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On the Asymptotic Solution of Two First Order Linear

Differential Equations with Large Parameter

By Frank Stencer
(The University of Utah)

A system of two first order linear differential equations with coefficient matrix
whose elements may become large as a parameter u becomes large or as the independent
variable z becomes large is brought to a canonical form by a finite sequence of explicit
transformations. The coefficient matrix of the canonical form consists of a diagonal do-
minant part plus a 2X2 non-dominant matrix whose elements are “small” with respect
to both large z and large u relative to the diagonal matrix. Error bounds are given for
the difference between an actual solution vector of the system in canonical form and a
partial sum of a formal solution vector. Solutions uniformly valid for large u and/or z
are thus obtained. For the second order equation the method resembles the WKB method.

1. Introduction

Let us establish our notatation. To refer to the (i, /)'* element of the
matrix A we shall write {A};;, while {A}; refers to the i*® column of A. The
paths @ we shall use consist of a finite number of Jordan arcs t=2(s) (a<s=<b)

., dt . . 1
on each of which 58 continuous and non-vanishing.
s

Let ¢(z,%) be a holomorphic function of two independent variables z and »
with z in a domain §) extending to infinity and # in a domain S extending to
infinity. We use the notation

c(z, wy=(0, #) .1
to imply that w and u are real numbers defined as follows.
0*(@)=inf t€R : Timgee)|c(z, u)z"t| =0}
O=supqe $;0*(x) 1.2
u*(@)=inf{teR : limueeylc(z, w)u =0}
#=5upze 9H1*(2).
Here R denotes the real line and the limits (Ilim) are taken along paths P ex-
tending to infinity. ,

The relation (w, u)<(w;, 4;) will then imply that w<w; and p<p,, the re-

lation (w, #)=(w,, #,) that w=w, and g=g,;, and the relation (o, &)<(w;, &)

that w<w, and u<y;.
The system of two first order linear differential equations we shall study in
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this paper takes the form

aX

—J;ZA(Z, u)X. ‘ (1- 3)
Here,
(e B\ [alz, u) B(z w)
acw=(55)=( 0 e ) -9

where a, 8,7 and § are holomorphic functions of two independent variables 2

and « for all (z, ) in @ XS. G and S are domains in the z and u planes

respectively, each containing a sector of positive angle extending to infinity.

Furthermore, we assume that e, 8, v and § have representations of the form
r—1 . .

0i= kgoa(}i) (u)z’”-‘“k-i-a(,') (z, u)zoi—"

=;i}:b(/?(z)u#i’k—}—b(si)(z,u)uf‘i—s, r,s=1,2,---  (L.5)
i=1,2 3, 4
in XS, where the o; and u; are integers, oy=a, p,=8, 0:=7, 04.=06, the fun-
ctions a(i)(z, u) are holomorphic in §X.§ and remain bounded as z—co in 9),

and the b(é)(z, u) are holomorphic in X S and remain bounded as u—oo in §.
By allowing the introduction of isolated singularities we shall assume that after
taking a finite number of sums, products and quotients (in the case of quotients
we do not allow the denominator to vanish identically) we are again left a
function of type, which has expansions of this form valid in almost all of &)
XSH.

Our approach is modelled along the lines of previous authors (Turrittin,
[3]1; Wasow, [4]; and Kiyek, [5]) in that we begin by transforming (1.3) to
canonical form. We also differ in that our approach is based on successively
taking square roots, and for the second order equation the method resembles
the WKB method. The leading terms of the resulting coefficient matrix are
diagonal and either dominant in z or «# (or both) or else zero ; in the latter case
the norm of the integral of the resulting off-diagonal coefficient matrix remains
bounded as w—oco in § and as z—>co in §). Paralleling Olver [1], [2] we
obtain uniform asymptotic expansions together with error bounds. The results
obtained are valid in any subset §’'XS§’ of XS in which the sign of Rev
remains unchanged, v=(w, #) and (0, u)=(0*(), #*(2)), where v is the diffe-
rence between the eigenvalues of the coefficient matrix.

*  With the exception of a set of measure zero in §XS.
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2. Transformation to Canonical Form

The following theorem describes the canonical form. In this theorem, the

unitary, zero inducing and shearing transformations are defined in the process
of the proof.

