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Rational Solutions of the Second and
the Fourth Painlevé Equations
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§0. Introduction

0° In this paper, we study rational solutions of the second and the fourth
Painlevé equations:

Pya) V' =224t24+a

26

P, 0) V= _212—(,2')2+ %13+4z12+ Ar—ayi— 27
where ’ denotes d/dt and «, 8 are complex constants,

We note that every solution of P,(J=2, 4) is meromorphic on C, and that a
rational solution of P, (J=2, 4) is nothing but a solution which has at most a pole
at infinity.

1° On rational solutions of P,(«), we obtain the following theorem.

Theorem 1. (1) Py a) has a unique rational solution if and only if « is an
integer.

(2) When a=0, the rational solution is identically zero.

When « is a nonzero integer, the rational solution has the form

7, g (—a)(r' - -)
A= i =
jZ (t—b) [14-:(z—b))

where ;=1 or —1 and b,’s denote distinct q complex numbers.

Remark. For any integer «, we can construct the rational solution of P, a)
from the rational solution of P,(0) using the transformations 7, and T_, the bi-
rational transformations between Py(«) and P,(«+ 1), which are introduced in Prop.
2-3in § 2-1°.

Some examples of the rational solution of P,(«) are listed in the Table 1.
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a The rational solutions of P,(«)
0 0
1 =1
t
—2(t*—2)
2 (r+4)
3 —33(t°4-8¢*+160)
(#+4)(¢® + 201 —80)

Table 1.

2° In order to state the theorem on rational solutions of P,(«, §), we must
define the subsets X, Y, Z, A,, 4,, - - - in C* as follows.

Definition (See Fig. 0-1, 0-2).
X={(2k, =%+2m), Ck+1, £%4+2m)| k,me Z}
Y={(2k, 2m+1), Qk+1, 2m)|k, me Z}
Z={(ex, )| (a, ) € Y, 00}
Ai={lk, 1+2m)+k)k,ne Z, n>0, k> —n}
Ay={(e, )| (e, — ) e 4;}
B ={k,(1+2n)+k)|k,ne Z, n< —1, k> —2n}
B,={(a, )| (—a, —8) € B}
Ci={(a, 0)|(—a, 0) € B}
C.={(a, 0)|(a, —6) € B}
D ={(2k+1,0)|k e Z, k>0}
D,={(e, 0)|(—a, 6) € D}
Note that
XNY=4,
Z=A4,UA4,UB,UB,UC,UC,
Y=ZUD,UD..

On rational solutions of P(«, ), we obtain the following theorem.

Theorem 2. (1) PJfa, 6) has a unique rational solution if and only if («, 6)
belongs to XU Z.

(2) According to (a, 6), the rational solution of P(«, 6) has the following form:
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g a

E\
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Fig. 0-2 (the set Y)

|
2 &; 2 P
i=—= . P V-1
[) 3 +]Zl (t—b,) 3’ T 0 (V-1
Z_‘. e [T (=b)
— att ' 4 (a Ay 2+[aB—%(—902+3a2—|—1)]t‘1‘3+~--
(¢, e X q
10 n (1—b)
' 194+ A9 4 Brat 4.
(sjzl or —1, A=—3" b, B— Zb]—bk>
=1 =k
(When (a, 0) :(0, il), 1= —£t>
3 3
A= —2t 4] —u4 P (IV-2)
J=1 (— ]) Q
1
(Z‘fl)u 4 [P:(-—oc)t‘l”—i—(~—aA)t‘1‘2+[(— ocB)—l—Z(—t92—i—3oc2+1)]tq“3+ .
¢;, A, B, Q are the same ones as in (IV-1).
(When (a, 6)=(0, +1), A= —21)
-y _P V-3
jZ:l (t=b) ©Q (V=3
(0[, 0) o :
€ B,UB, | (P=0tv""4+(0A4)te 2+ 0<B —I—E—ﬁ)t‘l*—}— .
g;, A, B, Q are the same ones as in (IV-1).
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(IV-4)

(v, 0)
e C,UC, P:(—a)zq-1+(—aA)tq~2—e(B +24 e);q—3+ .

¢;, A, B, Q are the same ones as in (IV-1).

Remark 1. The unique rational solution of P,(—n, n+1) is a function —2¢
+ H!/H,, where n denotes a positive integer and H, denotes the Hermite polynomial
of order n (cf. Airault [11], Remark, p 47).

Remark 2. Poles of the rational solution of P,(«, §) are either {+b, ---,
+b,} or {0, +b,, - - -, +b,}, where every b, is not zero and {£b;} N{xb,}=¢ if
jxk. '

Remark 3. For any («, 0) in X, we can construct the rational solution of
P,(a, 0) from the rational solution —(2/3)¢ of P,(0, +1/3), while for any (e, §) in Z,
we can construct it from the rational solution —2¢+4 1/t of P,(—1, +-2). For that
purpose, we use the transformations W, W,, W_, T, T_, T, and T, which are the
birational transformations between Pfw, ) and PJ(ay, 6,). These transformations
are introduced in Prop. 2-6, 2-7, 2-8 in § 2-2°.

Examples of rational solutions of P(a, §) (For the transformations W, W, etc.,
see the above Remark 3):

’—)(O, ——l), —zt
w 3 3
2(0.5) -3
W= 3 3
( 1> 2 2t
—(2, =), -t
(1) (0 l) . 21 T, 3 3 "+3/2
) 3 s ? <
—»<~2, l), PR -
T 3 3 232
SNEAEL W P
T, 3 3 1*43/2
2) 2 1
> 13“— s ——1 —
S < 3 + 4

where (0, 1/3), etc. denote the values of the parameter («, 6).
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1,2, —2—L

t
T,
’ 2412
@ 1, 1(t*—1/2)
(2) -
6.1 #13/4
T (et —1/2) (2 —3/2)
w,
(6.1, —(+3/4

(P +1/2)*+3/2)°
where (1, 2), etc. denote the values of the parameter («, 6).

3° Algebraic solutions (particularly, rational solutions) of P; (J=2-6) have
been studied by Yablonskii [1], Vorob’ev [2], Lukashevich [3], [4], [5], [6], [7], Gromak
[8], [9], [10], and Airault [11], [12].

However, in spite of their investigations, it was very hard to determine all
rational solutions of P, (J=2-6).

The main cause lay in the difficulty of finding the transformations between
Painlevé equations of the same type with different values of the parameters. But
recently, Okamoto [14] has succeeded in deducing many such transformations for
P; (J=2-6) and in determining their group structures by a systematic study of
Painlevé equations.

So, in this paper, using these transformations (under weaker conditions than in
[14]), rational solutions of P; (J=2, 4) are determined.

In § 1, Painlevé systems S, and S, are introduced. In §2, several transforma-
tions for P, and P, are presented. These sections are the preliminaries for the proofs
of our theorems. In §3, Th. 1 is proved. In §4 and §5, Th. 2 is proved. In
Appendix, Th. 1 and Th. 2 are algebraically interpreted in relation to the trans-
formation groups of P, (J=2, 4).

