suppose
that for each xe I, F(x,u) is linear in u and that there exists a constant
0 <6 < 1 such that F(x,1)> =0 forall xe I If ue CHQ)NC(Q) is a solution
of the problem (1), (2) and (3), then

1 1
() lu(x)| < sup |#| + ~sup | f] + sup |¢|
r d Q 1— 5 Iy

for all x € Q.

Proof. We may assume that the right side of (7) is finite since otherwise
there is nothing to prove. Let

M,
1-6

w(x):u(x)+%+M1+ forxeQ,

where M = sup, | f|, M; = supy, |4| and M, = sup|¥|. Then

M
< Zésf—MSO onQ,

M
Liw) = [ + -+ eM, + 1~

M M
w=¢+—+ M+ 2

1 52¢+M120 on I,

and

M M M M
w+F(x,w)=Y’+<—+M1+—2>+F(x,l)<7d—+Ml+ 2 )

d 1-9 1-9
M M, M M,
>0 onl'.

Proposition 3 implies that w > 0 on Q. Similarly we can establish the inequality

M,
1—0

M
ux) < —+ M, +

= on Q
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considering the auxiliary function

M M M,
d T 1-5

on Q.

z(x) = u(x) —

Theorem 1 can not be applied to solutions of non-local problems for the
Laplace equation. One can establish some apriori estimates for a class of
elliptic equations which also cover the Laplace equation provided the domain Q
is cylindrical.

Let Q =Q x (0, T), where 2 is a bounded domain R"™* and T < 0. A
typical point of Q is denoted by x = (x', x,) with x’e Q and 0 < x, < T. Using
notations of Section 1 we put

Ir=Qxi{x,=0}, y=02x{x,=0} and I;,=0Q—y—T.
For the sake of simplicity we only consider the following non-local problem

) u(x) = 4(x)  onrly,

39 u(x’, 0) + Zl Bi(x") L u(y’, Hu(dy') = ¥(x’)  onQ,

where y; are non-negative Borel measures on 2, T,€(0,T) (i=1,2,...) with
inf, T, > 0.

Theorem 2. Let c(x)<0 and b,(x)<0 on Q. Suppose that —1<
2 B(x)<0 and Bi(x')<0 (i=1,2,...) on Q and that u, are non-negative
Borel measures on Q with u()<1 (i=1,2...). If ueCHQNCWQ) is a
solution of the problem (1), (2') and (3'), then
lu(x)| < C max (supr, |4], supo | 71, supg | f1)

in Q, where C is a positive constant depending on T.

Proof. We first prove the theorem under the additional hypothesis
—1<—-2<) Blx)<0 on Q,
i=1

where 1 is a constant. We may also assume that M = max (supr, |¢l,
supg |?]) < oo and M; = supg | f| < 0. Set

M
o) = u(x) — T — My (T — &),

where a constant o« > 0 is to be determined. Then

M
Lv=f— ICTA + M, a*e*a,, + aM,e*b, — M, (e*T — e*")c
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Choosing « sufficiently large we may assume that «?a,, + ab, > 1 on Q and
consequently

Lv>0 on Q.

On the other hand v < 0 on I, and
v(x', 0) + Zl Bi(x") . v(z’, T)pdz")

=P M (e —1)—

M M &
1—-4 1—-4

- M, Z Bix ) Q) (™" — e*T)

M aT Mj' aT
=M, A—-DET-1)<0 on Q

and hence by Proposition 3 v <0 on Q. Introducing the auxiliary function

M
w=u-+ m + Ml(e"‘T — eax")

we prove the inequality
M
u(x) > T, M, (e*T — e**n) on Q.

The general case can be reduced to the previous situation by means of the
transformation

u(x) = v(x) cos dx,
where § > 0 is a constant such that

dtandéT <1 and 6T <m/2—¢

for a certain ¢ > 0. Indeed, let

n 0% n ov

V= b, — 2a, tan x,)—

; JZ=1 alj ax ax i;l ( 3 aln an xn)axi
+ (¢ — 6%a,, — 6b, tan 6x,)v inQ.