Theorem 2.1. The system (1.3) can be transformed by a finite sequence of

unitary, zero inducing and shearing transformations to the canonical system

aw

E—=C(z, wW @.1D
where
¢I1(2, u) 0 * V

is holomorphic in a domain @/ XS'CPXS. In (2.2) C*(z,u) is such that

(e u)= H f “Cx(t, wydt

is bounded for all (z,u) in Q'XS'.
If v(z, u)=%(q1(z, u)—qy(z, u))EO0 then either/;(z, u)dz—0 as z—o0 in g)'

z
or elsefu(z, u)dz—0 as u—oo in S’ (or both).
If v(z,u)—0 as u— in S’ then n(z,u)—0 as u—oo in §'. -

Proof. The flow chart of Figure 1 serves as a visual aid in our proof.
It is assumed in the flow chart after each transformation the notation of (1.3)
and (1.4) is again used, and @ XS is redefined to exclude new singularities in-
troduced. The process is complete upon arrival at any F; i=1, 2, 3. The
numbers (r,s) where ||A(z, w)||=(r,s) also depend on A(z,«), and may change
as A(z, u) is changed.

Let us put
a B
Az, u)=<T 6) 2.3
and let us define
y=y(z, u):i\/<“7—6> +Br . 2.4

|
In box No. 2 of the flow chart we test whether or not( remains

[ee]
/ At w)ds
F4
bounded as z—oo in §) and as u—oo in §. If so, then the reduction to canonical
form is complete. If not, we proceed on to box No. 3.
In boxes No. 3 and 4 we test whether or not the coefficient matrix is tri-
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angular. In this case (1.3) can be solved explicitly, the explicit solution in
the case when 7=0 being

exp( f Zd:) exp( f Zdz) f i?(t)exp( / G- dt)dt

_ . (@5

0 exp( f zBdt)

The transformation in box No. 7 replaces A(z, #) by its transpose. It is actually
unnecessary——we have used it merely to simplify the flow chart. From
(2.5) we see that the transformation in box No. 8 is unnecessary ; we have
included it solely to simplify the statement of Theorem 2.1.

Both transformations, that in box No. 8 and that in box No. 5, are shea-
ring transformations. The shearing transformation in box No. 5 has the effect
of making the off-diagonal elements of A(z, %) equal. ™

The pair of numbers (»,w) in boxes Nos. 6,9 and 18 are defined by +/By
= (v, w).

In these boxes we test whether or not the off-diagonal elements of A(z, %) are
sufficiently small to meet the statement of Theorem 2.1.

In box No. 10 we make a unitary transformation, choosing

_v—(a—08)/2
=5
where v is defined in (2.4). We assume here that the particular square root is

taken in (2.4) which makes f bounded as either z or u become large. In box
No. 11 we define
P XS ={z, ) EPX S+ alz,u)—0(z,u)=(0, ) and (v, )= (0*(@), *(2))}
@D

In box No. 13 we inquire whether or not a—4¢ is sufficiently large relative
to 5. More precisely, we want to know whether or not the limit

‘(aﬁ@

is finite in g’ X §’. If the limit in (2.8) is not finite we return to @. Other-
wise, we proceed to @.

(2.6)

lim

U—co

2.8)

In box No. 14 we make another unitary transformation, taking

__ B
G

[ 2.9)

*) The transformation in box No. 4 may be replaced by X:(*/B(/) U (1)>W; the effect
of this is equivalent to that in box No. 4.
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Sincea%)-is bounded, it follows that after leaving box No. 13 8 and 7 satisfy

‘/:o{ f }dt t =0(1) as z—o; (2.10)
=0Q) as u;>OO.

We make the transformation in box No. 16 only if | —8|—o0 as u—oco. In
this case, by choosing.

He 2.11)
a—0

we alter 8 and 7 such that O(1) may be replaced by o(1) in (2.10).

In boxes Nos. 1,12 and 17 we have employed a “counter” to ensure that the
reduction with respect to # is sufficiently complete before proceeding to that
with respect to z.

The test in box No. 9 ensures that the transformation in box No. 16 is
carried. out only once. '

We have yet to show that the process of the above flow chart terminates
in all cases. To this end we prove the following lemma.