§1. Painlevé Systems

1° Equations P, and S,
Py(a) is equivalent to the Painlevé system S,(a) which is a Hamiltonian system
with a polynomial Hamiltonian H, ([13]):

Pfa) '=22+t1+a
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Y=ty +%
Sy(ex) 1

= iee(ed)
i #+a2

1 ¢ 1
Hy=L s (zz _) —( ——)2,
LAY S G

where « denotes a complex constant.

Remark. S,(1/2) admits =0 and 2 which is a solution of the Riccati equation
R,: X—2—1/2=0. So any solution of R, is a solution of P,(1/2). We note that R,
is equivalent to the Airy’s equation: " —xu=0 with the change of the variables:

u:epr(—Z)dt, x:(f/%)t.

2° Equations P,, S, and E,
P(a, 0) is equivalent to the Painlevé system S,(6,, §..) which is a Hamiltonian
system with a polynomial Hamiltonian H, ([13]):

P, 6) =2t @pt3rramrir2t—an—2
24 2 2
V=43 — (4211426,
S46,,6.) ", \ '
Y=—20"+Q22+28)p—40.
H, =22 — (B 4+ 2t 21+ 26)pu+6..2,

where 6,=6, 0.,=1/2(a+6—1).
Besides, S,(6,, 0..) is equivalent to the following equation ([13]):

E (x40, X1, X5) (B —4(th — hy* 4+ 40 4 2x,) (W + 2x,)(H +2x,) =0,

where x,, x, and x, are complex constants satisfying x,+ x, 4+ x,=0.

Exactly speaking, if (A(t), p(¢)) is a solution of S,(@,, 6..) land A(t)=Ht, A(t),
p(t))—2x,t satisfies /(1) +2x,2£0, A(tY +2x,20, then A(?) is a solution of E(x,, x,,
X,), where x,= —(0,+6..)/3, x,=(260,—0..)/3, x,=(—0,+26..)/3.

Conversely, if a solution 4(z) of E,(x,, x,, x,) satisfies #/(£)2c0, then (A(?), p())
is a solution of P,(4,, 6..), where

Xy =2t =D
2(7 4-2x,)

Oy=x,—Xx,, 0..=x,—Xx,.

()= h’;+2(th’—h)
(W' +2x,)

> 2

We note that solutions of P,, S, and E, are meromorphic on C.
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Remark. S,(6,, 0) admits #=0 and 2 which is a solution of the Riccati equa-
tion R,: X+ 2*4+2t2+26,=0. So, if a solution of R, is not identically zero, P,(1—6,,
6,) admits it. Since R, is equivalent to the Hermite’s equation: u”/— 2t/ +2(6,—1)
=0, with the change of the dependent variable: u=expj (A4-2t)dt, we get a rational

solution —2¢+4H./H, (H,: the Hermite polynomial of order n) of P,(—n, n+1),
where 7 is a positive integer. From these, Remark 1 after Th. 2 is obtained.

'§2. Trnasformations for P, and P,

1° Transformations for S, and P,
We have the following propositions.

Proposition 2-1. (1) Assume that (2, p) is a solution of Sy(a), then
T, p=(—2, =22 —p—1t)

is a solution of S(— «).
(2) Let (2, p) be a solution of Sy(a), then T(T(2, 1))=(2, p).

Proposition 2-2 (Okamoto [14]). (1) Assume that (2, p) is a solution of Sy(a) and
that 22*+ p+1 0, then

1/2
e =(—z—_“+__, —2%—p—t)
2 1) it p—t
is a solution of S(a+1).
(2) Assume that (2, ) is a solution of Sya) and that u=s0, then

is a solution of S{a—1).

(3) If a solution (2, ) of Sx(a) satisfies 22+ p+-t =0, then the solution T (2, )
=4 pt1) of Sfa+1) satisfies p. 0. And T(T.Q, )=, p). Similarly,
T.(T_(2, )=, p) holds under the condition p=0.

Remark. The above propositions are checked by direct calculations. Here we
note that the condition 22°+ u+72:0 in Prop. 2-2, (1) and the condition =0 in
Prop. 2-2, (2) are weaker than the conditions in [14].

In this paper, to prove Th. 1, we need the next proposition which is easily
obtained from Prop. 2-2.

Proposition 2-3 (Transformations T, and T_ for Pya)).
(1) Assume that 2 is a solution of PSc) and that ¥ + 2+1/220, then
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T.()=—i— _2+12
VIEL2
is a solution of P(a-+1).
(2) Assume that 2 is a solution of P,«a) and that ¥ —2*— /20, then

a—1/2

T ()=—a4 =12
B=—1+ =212

is a solution of Pa—1).

(3) If a solution 2 of Pya) satisfies X + A2+1/2250, then the solution T,.(R) of
Pya+1) satisfies T .(A)— T, (A —t/2x0, and T_(T,(A)=21. Similarly, T (T_(A))=2
holds under the condition 2 — 22 —t/2=0.

Remark. Transformations 7', and 7T_ in this proposition are those referred to
in Remark after Th. 1. A rational solution A of P,(x) is apparently transformed into
a rational solution by 7', (or T_) if it satisfies 7/ ++A24-#/2=0 (or 7' — A2 —1¢/220).

2° Transformations for S, and P,
In order to state Okamoto’s results on the transformations for S,(é,, §..), we will
rewrite the parameters 4, 6., of S, into the parameters x,, x,, x,:

1 1
xoz_’?lT(eo‘i‘ﬁoo), x1=-3—(200—5m), x2=?(_60+20m)-

The correspondence between (4, 6..) € C* and (xy, x4, X,) € H={(xy, Xy, X,) € C*| xo+
x,+x,=0} being one-to-one, we can refer to S,(6,, 0..) as S,(xy, X1, Xy).

Proposition 2-4 (Okamoto [14]). (1) Let ©, be the symmetric group of degree
3 on the set {0, 1,2} and let ¢ € S,. Assume that (2, ) is a solution of S (%, X1, Xy)
which satisfies the condition

(C) 2p=x0, Ap+x,—x,x0, Apt+x,—x,0.
Then, T,(2, )= (2,, u,) is a solution of Si(X, @) X,y X.(»), Where

2,=2 Ap+Xo— X,

A Xo—X, 3
= Ap+Xo—X, .
zﬂ"_xo—xv(l)

(2) If a solution (2, p) of S{(x,, X, Xx,) satisfies the condition (C), then the solution
T,(2, 1) of S{(Xs(01> Xo 1y X, () Satisfies the condition (C). And for any © € ©,, T(T,(2, 1))
= T‘!U(Z’ ,u)'
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Proposition 2-5 (Okamoto [14]). (1) Assume that (2, 1) is a solution of S,(x,,
X, X,) which satisfies the condition

ipx0, Ap+x,—x=x0, Ag—x+x,+1=0,
(c)

where p:y—%l——t.