Then v is a solution to the problem
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f
= on
! cos 6x, 2,
¢ _
= on [
cos 0x, o

and

v(x,0) + Y Bi(x")cos 67T; J‘ u@’, T)udz) = ¥(x')  onQ.
i=1 Q
Since 0 < cos 6T; <cos 0Ty, < 1 (i=1,2,...), where T, = inf; T;, we see that
—1<cos 8T, < Y Bi(x)cos6T; <0,
i=1

and by the previous part of the proof we have

[v(x) + M (e —e™)  inQ

[
1 —cos 6T,

for sufficiently large o, where

M = sup Lf]
¢ COSs 0x,

and M, =max[sup 7] ,supl']’l}
I, COsdx, o

and the resuit easily follows.

Theorem 2 is related to Theorem 2.2 in [7], where a similar apriori
estimate has been obtained under the assumption ¢(x) < —d on Q, d > 0.

3. Existence theorem

For the existence theorem we shall need the following assumption
2

0%a; ob; _
(B) % (,j=1,...,n, — (i=1,...,n) and ¢ are Holder continuous on Q
0x,;0x; ox

(with exponent a).
Moreover we assume that dQ € C2™* We only consider the non-local
problem where the functional F is given by

i

F(x,u(*)) = L Bx, y)u(y)dy ,

that is (3) takes the form

(3) u(x) +f B(x, yyu(y)dy = P(x)  on .
Q
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We now make the following assumption: o
(C) The function B(x, y) is continuous on I" x Q, |B(x, y)| < 1 on I' x Q, for
each x € I'supp f(x, -) = Q and B(x, y) = 0 for all (x, y) ey x Q.

Theorem 3. Suppose that (A), (B) and (C) hold. Let c(x) < —d on Q,
where d >0 is a constant. If ¢ and ¥ are continuous functions on I, and T,
respectively, with ¢ = ¥ on y, then the problem (1), (2) and (3') admits a unique
solution in C*(Q)N C(Q).

Proof. We first assume that ¢ =0 on I,. We try to find a solution in
the form

d
™ u(x) = LQ G D) yas, —J Glx, D)y .

dv 0

y

where v € C(0Q) with supp v < I, is to be determined, G is the Green function
for the operator L and dG/dv, denotes the conormal derivative. Set K(x, y) =
dG(x, y)/dv,, then the condition (3') leads to the Fredholm intergal equation of
the second kind

) v(x) + f [j Blx, )IK(y, Z)dy]v(Z)dSz
aeLJo

= Plx) + L Blx, y) [L G(y, 2)f (Z)dZ] dy

for xe I. Applying Proposition 2 it is easy to show that the corresponding
homogeneous equation only has a trivial solution in L?(I"). Hence there exists
a unique solution v in L2(I') of the equation (8). It is clear that every solution
v of (8) is continuous on I” and vanishes on y. Extending v by 0 on 6Q — I" we
obtain a continuous function v on dQ such that the formula (7) gives a solution
in this case. ,

Suppose next ¢ # 0 on I;. Let @ be a continuous extension of ¢ to Q
and let w e C%(Q) N C(Q) be a solution to the Dirichlet problem

Lw=f onQ,

w=ao on dQ .

We now consider the following non-local problem
Lz=0 inQ,

z=0 onl,
and

z(x) + L Bx, y)z(y)dy = ¥(x) — L plx, yyw(y)dy — d(x)  on I
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Observe that ¥ — & = ¥ — ¢ =0 on y. Therefore by the previous part of the
proof this problem has a unique solution z € C2(Q)N C(Q). It is easily checked
that z + w is a solution of the problem (1), (2) and (3).

We point out here that the existence result in [11] (Theorem 1) corre-
sponds to the situation where |B(x, y)| <ron I x Q with 0 <r < 1.

5. A class of non-local problems in a half-space

For a point x € R" we write x = (x’, x,), where x’ e R"!, x, e (—o0, o).
Let RY = {x;x"€ R" %, x, > 0}. We restrict ourselves to the following class of
non-local problems for the Laplace equation

©) du=f(x)  inRY,
(10) u(x’, 0) + i Pixu(x', Y;) = P(x')  on R"',

where f, f; (i=1,2,...) and ¥ are given functions on R", R"! and R"!,
respectively.