Lemma 2.1. If each transformation is carried out as described above it is
impossible to arrive at any point & an infinite number of times.

Proof of Lemma. Let us first examine the reduction of order of the off-
diagonal elements of A(z, %) with respect to » as we traverse the loop @-®-@.

On arriving at the point ® in the chart we have

[ ar VBirk
A(z,u)—( VBir 6 > (2.12)

where the integer % denotes the number of times we have passed box No. 11.
We assume that A(z, ) may be expanded in powers of u® where w=w,>0 and
where the coefficients of these powers. of «® are functions of z only. We thus
write

Bire= (-, 200 ;
fomy/ S8y fla Iy ey @)

We observe at the outset that £,<0 and so 7,<0. From

. d
Brs1Tee1=—vBars é:k .19




On the Asymptotic Solution of Differvential Equations 7
it follows that
1 1 .
wk+1=—2'(wk+7k) _S_'Ewk ; (2.15)

consequently, if w,<0(w,<0) for some finite £ then w, ;<0 (wz;<0) for all
finite j=0.

If the test in box No. 13is satisfied, the process will clearly terminate with
respect to #. Let us assume then, that the test in box No. 13 is not satisfied.
In this case we must have

—_ 2
Bka/|: akz 6k> +3k7’k_|—’°° as u—o, ie.
i

(ap—0)? _

—4  as u—oo, 2€9) 2.16
Brre “ P ( )

and so rkg——%—wk. Thus by (2.15)

1 1 w :
wk+1§§‘<wk_§‘wk>; wk=2_£ 2.17)

On applying induction to (2.17) we easily verify that

w20
wp<—__2 (2.18)
=
Hence, if
21,00]
> —
k=[ @ @2.19
then w,<0.

We next examine the reduction of order of the off-diagonal elements of
A(z, u) with respect to z. We again use the notation (2.12) where the integer
% denotes the number of times we have passed box No. 11. Furthermore, we
assume that each term on the right of (2.12) can be expanded in powers z°
where 0=0;>0 and where the coefficients of these powers of z° are functions
of u only. As in (2.13) we again write

Bire= (204, +) 5

2vp—(ep—62) L dfe
W O L (2.20)

We shall show that v<—1 (v=v,) after traversing the loop @-®-@ a finite
number of times.

Let us note by (2.14) that
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. .
”k+123(7}k+7k)- .20
Also, since #,<0,
Tk_<_—1—}“dk H ak-{-i:ldk- (2. 22)
- 2 2

Hence, if vp,<<—1 then v,,;<—1 for every finite integer j=0.
Combining (2.21) and (2.22) we have

1 1\
vk+1§'§"<vk_1“50'k>- (2.23)

Using induction we then easily verify that

: ko
_(Ok_1y_ 200
e @.20)
(IS oF H
from this inequality we find that if ‘
k>[wj (2.25)
0o
then v,<—1.
. This completes the proof of Lemma 2.1.
We finally take
9:(z, w)=a(z, u)—Cy*(z, )
(2.26)

9:(z, ©)=0(2, u)—Cp*(z, u)
where Cy*(z, u)=a(z, «) and Cyp*(z, u)=68(z, ) if bothfzadz and/zadz remain

bounded as z andfor u approach infinity ; otherwise C;;* and C,* are arbitrary
functions of the same type as® B(z,«) and 7(z, z).

This completes the proof of Theorem 2.1.

In the majority of cases in applications it will be necessary to traverse any
loop in the flow chart at most once. Let us suppose that this is the case for

the system
wr 0 1\VW
= .27
W// G O W/
which is equivalent to the second order equation
W'=GWwW (2.28)

*) Here and in (2.26) we refer to the present transformed system using the original
notation.
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If we drop the off-diagonal part of the coefficient matrix of the transformed
system and solve the resulting system with diagonal coefficient matrix we
obtain the approximate solution

W=G"exp f G+ ') (2.29)

where v=+/G+(G'J4G), f=G* [v—G'/AG], g=—G"?/(2v), which shows the
similarity of the transformation and the WKB method.