Then, T,(2, py=(2,, p,) is a solution of S,(x,—1/3, x,—1/3, x,+2/3), where
A.=2p Af+Xo— X,
Ap—x+x,+1

__1_2 Ag—x+x,+1 _
2 in

+

Q) Assume that (2, p) is a solution of S(x,, x, X,) which satisfies the condition
(C)) 2u=0, Ap+x—xx0, Ap+x,—x,50.
Then, T_(A_, p_) is a solution of S,(x,+1/3, x,+1/3, x,—2/3), where

1= ——Zp 2#-}—)60—.7(1

Ap+x,—x,
o A x—) _ pOptxn—x)
B 22u Aptxo—x,

() If a solution (2, p) of Si(xy, xy, X;) satisfies the condition (C.), then the
solution T.(4, 1) of Sy(xy—1/3, x,—1/3, x,+2/3) satisfies the condition (C_), and
T (T.Q2 W)=Q@Q, p). Similarly, T.(T_(2, 1))=(2, p) holds under the condition (C_).

Remark. Prop. 2-4 and Prop. 2-5 are checked by direct calculations. And
we note that the conditions (C), (C,), (C_) are weaker than those in [14].

In order to prove Th. 2, we must rewrite Prop. 2-4, Prop. 2-5 and introduce
other three transformations.

First, we note that the transformation group {7, | o € &} is generated by T, and
T,,, where ¢,=(1, 2), 0,=(0, 2). So, it is sufficient to consider T;(=T,) and
T(=T,) of all T’s.

From Prop. 2-4, we obtain the following proposition.

Proposition 2-6 (Transformations 7; and T, for P(«a, 6)).
() Assume that 2 is a solution of P(a, 6) which satisfies the condition

(D) X422 420, V242022 2(a—1).
Then,
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X+ 242t 2)—2(a—1)
A+ 2320 —26

T, (D=2

is a solution of P,(3(0+1)—a)/2, (a+0—1)/2.
(2) Assume that 2 is solution of P(«, 6) which satisfies the condition (D). Then,

T()=1 X+ 22t —2(x—1)
: (W +2+2:2)+26

is a solution of P(—3(0—1)—a)/2, (—a+0-+1)/2.

() If a solution 2 of P(e, 0) satisfies the condition (D), then the solution Ty(2)
of P(@, 0) satisfies the same condition (D), where (@, )= (3(0+1)— a)/2, (a+6—1)/2.
So T, and T, are applicable to T\(3). In particular, T{T(A))=2A. Similarly, T, and
T, are applicable to T,(2) under the condition (D) of 2, and particularly T(T,(2))=2
holds.

Next, we can derive the following proposition from Prop. 2-5.

Proposition 2-7 (Transformations 7', and T_ for P(«, 6)).
(1) Assume that 2 is a solution of S(a, 8) which satisfies the condition

D) V—2=202x420, V—-21-21%—2at]).
Then,

1 (W —R—202— 46

L= @t —2i) 1 2@ D)

is a solution of P(x+2, 6).
(2) Assume that 2 is a solution of Pa, 6) which satisfies the condition

(D)) XV+242t2x+20, V24222 —1).
Then,

T (= — L @+2t2iy—dp
22 (X + 242t )—2(a—1)

is a solution of P(a—2, 0).

(3) If a solution 2 of P(«, 0) satisfies the condition (D), then the solution T (1)
of P(a+2,0) satisfies the same condition (D,) and T_(T.(A))=24.  Similarly,
T.(T_(2)= 2 holds under the condition (D_).

In addition to T}, T,, T, and T_, we need the following three transformations
w,w,, W_.
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Proposition 2-8 (Transformations W, W, and W_ for P(«, 6)).
(D) If A(2) is a solution of P(a, ), then y(t)=A(t) is a solution of P (e, —0):
W: P(a, )—>Pa, —0), 2—>y=2.
Q) If A(t) is a solution of Pfa, 0), then x=+/—1t and y=+—12 satisfy
P4(—a: 0)
W.: Pa, )—>P(—~a,0), (t D)—>x )=K =1t +—12).
() If At) is a solution of P{a, 8), then x=(—+— 1)t and y=(—+/—1)2 satisfy
P(—a,0):
W—: P«&(“: 0)'—)P4(—a3 0)9 (t5 '2)———)()6: y):((— vV — 1)t9 ('— V= 1)2)
@) WoW=W_oW. =W, o W_=id. -
The proof is easy, so we omit it.

Remark. Seven transformations in Prop. 2-6, 2-7, 2-8 are those referred to in
Remark 3 after Th. 2 in § 0-2°. 'We note that each of the transformations W, WF“
T., T, and T, transforms a rational solution A of P(«, ) into a rational solution 1
of P(w, ) if 2 satisfies the condition of application.

§3. Proof of Theorem 1

1° We begin with the investigations of the Laurent series expansions of solu-

tions of Pya).
Since the following two propositions are easily verified, we omit the proofs.

Proposition 3-1. If a solution 2 of P{a) has at most a pole at t= oo, then 1 must
have the following Tayler expansion:

A= —t“ + 20:(0;24— 1) + 0(—;15—) (around t= oo).

Proposition 3-2. If a solution 2 of P,() has a pole at t=>b e C, then 2 must have

the following Laurent expansion:

'2([): (t—b) + O(t_b):

where ¢ denotes 1 or —1.
The next simple lemma will be used both in this section and in § 4.

Lemma. Suppose b;’s (j=1, - - -, q) are distinct q complex numbers and ¢; is 1
or —1. Let
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& — P(t)

L (t—b) 00

™=

J

where

q q
P)=2.(; 1 t—by),  QO)=]] (t—0b).
j=1 kxj j=1
Then, P(t) and Q(t) have the following expansions:
Pt)y=mt '+ (mA+C)t 14 (mB+AC+ D)t 34 . ..,
Q()=t"+At* '+ Bt "+ - -,

where

m:ilej, A:—i‘lbj, B=Ybp,, C=3eb, D=3 eb
j= Jj= j

=k Jj=1 ji=1

Moreover, P(t)/Q(t) is expressed as

P(1) =00
o0 —T-l— —|— + ( ) (around t= o).

We omit the proof.

2° From the above two propositions and Lemma, we can derive some infor-
mation on the rational solutions of P,(«).

First we note that any rational function is uniquely decomposed into partial
fractions.

Let 2 be a rational solution of P,(«).

If 2 is a polynomial, then, by Prop. 3-1, it must be expanded as follows:

W="%+0 (%) (around 7= o).