We commence with the uniqueness result for (9), (10} in a class P of
functions of polynomial growth in x’, that is, P = {u; |u(x)| < C(|x'|" + 1) on
R’} for some positive constants m and C}.

<
1+Y

YR B(x)<0and B(x)<0 (i=1,2,...) on R*™. Then there exists at most
one solution u € C2(R")N C(R™)N P.

Theorem 4. Let inf, Y, > 0 and sup, Y, = Y < c0. Suppose that —

Proof. We follow the argument used in the proof of Proposition 1 in [10]

(p. 199). Let u be a solution in C*(R:)NC(R%)NP to the homogeneous
problem

Au=10 in R},
u(x', 00+ Y B(xu(x,Y;)=0  onR"*.
=1

Let X’ be an arbitrary point in R"™* and for a positive number R we set
M=MR) = SUP(x'—%/| <Ry x [0, o) [H(X, X,)] .
For fixed ¢ > 0 we introduce the auxiliary function v defined by

n—1 C— Y.
v(x) = u(x) —e(x, + HM —¢ [] coshw cos g—nx,, ,
i=1

4/n 4
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which is clearly harmonic in R} and continuous on E Let us consider the
cylinder {x;|x"— X'| <R, 0 < x, < 1/e}. Itis clear that

1 1 n-1 )
v(x/,4>=u<x’,g>—M—sM—s I coshucos%so
& i=1

4\/r_t
on |x' — X'| < R and

1
v(x',x,) <0 on (|x"— X' =R) x [O, —>
€

provided R is sufficiently large. Now

o0

o(x’,0) + ), Blx")o(x', Y)

i=1

(x; — X))

n—1 e
= —eM —¢ cosh
ig 4\/5

] 0 n—1 L — Y.
— Y Bx )Y+ DMe — Y, Bi(xe [ ] coshMcosg Y,
i=1 i=1 i=1 4ﬁ 4
nl e(x; — X)) e > e(x; — X)n
< —eM —¢]] cosh——="~ + Me+ —— [] cosh————— <0
i=1 4\/;1 Y+1ig 4ﬁ

on |[x" — X'| < R. Consequently by Proposition 3 we obtain
nl e(x; — X;)m

u(x) < e(x, + UM + ¢ [] cosh ——="—

i=1 4ﬁ

on (|x"— X' < R) x (0, 1/e). Similarly we establish the inequality

T
c0S &7 X,

n-1 . — X
u(x) > —e(x, + )M — ¢ [ cosh e — X)) cos g—nx,,

i=1 4\/;l 4
on (|]x’— x'| < R) x (0, 1/e). Letting ¢ >0 we get u(x’, x,) =0 for all x, = 0.
Since x’ is an arbitrary point in R""! the result follows.

In our final result, for the sake of simplicity, we only consider the homo-
geneous equation (9).

Theorem 5. Assume that —1 <y <> 2, B(x')<0 on R"', where y is a
positive constant and that Bi(x') <0 (i=1,2,...) on R"™'. Furthermore suppose
that the series Y72, Pi(x’) is unmiformly convergent on R"™'. Then for every
continuous and bounded function ¥ on R"™! there exists a unique bounded

solution in C2(R")N(R™) of the problem (8), (9) (with f = 0).
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Proof. It is easy to show that every bounded solution to our problem
satisfies the integral equation

u(x) = —j i pi(z")u(z', )Py, (x" — z')dz’ +f P (x"—z")¥(z")dz",
R Rn‘l

n-1 (=1
5
xn
P, (x') =

Xn 7.l:(n+1)/2 (|x/|2 + an)(n+1)/2

(see [10] p. 61-62). Let Cb(ﬁ) denote a space of bounded continuous func-

tions on RY equipped with the supremum norm. To every uer(ﬁ) we

assign a function u = Tv € C,(R%) given by the formula

+ J' P, (x"—2z)¥(z')dz .
Rn—l
It is clear that u is harmonic on R, continuous on E and
u(x,0)= = B(x)(x, ¥)+ ¥(x) onR"'.
i=1

Since T is a contraction on C,(R’}) the result follows from the Banach fixed
point theorem.
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