3. Formal Solution

Let us replace # by % z by 2% in the coefficient matrix obtained in the pre-
vious section, where ¢ and ® are the smallest positive integers such that the
resulting coefficient matrix can be expanded in integral powers of « and z. We
also replace 9’ and S’ by the corresponding new domain. The resulting system
takes the form

LW (@G )+ Ca)IW @1

where Q'(z,u4) is a diagonal matrix with *b diagonal element
qi(z, w)= 2 qis(z, wlw s, i=1,2, 3.2)
s=0

and where C(z, %) is just wz*"'C*(z®, u*) where C*(z, ) is given in (2.2). It
follows that C(z, %) may be expanded in the form

s—1
C(z, u)=kZ‘_, Cr(z, w)u %+ Cs*(z, u)u™s (3.3)
=)
for every positive integer s, where the elements of the matrices
/Ck(t, u)dt, k=0,1,2,---

f Ci(t,w)dt, s=0,1,2, --- (3.4

are holomorphic in g X§’ and remain bounded as z andfor » approach infinity
in g andfor S’ respectively,

For purposes of obtaining formal solutions we assume that once a particular
form of expansion of the type (3.3) has been chosen it is fixed. The C.(z, »)

are thus independent of s and the sequences {Cy(z, #)}, {Ci(z, «)} are unique.
The elements ¢is(z, ) in (3.2) are defined as follows :

(i) The g¢is(z, %) are holomorphic functions of z and # in §)'XS’;
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(ii) limg;s(2,u) is finite for all finite z;
U—0O

(iit) I v=0 in g/ XS’ where
y=v(z, u>=§<qi<z, ) — iz, 1)) 3.5

we restrict the g;s subject only to (i) and (ii). If v#0 in g’ XS’ we require
in addition to (i) and (ii) that

Tim—=0(1) as a—o in §

z—o0 Vg

liﬁm—yf—=0(1) as z—oco in g

u—co VYo

limyy=h()#£0 in g’ B8

u—>co

V(Zy u)z(a), ,U);(—Z, 1)

where
V=2, 1) =§<qis<z, ) —gho(z, ). G.7

It may be necessary to precede (3.1) by an exponential transformation in order
that the last two requirements in (3.6) are satisfied. The transformation

W=exp<[zM—;a(t’u)-dt>X (3.8)

suffices for this purpose.

Also, it may be convenient to replace §)’X.§’ by a dense subset of itself if
(3.6) cannot be conveniently made to be valid for all of §’Xx§’.

We next separate the two different cases: (a) that when all of the elements
of C(z,u) approach zero as u—oo, and (b) that when not all of the elements
of C(z,4) approach zero as u—»co. We apply a different method of solution in

each case.

3.1 The Case When r>0.
For this case we take Cy(z,#)=0 in (3.3). We have the following theorem.
Theorem 3.1. The system (3.1) possesses a formal independent series solu-
tion matrizx of the form

Wz, u) 2 Uz, u) exp Q(z, u) 3.9

where®

*) The Symbol “A” here and henceforth denotes‘a formal equality.
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Uz, w) AT+ }i Uz, yu* (3.10)
Qz 0= 31 Qua wwr™ @11
qis(z; u) 0 z_,
Qs(z, u)—( 0 @l u))— fa le(t, w)dt 3.12)

and where U, and Qp are holomorphic in g)'XS§’.
Proof. We substitute (3.7) into (3.1) treating Qg U, and C, as if they
were matrices of functions z only and then equate equal powers of u to get®

é‘, (QiUs—i— Us-sQ) + ECk s-r—t— Us—r=0 (3.13)

where g=min(s,r), Uy=I and U,=0 if £<0.
A detailed analysis of (3.13) similar to that in Turittin [3] and Kiyek [5]
leads us to the equations

=L {Uiy=0s; [ S{CuUsadisdt s=1,2,--r  (B.10

(U} = (12 :D[{kg QU Us_kae)-l-:éCkUs_,_k UL }J

3 [ | DCaUs) e ij=12

Q, is obtained directly by integration of Q:. The points a; and b are suitably
chosen in g or on the boundary of g) such that all of the integrals exist.

3.2 The Case When r=0.

In this case we take Q'(z,u)=0 in (3.1). Note that this amounts to rede-
fining Co(z,w) in (3.1)——the elements of Cy(z, ) may now become infinite as
z—oo, For s=1, the elements of Cs(z, «) are defined as above.

We have the following theorem.