So, =0 and 1=0.
If 2 is not a polynomial, then, from Prop. 3-1 and 3-2, it turns out that

=3 %

( - J)

where ¢;=1 or —1 and b,’s are distinct g complex numbers.
In addition,by Lemma and Prop. 3-1,

Pe) _m _C D 1
)= o) t+T PR (z‘)

t t*
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So,
q
a=—m=—) ¢¢€Z.
Jj=1

Therefore, we have seen that if Py(a) has a rational solution, then o must be an
integer.

Moreover, the following proposition is obtained.
Proposition 3-3. 21=0 is a unique rational solution of P,0).

Proof. Assume that P,(0) admits a nonzero rational solution 1=P/Q, where

deg P=p and deg Q=¢g. By Lemma and the above consideration, g>>2 and p<gq
—1.

Since
2/: -P/Q - PQ/ s
QZ
7 — (P"Q—PQ"Q—2(P'Q—PONQ’
o’ ’

we get
(P"Q—PQ"Q—2AP'Q—PQ)Q'=2P°+1PQ"
On the other hand, we have
deg (P"Q—PQ")Q<2q+p—2,

deg (P'Q—PQYQ'<2q+p—2,
deg P*=3p,

and
deg tPQ*=2g+p+1.

This is a contradiction, because

2q4p+1>2g+-p—2>3p. Q.E.D.

3° Now, we can prove Th. 1.

Proof of Th. 1. We will recall the transformations T, and T_ defined in Prop.
2-3. We can apply T, and T to =0, the unique rational solution of P,(0), because
N424t2=¢20 and ¥ —2—t/2=—1/2%x0. We can also apply them to a
rational solution 1= P/Q, if it exists, because

deg O>deg P

and
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t_ PO—PQ"  P*  tP’2

2 o o
_ 1 0 __ ’ 2 L 2
—?[(PQ PQ)= P+ LP?| 0.

P+

2

So, if we start from the rational solution =0 of P,0) and use T, and 7_
successively, we can construct a rational solution of P,(«) for any integer «. More-
over, by the properties of T, and T_: T_oT,=T, o T_=id (Prop. 2-3, (3)), and
the uniqueness of the rational solution of P,(0) (Prop 3-3), for any a e Z, Pfa)
cannot have more than one rational solution. Thus, Th. 1, (1) has been proved.

By Prop. 3-3, 2=0 is the rational solution of P,(0). And by the consideration
before Prop. 3-3, the rational solution of P,(a) (o € Z—{0}) is expressed as

e Cae)tt e (e

b

=1 (t—by) [T14-:(z—0)) [14-1(—b))
where ¢;=1 or —1 and b,’s denote distinct g complex numbers. Therefore, Th. 1,
(2) has been proved. Q.E.D.

§4. Proof of Theorem 2 (Necessary Conditions)

0° We prove Th. 2, (1) in the following form:

(A) If P(a, 6) has a rational solution, then (a, 0) belongs to XU Y.

(B) If (, 6) belongs to XU Z, then P (e, 0) has a unique rational solution. If
(a, 0) belongs to D,U D,, then P(a, 8) does not admit a rational solution.

X, Y, Z, D, and D, are the same sets as in §0-2°.

In this section, (A) will be proved, while in the next section, (B) and Th. 2, (2)
will be proved.

In order to prove (A), we will discuss in the following way. We begin with the
investigations of the Laurent expansions of solutions of P,(e, §) (Prop. 4-1, Cor.,
Prop. 4-2), and, using these results and Lemma in § 3, we deduce the necessary con-
ditions on «, 6 for P,(«, 6) to have a rational solution, and those on the forms of
rational solutions (Prop. 4-3). Next, we investigate the effects of the seven trans-
formations W, W., W_, T, T_, T, and T, on rational solutions (Prop. 4-4 - Prop.
4-8). From these, we derive the detailed necessary conditions on «, ¢ for Pye, 6)
to have a rational solution (Prop. 4-9). Lastly,we prove (A).

1° The next propositions and corollary are easily shown. So we omit the
proofs.

Proposition 4-1. (1) If a solution 2 of P(a, 8) has a pole at t=co, then the
Laurent expansion of A at t= oo must be
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2 o 1 1
N=—"4t+4+2 — (=943 + D) —+ ...
(a) ) 31T 4( +a+)13+ ,
or
—o 1 . . 1
(b) 2(t)=—2t+—t~+z(—a +3a +1)_ﬁ+....

() If a solution A of P(a, 0) is holomorphic at t=co, then the Taylor expansion of
A at t= oo must be

7] (a—26)8 1
A= 457 20 C4.
(a) (®) et
or
(b) At)= —0 + —(+20)0 _1_3_}_...,
t 2 t
where 0:0.

Corollary. (1) A= —(2/3)t is a solution of P(a, 0) if and only if (a, 0)=
0, £1/3).
(2) A= —2tis a solution of P«a, 6) if and only if (a, 6)=(0, +1).

Proposition 4-2.  If a solution 2 of Pw, 6) has a pole at t=b & C, then 1 must
have the following Laurent expansion:

)=y Fetalt=bt- -,

where e=1 or —1.

2° Let us study rational solutions of P(a, §) according to these results.

First, as in § 3, we note that a rational function is uniquely decomposed into
partial fractions. -

Let 4 be a rational solution of P(a, §). If 1is a polynomial, by Prop. 4-1 and
Cor., either 1= —(2/3)t with (a, §)=(0, +1/3) or A= —2¢ with (&, )=(0, +=1). If
2 is not a polynomial,

or
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or

where ¢;=1 or —1 and b,’s are distinct for different indices.
By more detailed investigations, we get the following.

Proposition 4-3 When b)s (j=1, - - -, q) are distinct complex numbers and ¢;
is 1 or —1, we write

q Ej £
By 0
where
q q
=2 (e [T ¢—by) and Q=[] (t—b)).
Jj=1 k=g j=1
And we set

q
—>'b, B=Ylbpb,.

=1 IED

Let 2 be a rational solution of P/e, 6), then 1 is one of the following six types of
rational solutions.

1 1 )
1) (0= <0, —3—> or (O, —?>, A==t
2 (v, 0)=(0,1)or (0, —1), 1=—
B) acZ

2 q
A=—t = — it
3 E (t— b)) +Q

{P:atq‘1+(aA)tq‘z+[aB—Z(—%‘“r 3a2+1)]t‘1'3+ RN

2y
3

Q:tq_‘_Atq—l_}_th—L*_ cen,
@ acZ,

q . P
A= —21t S =2+ 1
+JZ=:1 (t—1by) * o

{P=<—a)ﬂ-l+<—aA>ﬂ—2+[(—aB) (= D]

Q=19+ At 4 Bte24 . . .,
(5) 0ezZ—{0},

=3

P
(J) 0’
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{P:ﬁt‘l”’—l—(ﬂA)t‘l‘Z +0<B+ £ _a)tq—s+ o

O=t"+ At '+ Bt} ...,
(6) 0eZ—{0},
q

1=y & P
2 a—b) 0

P:(—ﬁ)t'1“+(—0A)t‘1‘2—¢9<B+ L +0>zq-3+ e
Q=t1+ At "+ Bt ...,

b

Remark. Hereafter, we shall refer to a rational solution of the type (3) ((4),
(5), (6)) in Prop. 4-3 as a rational solution of the type —(2/3)¢+P/Q (—2t+P/Q,
P/Q, P*/Q, resp.).

Using Lemma in § 3 and Prop. 4-1, one can check this proposition.

3° We have obtained necessary conditions for P(«, ) to have a rational solu-
tion in Prop. 4-3. For further discussions, we need the transformations W, W, T.,
T, and T, defined in Prop. 2-6, 2-7, 2-8.

As is noted in Remark after Prop. 2-8, these transform a rational solution into
a rational solution under the conditions of applications. So, we will see the effects
of these transformations on rational solutions.

Proposition 4-4. We can apply W, W, W_, T,, T, and T, to —(2/3)t+P/Q,
and

g

1

P, > 2%+

2
______+ B >
3 Q W; Wi’ Ti’ Tl; T2

That is, any rational solution of the type —(2/3)t-+P|Q is transformed into a rational
solution of the same type —(2/3)t+ P/Q by each transformation.

Proposition 4-5,

P P,
) When 0% +(a+1),
P P
P SN YRS W
Q T. Q1

(3) When 6 +(a—1),

P P
B, PRI SN, PR &
Q T- o,

b
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Proposition 4-6.
0 W, W o
() Whenfxa+1,
P P,
——
Q T, o,
(3) WhenlOxa—1,
P P,
—>

Propesition 4-7.
Q W, W Q1
() Whenbx—a—1,
p* pP¥
T
o T. Q1
(B) Whenbx—a+1,
P Pr
Q I- 0
p* P¥
- — ,
Q T, 0,
and
P P
0 Th O

Proposition 4-8. (1) The rational solution —(2/3)t of P(0, +=1/3) is trans-
formed into a rational solution of the type —(2/3)t+P[Q by T, T, and T,.

(2) The solution —2t of P(0, £=1) does not satisfy the conditions (D.), (D_) in
Prop. 2-7, (D) in Prop. 2-6, and so, T., T, and T, are not applicable to —2t. Con-
sequently, any rational solution of Pa, 0) with (a, 6) (0, 1) is not transformed into
—2t of P,(0, =1) by the seven transformations.
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Since these propositions are proved by Prop. 2-6, 2-7, 2-8 and Prop. 4-3, we
shall only show Prop. 4-5, (2).

Proof of Prop. 4-5, (2). Let 2 be a rational solution of P(a, §) of the type
—2t+P/Q. By Prop 4-3, (4),

P=(—a)t "'+ (—ad)t**+[(—aB)+L(— 43+ D934 .- -,
Q=t"4 At '+ Bt - - -,

where g denotes a certain positive integer and 4, B are the same ones as in Prop. 4-3.
By Prop. 2-7, (1), we can apply T, to 4 only when 2/ — 2 —2¢A3x+260, ¥ —2*—
2t 2% —2(a+1).

Since

Ve P—2t0=—2+ % —(— 2t + §>2 - 2t<— 2t + g)
=é[_2Q2+2zPQ+(P'Q—PQ/)—Pz],

replacing O and P by the above expanded expression,
X r—2ui= é[—Z(a—l— 1)1 — 44t e
+{ 4Bt 1) =24+ D+ L (kD= e
On the other hand,
+20 = éﬂi 20)0*
= (D (AL (£2)OB4 A ]
—2Aa+ )= é [—2(a+1)t21—4A4(a+ )22 = 2(a+ DB+ 4D 24 . - ]
Therefore, if 2+ (a41), then ¥ —2—-2rax+26, ¥ —2—-2tlx—2a+1),

and we can apply T, to A.
Moreover, from

(X — 22— 212 — 46" = é[4((oz+ P —Eta ...,

(=220 4 2t D = ] St iyt
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and

1 Q

22 2—210+P)’
it turns out that

1 (V=222 —4F

T+('2) ==

22 (W —A2=2t)+2a+1)

_ 1 4+ 1y -t .-
20(—210+P) (I20(a+ =4 -

_ 1 8t ...
Y T R

=2t

That is to say, T,(2) is a rational solution of the type —2¢+ P/Q. Q.E.D.

4° From Prop. 4-3, 4-4, 4-5, 4-6 and 4-7, we can deduce the more detailed
necessary conditions of «, § for P(«, ) to have a rational solution.

Proposition 4-9. As in Def. in § 0-2°, let

X={(2k, =%+2m), Rk+1, +2+42m)|k, me Z},
Y={(2k, 2m+1), 2k+1,2m) |k, me Z}.

(1) If P, 0) has a rational solution of the type —(2/3)t+P/Q (or —(2/3)t),
then (o, ) e XU Y.

Q) If P(a, 6) has a rational solution of the type —2t+P[Q (or —2t), then
(0, 0) e Y.

() If P(a, 0) has a rational solution of the type P[Q or of the type P*/Q, then
(a, 0) € Y and 6x0.

Proof. We will only prove (2). Others are shown in the same way.

If P(a, ) admits —2¢, then (a, 6)=(0, 1) € ¥ (Cor. after Prop. 4-1).

Let 2 be a rational solution of P,(«, 6) of the type —2¢-+ P/Q.

First, by Prop. 4-3, (4), « must be an integer. Even if we can apply W or W,
or T, to 4, we cannot derive a new condition on «, # (See Prop. 2-7, 2-8, 4-3). But
the application of T, or T, gives us new information. In fact, when 2+ (a—1), 2
is transformed into a rational solution of P,((3(6-+1) —a)/2, (a+6—1)/2) of the
type P/Q by T, (See Prop. 2-6, (1) and Prop. 4-5, (3)). So, by Prop. 4-3, (5),

Ha+60—D=me Z—{0},
a+0=2mt1.
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Consequently, the following condition (C) must be satisfied.

a and 6 are integers and
(C) [(either « is even and ¢ is odd,

or « is odd and 4 is even.

Additionally, even if =4 (a¢—1), a and & satisfy the condition (C), which
means that («, §) belongs to Y. Q.E.D.

5°  Proof of (A). Compare Prop. 4-3 with Prop. 4-9. Then we find that if
P(a, 0) has a rational solution, («, §) must belong to XU Y. Q.E.D.

§5. Proof of Theorem 2 (Sufficient Conditions)
1° In this section, we shall prove (B) of § 4 and Th. 2, (2).

Proposition 5-1. (1) —(2/3)t is a unique rational solution of P, (0, £=1/3).

(2) PO, £1) have a rational solution —2t, but they do not admit rational solu-
tions of the type —2t+ P/Q.

(3) —2t+1/t is a rational solution of P(—1, +2). Except this, P(—1, +2)
do not admit rational solutions of the type —2t-+ P|Q.