Theorem 3.2. The system (3.1) possesses a formal independent series solu-
tion matrizx of the form

W, u)ék% Uz, w)yu" (3.15)

where each matrix Uy(z,u) is holomorphic in ' XS’.
Proof. Substituting (3.15) into (3.1) and equating equal powers of » we
get the equations '

,
*) Here and henceforth any sum 3} is to be replaced by zero if k>7.
j=k
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U(/) = Co Uo (3. 16)
3
U;U__—CO Uk+ Z CS Uk-—sy kzly 2’ 3) e (3 17)
s=1

At this point we assume that (3.16) can be solved explicitly. A method of
solution is given in Stenger [67] for the case when C, is a function of z only.
In all but one case Cy will then also be in proper canonical form for formal
solution as described in Stenger [6]. The exception occurs when the difference
between the two eigenvalues C, is of the form p/z where px0 is an integer.
In this case we make an adjustment in the canonical form. This adjustment
starts at the point @, Stenger [6] (p.205). Thus, to solve (3.16) when C, is
a function of u as well as z we separate out the part C¢* of C, that is a func-
tion of z only, solve X’=C¢*X and then repeat the algorithm of this section.
With U, in (3.16) known, (3.17) can be solved explicitly——we obtain

z k
Up=U,| Us'XCUr_sdt, k=1,2---, (3.18)
Cp s=1

where ¢, is an arbitrary interior or boundary point of )’ chosen so that each
integral exists.
4. The Differential Equation for an Approximation

We shall obtain an actual solution vector W,(z,u) corresponding to the first
formal solution vector of one of the formal solutions obtained in Section 3.

4.1 The Case When r>0.
Let 0,,=0,,(z,«) be defined by

m—1
cp,,,:( p3 Ulku“k>e‘h 4.1
=0

where U,, denotes the first column of U, defined in Section 3. We then de-
fine a vector R,,=R,.(z,#) by the differential equation

ifjﬁ _[Q/+C,]¢m:R1¢zeql- (4. 2)

Expanding (4.2) we obtain
M ' ’ ’ + g +
Rm: Z [Ul,s—r—kzo(Qk"Iqm) Us—k‘{‘l’eZleUl,s—r—kjlur_s
s=0 = =

1
— 3 Chir-r Ut 4.3)

k=0

where p=min(r,s) and Uir={U,; if 0Zk<m—1; 0 otherwise}.
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On expanding the first sum in (4.3) in view of (3.13) we obtain
m—1
(R} 1= {Ulm} 1u_m—{k20 C;kn+1—kU1k} wmt 4.9
= 1 .

{Routo=—2v{Uim} o+ 20 —wVo)u{ Usp} o™

m+r+1 " m—1
{ (]l,s—r“kz0 (Cs—r—k_lql,s—k) Ulk} A
= 2

s=m+1
m—1
—{kgo C:n+1—kU‘k}2u_m_l (4 5)

where C,={C, if £2>0; QL if 2<50}.

4.2 The Case When r<0.
We again start with

m—1
=2 Upyu* (4.6)
k=0
and define R,, by the differential equation
A0n —C0,,=R,,. .7
dz

Expanding (4.7) and using (3.16) and (3.17) we obtain

d _ m—1
R,= UOZ(UO1 Uim) u-m—kgjo Chv1-2U L, 4.8)

5. Definition of Domains

Let us define a region §)'’/ XS’ in which we can obtain an actual solution
vector of the Eq. (3.1) corresponding to a formal solution vector defined in
Section 3.

Let « be a fixed point in §’. Corresponding to a fixed point® ¢ in §)’
(the closure of §)') we define a region §)"’(x) consisting of all points z in §)’
such that there exists a path & joining ¢ and z with the following proper-
ties :

(1) Except perhaps for ¢ if ¢ is a boundary point of g, P lies wholly

in 97,
(2) Lett, T be points on ¢ in the order ¢, ¢, 7, 2.

(a) U >0, let exp{/tu(f, u)dé'}be bounded for all such ¢, 7.
t

(b) If r=<0, let |Uy(z,w)Us" (¢, w)]] be bounded for all such ¢, 7. °

*)  The author expects that ¢ may in fact depend upon u. The full extent of this de-
pendence has not been investigated.
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(3) ‘CVgp(t“) is bounded.
In (3) above the variation symbol is defined as follows for every holo-
morphic function f(2):

Welf)= fgldﬂ: [, 11w, .1

It is shown in Stenger [6]1, [7] that if ) is non-empty a suitable choice
of ¢ can always be made such that §)/(x) is non-empty. In this case it is
shown in Stenger [6] p. 198 that §)''(w) is a domain.