Proof. We will prove (1) only. Proofs of (2) and (3) are similar to that of
.

By Cor. after Prop. 4-1, —(2/3)t is a solution of P,0, =1/3). And by Prop.
4-9, P,(0, +1/3) cannot have rational solutions of the types —2¢+4 P/Q (nor —2t),
P[Q, P¥/Q.

Now, let 2 be a rational solution of P,0, +1/3) of the type —(2/3)t+P/Q.
Then, it has a Laurent expansion:

2 c c c c
)= —Zt1¢ Bt T It O Pt N i O SN
()=—Ztto+—t+ 2+ 2+ 2+
at t=oo.

By Prop. 4-1, (1), (a),

So, assume that

c=c=---=¢,=0 n>3).
Since
1) 17 (z’)2 3 3 2 2 2 1
P(0, += V= Ay SN TY L, P B
"( —3 2y T AT 9 2
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is equivalent to the equation

220 = () 438481 4 472 — ‘9‘
we substitute
2:___1‘_;’_ n+1_l__ 1
tn+1 tn+2

into the latter equation.
Comparing the coefficients of 1/1"-?%, we get
BXAX (= +8XIX (= §F —leri =3, 1 =0.

Therefore, ¢, ., =0.
By the induction, we can conclude that 2 is equal to —(2/3)z. This is a contra-
diction. So, P,(0, 4-1/3) have a unique rational solution —(2/3)z. Q.E.D.

To prove the following proposition, we must recall the relations among the
equations P,, S, and E, (see § 1-2°).

Proposition 5-2. (1) P,(1,0) does not admit a rational solution of the type

—(2/3)t+P|Q (nor —(2[3)1).
(2) P(1, 0) does not admit a rational solution of the type —2t+ P[Q (nor —2t).

Proof. (1) By Cor., (1) after Prop. 4-1, —(2/3)t is not a solution of P(1, 0).
Assume that there exist a rational solution A of P(1,0) of the type —(2/3)t+
P/Q. Then, by Prop. 4-1, (1), (2), 2 has the Laurent expansion:

2 1 1 1
A Wy=—2¢p 11 0(_>
(A) ) it olo
at f=oco
Now since
6,=6=0, =Ha+0-1)=0,

(%, p) is a rational solution of S,(0, 0), where

mt)= 42*()[3’(1)+2(f)2—l—2tl(t)]

Therefore,

h(t)=H,(t, A(2), 14))
=23 — (R 2 D)
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= p22p— (420 D)

=%(x'+22+2z1)(z'—22—2m)
is a rational function, and is developped as
4 1\1 1
b ko des(-Dbreld)
®) =+ (=5 )+ +0(%
at t=oo by (A).

Since #/(t)+2x,=Hh'(t)+2x,=H'(t)=0 from (B), we can conclude that A(¢) is a
non-polynomial rational solution of

E(0,0,0)  (W')—4(th’ —h)*+4h*=0,

and that it has the Laurent expansion (B) at 7= co.

This fact is a contradiction, since A(z), as a solution of E,(0, 0, 0), can not have
a pole in C. Consequently, there does not exist a rational solution of P,(1, 0) of the
type —(2/3)1+P/Q.

(2) By Cor., (2) after Prop. 4-1, —2¢ is not a solution of P,(1, 0).

Suppose that there exist a rational solution 1= —2t+4>29_, &;/(t—b,) of P(1, 0),
where ¢;=1 or —1 and b,’s are distinct ¢ complex numbers. By Prop. 4-1, (1), (b),
A is developped as

ay=—2+ =111y o(i>
t te t*

at t=oo0.
As in the proof of (1), h(t)=H(t, A(t), 1«(¢)) is a rational function and A(t)=
O(1/t*) at t=co.
Moreover,
H4 ’ o ’
2 4
T

0H, 0
()= 4
() Py +

ot
=—24p

= —%(Z’—I—ZZ—{—ZM).

If W(t)=0, h(z) is a solution of E,(0,0,0) and has a zero at t=co. But, the
direct examination of E,(0, 0, 0) shows that no solution of E,0, 0, 0) has a zero at
t=co. So /(¢) must be identically zero. That is, A should be a solution of the
Riccati equation 24 A24-2¢1=0.
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We note that this Riccati equation is transformed into the linear equation (L)
u’ —2tu’ —2t=0, by the change of the dependent variable: u=exp I (A-+2¢)dt.

Therefore,

u= exp(J.Z “—b) —bJ) dt)

should be a soultion of (L). Since any solution of (L) has no pole in C, it turns out
that u=A(t—Db))(t—b,)- - -(t—b,), where A denotes a nonzero complex constant,
However, by the direct examination of (L), we find that any solution of (L) has no
pole at t=oco. This is a contradiction.

After all, there does not exist a rational solution of P,0, 1) of the type —2¢+

P/Q. Q.E.D.

2° From now on, we will investigate rational solutions of P,(«, §) according
to the types.

(1) On the type —(2/3)t+ P/Q and the solution —(2/3)¢

Proposition 5-3. (1) When (a, 6) ¢ X, if P, («, 0) has a rational solution of the
type —(2[3)t+P[Q, it is transformed into a rational solution of the type —(2/3)t+
P|Q of P(@, 0) with (&, 6)e X, by W, W_, T., T, and T,. And also, —(2/3)t of
P,0, £1/3) is transformed into a rational solution of the type —2/3)t+ P/Q of
P, 6) with (@, 6) € X, by T., T, and T,

(2) When (a, 0) e Y, if P(a,0) has a rational solution of the type —(2/3)t+
P|Q, it is transformed into a rational solution of the type —(2/3)t+ P|Q of P(w, 6)
with (z, 0) € Y, by the seven transformations.

Proof. Since it is already shown that a rational solution of the type —(2/3)¢4
P/Q and the solution —(2/3)¢ are transformed into a rational solution of the type
—(2/3)t+P/Q (See Prop. 4-4 and 4-8, (1)), it is enough to check the changes of «,
6 by the seven transformations:

0, £ e X—>(@ e X,
(a, ) e X—>(a, 0) € X,
and

(a, ) e Y—>(w, D e Y.

We immediately find that (0, +1/3)— (&, §) ¢ X, from Prop. 2-6 and 2-7.
Moreover, by the relationships: W, o W_=W_o W, =id, T, T_=T_o T, =id and
W?=T}=Tj;=id, it is sufficient to see that («, 6) ¢ Y—(&, #) ¢ Y. But this is easily
verified from Prop. 2-6, 2-7, 2-8. Q.E.D.
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As we can apply T,, T_ and T to rational solutions of the type —(2/3)t+P/Q
and to the solution —(2/3)¢ without any restriction, we can define new transfor-
mations composed of these transformations.

Definition.
U,=T,T.T.T.: (@, 6)—>(a+1, 6+1),
V:t = Tl(Ti)leTi: ((X, 0)_>(0‘, 6i2);

where the compositions are done from the right to the left.
By the above transformations, we get the following four sequences of the values
of the parameters:

@ O Pk o2k £i2m),
m * m * m
X X X ’
(b) 0, He—(—1, —3)>Q2k+1, —$)<>Qk+1, —§+ 2m),
m * m T m Ve m
X X X X
© ©, =1, >k +1, <>k 41, §42m),
m E oom * m * m
X X X X
(@ {1, 0)<—I7>(1, 2m)<—>(1 +2k, 2m)<v—?(2(k+ 1), 2m+-1),
m * m * m * m
Y Y Y Y

where k and m denote integers.

Now, we can derive the next conclusion from the relationships: T, o T_=T_o
T,=id, T?*=id, and Prop. 4-9, 5-1, (1), 5-2, (1) and the above (a)-(d).

Proposition 5-4. (1) If (a, 6) belongs to X, then P(w, 6) has a unique rational
solution of the type —(2/3)t+P|Q. In the cases of P(0, =1/3), —(2/3)t is the unique
rational solution.

(@) If (a, 0) belongs to Y, then PJa, §) does not admit a rational solution of the
type —(2/3)t-- P|Q nor the rational solution —(2/3)t.

Proof. (1) By Prop. 5-1, (1), P,0, +=1/3) have a unique rational solution
—(2/3).

Let (a, 6) € X, then (a, )=k, £1/3+2m) or (2k+1, +£2/3+2m). For
example, let (a, 6)=(2k, 1/3+2m). By the chain (a) of transformations, a rational
solution of P,(e, 6) of the type —(2/3)¢+P/Q can be constructed. Moreover, by
T.oT.=T_oT,=id, T?=id, the uniqueness of the rational solution of P,(0, 1/3)
and Prop. 4-9, (2), (3), such a rational solution is the unique one of Py(«, 6).

(2) Let(a, 6) € Y. Pfa, 6) does not admit —(2/3)z (Cor., (1) after Prop. 4-1).
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If for some (a, ) P,(e, 6) has a rational solution of the type —(2/3)t4-P/Q, then,
by the chain (d), P,(1, 0) should have a rational solution of the type —(2/3)t+P/Q.
This is a contradiction (See Prop. 5-2, (1)). Q.E.D.

(ii) On the type —2¢+ P/Q and the solution —2¢

Proposition 5-5. Let A,, A,, etc. are the same sets as in Def. in § 0-2°.

O If(a, 6) e A UA, then P(a, 6) has a rational solution of the type —2t-+
P[Q or the solution —2t. Moreover, the rational solution of this type to Pfa, 6) is
uniquely determined. In particular, —2t is the unique one to P(0, +1).

2@ If(a,0) e Y—A,UA,, then P(a, 6) does not admit a rational solution of the
type —2t-+ P|Q nor the solution —2t.

Proof. (1) We note that P,(«. 6) admits —2¢ if and only if (a, )=(0, +1)
(See Cor., (2) after Prop. 4-1).

Now, we define the points P,, O, R, and S, on the lines L;: 6=a+1, L,:
0=a+3, L;:0=a—3, L,: g=a—5, by

Py=(k, k+1), Q,=(k—1,k42),
Ry=(k+4,k+1), S,=(k-+6, k+1),

where k denotes a non-negative integer (Fig. 5-1).

First, by Prop. 5-1, (3), as for the type —2¢+4 P/Q, there is a unique rational
solution for Q,.

Next, from Prop. 2-6, 2-7, 4-5, 4-6, we get the following sequence:
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(CV, 0)_Q0 P, R,
P
—2t+ — ——> 2t + —
Q T, Q1 I 0,
So 0,
Py
—_— — 2t
gl S

From this, for Q, also, a rational solution of the type —2¢-+ P/Q exists and is
uniquely determined as for this type.

Suppose that for each of @,, Q;, - - -, @, (n>>1) a rational solution of the type
—2¢4PJQ exists and that it is uniquely determined concerning this type. Then, by
the sequence

(aa 0) Qn Pn+1 Rn
P
— 2t 4 — ——> 2t —}— — 2
o T. Q1 I, 0,
Sa Ous1
P,
—_— R —> — 2t +
T, 0, Iy Q4

it is also true of 0, ..

Consequently, as for the type —2¢-++ P/Q, there is a unique rational solution for
any Q, (Because of Prop. 4-8, (2), we cannot use the solution —2¢ of P,(0, 1) for the
above induction).

Using T, and T, we find that a rational solution of the type —2¢+P/Q (or
—2t) exists for every point in 4, and that it is uniquely determined concerning this
type (See Prop. 4-5, (2), (3) and Prop. 5-1, (2)). Moreover, it is also true of every
point in 4, by using W (See Prop. 4-5, (1)).

(2) By Prop. 5-2, (2) and T. (See Prop. 4-5, (2), (3)), we easily find that a
rational solution of the type —2¢--P/Q does not exist for any point in D,. By W,
it is also true of any point in D,.

We refer to the point (—k, —(k+1)) on the line L;: §=a—1 and the point
(2k-+3,0) in D, as U, and V, respectively, where k£ denotes a non- n@gatlve integer.

Then, from the transformation

T, UV, Lo 2
:Uy<— I —
2 13 k> Q + Ql
(See Prop. 4-5, (3) and Prop. 4-7, (3)), we find that there is no rational solution of
the type P*/Q for any U,. By T., we also find that a rational solution of the type
P*/Q does not exist for any point in 4, And by W, there does not exist a rational
solution of the type P/Q for any point in 4, (See Prop. 4-6, (1)).
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So, by the transformation
P,
O

(See Prop. 4-5, (3) and Prop. 4-6, (3)), there is no rational solution of the type —2¢
+ P|Q for any R,. Using T, we find that there does not exist a rational solution

of the type—2¢+ P/Q for any point in B,.
Finally, by W and W,, we find that it is also true of any point in B,, C, and C,.
Q.E.D.

T,: R,_«—>P,, —2t+ g«—a

(iii) On the type P/Q

Proposition 5-6. (1) If (a, 6) e BJUB,, then P(a, 6) has a unique rational
solution of the type P|Q.
) If(a, 0) e Y—B,UB, then P(a, 6) does not admit a rational solution of

the type P[Q.

Proof. (1) InProp.5-5, (1), we showed that there exists a rational solution of
the type —2t+P/Q (or —2¢) for any point in A, and that it is uniquely determined.
From this and the transformation

T,: P,<~—>R,_;,, —2t £<—>£,
1 k k-1 + Q Ql
for every point R,(k>0), there is a rational solution of the type P/Q and it is
uniquely determined concerning this type. By T,, we find that a rational solution
of the type P/Q uniquely exists for every point in B,. And by W, W_, it is also true
of every point in B,.