Let §”"c&’ be a closed set of points (S’ may possibly become a sector
extending tocoin the complex u plane for all u sufficiently large) such that
corresponding to the fixed point ¢ the above conditions define a domain §)'/(u)
for each « in S'’. We then define a region g’ by

P'= ) D"w. (5.2

us S’

We shall assume that S’/ is sufficiently small so that ¢’/ is not empty.

6. Boundedness of the Coeflicients

Let us first consider the case r>0.
The coefficients of the system (3.1) satisfy

Cx(z, 2)||=0(z"%*) as z andfor u—oco. (6.1
Hence, if paths of integration in (3.14) are chosen to satisfy the conditions in
Section 5 then {U,};;=0(z"'u®) if |b|=oc0 while {U;};=0("%) if b, is boun-
ded. By (3.6), (6.1) and the fact that {Up};;=6:;, it follows that ||Uili=
O(z'u®) if |b|=co while ||U||=0(z%) if b, is bounded. A similar argument
using induction proves
Lemma 6.1. Let
|61 =by| ="+ =|bpl =00, k=1 (6.2)
in (3.14). Then the coefficients Us defined in (3.14) satisfy

U =00z"u®) (6.3)
as z andjor u—oo in g'"XS".
If some of the by (1<s<k) are bounded then

U =00 (6.4)
as z andfor u— in ' X S'.
Similarly, we have

Lemma 6.2. Let each path of integration in (3.18) satisfy the conditions
of Section 5, and let |{|=o0. If
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Cp=0, (6.5)
in (3.18), then the coefficient U, definition (3.18) satisfies
1URll=0C"u®) (6.6)
as z andfor u— in @' XS". If ¢y is bounded, then
| Uell=0(z"") 6.7

as z andfor u— in §)'"XS'.

7. The Integral Equations for the Error

Let a vector Wi= W;(z,w) of holomorphic functions satisfy the differential
equation (3.1). Then, by (4.2) the error vector

en=Em(z, u)=(W;—0,)e"n 7.1

satisfies the differential equation
iem—[D,’*"l—Cr]sm: —Rm (7' 2)
dz u

where R,, is defined in Section 4, and
D'=D'(z,#)=Q'+Cy—Iq;. (7.3)

Note that D’ is diagonal if »>0.
If >0 and e, satisfies

6,0(2, ) =i— fc eDGW-DUCE(E, we(t Wi+ R(z, 1) 7.4

where the path of integration satisfies the conditions of Section 5, then e,,(z, %)
simultaneously satisfies (7.2).
Similarly, if <0 and e, satisfies

e(2, 1) =% /c Ua(z, ) U2, 0)CE @ en(t, ) dt+ Rz, ) (7.5)

where the path of integration satisfies the conditions of Section 5, then ¢,,(z, »)
simultaneously satisfies (7.2). In (7.4)

Ri(z 1) =— f DEw-D R, (1 u)dt (7.6)
4
where R,,(¢,«) is defined in Section 4.1 while in (7.5)
Rz, u) = —foo(z, WU (¢, W) R, (2, w)dt .7
g .

where R, (¢,u) is defined in Section 4. 2.



16 Frank StenGER

8. Error Bouvnds

8.1 The Case When r>0.
Substituting (4.4) into (7.5) we obtain

(Ri(z, W)} 1=d% (z, Wu 8 (2, wu ! (8.1)

where
(2, 0) = {Uy(z, 0) — Upm(C, D} 8.2)
G (2, ) =— /c : {Z;\_‘;,:Cfn-i-l—k(t, WUy (2, %) }ldt. (8.3

In order to more explicitly obtain the second element of R}, we first define P,
=Py(z,u) in view of (4.5) by

m—1
{Rynka= —ZV{Ulm}zu-mer—{kz;, c:zH_kUlk} L, 8.4
= 2

P,
It follows then by the assumptions in Section 3 thatz—jz(a), w) < (~1, —m—1).

Substituting (8.4) into (7.5) and integrating by parts we obtain

{Ri}a=m (2, wdu ™+ (2, W)™t (8.5
where
Dz, u) ={ Ui Gz, ) —ed €22 U, u>} (8.6)
2
® [Pz w)um — (Ufm(z, )] | 20t [Py(E, 0w — {Uim(&, )} 9]
Im (5 0)= 20(a, w) e )
 [raa P O Ul Ol
¢y *
+ fc ¢ o +{ 5 Chasoalt, 0 UnCs u)}zdt.
8.7
For purposes of obtaining a norm bound we put
Uln(z, y=supli($s 2, ), 37 (1 Il (8.8)
te
Vin(z,u) =sugn¢£z’<z, w), b (2, )| 8.9
te
Ci*(x, u):sug[[eD(T’""D“’")CT(t, Wl (8.10)
te

where in each of (8.8), (8.9) and (8.10) ¢ and 7 are points on @ in the order
¢, t, 7, z and ¢ ranges between ¢ and 7.
Let us assume that g)’' contains a domain. Then the existence of a unique
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vector ¢,, of holomorphic functions of z which satisfies (7.4) readily follows by
application of the contraction mapping principle. Taking norms of both sides
of (7.4) and applying Bellman’s inequality (see e.g. [7], p.181) we have

Theorem 8.1. If corresponding to the formal vector solution Wi(z,u) of
Eq. (8.1) obtained in Section 3.1 we can define a region §''XS'" by the con-
ditions of Section5 such that )’ contains a domain then the Eq.(3.1) possesses
an actual solution vector of functions holomorphic in )’ given by

WinCe, ) =] 8 UnCas ) +en, ) fputem .11
for all uw in S, where
1 % %k * - * —y
lenCe, wlisexn| Ve -0t )} Ve (Ut + Ve Vi) (8.12)
Sor all (z,u) in @''XS".

A vector bound can also be easily obtained using the above definitions.
We omit this, since the results are similar to those of Stenger [6] (p.209).

8.2 The Case When r=<0.
Substituting (4.8) into (7.6) yields
z m—1
Riu(z,1) = Up (2, wu ™+ f Un(z, ) Us'(t, ) 1 Crut1-6(, ) Uty w1 dlt
4 =

(8.13)
where we have taken ¢,,=¢. Setting

Uim(z, w)=supl| Upn(z, w)|| (8.14)
tee

Vin(z, w)=sup
e

j;tUo(t) Ua'(® -EIC*mH—k(E, w) Un(§, u)dEH (8.15)

Ci*(z,u) :tsélgpn Uy(r, ) Ua' (8, )CT (2, @] (8.16)

where in (8.14), (8.15) and (8.16) z and 7 are located on P in the order ¢, ¢,
7, z and ¢ ranges between ¢ and 7.

We again assume that the region )"/ defined in Section 5.2 contains a
domain. Then we have

Theorem 8.2. If corresponding to the formal vector solution W.(z, ) of
Eq. (3.1) obtained in Section 3.2 we can define a region 9)''XS' by the con-
ditions of Section 5 such that §)'' contains a domain then the Eq. (3.1) possesses

an actual solution vector of functions holomorphic in 4)'' given by

m—1
Wim(z, u)= kZ Use(z, wu™*+em(z, u) 8.17
=0
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for all u in S', where

llenz, u)Héexp{CVﬁ(%CT*)} [V (Ulmu ™)+ 2(Vimu 1D} (8.18)
Sor all (z,u) in §''XS".

9. Conclusion

If g is sufficiently large and S’/ is taken to be a sufficiently small sector
extending to infinity, it is always possible in the case when z=co is an ordinary
point or an irregular singular point of the transformed system to choose ¢ such
that |¢|=co. This is no longer always possible if z=co is a regular singular
point of the transformed system. For example,

exs] [ v we |

may have the form (z/t)?, where Rep=Rep(x)<0. In this case, we can put
em (5, u)=2"7,,(z,u) in (7.2). This replaces

expl:/:u(f, u)dEJ by <—.§—>pexp[/:u(§, u)d&]

and so enables us to choose [{|=co and obtain a bound for 7,,(z, %) by pro-
ceeding as for e,,(z, %) above.
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