(2) In the proof of Prop. 5-5, (2), we found that there does not exist a rational
solution of the type P/Q for any point in A,. Therefore, by T, it is also true of
any point in C,. And so, by W, W, there does not exist a rational solution of the
type P/Q for any point in C,. Using T. again, it is also true of any point in 4,.
By Prop. 4-9, (3), of course, there does not exist a rational solution of the type P/Q
for any point in D, and D,. Q.E.D.

(iv) On the type P*/Q

Proposition 5-7. (1) If («, 6) € C,\U C,, then P(a, 0) has a unique rational so-
lution of the type P*[Q.
Q2 If(a, 8) e Y—C,UC,, P(a, ) does not admit a rational solution of the type

P*/Q.

Proof. (1) and (2) are proved by the application of W to rational solutions of
the type P/Q. Q.E.D.
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3° We now prove (B) in §4 and Th. 2, (2).

Proof of (B). From Prop. 4-3, 4-9, 54, 5-5, 5-6, 5-7, we obtain the following
conclusion: ,

(i) If(a, 6) e X, P(a, 6) has a unique rational solution of the type —(2/3)¢+
P/Q. In the cases of P,(0, +1/3), —(2/3)¢ is the unique one.

(ii) If(a,6) € A, U A4,, P(a;6) has a unique rational solution of the type —2¢-+
P/Q. In the cases of P(0, 1), —2¢ is the unique one.

(ii) If (a, 8) € B,U B,, P,(a, 6) has a unique rational solution of the type P/Q.

(iv) If (@, 6) e C,U C,, P(a, 6) has a unique rational solution of the type P*/Q.

(v) If(a, 6) e D,UD,, P(e, 6) does not admit a rational solution.

These imply that if (¢, ) € XU Z then P,(«, §) has a unique rational solution,
and that if («, 6) € D, U D, then P,(«, 6) does not admit a rational solution.

Q.E.D.

Proof of Th. 2, (2). Comparing Prop. 4-3 with (i)-(v) in the proof of (B), we
obtain the table in Th. 2, (2). Q.E.D.

On Remark 2 after Th. 2. A rational solution Ct+P/Q of P(a, 0), where C
denotes —2/3 or —2 or 0, is obtained from the solution Ct+4 P,/Q, of P,(—a, 6)
both by W, and by W_. So it follows that the set of the poles {b,, - - -, b,} of
Ct+ P/Q has a property that {b,, - - -, b,}={—b,, - - -, —b,} (See Prop. 2-8, (2), (3)).
From this, Remark 2 is obvious.
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Appendix

1° Let 7, T, and T_ be the same transformations as in Prop. 2-1, 2-2.

Then we can regard these as the transformations on the set F,={(a, 2, p) |« € C,
(2, p) is a solution of Sy(a)}. And in this sense, 7, T, generate a transformation
group G, on F,.

In addition, we define the transformations, z, z. on the parameter space C as
follows:

7: C—>C, a—>—«

7,: C—>C, a——a+1.

And we refer to the group generated by z, ¢, as G,.
Then, on these groups, Okamoto [14] indicated the following fact.

Proposition A-1. G,~G,~ W, (4,), where W,(A4,) is the Affine Weyl group as-
sociated with the Lie algebra of type A,.

In fact, if we restrict the domain of action of G, to R, we can regard open inter-
vals (n, n+1/2), n e Z, as Weyl chambers (See Fig. A-1).

On the other hand, we note that solutions 4, u of S,(«) are rational functions if
and only if the corresponding solution 2 of Py(«) is a rational function. So, by Th.
1, (1), S{a) has a unique rational solution (4, ) only when « is an integer.

And, by the successive applications of 7, and T_ to the Riccati solutions of
S,(1/2) (See Remark in § 1-1°), we find that when a=n+1/2 (n € Z) Sy(a) has a one
parameter family of solutions which are rational functions of Airy’s functions 4;, B,
and their derivatives.

Therefore, S,(«) has degenerated solutions when « is located in one of the walls
of the Weyl chambers of G, (Fig. A-1).

2° LetT,(ce®,), T, and T_ be the same transformations as in Prop. 2-4,
2-5.
As in the case of Sy(«), we regard these as the transformations on the set F,=
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{0 X15 X35 A, )| (%05 X3, X5) € H, (2, 1) is a solution of Sy(x;, x,, X;)}, and refer to the
group generated by T,, T, as G,. Moreover, we define the transformations
7, (¢ € ©), 7. on the parameter space H as follows:

7,0 H——>H, (X, X1, X)—>(X, 0)» Xo(1)> Xo(2))

vy s H, (5 Xy X)——>(—, ¥~ 59,

And we refer to the group generated by <, 7, as G,.
On these groups, Okamoto [14] pointed out the following fact.

Proposition A-2. Let (,) be the Killing form and §) be a Cartan subalgebra and

A be the root system of a semisimple complex Lie algebra. We define the group D as
Jollows:

D={T,|d e b} and for any 2 e 3, Za, (d, ) € Z},
ac4d
where §% is the dual space of the real part of ) and
T,: 05——0%, x——x+d.

Then, G,~G,~W(A4,)x D, the semiproduct of W(4,) and D, where W(4,) is the
Weyl group associated with the simple Lie algebra of type A, and D denotes the above
parallel translation group for this algebra.

On the other hand, solutions, 4, gz of Sy(x,, Xy, x,) are rational functions if and
only if the corresponding solution 2 of P,(a, 0) is a rational function, where a= —x,
— X+ 2x,4+1, 0=x,—x,.

So, by Th. 2, Si(x,, x;, x,) has a unique rational solution only when (x,, Xy, X,)
is located either at one of the vertices of the Weyl chambers of G, except for ones
on the line L, or one of the barycenters of Weyl chambers (See Fig. A-2).

The rational solution of P,(«, §) which corresponds to S,(x,, xy, X,) with (x,, x;,
x,) at one of the barycenters of Weyl chambers is —(2/3)¢ or the type —(2/3)t+P/Q.

By the applications of 7, (¢ €S,), T, and T_ to the Riccati solutions of
S, (—0,/3, 26,/3, —6,/3) (See Remark in § 1-2°), we also find that S,(x,, x;, x,) has a
one parameter family of solutions which are rational functions of the two inde-
pendent solutions of the Hermite’s equation: u”—2tu'+2(6,—1u=0 and their
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X a rational solution of the type —(2/3)t+P/Q or the solution —(2/3)¢
O a rational solution of the other type

Fig. A-2

derivatives when the set {x,, x;, x,} is equal to the set
{—30+n), $(20,—n), 5(—0,+2n)},

where 0, C, ne Z.

In particular, when (x,, X, X,) is located in one of the walls of Weyl chambers
of G, (See Fig. A-2), S.(x, x;, x,) has such a one parameter family of solutions.
When (x,, x;, Xx,) is at one of the vertices except for ones on the line L, the unique
rational solution is included in such a one parameter family of solutions.
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